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Abstract
Complex systems, such as manufacturing

supply chains, are often modeled as a collection of
interacting components with information flows
between them. These components are frequently
responsible for making a wide range of decisions
that are implemented using an optimization,
heuristic, or control technique.  The traditional
approach to system performance focuses on the
performance of these components. The view has
been that to improve the system performance one
had only to develop better techniques.  In this paper,
we argue that inadequate attention has been paid to
the relationship between information and system
performance.

Information has played an important role in the
manufacturing systems of the past. It will play a
dominant role in the Internet-based manufacturing
systems of the future. To better design, engineer,
implement, and control these systems, we need a
fundamental understanding of information and its
effects on system dynamics.  This paper contends
that we need a new characterization of information,
a delineation of its salient properties, quantitative
metrics for those properties, methods for computing
these metrics, and linkages between these metrics
and system performance. We focus principally on
the first of these, a new characterization of
information, and discuss the implications of
suggested characterizations for metrics and their
measurement, suggesting some approaches for
further research.

Keywords: chaos; complex system; entropy;
information; metrics; system performance;
ontologies; satisficing

1. BACKGROUND

The Internet has made the globalization of
manufacturing systems, commonly called supply
chains, a reality.  This globalization has caused two
fundamental transformations in the behavior of
these systems. First, the rigid organizational
hierarchies, typified by the keiretsu in Japan, have
been replaced by more flexible, network-like

organizational structures.  The tightly integrated,
closed relationships of the kieretsu had many
advantages for both the original equipment
manufacturers (OEMs) and the suppliers. The
OEMs had a ready set of local, qualified suppliers
who were ready, willing, and able to serve their
needs.  The suppliers, on the other hand, had a
guaranteed customer who provided predictable
production and delivery dates. This captive
relationship shielded both the OEM and its suppliers
from the global marketplace. As history has shown,
the impact can be positive for a while; but, over
time, this shield will weaken the market position of
the OEM and the capabilities of the suppliers. After
years of observation and emulation, many
manufacturers are attempting to build a business
structure that will yield the benefits of the keiretsu,
but avoid its weaknesses. In these structures, which
are self-organizing and Internet-centric, the
suppliers and OEMs form a virtual supply chain.
This allows OEMs the freedom to choose the best
suppliers and suppliers the opportunity to find other
customers.

The second fundamental transformation caused
by the Internet involves the roles that OEMs and
suppliers play in the supply chain. Both have
evolved from systems that are principally producers
and consumers of physical objects into systems that
are also producers and consumers of informational
objects.  This evolution has taken place in two
distinct phases.  During the first phase, the OEMs
gradually shifted production of all components and
sub-assemblies to independent suppliers. Many of
these suppliers were located in other countries,
which reduced the direct labor cost but increased the
logistics and transportation costs. The suppliers
became the builders of components and the OEMs
became the final assemblers.  During this phase, the
business aspects of these relationships, and the
information associated with them, were still handled
by telephone and paper.

During the second phase, which is still ongoing,
the Internet has made it possible to exchange
electronically not only design and production
information, but also business information.  The
potential exists to conduct all business transactions
over the Web.   Demand information, logistics



information, purchase-order information, warehouse
information, and so on, can be sent anywhere in the
world.  The Internet can assure that these
informational objects are delivered on time and
error free. It cannot assure that supply chain partners
will interpret these objects in the same way.
Furthermore, as described below, decisions made on
the wrong interpretation can have dramatic impacts.

Lee, Padmanabhan, and Wang discussed
financial impacts that befell some major companies
that made purchasing and production decisions
based on a misunderstanding of a variety of
information. Hewlett-Packard stockpiled laser
printers, worth millions of dollars, in response to --
what turned out to be-- phantom orders from
resellers.  Procter & Gamble saw wild fluctuations
in orders from their distributors, although its market
research showed that the demand for diapers had
remained constant.  These are two among several
examples described in [Jones et al 02].  In each
case, the decision maker – software or human –
made the decision based on its understanding of all
available information and a belief that the markets
would, in fact, evolve as predicted. Unfortunately,
the understanding was incorrect and the resulting
predictions were grossly inaccurate.  The authors
summarized the generic problem as follows,
"Distorted information from one end of the supply
chain to the other can lead to excessive inventory
investment, poor customer service, lost revenues,
ineffective transportation, and missed production
schedules."

