
A classification framework for anomaly detection

Ingo Steinwart, Don Hush and Clint Scovel
Modeling, Algorithms and Informatics Group, CCS-3

Los Alamos National Laboratory
{ingo,dhush,jcs}@lanl.gov

September 1, 2004

Abstract

One way to describe anomalies is by saying that anomalies are not concentrated. This leads
to the problem of finding level sets for the data generating density. We interpret this learning
problem as a binary classification problem and compare the corresponding classification risk
with the standard performance measure for the density level problem. In particular it turns
out that the empirical classification risk can serve as an empirical performance measure for the
anomaly detection problem. This allows us to compare different anomaly detection algorithms
empirically, i.e. with the help of a test set. Based on the above interpretation we then propose a
support vector machine (SVM) for anomaly detection. Finally, we establish universal consistency
for this SVM and report some experiments which compare our SVM to other commonly used
methods including the standard one-class SVM.

1 Introduction

Anomaly (or novelty) detection aims to detect anomalous observations from a system. In the
machine learning version of this problem we cannot directly model the normal behaviour of the
system since it is either unknown or too complex. Instead, we have some sample observations
from which the normal behaviour is to be learned. This anomaly detection learning problem
has many important applications including the detection of e.g. anomalous jet engine vibrations
[18, 12, 13], abnormalities in medical data [27, 2], unexpected conditions in engineering [6] and
network intrusions [14, 30, 9]. For a recent review of these and other areas of applications as well
as many methods for solving the corresponding learning problems we refer to [15, 16].

It is important to note that a typical feature of the these applications is that only unlabeled
samples are available, and hence one has to make some a-priori assumptions on anomalies in order
to be able to distinguish between normal and anomalous future oberservations. One of the most
common ways to define anomalies is by saying that anomalies are not concentrated (see e.g. [20, 23]).
To make this precise let Q be our unknown data-generating distribution on the input space X which
has a density h with respect to a known reference distribution µ on X. Obviously, the density level
sets {h > ρ}, ρ > 0, describe the concentration of Q. Therefore to define anomalies in terms of the
concentration one only has to fix a threshold level ρ > 0 so that a sample x ∈ X is considered to
be anomalous whenever h(x) ≤ ρ. Consequently, our aim is to find the density level set {h ≤ ρ}
to detect anomalous observations, or equivalently, the ρ-level set {h > ρ} to describe normal
observations.

We emphasize that given the data-generating distribution Q the choice of µ determines the density
h, and consequently anomalies are actually modeled by both µ and ρ. Unfortunately, many popular
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algorithms are based on density estimation methods that implicitely assume µ to be the uniform
distribution (e.g. Gaussian mixtures, Parzen windows and k-nearest neighbors density estimates)
and therefore for these algorithms defining anomalies is restricted to the choice of ρ. With the lack
of any further knowledge one might feel that the uniform distribution is a reasonable choice for µ,
however there are situations in which a different µ is more appropiate. In particular, this is true
if we consider a modification of the anomaly detection problem where µ is not known but can be
sampled from. We will see that unlike many other algorithms our proposed method can handle
both problems.

Finding level sets of an unknown density is also a well known problem in statistics which has
some important applications different from anomaly detection. For example, it can be used for the
problem of cluster analysis as described in [10, 4] and for testing of multimodality (see e.g. [17,
21]). Some other applications including estimation of non-linear functionals of densities, density
estimation, regression analysis and spectral analysis are briefly described in [19]. Unfortunately, the
algorithms considered in these articles cannot be used for the anomaly detection problem since the
imposed assumptions on h are often taylored to the above applications and are in general unrealistic
for anomalies.

One of the main problems of anomaly detection—or more precisely density level detection—is
the lack of an empirical performance measure which allows us to compare the generalization perfor-
mance of different algorithms by test samples. By interpreting the density level detection problem
as binary classification with respect to an appropiate measure, we show that the corresponding em-
pirical classification risk can serve as such an empirical performance measure for anomaly detection.
Furthermore, we compare the excess classification risk with the standard performance measure for
the density level detection problem. In particular, we show that both quantities are asymptotically
equivalent and that simple inequalities between them are possible under mild conditions on the
density h. Using the above interpretation we then introduce a support vector machine (SVM) for
anomaly detection and establish a consistency result for it. Finally we report some experiments
comparing our SVM with some other commonly used algorithms. These experiments show that
our SVM is very promising and that in particular it is superior to the standard one-class SVM
proposed in [22].

2 Detecting density levels is a classification problem

We begin with rigorously defining the density level detection (DLD) problem. To this end let
(X,A) be a measurable space and µ a known distribution on (X,A). Furthermore, let Q be an
unknown distribution on (X,A) which has an unknown density h with respect to µ, i.e. dQ = hdµ.
Given a ρ > 0 the set {h > ρ} is called the ρ-level set of the density h. Throughout this work we
assume that {h = ρ} is a µ-zero set and hence it is also a Q-zero set. For the density level detection
problem and related tasks this is a common assumption (see e.g. [19] and [28]).

Now, the goal of the DLD problem is to find an estimate of the ρ-level set of h. To this end we
need some information which in our case is given to us by a training set T = (x1, . . . , xn) ∈ Xn.
We will assume in the following that T is i.i.d. drawn from Q. With the help of T a DLD algorithm
constructs a function fT : X → R for which the set {fT > 0} is an estimate of the ρ-level set
{h > ρ} of interest. Since in general {fT > 0} does not excactly coincide with {h > ρ} we need a
performance measure which describes how well {fT > 0} approximates the set {h > ρ}. Probably
the best known performance measure (see e.g. [28], [1] and the references therein) for measurable
functions f : X → R is

Sµ,h,ρ(f) := µ
(
{f > 0}∆{h > ρ}

)
,
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where ∆ denotes the symmetric difference. Obviously, the smaller Sµ,h,ρ(f) is, the more {f > 0}
coincides with the ρ-level set of h and a function f minimizes Sµ,h,ρ if and only if {f > 0} is
µ-almost surely identical to {h > ρ}. Furthermore, for a sequence of functions fn : X → R with
Sµ,h,ρ(fn) → 0 we easily see that sign fn(x) → 1{h>ρ}(x) for µ-almost all x ∈ X, and since Q is
absolutely continuous with respect to µ the same convergence holds Q-almost surely. Finally, it
is important to note, that the performance measure Sµ,h,ρ is insensitive to µ-zero sets. Since we
cannot detect µ-zero sets using a training set T drawn from Qn this feature is somehow natural for
our model.

Although Sµ,h,ρ seems to be well-adapted to our model, it has a crucial disadvantage in that we
cannot compute Sµ,h,ρ(f) since {h > ρ} is unknown to us. Therefore, we have to estimate it. In
our model the only information we can use for such an estimation is a test set W = (x̂1, . . . , x̂m)
which is i.i.d. drawn from Q. Unfortunately, there is no method known to estimate Sµ,h,ρ(f) from
W with guaranteed accuracy in terms of m, f , µ and ρ, and we strongly believe that such a method
cannot exist. Because of this lack, we cannot empirically compare different algorithms in terms of
the performance measure Sµ,h,ρ.

