Comparing Classic Intrusion Detection Test Data against Data Found in the Wild

Matthew Morgan and Scott Campbell

Office of Science, SULI Program

University of Tulsa

Lawrence Berkeley National Laboratory

Berkeley, California

August 13, 2003

Prepared in partial fulfillment of the requirements of the Office of Science, DOE Student Undergraduate Laboratory Internship (SULI) Program under the direction of Howard Walter and Scott Campbell in the National Energy Research Scientific Computing Division of the Ernest Orlando Lawrence Berkeley National Laboratory.

Participant:
 __

 Signature

Research Advisor: __

 Signature

ABSTRACT

Comparing Classic Intrusion Detection Test Data against Data Found in the Wild. MATTHEW MORGAN (University of Tulsa, Tulsa, OK 74104) SCOTT CAMPBELL (Lawrence Berkeley National Laboratory, Berkeley, California 94720)

With the impromptu development and heterogeneity of today's Internet, things don't always go as planned. Real-world Internet traffic exhibits far more variation than is generally appreciated by the application development community. Poorly configured routers, faulty software and many other factors can maim packets, destroying the information they contain and confusing the applications that receive them. Unfortunately, network security applications are no exception; intrusion detection systems (IDSs) developed and tested in controlled environments tend to misbehave when exposed to unregulated traffic on the Internet. This paper will compare inconsistencies in network traffic protocols between synthetic and raw Internet data using the Bro intrusion

detection system. Differences between 'classic' synthetic data and 'raw' Internet traffic will be enumerated and used to explain why applications tested only with synthetic data tend to fail when placed in the real world.

Table of Contents

Title Page . 1
Abstract . 2
Table of Contents . 3
1. Introduction . 4
2. Traffic Generation . 4
 2.1. Methods of Generating Traffic . 5
 2.2. Problems . 5
3. Intrusion Detection . 6

 3.1. An Example Intrusion Detection System: Bro . 6
4. Comparing Test Data versus Real Data Using Bro Output 6
 4.1. Methods . 7
 4.2. Analysis . 9

 4.2.1. TCP Events . 9
 4.2.2. DNS Events . 10
 4.2.3. HTTP Events . 10
 4.2.4. IP Fragmentation Events . 11
5. Conclusions . 12
Acknowledgements . 12
References . 13

Appendices . 14
1. INTRODUCTION

With the volume of traffic that flows through a network at any given time, constant human surveillance of the network for hostile activity is impractical for smaller networks and virtually impossible for larger networks. How can an organization tell when they're being attacked? Installing an Intrusion Detection System (IDS) is the best way for an organization to detect, and possibly prevent, network intrusions.

Because of the importance of IDSs in maintaining secure networks, proper testing must be conducted to ensure that: A) the system is highly efficient at recognizing attacks, and B) the system produces a minimal number of false-positives [1]. The testing of these areas is a topic of much research [2,3,4], which is often based on “classical” synthetic data (herein referred to as test data) and/or limited network exposure. This paper will investigate the differences between the use of test data and raw Internet traffic (herein referred to as real data) by comparing the output of the Bro IDS [5,6]. The goal of this test is to provide other researchers with a clear indication of the differences between real and test data.

2. TRAFFIC GENERATION
As this paper deals with the inherent problems of using test data as a substitute for real data, a basic understanding of how traffic generation works is necessary to fully appreciate the findings of this research. This section will show the methods used in generating test data (using the 1999 Lincoln Labs corpus as an example [2]), and
discuss the shortcomings of using such data in testing intrusion detection systems.

2.1. METHODS OF GENERATING TRAFFIC

There are two rudimentary methods of deriving traffic: automata and "actors." Automata are programs designed to perform a specific function. In the case of Lincoln Labs' corpus, automata were designed to perform duties characteristic of a certain type of user. Programmer automata edited and compiled C programs, read UNIX man pages, and ran
programs. Secretaries edited documents and sent email. Common users read/sent email and browsed the Web. Not only were the automata able to express the functionality of a specific type of user, they could also convey the behavior of such users by using statistical profiles to determine the frequency and variety of commands issued, login times, session durations, and much more. The “actors” performed the more complex tasks such as upgrading software, adding users, changing passwords, and remotely accessing programs within the controlled environment.