In supply chains, this phenomenon is called the
bullwhip effect because small deviations in
customer demand can amplify quickly (whip)
through the entire supply chain.   As indicated
above, these small deviations can lead to dramatic
changes in performance.  This type of dependence
on initial conditions is typical of a special class of
non-linear, dynamic systems that are called chaotic.
Chaotic systems are a subset of the more general
class of complex systems.

In this background section, the references to
“information” have assumed that the reader has an
intuitive idea of what it is. After all, we talk about
“sending information” or “looking for information”
regularly, and the public recognizes a whole area of
technology as “information technology”.  The word
“information” in all of these areas refers to at least
two fundamentally different things.  One is a
physical aspect of information that allows it to be
communicated.  That physical dimension is
absolutely essential. But there is something that is
often more important to the human user, and that is
the knowledge that is conveyed by the physical
manifestation, and we call that “information” too.
We are going to have to differentiate the two types

later in the paper; but for now, we will continue to
look for any effect that what we commonly call
“information” on systems, and on the extent to
which the information can be used to predict system
behavior.  We will start with the physical
manifestation, which is at the heart of traditional
approaches.

2. TRADITIONAL APPROACHES

Complex systems, such as manufacturing
supply chains, are often modeled as a collection of
interacting components with information flows
between them. These components are frequently
responsible for making a wide range of decisions
that impact the behavior and performance of the
entire system.  Early in his landmark book, The
Sciences of the Artificial, Herbert Simon [69] said
that in such systems, “it is the organization of the
components, not their physical properties, that
determine behavior”.  We interpret this to mean that
information and the ability of components to deal
with information have a major impact on system
performance.  Near the end of his book, Simon
argues that complex systems exhibit emergent
properties  -- “given the properties of the parts, and
the laws of their interactions, it is not a trivial matter
to infer the properties of the whole”.

Simon goes on to say that the evolution of these
systems is typically non-linear, often chaotic, and
sometimes catastrophic.  This means that the actual
performance of the system can deviate substantially
from the predicted performance.  Furthermore,
small changes in initial conditions can lead to
dramatic changes in the evolution of the system.
Before discussing our approach, let us review
briefly the traditional approaches to these problems

2.1 Input Characteristics

An input, X, is characterized as either
deterministic or non-deterministic, depending on
whether its true value is known, or assumed to be
known, with certainty or not.  A great deal of effort
has been spent trying to model non-determinism
with probability distributions. In some cases, such
as queuing systems, assumptions that lead to
specific forms for the distribution -- such as Poisson
arrivals and Exponential service -- are often made.
In most cases, however, distributions are estimated
statistically from sample data. Two approaches have
been used: a frequency approach and a Bayesian
approach.

2.1.1 Frequency Approach. The frequency
approach treats the true value X as an unknown
constant.  The output of a frequentist statistical
analysis is an estimate of the expected value and



standard deviation X.  Consider the simple case
where X is estimated from a sample of n
measurements that are assumed to be independent
and identically normally distributed random
variables with mean c and variance σ2.  Let x and s2

denote the sample mean and the sample variance of
the n measurements.  Then x, s2, and s are the
estimates of µ, σ2, and σ respectively.  The
probability distribution of x, called a sampling
distribution, is also normal but with expected value
µ and variance σ2/n.  The ratio s/√n is an estimate of
σ/√n.  The standard deviation σ/√n, called
population standard deviation of the mean,
characterizes the tightness of the sampling
distribution of x about E(x) = µ.  So s/√n is called
sample standard deviation of the mean, is a measure
of the uncertainty about x as an estimate of µ.  Once
we have these estimates, we use them, the original
data, and a goodness-of-fit test to find the
distribution.  This approach is very sensitive to the
sample size and the underlying normality
assumption.