Let us now describe another performance measure which has merits similar to Sµ,h,ρ but addi-
tionally has an empirical counterpart, i.e. a method to estimate its value with guaranteed accuracy
by only using a test set. This performance measure is based on interpreting the DLD problem as
a binary classification problem in which T is assumed to be positively labeled and infinitely many
negatively labeled samples are available by the knowledge of µ. To make this precise we write
Y := {−1, 1} and define

Definition 2.1 Let µ and Q be probability measures on X and s ∈ (0, 1). Then the probability
measure Q �s µ on X × Y is defined by

Q �s µ (A) := sEx∼Q1A(x, 1) + (1 − s)Ex∼µ1A(x,−1) ,

where we consider all measurable subsets A ⊂ X × Y .

Roughly speaking, the distribution Q �s µ measures the “1-slice” of A ⊂ X × Y by sQ and the
“−1-slice” by (1 − s)µ. Moreover, the measure P := Q �s µ can obviously be associated with a
binary classification problem in which positive samples are drawn from sQ and negative samples
are drawn from (1 − s)µ. Inspired by this interpretation let us recall that the binary classification
risk for a measurable function f : X → R and a distribution P on X × Y is defined by

RP (f) = P
({(x, y) : sign f(x) �= y}) ,

where we define sign t := 1 if t > 0 and sign t = −1 otherwise. Furthermore, the Bayes risk RP of
P is the smallest possible classification risk with respect to P , i.e.

RP := inf
{
RP (f)

∣∣ f : X → R measurable
}

.

We will show in the following that learning with respect to Sµ,h,ρ is equivalent to learning with
respect to RP (.). To this end we begin by computing the marginal distribution PX and the
supervisor η(x) := P (y = 1|x), x ∈ X, of P := Q �s µ:

Proposition 2.2 Let µ and Q be probability measures on X such that Q has a density h with respect
to µ, and let s ∈ (0, 1). Then the marginal distribution of P := Q�s µ on X is PX = sQ+(1−s)µ.
Furthermore, we PX -a.s. have

P (y = 1|x) =
sh(x)

sh(x) + 1 − s
.
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Proof: As recalled in the appendix, P (y = 1|x), x ∈ X, is a regular conditional probability and
hence we only have to check the condition of Corollary 5.5. To this end we first observe by the
definition of P := Q �s µ that for all non-negative, measurable functions f : X × Y → R we have

∫
X×Y

fdP = s

∫
X

f(x, 1)Q(dx) + (1 − s)
∫

X
f(x,−1)µ(dx) .

Therefore, for A ∈ A we obtain
∫

A×Y

sh(x)
sh(x) + 1 − s

P (dx, dy)

= s

∫
A

sh(x)
sh(x) + 1 − s

h(x)µ(dx) + (1 − s)
∫

A

sh(x)
sh(x) + 1 − s

µ(dx)

=
∫

A
sh(x)µ(dx)

= s

∫
A

1X×{1}(x, 1)Q(dx) + (1 − s)
∫

A
1X×{1}(x,−1)µ(dx)

=
∫

A×Y
1X×{1}dP .

Note that the formula for the marginal distribution PX in particular shows that the µ-zero sets
of X are exactly the PX-zero sets of X. As an immediate consequence of the above proposition we
additionally obtain the following corollary which describes the ρ-level set of h with the help of the
supervisor η:

Corollary 2.3 Let µ and Q be probability measures on X such that Q has a density h with respect
to µ. For ρ > 0 we write s := 1

1+ρ and define P := Q �s µ. Then for η(x) := P (y = 1|x), x ∈ X,
we have

µ
(
{η > 1/2}∆{h > ρ}

)
= 0 ,

i.e. {η > 1/2} µ-almost surely coincides with {h > ρ}.

Proof: By Proposition 2.2 we see that η(x) > 1
2 is µ-almost surely equivalent to sh(x)

sh(x)+1−s > 1
2

which is equivalent to h(x) > 1−s
s = ρ.

The above results in particular show that every distribution P := Q �s µ with dQ := hdµ and
s ∈ (0, 1) determines a triple (µ, h, ρ) with ρ := (1 − s)/s and vice-versa. In the following we
therefore use the shorthand SP (f) := Sµ,h,ρ(f).

Let us now compare RP (.) with SP (.). To this end recall, that binary classification aims to
discriminate {η > 1/2} from {η < 1/2}. In view of the above corollary it is hence no surprise that
RP (.) can serve as a surrogate for SP (.) as the following theorem shows:

Theorem 2.4 Let µ and Q be probability measures on X such that Q has a density h with respect
to µ. Let ρ > 0 be a real number which satisfies µ({h = ρ}) = 0. We write s := 1

1+ρ and define
P := Q �s µ. Then for all sequences (fn) of measurable functions fn : X → R the following are
equivalent:

i) SP (fn) → 0.
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ii) RP (fn) → RP .

In particular, for a measurable function f : X → R we have SP (f) = 0 if and only if RP (f) = RP .

Proof: For n ∈ N we define En := {fn > 0}∆{h > ρ}. Since by Corollary 2.3 we know µ({h >
ρ}∆{η > 1

2}) = 0 it is easy to see that the classification risk of fn can be computed by

RP (fn) = RP +
∫

En

|2η − 1|dPX . (1)

Now, {|2η − 1| = 0} is a µ-zero set and hence a PX -zero set. The latter implies that the measures
|2η − 1|dPX and PX are absolutely continuous with respect to each other, and hence we have

|2η − 1|dPX (En) → 0 if and only if PX(En) → 0 .

Furthermore, we have already observed after Proposition 2.2 that PX and µ are absolutely contin-
uous with respect to each other, i.e. we also have

PX(En) → 0 if and only if µ(En) → 0 .

Therefore, the assertion follows from SP (fn) = µ(En).

Theorem 2.4 shows that instead of using SP as a performance measure for the density level
detection problem one can alternatively use the classification risk RP (.). Therefore, we will establish
some basic properties of this performance measure in the following. To this end we write I(y, t) :=
1(−∞,0](yt), y ∈ Y and t ∈ R, for the standard classification loss function. With this notation we
can compute RP (f):

Proposition 2.5 Let µ and Q be probability measures on X. For ρ > 0 we write s := 1
1+ρ and

define P := Q �s µ. Then for all measurable f : X → R we have

RP (f) =
1

1 + ρ
EQI(1, sign f) +

ρ

1 + ρ
EµI(−1, sign f) .

Furthermore, for the Bayes risk we have

RP ≤ min
{ 1

1 + ρ
,

ρ

1 + ρ

}

and
RP =

1
1 + ρ

EQ1{h≤ρ} +
ρ

1 + ρ
Eµ1{h>ρ} .