2.2. PROBLEMS WITH GENERATING TRAFFIC

Although great care was taken to ensure the legitimate background traffic was comparable to that of an actual network, there is little evidence that illegitimate traffic, often referred to as Internet "crud", was considered or introduced. This “crud” consists of all the things you shouldn't see on a network but often do [5,7,8,9]. Poorly implemented network protocols, bug-ridden software, and faulty hardware can mangle packets in ways that can give them a malicious appearance. Even though these types of packets are not usually created intentionally (except possibly to exercise a security

vulnerability), they do exist as a sort of 'background radiation' in the real- world, and researchers must account for them when attempting to simulate the Internet.

3. INTRUSION DETECTION
An intrusion detection system is a vital component of any network security architecture. Because administrators can’t watch every bit of traffic that passes through their network, intrusion detection systems monitor traffic as it passes certain points and alert the administrators (be it in real-time or logs) when possibly malicious activity is noticed. Malicious activity can be identified by traffic anomalous to what is normal for that particular network or from traffic signatures characteristic of known attacks. While being able to detect malicious activity is vital, intrusion detection systems should not flag benign traffic as attacks. A frequent false-positive rate can cause administrators to ignore the system, leaving legitimate alerts unnoticed.

3.1. AN EXAMPLE INTRUSION DETECTION SYSTEM: BRO

Bro is a stand-alone IDS capable of detecting attacks in real-time and conducting detailed network analysis. Because the system was designed to deal with high-speed networks, Bro avoids obstructing the flow of traffic by passively “listening” to traffic rather than acting as a filter. This system is employed by the National Energy Research Computing (NERSC) Center as an operational intrusion detection and network analysis mechanism, and served as the processing unit for this experiment.

4. COMPARING TEST DATA VS. REAL DATA USING BRO OUTPUT

 In order to quantify the difference between test data and real data, the test data must be subjected to a real-world IDS so that the output may be compared to day-to-day Internet activity of the network. This section will describe the methods used to produce comparable data and an analysis of the results.

4.1. METHODS
BRO produces many log files as it monitors traffic. This study is primarily concerned with A) logs that give an overview of every connection (red files), and B) logs that serve as a record for packets exhibiting unusual behavior (weird files). The red files contain a reduced summary of the connections for all traffic Bro sees while running. The fields contained within are as follows: <start> <duration> <originator bytes>

<responder bytes> <service> <originating IP> <originating port> <destination IP> <destination port> <state> <flags> <addl>. Each of these fields is explained in detail in the generic connection analysis section of [6].

The weird files are a result of anomalous packet or protocol behavior. Every time Bro comes across a packet exhibiting abnormal characteristics, it creates an entry the weird file and records the appropriate information. A list of common weird file event types is explained the weird module section of [6]. The combination of these two log files gives the security administrator the ability to investigate an event, IP address, connection, and many other aspects of the traffic flowing through Bro.

Because the red files are based on connections rather than individual packets, the percentages in Tables 1-4 represent the frequency of such events per total connections enumerated in Table 5. Even though the test data is split into subsets corresponding to the days on which the data was processed, this method is preferred to a time-based measurement (i.e. 60-minutes of network traffic), because a time-based comparison would not account for a difference in bandwidth between NERSC and the network where the test data originated.