2.1.2 Bayesian Approach.  The Bayesian approach
starts with a prior probability distribution p(X),
which can be found using the principle of maximum
entropy [Jaynes 68].  This distribution represents the
state of knowledge about X before the data is taken.
The expected value, the variance, and the standard
deviation of the prior distribution p(X) are denoted
by E(X), V(X), and SD(X) respectively.  The
relationship between the measurement data and X is
expressed by a function φ(data | X) that is obtained
by the rules of probability theory from the
probability distributions of individual measurements
that depend on X.  After measurement data are
known, the function φ(data | X) may be regarded as
a function not of “data” but of X.  When so regarded
this function is called the “likelihood function” of X
for given data and written as L(X | data).  Bayes’
theorem states that the probability distribution of X
after measurement, called the posterior distribution
and denoted by p(X | data), is proportional to the
product of the L(X | data) and p(X).  That is, p(X |
data) ∝ L(X | data) × p(X).  This new distribution
represents the state of knowledge about X after
measurement.  The expected value, the variance,
and the standard deviation of the posterior
distribution are denoted by E(X | data), V(X | data),
and SD(X | data) respectively.  The posterior
expected value E(X | data) may be taken as the
estimated value of X.  And the posterior standard
deviation SD(X | data) may be taken as the Bayesian
evaluation of uncertainty concerning X after
measurement.  Unlike the frequency approach, the
validity of this approach does not depend on a
normality assumption or a large sample size.

2.2 System Evolution

System evolution is described in terms such as
continuous/discrete, linear/non-linear, static/
dynamic, and deterministic/stochastic.  A particular
system will be characterized by some combination
of these terms.  Complex systems such as
manufacturing supply chains are composed of many
manufacturing enterprises, each of which is a
system according to our earlier definition.  Each of
these enterprises, in turn, is composed of many
components, which are also complex systems in
their own right.  Given this, how can we predict the
behavior of the entire supply chain?

There is a growing consensus that many
manufacturing systems exhibit chaotic behavior
[Herrin 01]. This means that they are (1) non-linear
and dynamic, (2)  discrete or continuous, and, more
importantly, (3)  deterministic but subject to
stochastic influences. So, although they are
deterministic, their performance cannot be predicted
with certainty in advance.  In fact, small changes to
the initial state may cause significant changes in the
evolution and the performance of the system. 1

Sometimes these changes are gradual and build up
over time (Figure 1a), sometimes they are sudden
and lead to instabilities in the system and a dramatic
degradation in performance (Figure 1b).

As noted above, the traditional approach to
dealing with these problems has been through some
type of optimization techniques for individual
systems or sub-systems.  The characteristics of both
the inputs and the system dynamics determine the
types of technique that is used.  If everything is
deterministic and linear, well-known operations
research, artificial intelligence, or control theory
techniques can be used.  If determinism cannot be
assumed, then techniques that are more complicated
must be used.  These techniques include utility
theory, stochastic optimization, discrete event
simulation, and stochastic control theory.  Except in
the simplest cases, non-linearity is usually dealt
with by using a linear approximation.

Based on Simon's arguments, we believe that
focusing only on the techniques used to make
decisions will not improve necessarily the
performance of the system.  We believe that more
attention should be focused on the inputs to those
decisions, information, which can tell us the nature
of the inputs and how they might mesh between
components of the system.  There are, however,
fundamental scientific limitations to our

                                                                
1 This is in stark contrast to linear systems, where

small changes in the inputs lead only to small changes in
the outputs.



understanding of information and its impact on the
behavior of complex, systems. In particular, the lack
of computer interpretable measures of the meaning
of, and associated uncertainties for, information can
lead to decisions that create chaotic and unstable
behavior in these systems.

  3. INFORMATION CHARACTERIZATION

If all the information that is important in
characterizing a system’s behavior could simply be
expressed in bits, it would provide a numerical
value that could be used to measure and control
system performance and make improvements, which
we need for the reasons expressed in the previous
sections.  In a purely physical system, numerical
measures of energy output characteristics alone may

Figure 1. Actual vs Predicted Performance

tell us whether it is sufficient for a particular task
and also determine  its sufficiency as a part of a
larger system.  We can also determine energy
efficiency.  But we still lack adequate measures of
information outputs (or internal information for

control purposes) from information or hybrid
physical- informational systems of any complexity.