Proof: The first assertion directly follows from

RP (f) = P
({(x, y) : sign f(x) �= y})

= P
({(x, 1) : sign f(x) = −1}) + P

({(x,−1) : sign f(x) = 1})
= sQ

({sign f = −1}) + (1 − s)µ
({sign f = 1})

= sEQI(1, sign f) + (1 − s)EµI(−1, sign f) .

The second assertion directly follows from RP ≤ RP (1X) ≤ s and RP ≤ RP (−1X) ≤ 1 − s.
Finally, for the third assertion recall that f = 1{h>ρ} − 1{h≤ρ} is a function which realizes the
Bayes risk.
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As described at the beginning of this section our main goal is to find a performance measure for
the density level detection problem which has an empirical counterpart. In view of Proposition 2.5
the choice of an empirical counterpart for RP (.) is rather obvious:

Definition 2.6 Let µ be a probability measure on X and ρ > 0. Then for T = (x1, . . . , xn) ∈ Xn

and a measurable function f : X → R we define

RT (f) :=
1

(1 + ρ)n

n∑
i=1

I(1, sign f(xi)) +
ρ

1 + ρ
EµI(−1, sign f) .

If we identify T with the corresponding empirical measure it is easy to see that RT (f) is the
classification risk with respect to the measure T �s µ for s := 1

1+ρ . Then for measurable functions
f : X → R, e.g. Hoeffding’s inequality shows that RT (f) approximates the true classification risk
RP (f) in a fast and controllable way.

It is highly interesting that the classification risk RP (.) is strongly connected with another ap-
proach for the density level detection problem which is based on the so-called excess mass (see
e.g. [11], [17], [19], [28], and the references therein). To be more precise let us first recall that the
excess mass of a measurable function f : X → R is defined by

EP (f) := Q({f > 0}) − ρµ({f > 0}) ,

where Q, ρ and µ have the usual meaning. The following proposition shows that RP (.) and EP (.)
are essentially the same:

Proposition 2.7 Let µ and Q be probability measures on X. For ρ > 0 we write s := 1
1+ρ and

define P := Q �s µ. Then for all measurable f : X → R we have

EP (f) = 1 − (1 + ρ)RP (f) .

Proof: We obtain the assertion by the following simple calculation:

EP (f) = Q({f > 0}) − ρµ({f ≥ 0})
= 1 − Q({f ≤ 0}) − ρµ({f > 0})
= 1 − Q

({sign f = −1}) − ρµ
({sign f = 1})

= 1 − (1 + ρ)RP (f) .

If Q is an empirical measure based on a training set T in the definition of EP (.) then we obtain
am empirical performance measure which we denote by ET (.). By the above proposition we have

ET (f) = 1 − 1
n

n∑
i=1

I(1, sign f(xi)) − ρEµI(−1, sign f) = 1 − (1 + ρ)RT (f) (2)

for all measurable f : X → R. Now, given a class F of measurable functions from X to R

the (empirical) excess mass approach considered e.g. in [11], [17], [19], [28], chooses a function
fT ∈ F which maximizes ET (.) within F . By equation (2) we see that this approach is actually a
type of empirical risk minimization (ERM). Surprisingly, this connection has not been observed,
yet. In particular, the excess mass has only been considered as an algorithmic tool, but not as
a performance measure. Instead, the papers dealing with the excess mass approach measures the
performance by SP (.). In their analysis an additional assumption on the behaviour of h around
the level ρ is required. Since this condition can also be used to establish a quantified version of
Theorem 2.4 we will recall it now:
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Definition 2.8 Let µ be a distribution on X and h : X → [0,∞) be a measurable function with∫
hdµ = 1, i.e. h is a density with respect to µ. For ρ > 0 and 0 ≤ q ≤ ∞ we say that h has

ρ-exponent q if there exists a constant C > 0 such that for all t > 0 we have

µ
({|h − ρ| ≤ t}) ≤ Ctq . (3)

Condition (3) was first considered in [19, Thm. 3.6.]. This paper also provides an example of a
class of densities on Rd, d ≥ 2, which has exponent q = 1. Later, Tsybakov [28, p. 956] used (3)
for a density level detection method which is based on a localized version of the empirical excess
mass approach.

Interestingly, condition (3) is closely related to a concept for binary classification called the
Tsybakov noise exponent (see e.g. [29], [24]) as the following proposition which is proved in the
appendix shows:

Proposition 2.9 Let µ and Q be distributions on X such that Q has a density h with respect to
µ. For ρ > 0 we write s := 1

1+ρ and define P := Q �s µ. Then for 0 < q ≤ ∞ the following are
equivalent:

i) h has ρ-exponent q.

ii) P has Tsybakov noise exponent q, i.e. there exists a constant C > 0 such that for all t > 0
we have

PX

(|2η − 1| ≤ t
) ≤ C · tq (4)

In recent years Tsybakov’s noise exponent has played a crucial role for establishing learning rates
faster than n− 1

2 for ERM algorithms (see [29])1. It is remarkable, that implicitely the classification
problem and the density level detection problem have been treated by essentially the same approach,
i.e. ERM, and that for both scenarios the same regularity assumption on the distribution has been
formulated without observing the deeper connection between them.

As already announced we can also establish inequalities between SP and RP (.) with the help of
the ρ-exponent. This is done in the following theorem:

Theorem 2.10 Let ρ > 0 and µ and Q be probability measures on X such that Q has a density h
with respect to µ. For s := 1

1+ρ we write P := Q �s µ. Then the following statements hold:

i) If h is bounded then there exists a constant c > 0 such that for all measurable f : X → R we
have

RP (f) −RP ≤ cSP (f) .

ii) If h has ρ-exponent q ∈ (0,∞] then there exists a constant c > 0 such that for all measurable
f : X → R we have

SP (f) ≤ c
(RP (f) −RP

) q
1+q .

Proof: The first assertion directly follows from (1) and Proposition 2.2. The second assertion
follows from Proposition 2.9 and [29, Prop. 1].

Remark 2.11 We note that many of the results of this section can be generalized to the case
where Q is not absolutely continuous with respect to µ. Indeed, select an auxilliary measure ν
such that both Q and µ are absolutely continuous with respect to ν. For example one could choose

1Very recently, similar results were also established for support vector machines in [24].
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ν = Q+µ
2 . Consequently we have Q = h1ν and µ = h2ν for some real valued functions h1 and

h2. Then Proposition 2.2 holds with h(x) = h1(x)
h2(x) where one defines the righthand side to be 0

when h1(x) = h2(x) = 0. One can also show that h is independent PX -a.s. of the choice of ν.
Corollary 2.3 holds where the measure of the symmetric difference is evaluated with either Q or
µ. However it appears that only the RP (fn) → RP ⇒ SP (fn) → 0 assertion of Theorem 2.4 holds
instead of equivalence. Finally, Propositions 2.5 and 2.7 hold, Proposition 2.9 holds with a suitable
generalization of Definition 2.8 of ρ-exponent, and the second assertion of Theorem 2.10 holds.

