

Neutron Detector Systems For The Spallation Neutron Source

Ron Cooper SNS Detector Team Leader

July 2003

Experimental Facilities Division

- 1. Neutrons have the right wavelength
- **2.** Neutrons measure the Velocity of Atoms
 - (**3.** Neutrons see the Nuclei
 - 4. Neutrons see light Atoms next to Heavy Ones
 - **5.** Neutrons penetrate deep into Matter
 - 6. Neutrons see Elementary Magnets

How do we produce neutrons?

Fission

- chain reaction
- continuous flow
- 1 neutron/fission
- 180 MeV/neutron

Spallation

- no chain reaction
- pulsed operation
- 40 neutrons/proton
- 30 MeV/neutron

SNS

Site Photograph 4-03

Central Helium Liquefaction Building

Radio-Frequency | Facility

Support Buildings

Contraction of the state of the

Ring

Target

Front-End Building

Klystron Building

Linac Tunnel

Center for Nanophase Materials Sciences

Future

Target

Building

Central Laboratory and Office Complex

> Joint Institute for Neutron Sciences

Experimental Facilities Division

Central Lab 5-03

Target Building 5-03

Experimental Facilities Division

Oak Ridge

Shielding Components

SNS Instrument Layout

SPALLATION NEUTRON SOURCE

Experimental Facilities Division

Oak Ridge

- Detect daughter products from neutron capture
 - ³He(n,p)t
 - ${}^{6}\text{Li}(n,\alpha)t$
 - ${}^{10}B(n, \alpha)^{7}Li$
 - ¹⁵⁷Gd(n,gamma)¹⁵⁸Gd
- No zero crossing signal for gating
 - Gate widths are ms
 - Timing accuracy is $\sim \mu s$
 - Protons on target provides neutron energy
- High pixel rates from Bragg peaks
- No track fitting
- No high level triggers
 - Every neutron is sacred

Julv. 2003

Comments

- Due to high rates almost every instrument needs detector R&D
- A great deal of good science awaits new detectors
- "A program for neutron detector research and development"
- <u>http://www.sns.gov/documentation/Neutron_Detector_White_Paper_March_03.pdf</u>
- Upgrades will be necessary
- Purchase systems when possible

Requirements

- Time resolved data
- Save position and time of each neutron event
- PC based, crateless architecture
- Optical communication
- Enforce compatibility requirements

Julv. 200

Inelastic Instruments

SNS SPALLATION NEUTRON SOURCE

- Measure energy transfer
- Seven of first 16 instruments
 - Large area detector coverage 1 60 m²
 - Large pixels ~ cm^2
 - Gamma rejection is very important
 - Long term stability
 - 50% efficiency for 1 eV neutrons
 - Detectors in vacuum or inert atmospheres

CNCS Spectrometer

Detectors for Inelastic Instruments

- Linear position sensitive proportional counters (Reuter/Stokes)
- 10 Atmospheres of ³He + quench gas
- 1m x 2.5cm tubes
- Low gas gain ~100
- Bragg peaks saturate tubes
- Good data comes in very slowly

• Suggestions for alternatives that won't saturate?

LPSDs

Eight pack vacuum test

LPSD Electronics

Diffractometers

- Measure structure of materials
 - Crystals, powders, glasses
- 5 of the first 16 instruments
 - Area coverage from 5 to 15 m^2
 - Position resolution from 1 mm^2 to > $2cm^2$
 - Detect neutrons up to 50 eV

Engineering Instrument (Vulcan)

Experimental Facilities Division

Oak Ridge

Single Crystal Diffractometer (SCD)

Experimental Facilities Division

SCD Detectors

Experimental Facilities Division

Oak Ridge

20

SPALLATION NEUTRON SOURCE

- Scintillators with fiber optic readout schemes
 - Head on fibers (ISIS)
 - Wavelength shifting fibers (SNS)
 - Multi-tube coincidences
 - Pulse shape gamma rejection

• Need new scintillator

Experimental Facilities Division

Oak Ridge

Diffractometer Detectors

Detector unit for the GEM instrument at ISIS

Experimental Facilities Division

Oak Ridge

Diffractometer Detectors

SNS SPALLATION NEUTRON SOURCE

• Wavelength shifting fiber readout

Small Angle Scattering and Reflectometer Instruments

- Measure biological materials and surface phenomenon on liquids and magnetic materials
- 3 of the first 16 instruments
 - Detector area ranges from 4 cm² to 1m²
 - Position resolution ranges from 0.1mm x 0.1mm to
 - 5mm x 5mm
 - Rate is 5×10^7 n/s for the detector
 - 2 orders of magnitude higher than is possible today
 - High magnetic fields
 - Very low gamma sensitivity

Julv. 2003

Liquids & Magnetism Reflectometers

Experimental Facilities Division

Extended-Q SANS

Detectors

- ³He filled 2-D Position sensitive detectors (Several suppliers)
 - Only good to 5×10^5 n/s
- Multiple tube arrays (ILL)
 - Only good to 5×10^6 n/s
- Pixel readout ionization chambers (BNL/ORNL)
 - 40,000 pixels per detector
 - Need ASICs
 - Electronics in chamber
 - Heat transfer and gas purity are issues
- Semiconductor detectors with conversion foils for 0.1-mm resolution

Julv. 200

ILL Multitube Detector

128 8-mm diameter, 1-m long Tubes in a vacuum chamber Prototype

BNL Detector

Typical proportional chamber that could be converted to ionization mode, pixel readout

Conclusion

- The SNS is on schedule to begin operation in 2006
- The detector systems that are available today do not meet the requirements of the SNS in most instances
- Electronics development is needed to minimize the saturation effects from Bragg peaks in linear position sensitive detectors
- ASICs are needed for parallel pixel readout schemes
 - Burst data at 60 Hz
 - Electronics in chamber gas
- We are soliciting ideas

Julv. 2003