The state of a system is what we are trying to
deal with, whether the system is physical or
informational or both.  That state is an information
object, and the succession of states specifies all the
behaviors and the causes of those behaviors.  When
the state information represents energy or forces, it
is expressible simply in numbers or vectors.  It tends
also to be fairly local in its influence.  Even if a
system is not strictly a Markov process, it is
frequently expressible in such terms. The physical
aspects of human speech and many other physical
phenomena have been fairly well characterized (as
indicated by predictive ability) using Markov
models.

In informational systems, the models seem
inherently to be significantly more difficult.  This is
true even for natural language syntax, as Chomsky
showed: Markov models are not adequate.  If one
factors in the needed semantics for one person to
understand another, it becomes obvious that in
human language understanding there is an enormous
amount of information that is stored for long periods
by a listener and used to understand a speaker at
unpredictable times in the future [Miller and
Chomsky 63].  One would like to think that
industrial supply chains would have more
constraints and that the information needed would
therefore be more localized; but that is not a
foregone conclusion.  Standards are one way to
apply the needed limits, but standards require better
characterization and measurement of parameters.
Below we look at some problems with the use of
ordinary information theory as we examine the use
of system states and their components and
communication of knowledge, then look at some
other possibilities for characterizing the information
in systems.

3.1 Information Within Systems

The definition of a system state is often only an
abbreviation of the essential information needed to
characterize the system, as indicated in the
dictionary definitions:

State: Any of various conditions
characterized by definite quantities (as (i.e.
of energy, angular momentum, or magnetic
moment) in which an atomic system may
exist [Merriam-Webster, 2002]

State: The condition of a physical system
with regard to phase, form, composition, or
structure [American Heritage, Fourth
Edition, 2000]
 



State: The way something is with respect
to its main attributes [WordNet ® 1.6, ©
1997]

State: How something is ; its configuration,
attributes, condition, or information
content. The state of a system is usually
temporary and volatile. [Free On-line
Dictionary of Computing, 2001]

                                                                        

The last of these definitions is closest to what we
need to characterizing the information in a system,
in that it mentions the information content; of
course, the other components it mentions are just
more information, but some of them may have
physical parameters.  In the long run, it is probably
best to be inclusive for cases where information
plays an essential role and broaden the concept of
state (of a system) to the following:

State: All the information at a given instant
that is relevant to the behavior of the
system at any later time.

A trace of the system states under all of the
conditions in which it will operate is a full
informational description of the system.  As an
example, consider a simple algorithm being
executed on a machine – say, a sorting algorithm.  It
has a series of states that lead from inputs of
information (a list to be sorted and an ordering
relation) to outputs of the ordered list.  There are
many well-known sorting algorithms, and each of
these, given the same input, will produce a series of
states, of which the last state will include knowledge
of the initial list and the ordered list.  If we compare
two such series for a given input and different
algorithms, they tell us something about the
comparative properties of the algorithm, including
efficiency on the particular input (and, by
generalization, on whole classes of inputs).  These
traces may also point out some subtle differences
between two algorithms, but if the states contain the
same information at a given time, we can assume
that they are doing the same thing.  That is actually
a very strong requirement, of course, since if two
had some different information at the same time and
did not interact with another system or provide an
output at that time, the results would be of only
theoretical interest.

In certain cases, it is possible to give a
numerical measure to the amount of information (in
the Shannon sense) in a state, which can tell us little
about what the system is doing.  In the sorting case,
for instance, if we compare algorithms for the
algorithms “quicksort” and “merge sort” by
computing amount of uncertainty about the final
ordering at each state, we find even though the
states have different information at given times,

aspects of their behavior are explained by the
information measures. For one thing, we can make
information-theoretic arguments that show why and
when they are most efficient and why they have the
same expected time in certain cases.  But the
particulars of what they are doing and how they
differ are not in those figures; so if – for instance –
they had to stop after a given time, one might
provide a better output than the other.