The 1999 DARPA Intrusion Detection off-line evaluation consisted of three weeks of training data and two weeks of testing data. The training data was provided to allow anomaly-based IDSs to develop a foundation for what is normal activity and what is unusual. The first and third weeks contained no attack data in order to provide
examples of normal traffic, while the second week allowed the systems to observe what conditions should spawn an alert. The testing data of the fourth and fifth weeks contained a mix of attacks and background traffic, which was used to produce the results of the evaluation. Each day of testing contained inside data representing local traffic, and outside data containing local and non-local traffic. As this study deals with the quality of the Internet-based data, the inside data sets were excluded. The outside data was split into attack data (weeks 2, 4, and 5), and attack-free data (weeks 1 and 3) in order to differentiate between weird events from an attack and those caused by Internet “crud”.
 Even though the preservation of the test data is important to the validity of this study, filters were applied using tcpdump [10]. ICMP traffic was removed, because Bro was not able to properly analyze such packets. Also, non-IP-based traffic was removed to eliminate traffic produced by proprietary protocols reflective of the originating network’s infrastructure, such as the Cisco Discovery Protocol (CDP). Finally, raw Ethernet frames were removed in order to focus the study on non-local traffic.
 Results were taken for three groups to provide the comparison: Lincoln Labs attack-free test data, Lincoln Labs mixed test data, and NERSC mixed real data. Because the data collected from NERSC represents traffic a typical network experiences in normal operation, attack-free real data is unattainable. The results were categorized based on the area in which the weird event occurred: TCP, DNS, IP Fragmentation and HTTP.

4.2. ANALYSIS

The following subsections give an interpretation of the results, and provide examples from each category of a weird event that can confuse an IDS into inappropriately signaling an attack.

4.2.1 TCP EVENTS

Particular attention was paid to the TCP events collected in this research, because its complexity makes it prone to improper implementation. This makes it a prime target for attacks as well as a good source of Internet “crud”. Also, many types of scans use a variety of flags in looking for open ports. Unsolicited_SYN_response events are signaled by Bro when it receives a packet referencing a connection it does not show as being established. Because TCP is a connection-oriented protocol, application data is not allowed until a connection is established via a process known as the TCP handshake. Therefore, if the first packet in a TCP connection is anything except for a SYN, this condition is met. The large number of unsolicited_SYN_response events in the NERSC data is an expected occurrence, because Bro is periodically shut down and restarted in order to flush the system. When Bro starts back up, it has no records of the TCP connections already established, and, therefore, considers every packet it receives of a previously operational connection as unsolicited.

The TCP section appears to be the only section where weird entries are found for the attack-free data. (This excludes the HTTP data of Table 3, which is partially anomalous and will be describe in more detail later.) However, this is not necessarily indicative of the addition of broken connections (a.k.a Internet "crud") into the attack-free data, but more likely a sign of packets arriving out of sequence. The particular events triggered in the attack-free data help to further this point. For example, the data_before_established event is often caused by data being sent before the TCP handshake, mentioned above, has completed.

4.2.2 DNS EVENTS

The attack-free test data contains no weird entries for DNS traffic; however, the mixed test data contains a small number of entries that serve as an indication of a DNS-based attack. Although there is no quantification of how many of the NERSC events are contributed by actual attacks, there is a substantial difference in the volume and type of events in the two sets of mixed data. The lack of unusual DNS content, irrespective of the contribution of NERSC events from attacks, shows the inability of the methods used to produce the test data to adequately represent true Internet behavior.

4.2.3 HTTP

As indicated earlier, the data collected for the unmatched_HTTP_reply and HTTP_version_mismatch events appears to contain anomalies that required further attention. Due to the surprisingly high numbers, the data was run through the system a second time for clarification. After the results of the second test returned identical to that shown in Table 3, a sample HTTP session (included in appendix B) was extracted using tcpdump and manually reviewed for abnormalities. Verification of several connections showed no signs of errors in the connection mechanics indicating a malfunction within the analysis system itself.

Other than the anomalous data, the number of HTTP weird events found within both the attack-free and mixed test data seem to match the number of events found within the real data. Therefore, the HTTP test data appears to give an adequate simulation of real HTTP traffic.

