STRUCTURES OF

MEMBRANE PROTEINES

 

Contents:

Some crystallization reports

Porin structures

Diverse structures and more than diverse

Oxido-reductases

Photosystem

Rhodopsin and bacteriorhodopsin

Cubic lipidic phases

Links

 

SOME CRYSTALLIZATION REPORTS

FEBS Letters: Special Issue: Structure, Dynamics and Function of Proteins in Biological Membranes. Volume 504, Issue 3, Pages 87-228 (31 August 2001).

Okada, T. et al. (2000). X-ray diffraction analysis of three-dimensional crystals of bovine rhodopsin obtained from mixed micelles. J. Struct. Biol., 130, 73-80.

Berry, E.A. et al. (2000). Structure and function of cytochrome bc complexes. Annu. Rev. Biochem., 69, 1005-75.

Chang-An, Y. et al. (1996). Crystallization and preliminary structure of beef heart mitochondrial cytochrome-bc1 complex. Biochim. Biophys. Acta, 1275, 47-53.

Lee, J.W. et al. (1995). Preliminary crystallographic study of the mitochondrial cytochrome bc1 complex: improved crystallization and flash cooling of a large membrane protein. J. Mol. Biol., 252, 15-19.

Byrne, B. et al. (2000). Fusion protein approach to improve the crystal quality of cytochrome bo3 ubiquinol oxidase for Escherichia coli. Biochim. Biophys. Acta, 1459, 449-455.

Penel, S. et al. (1998). Detergent binding in trigonal crystals of OmpF porin from Escherichia coli. Biochimie, 80, 543-551.

Pauptit, R.A. et al. (1991). Trigonal crystals of porin from Escherichia coli. J. Mol. Biol., 218, 505-507.

Feick, R. et al. (1996). Crystallization and X-ray analysis of the reaction center from the thermophilic green bacterium Chloroflexus aurantiatus. FEBS Lett., 396, 161-164.

Allen, J.P. (1994). Crystallization of the reaction center from Rhodobacter sphaeroides in a new tetragonal form. Proteins, 20, 283-286.

Tucker, A.D. et al. (1991). Crystallization and preliminary X-ray analysis of phophoporin from the outer membrane of Escherichia coli. J. Mol. Biol., 222, 881-884.

Buchanan, S.K. et al. (1993). New crystal form of the photosynthetic reaction centre from Rhodobacter sphaeroides of improved diffraction quality. J. Mol. Biol., 230, 1311-1314.

Papiz, M.Z. et al. (1989). Crystallization and characterization of two crystal forms of the B800-850-light-hervesting complex from Rhodopseudomonas acidoplila strain 10050. J. Mol. Biol., 209, 833-835.

Katayama, N. et al. (1994). Preliminary X-ray crystallographic studies of photosynthetic reaction center from a thermophilic sulfur bacterium, Chromatium tepidum. FEBS Lett., 348, 158-160.

Chang, C.H. et al. (1985). Characterization of bacterial photosynthetic reaction center crystals from Rhodopseudomonas sphaeroides R-26 by X-ray diffraction. J. Mol. Biol., 186, 201-203.

Allen, J.P. & Feher, G. (1984). Crystallization of reaction center from Rhodopseudomonas sphaeroides: preliminary characterization. Proc. Natl. Acad. Sci. USA, 81, 4795-4799.

Pautsch, A. et al. (1992). Strategy for membrane protein crystallization exemplified with OmpA and OmpX. Proteins, 34, 167-172.

Arockiasamy, A. & Krishnaswamy, S. (1999). Crystallization of the immunodominant outer membrane protein OmpC; the first protein crystal from Salmonella typhi, a human pathogen. FEBS Lett., 453, 380-382.

Hirsch, A. et al. (1995). Purification, characterization, crystallization, and preliminary X-ray results from Paracoccus denitrifians porin. Proteins, 23, 282-284.

Gouaux, J.E. et al. (1994). Subunit stoichiometry of staphylococcal a-hemolysin in crystal and on membranes: a heptameric transmembrane pore. Proc. Natl. Acad. Sci. USA, 91, 12828-12831.