The simple example, though not very important
in these two similar sorting algorithms, illustrates a
general problem that we have with the
characterization of information as negative entropy
(Shannon Information) in predicting system
behavior.  There are other types of information
measures more closely related to computation, such
as Chaitin Information and Kolmogoroff
Information, but these measures, all based on
entropy suffer from similar problems to Shannon
Information. In general, the information is
incomplete because it does not convey knowledge,
but merely a measure of potential information in a
system. Potential information (amount) is not
adequate for understanding of information systems.

3.2 Potential and Mediate Information

Shannon’s information has been a highly
satisfactory measure of the physical transmission of
symbols over a communication channel.  Since
communicated information always has a physical
dimension, the model is relevant, but the physical
part is only a carrier for what is actually meaningful,
and meaningfulness lacks a satisfactory theoretical
basis.  The physical information that is sent out is
not meaningful until it is interpreted when it reaches
its recipient. Before that time, it is only data, or
“potential information”.  Shannon himself did not
advocate using the term “information”, since he
pointed out that it did not concern meaning, but the
term has stuck.

A diagram may help to illustrate the
relationship between potential information and
meaningful information (often called “semantic
content” or “knowledge”).  Modeling it requires a
theoretical construct, which will be called herein
mediate information.  That mediate information
directs the process by which the potential
information becomes meaningful.  To provide a
graphic example of these constructs and how they
interact, Figure 2 includes a version of the model
used by Shannon for a generic communication
channel. It is labeled for a particular example of
potential information (a spoken utterance in a
human language going – by sound waves – from
one person to another), with some ideas on the
relevant mediate information to make that type of
potential information meaningful. The successful



transmission of meaningful information in the case
of a simple linguistic utterance requires that a
certain amount of potential information be
transmitted, but it also requires a “hidden channel”
of mediate information that is not transmitted with
the potential information, but is known previously
by the sender and the receiver.  It is as if the speaker
had encrypted something and sent a message whose
key was the mediate information sent by another
channel.

The mediate information needed to convert the
potential information to meaningful information in
Figure 22 (and generally) is partly a set of
conventions that had been used by the speaker in the
belief that the listener would interpret the
information using the same conventions.  They are
based on sensory capabilities or are learned from
experience with the world and the language or by
adopted standards, informal or formal.  Though
most of the mediate information will be stored in the
minds of the speaker and listener, some of it may
arrive contemporaneously with the utterance, such
as situational information of a non-linguistic variety
in the example.

Shannon’s theory of communication – as
Warren Weaver pointed out – “at first seems
disappointing and bizarre [because it] “has nothing
to do with meaning” and the measure it provides
counter-intuitively links information with
uncertainty.  But for what we are calling potential
information, Shannon showed the limitations of the
physical channel and also how to use that channel to
communicate within those limitations.  He also dealt
with disruption and corruption (“noise”) of the
potential information and how to cope with those
problems (at a cost in efficiency, by adding
redundancy). The mathematical theory of
communication is recognized as a very important
scientific contribution and communication engineers
use techniques based on it routinely.

We need a similarly useful theory that deals
with the delivery of “meaningful information”, and
since we already have Shannon’s theory for
potential information, we need to approach the
mediate information.  The new theory of mediate
information must also deal with how to cope with
noise, which may be more complex in the case of
meanings that it is for Shannon information.  It is
clear that redundancy still plays a role, as humans
typically have multiply connected concepts for any
given word that they hear, and often multiple
possible interpretations of the structure of a given
string of potential information.

                                                                
2 Figure 2 is at the end of the paper.

3.3 Ontologies as Mediate Information

Figure 2 gives some idea about how the
utterance, which is physically received and contains
potential information, must be interpreted by
mediate information shared by the source person
and the destination person, but it really only
scratches the surface.  What is this “human
knowledge” that is referred to and has its analogue
in other organisms and in artificial information
systems?  If we wish to be very general about a
system, we can work with its ontology, which
should be, in our view, everything that the person
has that will interpret inputs from language, from
sensors, etc.   There has been a lot written in recent
years on the topic of an individual system’s
ontology and what it may contain, and we will not
get into that directly in this paper.