3 A support vector machine for density level detection

One of the benefits of interpreting the DLD problem as a classification problem is that this enables
us to use the complete zoo of binary classification methods. We now use this idea to construct an
SVM for the density level detection problem. To this end let k : X ×X → R be a positive definite
kernel with reproducing kernel Hilbert space (RKHS) H. Furthermore, let µ be a known probability
measure on X and l : Y × R → [0,∞) be the hinge loss function, i.e. l(y, t) := max{0, 1 − yt},
y ∈ Y , t ∈ R. Then for a training set T = (x1, . . . , xn) ∈ Xn, a regularization parameter λ > 0,
and ρ > 0 we define

fT,µ,λ := arg min
f∈H

λ‖f‖2
H +

1
(1 + ρ)n

n∑
i=1

l(1, f(xi)) +
ρ

1 + ρ
Ex∼µl(−1, f(x)) , (5)

and

(f̃T,µ,λ, b̃T,µ,λ) := arg min
f∈H
b∈R

λ‖f‖2
H +

1
(1 + ρ)n

n∑
i=1

l(1, f(xi) + b) +
ρ

1 + ρ
Ex∼µl(−1, f(x) + b) . (6)

The decision function of the SVM without offset is fT,µ,λ : X → R and analogously, the SVM with
offset has the decision function f̃T,µ,λ + b̃T,µ,λ : X → R.

Although the measure µ is known, almost always the expectation Ex∼µl(−1, f(x)) can only
be numerically computed using finitely many function evaluations of f . If the integrand of this
expectation was smooth we could use some known deterministic methods to choose these function
evaluations efficiently. However, since the hinge loss is not differentiable there is no such method
known to us. Therefore we will use points T ′ := (x′

1, . . . , x
′
n′) which are randomly sampled from

µ to approximate Ex∼µl(−1, f(x)). We denote the corresponding approximate solutions of (5) and
(6) by fT,T ′,λ and (f̃T,T ′,λ, b̃T,T ′,λ), respectively. Furthermore, in these cases the formulations (5)
and (6) are identical to the standard L1-SVM formulations besides the weighting factors in front of
the empirical error terms. Therefore, the derivation of the corresponding dual problems is straight
forward. For example, denoting the samples T := (x1, . . . , xn) and T ′ := (x′

1, . . . , x
′
n′) the dual

problem for (6) can be written as follows:

max
n∑

i=1
αi +

n′∑
i=1

α′
i − 1

2

n∑
i,j=1

αiαjk(xi, xj) − 1
2

n′∑
i,j=1

α′
iα

′
jk(x′

i, x
′
j) +

n,n′∑
i,j=1

αiα
′
jk(xi, x

′
j)

s.t.
n∑

i=1
αi −

n′∑
i=1

α′
i = 0,

0 ≤ αi ≤ 2
λ(1+ρ)n , i = 1, ..., n,

0 ≤ α′
i ≤ 2ρ

λ(1+ρ)n′ , i = 1, ..., n′.

(7)
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The fact that the SVM for DLD essentially coincides with the standard L1-SVM also allows us to
modify many known results for these algorithms. For simplicity we will only state a consistency
result which describes the case where we use n′ = n random samples from µ in order to approximate
the expectation with respect to µ. However, it is straight forward to extend the result to the more
general case of n′ = rn samples for some positive r ∈ Q. In order to formulate the result we have to
recall the notion of universal kernels (see [25]). To this end let X be a compact metric space, say a
closed and bounded subset of Rd. We denote the space of all continuous functions on X by C(X).
As usual, this space is equipped with the supremum norm ‖.‖∞. Then the RKHS H of a continuous
kernel k on X is embedded into C(X), i.e. H ⊂ C(X), where the inclusion is continuous. We say
that the kernel k is universal, if in addition H is dense in C(X), i.e. for every f ∈ C(X) and every
ε > 0 there exists a g ∈ H with ‖f − g‖∞ < ε. Some examples of universal kernels including the
Gaussian RBF kernels can be found in [25].

Now we can formulate the announced result:

Theorem 3.1 (Universal consistency) Let X be a compact metric space and k be a universal
kernel on X. Furthermore, let ρ > 0, and µ and Q be probability measures on X such that Q has
a density h with respect to µ. For s := 1

1+ρ we write P := Q �s µ. Then for all sequences (λn) of
positive numbers with λn → 0 and nλ2

n → ∞ and for all ε > 0 we have

(Q ⊗ µ)n
(
(T, T ′) ∈ Xn × Xn : RP (fT,T ′,λn) ≤ RP + ε

)
→ 0 ,

for n → ∞. The same result holds for the SVM with offset if one replaces the condition nλ2
n → ∞

by the slightly stronger assumption nλ2
n/ log n → ∞. Finally, for both SVMs it suffices to assume

nλ1+δ
n → ∞ for some δ > 0 if one uses a Gaussian RBF kernel.

Sketch of the proof: Let us introduce the shorthand ν = Q ⊗ µ for the product measure of Q
and µ. Moreover, for a measurable function f : X → R we define the function l � f : X × X → R

by

l � f(x, x′) :=
1

1 + ρ
l(1, f(x)) +

ρ

1 + ρ
l(−1, f(x′)) , x, x′ ∈ X.

Furthermore, we write l ◦ f(x, y) := l(y, f(x)), x ∈ X, y ∈ Y . Then it is easy to check that we
always have Eν l� f = EP l ◦ f . Analogously, we see ET⊗T ′l� f = ET�sT ′ l ◦ f , if T ⊗T ′ denotes the
product measure of the empirical measures based on T and T ′. Now, using Hoeffding’s inequality
for ν it is easy to establish a concentration inequality in the sense of [26, Lem. III.5]. The rest of
the proof is analogous to the steps in [26].

Recall that by Theorem 2.4 consistency with respect to RP (.) is equivalent to consistency with
respect to SP (.). Therefore we immediately obtain the following corollary

Corollary 3.2 Under the assumptions of Theorem 3.1 both the DLD SVM with offset and without
offset are universally consistent with respect to SP (.), i.e. SP (f̃T,µ,λ+b̃T,µ,λ) → 0 and SP (fT,T ′,λn) →
0 in probability.