4.2.4 IP FRAGMENTATION EVENTS

IP fragmentation is a common event with Internet traffic. It occurs when large IP packets are broken up into smaller ones allowing the pieces to traverse links of smaller MTU size. Although this is a much-needed service, it introduces a new avenue for exploitation and obfuscation. Many attacks involving IP fragmentation aim to either A) cause a Denial-of-Service (DoS) by sending a series of packets that exhaust a system’s resources or exploit flaws in the systems IP stack, or B) bypass security measures that do not perform, or inadequately perform, packet reassembly. The fragment_overlap event is a prime example of the latter. By making the ends of packet fragments overlap, an attacker can make a series of seemingly harmless smaller packets form an attack once assembled. The number of entries in this category for the mixed test data shows the signs of such an attack; however, the lack of such events in the real data questions the emphasis the test data puts on the detection of this type of attack rather than one found more prevalent n the real data.

5. CONCLUSIONS

 Proper testing of intrusion detection systems is necessary in order to facilitate improved design by providing useful feedback and ensure the system will perform in a predictable manner when employed in a real-world situation. While the 1999 DARPA intrusion detection evaluations served as a foundation for testing intrusion detection systems, the use of synthetic data may have favored systems that perform well in academic environments, but not necessarily in the wild. If synthetic traffic is to continue to be used in evaluations such as these, it must include all of the characteristics of the Internet, including the imperfections, in order to ensure a clean transition of a system from an academic environment to the real world.

ACKNOWLEDGEMENTS

The authors would like to thank the following people and groups who helped make this paper possible: The Department of Energy, Lawrence Berkeley National Laboratory, the National Energy Scientific Computing Center, Howard Walter and the Networking and Cyber-security group, Laurel Egenberger, Susan Aberg, Robert Wellbrock, Gary Buckmaster, Robert Lovelady, and Christopher Rickert.

The research described here was performed at the Lawrence Berkeley National Laboratory and funded by the Department of Energy Office of Science under Contract No. DE-AC03-76SF00098.

REFERENCES

[1] McHugh, J. ,”Testing Intrusion Detection Systems: A Critique of the 1998 and 1999 DARPA Intrusion Detection System Evaluations as Performed by Lincoln Laboratory”, ACM Transactions on Information and System Security, 3(4), Association for Computing Machinery, New York, NY, Nov. 2000, pp. 262-294.

[2] Lippman, R.P., Haines, J.W., Fried, D.J., Korba, J., Das, K. ,“The 1999 DARPA Off-Line Intrusion Detection Evaluation”, Proceedings of the Third International Workshop on the Recent Advances in Intrusion Detection: Lecture Notes in Computer Science series, Springer Verlag, Toulouse, France, Oct. 2000.
[5] Paxson, V. ,“Bro: A System for Detecting Network Intruders in Real-Time”, Computer Networks, 31(23-24), Elsevier Inc., San Diego, California, Dec. 1999, pp. 2435-2463.

[6] Paxson, V. , The Bro 0.8 User Manual, http://www.icir.org/vern/bro-manual/, ICSI Center for Internet Research, Berkeley, California, Nov. 2002.

[7] Bykova, M. ,”Statistical Analysis of Malformed Packets and Their Orgins in the Modern Internet”, Master’s Thesis, http://irg.cs.ohiou.edu/papers, Mar. 2002.

[8] Bellovin, S.M. ,”Packets Found on an Internet”, Computer Communications Review 23(3), Association of Computing Machinery, July 1993.
[9] Floyd, S., Paxson, V. ,”Difficulties in Simulating the Internet”, IEEE/ACM Transactions on Networking, 9(4), Institute of Electrical and Electronic Engineers/Association of Computing Machinery, Aug. 2001, pp. 392-403.

[10] Jacobson, V., Leres, C., McCanne, S.D., tcpdump, http://www.tcpdump.org, Jun. 1989.