In another paper, soon to be published [Reeker
02] it is argued that the needed extended ontology
(or worldview) for complex systems is in general
much more extensive than the ones that we see in
the literature.  It is argued that ontologies are
inherently different within different individual
organisms and yet the organisms (like the two
humans in Figure 2) work together by making
assumptions that are approximately correct in most
instances.  They also seek new knowledge if they
have a feeling that they lack essential knowledge or
feel that they do not understand or are not being
understood. Traditional hierarchies or lattices of
object classes, often called ontologies [Sowa 99],
must be strengthened or extended for purposes of a
scientific theory of knowledge and intelligence and
the practical engineering consequences of such a
theory. The notion of linking classification to
sensory processes (“grounding”) or to linguistic
terms that are so grounded is essential, but not
enough. Models that include explicit processes must
be integrated with the ontology, not swept under the
carpet as programs or parts of a knowledge base
separate from the ontology. Each process in which
an object is a participant can partially define the
object. This means that the task of discovering (in
organisms) or developing (in artifacts) an adequate
worldview for utilitarian purposes must be more
exacting than is sometimes implied. The additional
burden will not go unrewarded, however, as it can
improve the ability to engineer and evaluate
intelligent systems, to automatically integrate
systems, and to understand and control system
behavior.

What this all says is that the “fabric of
knowledge” is held together by a rich system of
links, and communicating people can usually find
some common links from their knowledge to
whatever they hear from the people they are
communicating with.  The notion that the power of a



system for expressing mediate information is in all
of the links between concepts and not just in the
hierarchical nature of the system is not a new one
(see Woods [75]) There is evidence in human
cognitive processes that each action in which an
entity performs may modify its meaning. Perhaps
the strongest argument for this extended ontology
need is the nature of science, where there has
evolved a “fabric” of linked concepts that is shared
by millions of people with a good deal of consistent
understanding.  The multiple connections and
extensibility of the linked concepts of that fabric is
widely considered to be a major strength of
scientific theory.

3.4 Techniques for Practical Integration and
Control

The use of information techniques to actually
improve the integration of complex information
systems for understanding and control is still a
research topic.  There are some approaches that
appear hopeful, however, and these will now be
discussed.  We have not mentioned human
intervention directly (which is the sole satisfactory
method today), but human interaction may be
involved in any of these techniques or combinations
thereof.

3.4.1 The State Comparison Approach.  The ideas
described in section 3.1 above provides a clue to a
method of looking at two subsystems and checking
them with respect to their performance on given sets
of data.  If the information comprising the initial
states of the two is the same and the information
given as inputs is the same, then one can sometimes
prove that the information given as outputs and the
final states will also contain the same information.
There may even be differences in the middle states
of the algorithms or the number of intermediate
states, but that does not matter in terms of the
information ultimately produced.  Making sure that
this is true is clearly a strong requirement, and it
may not always be provable either true or false.  But
the technique may be helpful in determining how
the information is utilized and transformed
(discussed in [Reeker, 1980]).  It may be especially
interesting in conjunction with some of the next
three suggestions.

3.4.2 The “Work Analogy”. The information
measures that we have claimed to be inadequate for
meaningful information do still have properties that
we would suppose any information measure would
have.  The most important of these is the insight that
information requires organization.  If there were no
organization in the world, then we have, for sure,
what William James called a "booming, buzzing

confusion".  In fact, we would not even know that it
was booming and buzzing because we would have
no ordered way of retrieving meaning, let alone
learning the words or their meaning in the first
place.   Which leads us to the idea that we do learn
things and that learning is a form of organizing (of
which, more in the next section).  Thermodynamics
tells us that organization takes energy, as the
entropy principle is always spreading
disorganization.  Energy can be stored as “potential
energy” that is just waiting for a force field to let it
turn into kinetic energy.

The interesting thing here is that a force field
has direction, so the kinetic energy released will be
causing work to be done in that direction.  Only
along the direction of the force, which has a vector
quantity, does that particular work get done.  The
rest of the energy is dissipated in some other ways,
without necessarily doing any useful work.  Is it
possible, one might ask, to express the measure of
meaning in an ontology through a set of vectors?