4 Experiments

We present experimental results for anomaly detection problems where the set X is a subset of Rd.
A total of four different learning algorithms are used to produce functions f which declare the set
{x : f(x) ≤ 0} anomalous. A distinct advantage of the formulation in Section 2 is that it allows us
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to make quantitative comparisons of different functions by comparing estimates of their risk RP (f)
which can be computed from sample data. In particular consider a data set pair (S, S′) where S
contains samples drawn from Q and S′ contains samples drawn from µ (in what follows (S, S′) is
either training data, validation data, or test data). Based on Definition 2.6 we define the empirical
risk of f with respect to (S, S′) to be

R(S,S′)(f) =
1

(1 + ρ)|S|
∑
x∈S

I(1, signf(x)) +
ρ

(1 + ρ)|S′|
∑
x∈S′

I(−1, signf(x)). (8)

A smaller risk indicates a better solution to the DLD problem. Since the risk RP(·) depends
explicitly on ρ additional insight into the performance of f can be obtained from the two error
terms. Specifically the quantity 1

|S|
∑

x∈S I(1, signf(x)) is an estimate of Q({f ≤ 0}) which we
call the alarm rate (i.e. the rate at which samples will be labeled anomalous by f), and the
quantity 1

|S′|
∑

x∈S′ I(−1, signf(x)) is an estimate of µ({f > 0}) which we call the volume of the
predicted normal set. There is an obvious trade–off between these two quantities, i.e. for the
optimal solutions for fixed ρ smaller alarm rates correspond to larger volumes and vice versa. Also,
from the expression for the risk in Proposition 2.5 it is clear that for any two functions with the
same alarm rate we prefer the function with the smaller volume and vice versa. More generally,
when comparing different solution methods it is useful to consider the values of these quantities
that are achieved by varying the value of ρ in the design process. Such performance curves are
presented in the comparisons below.

We consider three different anomaly detection problems, two are synthetic and one is an applica-
tion in cybersecurity. In each case we define a problem instance to be a triplet consisting of samples
from Q, samples from µ, and a value for the density level ρ. We compare four learning algorithms
that accept a problem instance and automatically produce a function f : the density level detection
support vector machine (DLD–SVM), the one–class support vector machine (1CLASS–SVM), the
Gaussian Maximum–Likelihood (GML) method, the mixture of Gaussians Maximum–Likelihood
(MGML) method2. The first is the algorithm introduced in this paper, the second is an algorithm
based on the the one–class support vector machine introduced by Schölkopf et al.[22] and the others
(including the Parzen windows method) are based on some of the most common parametric and
non–parametric statistical methods for density–based anomaly detection in Rd. Each of the four
learning algorithms is built on a core procedure that contains one or more free parameters. The
availability of a computable risk estimate makes it possible to determine values for these parame-
ters using a principled approach that is applied uniformly to all four core procedures. In particular
this is accomplished as follows in our experiments. The data in each problem instance is parti-
tioned into three pairs of sets; the training sets (T, T ′), the validation sets (V, V ′) and the test sets
(W,W ′). The core procedures are run on the training sets and the values of the free parameters are
chosen to minimize the empirical risk (8) on the validation sets. The test sets are used to estimate
performance. We now describe the four learning algorithms in detail.

In the DLD–SVM algorithm we employ the SVM with offset described in Section 3 with a Gaus-
sian RBF kernel

k(x, x′) = e−σ2‖x−x′‖2
.

With λ and σ2 fixed and the expected value Ex∼µl(−1, f(x) + b) in (6) replaced with an empirical
estimate based on T ′ this formulation can be solved using, for example, the C-SVC option in the
LIBSVM software [3] by setting C = 1 and setting the class weights to w1 = 1/

(
λ|T |(1 + ρ)

)
and

w−1 = ρ/
(
λ|T ′|(1 + ρ)

)
. The regularization parameters λ and σ2 are chosen to (approximately)

2We also experimented with a Parzen windows method, but do not include the results because they were substan-
tially worse than the other methods in every case.
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minimize the empirical risk R(V,V ′)(f) on the validation sets. This is accomplished by employing a
grid search over λ and a combined grid/iterative search over σ2. In particular, for each value of λ
from a fixed grid we seek a minimizer over σ2 by evaluating the validation risk at a coarse grid of
σ2 values and then performing a Golden search over the interval defined by the two σ2 values on
either side of the coarse grid minimum3. As the overall search proceeds the (λ, σ2) pair with the
smallest validation risk is retained.

The 1CLASS–SVM algorithm is based on the one–class support vector machine introduced by
Schölkopf et al. [22]. Due to its “one–class” nature this method does not use the set T ′ in the
production of f . Again we employ the Gaussian RBF kernel with width parameter σ2. The
one–class formulation in Schölkopf et al. contains a parameter ν which controls the size of the
set {x ∈ T : f(x) ≤ 0} (and therefore controls the measure Q({f ≤ 0}) through generalization).
With ν and σ2 fixed a solution can be obtained using the one-class-SVM option in the LIBSVM
software [3]. To use this 1–class algorithm to solve an instance of the DLD problem we determine
ν automatically as a function of ρ. In particular both ν and σ2 are chosen to (approximately)
minimize the validation risk using the search procedure described above for the DLD–SVM where
the grid search for λ is replaced by a Golden search (over [0, 1]) for ν.

The GML algorithm produces a function f = g − t where t is an offset and g is a Gaussian
probability density function whose mean and inverse covariance are determined from maximum
likelihood estimates formed from the training data T (e.g. see [7]). In particular the inverse
covariance takes the form (Σ + λI)−1 where Σ is the maximum likelihood covariance estimate and
the regularization term λI is a scaled identity matrix which guarantees that the inverse is well–
defined and numerically stable. Once the parameters of g are determined the offset t is chosen to
minimize the training risk R(T,T ′). The regularization parameter λ is chosen to (approximately)
minimize the validation risk by searching a fixed grid of λ values.

The MGML algorithm is essentially the same as the GML method except that g is a mixture of K
Gaussians whose maximum likelihood parameter estimates are determined using the Expectation–
Maximization (EM) algorithm [5]. The same regularization parameter is used for all inverse co-
variance estimates and both λ and K are chosen to (approximately) minimize the validation risk
by searching a fixed grid of (λ,K) values.

Data for the first experiment are generated using an approach designed to mimic a type of real
problem where x is a feature vector whose individual components are formed as linear combinations
of raw measurements and therefore the central limit theorem is used to invoke a Gaussian assump-
tion for Q. Specifically, samples of the random variable x ∼ Q are generated by transforming
samples of a random variable u that is uniformly distributed over [0, 1]27. The transform is x = Au
where A is a 10–by–27 matrix whose rows contain between m = 2 and m = 5 non-zero entries with
value 1/m (i.e. each component of x is the average of m uniform random variables). Thus Q is
approximately Gaussian with mean (0.5, 0.5) and support [0, 1]10. Partial overlap in the nonzero
entries across the rows of A guarantee that the components of x are partially correlated. We chose
µ to be the uniform distribution over [0, 1]10. Data for the second experiment are identical to the
first except that the vector (0, 0, 0, 0, 0, 0, 0, 0, 0, 1) is added to the samples of x with probability
0.5. This gives a bi-modal distribution Q that approximates a mixture of Gaussians. Also, since
the support of the last component is extended to [0, 2] the corresponding component of µ is also
extended to this range. A summary of the data and algorithm parameters for experiments 1 and 2
is shown in Table 1. Note that the test set sizes are large enough to provide very accurate estimates
of the risk.