Appendix A: Event Tables

Table 1: TCP Events

	
	
	Lincoln Labs
	NERSC

	
	
	Attack-free Data
	Mixed Data
	Mixed Data

	Event
	Category
	Entries
	% of total connections
	Entries
	% of total connections
	Entries
	% of total connections

	
	
	
	
	
	
	
	

	Unsolicited_SYN_response
	TCP
	12
	0.002%
	47
	0.005%
	1537582
	1.907%

	spontaneous_RST
	TCP
	
	0.000%
	939
	0.098%
	1069119
	1.326%

	connection_originator_SYN_ack
	TCP
	
	0.000%
	4
	0.000%
	836593
	1.038%

	RST_with_data
	TCP
	
	0.000%
	
	0.000%
	565450
	0.701%

	SYN_seq_jump
	TCP
	
	0.000%
	1
	0.000%
	232202
	0.288%

	Data_before_established
	TCP
	2
	0.000%
	29
	0.003%
	146010
	0.181%

	active_connection_reuse
	TCP
	76
	0.011%
	167
	0.017%
	98440
	0.122%

	possible_split_routing
	TCP
	2
	0.000%
	28
	0.003%
	32129
	0.040%

	bad_TCP_checksum
	TCP
	
	0.000%
	12
	0.001%
	28442
	0.035%

	spontaneous_FIN
	TCP
	
	0.000%
	1167
	0.122%
	19350
	0.024%

	line_terminated_with_single_CR
	TCP
	1949
	0.293%
	2537
	0.264%
	8952
	0.011%

	window_recision
	TCP
	5
	0.001%
	3
	0.000%
	4841
	0.006%

	truncated_header
	TCP
	
	0.000%
	
	0.000%
	101
	0.000%

	SYN_after_reset
	TCP
	
	0.000%
	5
	0.001%
	58
	0.000%

	bad_SYN_ack
	TCP
	
	0.000%
	
	0.000%
	48
	0.000%

	bad_TCP_header_len
	TCP
	
	0.000%
	
	0.000%
	47
	0.000%

	NUL_in_line
	TCP
	
	0.000%
	1
	0.000%
	29
	0.000%

	FIN_advanced_last_seq
	TCP
	9
	0.001%
	421
	0.044%
	22
	0.000%

	TCP_Christmas
	TCP
	
	0.000%
	
	0.000%
	16
	0.000%

	inappropriate_FIN
	TCP
	
	0.000%
	
	0.000%
	130
	0.000%

	SYN_inside_connection
	TCP
	
	0.000%
	
	0.000%
	118
	0.000%

	premature_connection_reuse
	TCP
	
	0.000%
	
	0.000%
	76
	0.000%

	FIN_after_reset
	TCP
	
	0.000%
	85
	0.009%
	348
	0.000%

	SYN_after_close
	TCP
	
	0.000%
	
	0.000%
	1594
	0.002%

	Data_after_reset
	TCP
	
	0.000%
	16
	0.002%
	1272
	0.002%

Table 2: DNS Events

	
	
	Lincoln Labs
	NERSC

	
	
	Attack-free Data
	Mixed Data
	Mixed Data

	Event
	Category
	Entries
	% of total connections
	Entries
	% of total connections
	Entries
	% of total connections

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	DNS_truncated_label
	DNS
	
	0.000%
	2
	0.000%
	80
	0.000%

	DNS_name_too_long
	DNS
	
	0.000%
	2
	0.000%
	38
	0.000%

	DNS_label_too_long
	DNS
	
	0.000%
	2
	0.000%
	76
	0.000%

	forward_DNS_compression_offset
	DNS
	
	0.000%
	
	0.000%
	76
	0.000%

	Bad_DNS_RR_length
	DNS
	
	0.000%
	3
	0.000%
	8
	0.000%

	unknown_DNS_RR_type
	DNS
	
	0.000%
	
	0.000%
	26794
	0.033%

	truncated_DNS_RR
	DNS
	
	0.000%
	
	0.000%
	7626
	0.009%

	DNS_RR_length_mismatch
	DNS
	
	0.000%
	
	0.000%
	7568
	0.009%

	truncated_DNS
	DNS
	
	0.000%
	8
	0.001%
	209
	0.000%

Table 3: HTTP Events

	
	