The reason that we are calling this the “work
analogy” is that potential information can be made
into knowledge (meaningful information) by its
transformation through mediate information, which
can be compared to a force field (where the
dimensions are computed merely by the three
geometric directions, as a cosine function of the
force).  Unfortunately, if we take that view, we
come right back to the fact that we have too many
dimensions in any vector that might possibly be
broad enough to handle all of information.  So does
the work analogy work?  It might, if supported by
standard definitions of some dimensions.

There is some work ongoing already on putting
together a common upper ontology, that could be
extended to lower levels for specialized areas
[Standard Upper Ontology (SUO) Working Group
02] Suppose that standard were to give us N
orthogonal (or at least forming a vector space)
information parameters.  Then we might derive
some analogy of the modern definition of work that
treats it as taking place in the direction of each of
these parameters, as a measure of meaningful
content.  It is hard to see how that would help us,
since we are left with a space of arbitrary
dimension.  Under the circumstances, that makes the
work analogy a problem, rather than a solution.

The psychologist and communication scholar
Charles E. Osgood developed a measurement of a
type of meaning (meaning being information
content in much the same way that work is energy
directed by a force) called connotative meaning.
Connotative meaning is related to an individual’s
personal ontology [Osgood, 57] because it includes
“shades of meaning” that may not be shared through
a strict definition. The connotation is intended only



to be partial meaning, to be coupled with the more
explicit denotation for a full definition in a
particular context. In trying to measure it, Osgood
postulated three dimension types or factors, within
which pairs of adjectives would indicate
denotations:

• Evaluative factor (example: good - bad)
• Potency factor (example: strong – weak)
• Activity factor (example: active - passive)

Osgood then measured each pair, for each factor, on
a seven point Likert scale.  He then constructed an
n-dimensional space, n being the number of
adjective pairs, for his “semantic differential”.

Clearly, much more than the semantic
differential is needed to do the evaluation that can
lead to integration of several manufacturing systems
or bioinformatics systems.  However, Osgood’s
ideas fit into the idea of fuzzy frameworks, and it
was an important step in trying to formalize the idea
of how the vocabulary of humans may vary.
Vocabulary, while not the same as ontology, is
closely linked, and provides a way to get at human
ontologies.  So in a sense, it reflects the ontology in
an approximate way.  The possibility presented by
this type of approach is most likely to be
determination of closeness of various concepts by
comparing dimensions based on a standard ontology
with certain standardized dimensions as a major.  It
is not clear what value a unified measure based on
some sort of standard dimensions for all ontologies
would have, or how such standard dimensions
would be defined.

3.4.3 Machine learning.  Machine learning is
becoming an important area in data and knowledge
management, because it can potentially allow the
development of enormous knowledge bases from
enormous amounts of data that would not be
economical or feasible for manual human
development and because it is the basis of the field
of data mining (along with data visualization, which
allows humans to participate in the mining).  As a
short summary, there are three basic categories of
machine learning generally recognized:
unsupervised, supervised, and reinforcement
learning.  The one that requires the least detailed
input information -- merely a similarity space in
which the data are shown and the dimensions are
attributes of the data – is unsupervised learning.  If
one had a list of words classified by Osgood’s
semantic differential, then one could use
unsupervised learning to cluster them in ways that
reflected their denotational similarity.  Clearly, the
same could be done with concepts in an ontology
based on attributes.

Supervised learning can actually learn to
recognize things that exhibit a certain set of
attributes, which are related in particular ways.  It
can do this even in cases where people have a hard
time coming up with a computer program to
recognize those things.  An example is the
astronomical phenomena that a particular
astronomer may want to study.  The program is
given examples of things that exhibit a given
phenomenon and examples of things that do not
(preferably, some things that could be confused with
things that exhibit the phenomenon but do not).  It
then looks at sky surveys, with their trillions (or
more) of objects and finds a set of those which
appear to exhibit the phenomenon.  If taught well,
such a program can be quite helpful to the
astronomer, though it might make some mistakes
(both false positives and false negatives), so it needs
to be checked.

Reinforcement learning does not have to have
all the examples, but it needs to have conditions that
are rated “right” or “good” (which it will reward
with positive numerical amounts) or are “wrong” or
“bad” (which it will punish with negative numerical
amounts).  It is based on one model of animal
conditioning.  An example is a game-playing
program that has been rewarded for good moves and
punished for bad ones.  The computer program TD-
Gammon, which is probably the best backgammon
program in the world, learned by reinforcement
learning.