The four learning algorithms were applied for values of ρ ranging from .01 to 100 and the results
3If the minimum occurs at more than one grid point or at an end point the Golden search interval is defined by

the nearest grid points that include all minimal values.
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Train Validate Test
Number of Q samples 1000 500 100,000
Number of µ samples 2000 2000 100,000

λ grid (DLD–SVM/GML/MGML) 1.0, 0.5, 0.1, 0.05, 0.01, ..., 0.0000005, 0.0000001
σ2 grid (DLD–SVM/1CLASS–SVM) 0.001, 0.01, 0.05, 0.1, 0.5, 1.0, 5.0, 10.0, 100.0

Table 1: Parameters for experiments 1 and 2.

are shown in Figure 1. Figures 1(a) and 1(c) plot the empirical risk R(W,W ′) versus ρ while Figures
1(b) and 1(d) plot the corresponding performance curves. Since the data is approximately Gaussian
it is not surprising that the best results are obtained by GML (first experiment) and MGML (both
experiments). However, for most values of ρ the next best performance is obtained by DLD–SVM
(both experiments) and this performance is quite good considering the relative difficulty of the
function approximation problem. The performance of 1CLASS–SVM is clearly worse than the
other three at smaller values of ρ (i.e. larger values of the volume), and this difference is more
substantial in the second experiment. In addition, although we do not show it, this difference is
even more pronounced (in both experiments) at smaller training and validation set sizes. These
results are significant because values of ρ substantially larger than one appear to have little utility
here since they yield alarm rates that do not conform to our notion that anomalies are rare events.
In addition ρ � 1 appears to have little utility in the general anomaly detection problem since it
defines anomalies in regions where the concentration of Q is much larger than the concentration of
µ, which is contrary to our premise that anomalies are not concentrated.

The third experiment considers an application in cybersecurity. The goal is to monitor the
network traffic of a computer and determine when it exhibits anomalous behavior. The data for
this experiment was collected from an active computer in a normal working environment over the
course of 16 months. The features in Table 2 were computed from the outgoing network traffic.
The averages were computed over one hour time windows giving a total of 11664 feature vectors.
The feature values were normalized to the range [0, 1] and treated as samples from Q. Thus Q
has support in [0, 1]12. Although we would like to choose µ to capture a notion of anomalous
behavior for this application, only the DLD–SVM method allows such a choice. Thus, since the
other methods define densities with respect to a uniform measure and we wish to compare with
these methods, we chose µ to be the uniform distribution over [0, 1]12. A summary of the data and
algorithm parameters for this experiment is shown in Table 3.

The four learning algorithms were applied for values of ρ ranging from .005 to 50 and the results
are summarized by the empirical risk curve in Figure 2(a) and the corresponding performance
curve in Figure 2(b). The empirical risk values for DLD–SVM and MGML are nearly identical
except for ρ = 0.05 where the MGML algorithm happened to choose K = 1 to minimize the
validation risk (i.e. the MGML and GML solutions are identical at ρ = 0.05). Except for this
case the empirical risk values for DLD–SVM and MGML are much better than 1CLASS–SVM and
GML at nearly all values of ρ. The performance curves confirm the superiority of DLD–SVM and
MGML, but also reveal differences not easily seen in the empirical risk curves. For example, all
four methods produced some solutions with identical performance estimates for different values of ρ
which is reflected by the fact that the performance curves show fewer points than the corresponding
empirical risk curves. More importantly these curves show a superiority of the DLD–SVM over the
MGML in that it achieves similar alarm rates with smaller volumes.
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Feature Number Description
1 Number of sessions
2 Average number of source bytes per session
3 Average number of source packets per session
4 Average number of source bytes per packet
5 Average number of destination bytes per session
6 Average number of destination packets per session
7 Average number of destination bytes per packet
8 Average time per session
9 Number of unique destination IP addresses
10 Number of unique destination ports
11 Number of unique destination IP

addresses divided by total number of sessions
12 Number of unique destination

ports divided by total number of sessions

Table 2: Outgoing network traffic features.

Train Validate Test
Number of Q samples 4000 2000 5664
Number of µ samples 10,000 100,000 100,000

λ grid (DLD–SVM/GML/MGML) 0.1, 0.01, 0.001, 0.0001, 0.00001, 0.000001, 0.0000001
σ2 grid (DLD–SVM/1CLASS–SVM) 0.001, 0.01, 0.05, 0.1, 0.5, 1.0, 5.0, 10.0, 100.0

Table 3: Parameters for cybersecurity experiment.

13



 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.01  0.1  1  10  100

DLD-SVM
1CLASS-SVM

GML
MGML

ρ

R
(W

,W
′ )

(a) Risk curves for Q ≈ Gaussian.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  0.1  0.2  0.3  0.4  0.5

DLD-SVM
1CLASS-SVM

GML
MGML

volume

al
ar

m
ra

te

(b) Performance curves for Q ≈ Gaussian.
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(c) Risk curves for Q ≈ Gaussian mixture.
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(d) Performance curves for Q ≈ Gaussian mixture.

Figure 1: Synthetic data experiments.

5 Discussion

A review of the literature on anomaly detection suggests that there are many ways to characterize
anomalies (see e.g. [15, 16]). In this work we assumed that anomalies are not concentrated. This
assumption can be specified by choosing a reference measure µ which determines a density and
a level value ρ. The density then quantifies the degree of concentration and the density level ρ
establishes a threshold on the degree that determines anomalies. Thus, µ and ρ play key roles in
the definition of anomalies. In practice the user chooses µ and ρ to capture some notion of anomaly
that he deems relevant to the application.

This paper advances the existing state of “density based” anomaly detection in the following
ways.

• Most existing algorithms make an implicit choice of µ (usually the Lebesgue measure) whereas
our approach allows µ to be any measure that defines a density. Therefore we accommodate
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Figure 2: Cybersecurity experiment.

a larger class of anomaly detection problems. This flexibility is in particular important when
dealing with e.g. categorical data. In addition, it is the key ingredient when dealing with
hidden classification problems, which we will discuss below.

• Prior to this work there have been no methods known to rigorously estimate the performance
based on unlabeled data. Consequently, it has been difficult to compare different methods for
anomaly detection in practice. We have introduced an empirical performance measure, namely
the empirical classification risk, that enables such a comparision. In particular, it can be used
to perform a model selection based on cross validation. Furthermore, the infinite sample
version of this empirical performance measure is asymptotically equivalent to the standard
performance measure for the DLD problem and under mild assumptions inequalities between
them have been obtained.