	Lincoln Labs
	NERSC

	
	
	Attack-free Data
	Mixed Data
	Mixed Data

	Event
	Category
	Entries
	% of total connections
	Entries
	% of total connections
	Entries
	% of total connections

	
	
	
	
	
	
	
	

	illegal_%_at_end_of_URI
	HTTP
	
	0.000%
	
	0.000%
	10
	0.000%

	unescaped_%_in_URI
	HTTP
	12
	0.002%
	13
	0.001%
	288
	0.000%

	unmatched_HTTP_reply
	HTTP
	306742
	46.153%
	424212
	44.169%
	4417
	0.005%

	unescaped_special_URI_char
	HTTP
	2874
	0.432%
	4008
	0.417%
	3331
	0.004%

	HTTP_version_mismatch
	HTTP
	28247
	4.250%
	40753
	4.243%
	728
	0.001%

	double_%_in_URI
	HTTP
	
	0.000%
	
	0.000%
	81
	0.000%

Table 4: IP Fragmentation Events

	
	
	Lincoln Labs
	NERSC

	
	
	Attack-free Data
	Mixed Data
	Mixed Data

	Event
	Category
	Entries
	% of total connections
	Entries
	% of total connections
	Entries
	% of total connections

	
	
	
	
	
	
	
	

	fragment_overlap
	Frag
	
	0.000%
	217
	0.023%
	
	0.000%

	fragment_size_inconsistency
	Frag
	
	0.000%
	2
	0.000%
	14
	0.000%

	fragment_with_DF
	Frag
	
	0.000%
	
	0.000%
	233
	0.000%

	fragment_inconsistency
	Frag
	
	0.000%
	55
	0.006%
	194
	0.000%

	excessively_small_fragment
	Frag
	
	0.000%
	2944
	0.307%
	478
	0.001%

	excessively_large_fragment
	Frag
	
	0.000%
	
	0.000%
	451
	0.001%

Table 5: Total Connections

	
	Lincoln Labs
	NERSC

	
	Attack-free Data
	Mixed Data
	Mixed Data

	Total Connections
	664616
	960424
	80632283

Appendix B: HTTP tcpdump output

% tcpdump -r tcpdump.wk1.mon.out -n
06:14:50.782036 172.16.116.201.1774 > 209.67.29.11.80: S
3073954945:3073954945(0) win 512 <mss 1460>
06:14:50.786584 209.67.29.11.80 > 172.16.116.201.1774: S
808279779:808279779(0) ack 3073954946 win 32736 <mss 1460>
06:14:50.787244 172.16.116.201.1774 > 209.67.29.11.80: . ack 1 win 32120 (DF)
06:14:50.787917 172.16.116.201.1774 > 209.67.29.11.80: P 1:205(204) ack 1 win 32120 (DF)
06:14:50.804621 209.67.29.11.80 > 172.16.116.201.1774: . ack 205 win 32736 (DF)
06:14:50.806159 209.67.29.11.80 > 172.16.116.201.1774: P 1:789(788) ack 205 win 32736 (DF)
06:14:50.806273 209.67.29.11.80 > 172.16.116.201.1774: F 789:789(0) ack 205 win 32736
06:14:50.807479 172.16.116.201.1774 > 209.67.29.11.80: . ack 790 win 31331 (DF)
06:14:50.808455 172.16.116.201.1774 > 209.67.29.11.80: F 205:205(0) ack 790 win 32120
06:14:50.812213 209.67.29.11.80 > 172.16.116.201.1774: . ack 206 win 32735 (DF)

PAGE
3