Statistical regression is another type of learning
that can be programmed into a machine, and neural
net models can also be used.  Whatever type(s) of
machine learning are chosen, the point is that a
subsystem integrated into a complex system for
something like supply chain management may be
able to learn aspects of the behavior of other
subsystems.  These might include ontologies and
state patterns, developing mediate information of
value in informational interactions, “self-adapting”
to the other subsystems in an integration process.
Alternatively, a learning program could be used to
find problems in the operation of full complex
system – and maybe (through reinforcement) to
alleviate the problems.

There is one more technique in human learning
that has received a lot of attention in machine
learning but has proven hard to implement in
practice.  That is analogy (or case-based reasoning).
Humans use it regularly in what is called “transfer
of learning”.  As mentioned earlier in this paper, an
informational objects in an ontology will have many
activities and certain other informational objects
linked to it.  These will have certain attributes.
Having that informational object and all of those
links in his or her knowledge base, the person is



often capable of using an “approximately
structurally identical” informational object in a new
but somehow similar situation.  This sort of transfer
is something that might help in integrating similar
systems and predicting their behavior.

In control, learning algorithms can be
considered as optimization algorithms.  But we may
not need to optimize for systems to do what we want
them to do.  Herbert Simon, whom we have
mentioned, and his observations on humans and
human organizations provide the clue to another
method that needs to be explored and the last one
that we will mention here.

3.4.4 Satisficing.  As a final suggestion for research
directions, we turn again to the manner in which
people settle perceived differences in their
ontologies, using dialog to come to an approximate
compromise, which is often a “near-enough” joint
understanding.  This is a sort of “satisficing”, one of
the important ideas stressed by Simon [57].  It is
embodied in his statement,

It appears probable that, however adaptive
the behavior of organisms in learning and
choice situations, this adaptiveness falls far
short of the ideal “maximizing” postulated
in economic theory.  Evidently, organisms
adapt well enough to “satisfice”; they do
not, in general, “optimize”.

Herb Simon was awarded the Nobel Memorial Prize
for Economics in 1978 largely on this observation of
“bounded rationality”, backed up by empirical data
and theories that have supplied models for many
areas of science and are being explored carefully
today as a solution for intractable computational
problems [Zilberstein 97].

Although we are still trying to determine just
how Simon’s idea of “satisficing” would be used for
practical integration, it fits well with the use of
fallible learning, as described in §3.4.3, and as
suggested by Simon’s quotation above.

An encouraging thing about the work going on
in satisficing presently is that it can provide some
types of estimates of the bounds of rationality,
where it has to be bounded to solve the problem in a
reasonable time. We note that satisficing is being
implemented as approximate reasoning,
approximate modeling, optimal meta-reasoning,
bounded optimality, and combinations of all these
traits.  In a situation where we are trying to compare
ontologies which are governed by the activities in
which they partake or attributes that need to be
calculated and that may use different programs
describing the activities or calculating the attributes,
we are on the edge of undecidability (the general
equivalence of two programs in undecidable).  But it

may be possible to decide if they are close enough
to being the same to make them interoperable.

4. Summary

We do not yet know how to practically characterize
complex systems in ways that allow the prediction
of their behavior for purposes of optimal control.
The traditional methods that have been used, even
clever statistical methods that can handle limited
indeterminacy, break down under the complexities
that arises in supply chain management and other
big problems for which the development of systems
requires the integration of several complex
subsystems and which evolve inevitably with time.
These systems are informational in nature, or are
hybrid physical-informational systems, in which the
many informational dimensions add complexity not
readily handled by the traditional approaches.  We
are looking at four approaches that might work
together with one another, and also with the
traditional approaches.  One is replacing
optimization with satisficing in some of the
techniques; another is further exploring observations
of states that do the same things.  A third is pursuing
programs that can define numbers of dimensions
that allow mediate information to be described in
vectors that can be controlled.  The fourth uses
machine learning by subsystems of the performance
of other subsystems.  Together, we hope these will
give us better tools for handling complex
informational systems like supply chain
management.
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