• By interpreting the DLD problem as a binary classification problem we can use well-known
classification algorithms for DLD. We have demonstrated this approach in the formulation of
the DLD-SVM.

These advances have created a situation in which much of the knowledge on classification can now
be used for anomaly detection. Consequently, we expect substantial advances in anomaly detection
in the future.

Finally let us consider a different learning scenario in which anomaly detection methods are also
commonly employed. In this scenario we are interested in solving a binary classification problem
given only unlabeled data. More precisely, suppose that there is a distribution ν on X × {−1, 1}
and the samples are obtained from the marginal distribution νX on X. Since labels exist but
are hidden from the user we call this a hidden classification problem (HCP). Hidden classification
problems for example occur in network intrusion detection problems where it is impractical to
obtain labels. Obviously, solving a HCP is intractable if no assumptions are made on the labeling
process. One such assumption is that one class consists of anomalous, lowly concentrated samples
(e.g. intrusions) while the other class reflects normal behaviour. Making this assumption rigorous
requires the specification of a reference measure µ and a threshold ρ. Interestingly, when νX is
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absolutely continuous4 with respect to ν( . |y = 1) solving the DLD problem with

Q := νX

µ := ν( . |y = 1)
ρ := 2 ν(X × {1})

gives the Bayes classifier for the binary classification problem associated with ν. Therefore, in
principle the DLD formalism can be used to solve the binary classification problem. In the HCP
however, although information about Q = νX is given to us by the samples, we must rely entirely
on first principle knowledge to guess µ and ρ. Our inability to choose µ and ρ correctly determines
the model error, which establishes the limit on how well the classification problem associated with
ν can be solved with unlabeled samples. This means for example that when an anomaly detection
method is used to produce a classifier f for a HCP its anomaly detection performance RP (f) with
P := Q �s µ and s := 1

1+ρ may be very different from its hidden classification performance Rν(f).
In particular RP (f) may be very good, i.e. very close to RP , while Rν(f) may be very poor,
i.e. far above Rν . Another consequence of the above considerations is that the common practice
of measuring the performance of anomaly detection algorithms on (hidden) binary classification
problems is problematic. Indeed, the obtained classification errors depend on the model error and
thus they provide an inadequate description how well the algorithms solve the anomaly detection
problem. Furthermore, since the model error is strongly influenced by the particular HCP it is
almost impossible to generalize from the reported results to more general statements on the hidden
classification performance of the considered algorithms.

In conclusion although there are clear similiarities between the use of the DLD formalism for
anomaly detection and its use for the HCP there is also an important difference. In the first case
the specification of µ and ρ determines the definition of anomalies and therefore there is no model
error, whereas in the second case the model error is determined by the choice of µ and ρ.

Appendix A: Regular conditional probabilities

In this apendix we recall some basic facts on conditional probabilities and regular conditional
probabilities. We begin with

Definition 5.1 Let (X,A, P ) be a probability space and C ⊂ A a sub-σ-algebra. Furthermore, let
A ∈ A and g : (X, C) → R be P|C-integrable. Then g is called a conditional probability of A with
respect to C if ∫

C
1AdP =

∫
C

gdP

for all C ∈ C. In this case we write P (A|C) := g.

Furthermore we need the notion of regular conditional probabilities. To this end let (X,A) and
(Y,B) be measurable spaces and P be a probability measure on (X × Y,A ⊗ B). Denoting the
projection of X × Y onto X by πX we write π−1

X (A) for the sub-σ-Algebra of A ⊗ B which is
induced by πX . Recall, that this sub-σ-Algebra is generated by the collection of the sets A × Y ,
A ∈ A. For later purpose, we also notice that this collection is obviously stable against finite
intersections. Finally, PX denotes the marginal distribution of P on X, i.e. PX(A) = P (π−1

X (A))
for all A ∈ A.

Now let us recall the definition of regular conditional probabilities:
4This assumption is actually superfluous by Remark 2.11
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Definition 5.2 A map P ( . | . ) : B × X → [0, 1] is called a regular conditional probability of P if
the following conditions are satisfied:

i) P ( . |x) is a probability measure on (Y,B) for all x ∈ X.

ii) x �→ P (B|x) is A-measurable for all B ∈ B.

iii) For all A ∈ A, B ∈ B we have

P (A × B) =
∫

A
P (B|x)PX(dx) .

Under certain conditions such regular conditional probabilities exist. To be more precise, recall
that a topological space is called Polish if its topology is metrizable by a complete, separable metric.
The following theorem from [8, Thm. 10.2.2] gives a sufficient condition for the existence of a regular
conditional probability:

Theorem 5.3 If Y is a Polish space then a regular conditional probability P ( . | . ) : B×X → [0, 1]
of P exists.

Regular conditional probabilities play an important role in binary classification problems. Indeed,
given a probability measure P on X ×{−1, 1} the aim in classification is to approximately find the
set {P (y = 1|x) > 1

2}, where “approximately” is measured by the classification risk.
Let us now recall the connection between conditional probabilities and regular conditional prob-

abilities (see [8, p. 342 and Thm. 10.2.1]):

Theorem 5.4 If a conditional probability P ( . | . ) : B ×X → [0, 1] of P exists then we P -a.s. have

P (B|x) = P
(
X × B|π−1

X (A)
)
(x, y) .

As an immediate consequence of this theorem we can formulate the following “test” for regular
conditional probabilities.

Corollary 5.5 Let B ∈ B and f : X → [0, 1] be A-measurable. Then f(x) = P (B|x) PX -a.s. if
∫

A×Y
f ◦ πXdP =

∫
A×Y

1X×BdP

for all A ∈ A.

Proof: The assertion follows from Theorem 5.4, the definition of conditional probabilities and the
fact that the collection of the sets A × Y , A ∈ A is stable against finite intersections.

Appendix B: Proof of Proposition 2.9

Proof of Proposition 2.9: By Proposition 2.2 we have |2η − 1| =
∣∣h−ρ
h+ρ

∣∣ and hence we observe

{|2η − 1| ≤ t
}

=
{|h − ρ| ≤ (h + ρ)t

}
=

{ − (h + ρ)t ≤ h − ρ ≤ (h + ρ)t
}

=
{1 − t

1 + t
ρ ≤ h ≤ 1 + t

1 − t
ρ
}

,
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whenever 0 < t < 1.

Now let us first assume that P has Tsybakov exponent q > 0 with some constant C > 0. Then
using {|h − ρ| ≤ tρ

}
=

{
(1 − t)ρ ≤ h ≤ (1 + t)ρ

} ⊂
{1 − t

1 + t
ρ ≤ h ≤ 1 + t

1 − t
ρ
}

we find
PX

({|h − ρ| ≤ tρ
}) ≤ PX

({|2η − 1| ≤ t
}) ≤ Ctq ,

which by PX = 1
ρ+1Q + ρ

ρ+1µ shows that h has ρ-exponent q .

Now let us conversely assume that h has ρ-exponent q with some constant C > 0. Then for
0 < t < 1 we have

Q
({|h − ρ| ≤ t

})
=

∫
X

1{|h−ρ|≤t}hdµ

=
∫
{h≤1+ρ}

1{|h−ρ|≤t}hdµ

≤ (1 + ρ)
∫
{h≤1+ρ}

1{|h−ρ|≤t}dµ

= (1 + ρ)µ
({|h − ρ| ≤ t

})
.

Using PX = 1
ρ+1Q + ρ

ρ+1µ we hence find

PX

({|h − ρ| ≤ t
}) ≤ 2µ

({|h − ρ| ≤ t
}) ≤ 2Ctq

for all 0 < t < 1. Let us now define tl := 2t
1+t and tr := 2t

1−t . This immediately gives 1 − tl = 1−t
1+t

and 1 + tr = 1+t
1−t . Furthermore, we obviously also have tl ≤ tr. Therefore we find

{1 − t

1 + t
ρ ≤ h ≤ 1 + t

1 − t
ρ
}

=
{
(1 − tl)ρ ≤ h ≤ (1 + tr)ρ

}
⊂ {

(1 − tr)ρ ≤ h ≤ (1 + tr)ρ
}

=
{|h − ρ| ≤ trρ

}
.

Hence for 0 < t < 1
1+2ρ , i.e. trρ < 1, we obtain

PX

({|2η − 1| ≤ t
}) ≤ PX

({|h − ρ| ≤ trρ
}) ≤ 2C(trρ)q ≤ 2C(1 + 2ρ)qtq .

From this we easily get the assertion.

References

[1] S. Ben-David and M. Lindenbaum. Learning distributions by their density levels: a paradigm
for learning without a teacher. J. Comput. System Sci., 55:171–182, 1997.

[2] C. Campbell and K.P. Bennett. A linear programming approach to novelty detection. In
T.K. Leen, T.G. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing
Systems 13, pages 395–401. MIT Press, 2001.

[3] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector machines, 2004.

18



[4] A. Cuevas, M. Febrero, and R. Fraiman. Cluster analysis: a further approach based on density
estimation. Computat. Statist. Data Anal., 36:441–459, 2001.

[5] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incomplete data via
the EM algorithm. J. Royal Statist. Soc. Ser. B (methodology), 39:1–38, 1977.

[6] M.J. Desforges, P.J. Jacob, and J.E. Cooper. Applications of probability density estimation
to the detection of abnormal conditions in engineering. Proceedings of the Institution of Me-
chanical Engineers, Part C—Mechanical engineering science, 212:687–703, 1998.

[7] R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classification. Wiley, New York, NY, 2000.

[8] R.M. Dudley. Real Analysis and Probability. Cambridge University Press, 2002.

[9] W. Fan, M. Miller, S.J. Stolfo, W. Lee, and P.K. Chan. Using artificial anomalies to detect
unknown and known network intrusions. In IEEE International Conference on Data Mining
(ICDM’01), pages 123–130. IEEE Computer Society, 2001.

[10] J.A. Hartigan. Clustering Algorithms. Wiley, New York, 1975.

[11] J.A. Hartigan. Estimation of a convex density contour in 2 dimensions. J. Amer. Statist.
Assoc., 82:267–270, 1987.

[12] P. Hayton, B. Schölkopf, L. Tarassenko, and P. Anuzis. Support vector novelty detection
applied to jet engine vibration spectra. In T.K. Leen, T.G. Dietterich, and V. Tresp, editors,
Advances in Neural Information Processing Systems 13, pages 946–952. MIT Press, 2001.

[13] S.P. King, D.M. King, P. Anuzis, K. Astley, L. Tarassenko, P. Hayton, and S. Utete. The
use of novelty detection techniques for monitoring high-integrity plant. In IEEE International
Conference on Control Applications, pages 221–226. IEEE Computer Society, 2002.

[14] C. Manikopoulos and S. Papavassiliou. Network intrusion and fault detection: a statistical
anomaly approach. IEEE Communications Magazine, 40:76–82, 2002.

[15] M. Markos and S. Singh. Novelty detection: a review—Part 1: statistical approaches. Signal
Processing, 83:2481–2497, 2003.

[16] M. Markos and S. Singh. Novelty detection: a review—Part 2: neural network based ap-
proaches. Signal Processing, 83:2499–2521, 2003.

[17] D.W. Müller and G. Sawitzki. Excess mass estimates and tests for multimodality. J. Amer.
Statist. Assoc., 86:738–746, 1991.

[18] A. Nairac, N. Townsend, R. Carr, S. King, P. Cowley, and L. Tarassenko. A system for the
analysis of jet engine vibration data. Integrated Computer-Aided Engineering, 6:53–56, 1999.

[19] W. Polonik. Measuring mass concentrations and estimating density contour clusters—an excess
mass aproach. Ann. Stat., 23:855–881, 1995.

[20] B.D. Ripley. Pattern recognition and neural networks. Cambridge Univ. Press, 1996.

[21] G. Sawitzki. The excess mass approach and the analysis of multi-modality. In W. Gaul and
D. Pfeifer, editors, From data to knowledge: Theoretical and practical aspects of classification,
data analysis and knowledge organization, Proc. 18th Annual Conference of the GfKl, pages
203–211. Springer, 1996.

19



[22] B. Schölkopf, J.C. Platt, J. Shawe-Taylor, and A.J. Smola. Estimating the support of a high-
dimensional distribution. Neural Computation, 13:1443–1471, 2001.

[23] B. Schölkopf and A.J. Smola. Learning with Kernels. MIT Press, 2002.

[24] C. Scovel and I. Steinwart. Fast rates for support vector machines. Ann. Statist., submitted,
2003. http://www.c3.lanl.gov/~ingo/publications/ann-03.ps.

[25] I. Steinwart. On the influence of the kernel on the consistency of support vector machines. J.
Mach. Learn. Res., 2:67–93, 2001.

[26] I. Steinwart. Consistency of support vector machines and other regularized kernel ma-
chines. IEEE Trans. Inform. Theory, accepted, 2002. http://www.c3.lanl.gov/~ingo/
publications/info-02.ps.

[27] L. Tarassenko, P. Hayton, N. Cerneaz, and M. Brady. Novelty detection for the identification
of masses in mammograms. In 4th International Conference on Artificial Neural Networks,
pages 442–447, 1995.

[28] A.B. Tsybakov. On nonparametric estimation of density level sets. Ann. Statist., 25:948–969,
1997.

[29] A.B. Tsybakov. Optimal aggregation of classifiers in statistical learning. Ann. Statist., 32:135–
166, 2004.

[30] D.Y. Yeung and C. Chow. Parzen-window network intrusion detectors. In Proceedings of the
16th International Conference on Pattern Recognition (ICPR’02) Vol. 4, pages 385–388. IEEE
Computer Society, 2002.

20