Blaauw, M. et al. (1995). Crystallization and preliminary X-ray analysis of outer membrane phospholipase A from Escherichia coli. FEBS Lett., 373, 10-12.

Kreusch, A. et al. (1991). Crystals of an integral membrane protein diffracting to 1.8 Å resolution. J. Mol. Biol., 217, 9-10.

Forst, D. et al. (1993). Crystallization and preliminary X-ray diffraction analysis of ScrY, a specific bacterial outer membrane porin. J. Mol. Biol., 229, 258-262.

Stauffer, K.A. et al. (1989). Crystallization and preliminary X-ray characterization of maltoporin from Escherichia coli. J. Mol. Biol., 211, 297-299.

 

PORIN STRUCTURES

Vandeputte-Rutten, L. et al. (2001). Crystal structure of the outer membrane protease OmpT from Escherichia coli suggests a novel catalytic site. EMBO J., 20, 5033-5039

Ren, G. et al. (2001). Visualization of a water-selective pore by electron crystallography in vitreous ice. Proc. Natl. Acad. Sci. USA, 98, 1398-1403.

Murata et al. (2000). Structural determinants of water permeation through aquaporin-1. Nature, 407, 599-605.

Zeth, K. et al. (2000). Crystal structure if Omp32, the anion-selective porin from Comamonas acidovorans, in complex with a periplasmic peptide at 2.1 Å resolution. Structure, 8, 981-992.

Pautsch, A. & Schulz, G.E. (2000). High resolution of the OmpA membrane domain. J. Mol. Biol., 298, 273-282.

Snijder, H.J. et al. (1999). Structural evidence for dimerization-regulated activation of an integral membrane phospholipase. Nature, 401, 717-721.

Vogt, J. & Schulz, G.E. (1999). The structure of the outer membrane protein OmpX from Escherichia coli reveals possible mechanisms of virulence. Structure, 7, 1301-1309.

Dutzler, R. et al. (1998). Crystal structure and functional characterization of OmpK36, the osmoporin of Klebsiella pneumoniae. Structure, 7, 425-434.

Pautsch, A. & Schulz, G.E. (1998). Structure of the outer membrane of protein A transmembrane domain. Nature Struc. Biol., 5, 1013-1017.

Forst, D. et al. (1998). Structure of the sucrose-specific porin ScrY from Salmonella typhimurium and its complex with sucrose. Nat. Struc. Biol., 5, 37-46.

Dutzler, R. et al. (1996). Crystal structure of various maltooligosaccharides bound to maltoporin reveal a specific sugar translocation pathway. Structure, 4, 127-134.

Meyer, J.E. et al. (1997). Structure of maltoporin from Salmonella typhimurium ligated with a nitrophenyl-maltotrioside. J. Mol. Biol., 266, 761-775.

Hirsch, A. et al. (1997). The structure of porin from Paracoccus denitrifians at 3.1 Å resolution. FEBS Lett., 404, 208-210.

Pebay-Peyroula, E. et al. (1995). Detergent structure in tetragonal crystal of OmpF porin. Structure, 3, 1051-1059.

Cowan, S.W. et al. (1995). The structure of OmpF porin in a tetragonal crystal form. Structure, 3, 1041-1050.

Schirmer, T. et al. (1995). Structural basis for sugar tanslocation through maltoporin channels at 3.1 Å resolution. Science, 267, 512-514.

Kreusch, A. et al. (1993). Structure of the membrane channel porin from Rhodopseudomonas blastica at 2.0 Å resolution. Prot. Sci., 3, 58-63.

Cowan, S.W. et al. (1992). Crystal structures explain functional properties of two E. coli porins. Nature, 358, 727-733.

Weiss, M.S. & Schulz G.E. (1992). Structure of porin refined at 1.8 Å resolution. J. Mol. Biol., 227, 493-509.

Weiss, M.S. et al. (1991). Molecular architecture and electrostatic properties of a bacterial porin. Science, 254, 1627-1630.

Weiss, M.S. et al. (1991). The structure of porin from Rhodobacter capsulatus at 1.8 Å resolution. FEBS Lett., 280, 379-382.

Weiss, M.S. et al. (1990). The three-dimensional structure of porin from Rhodobacter capsulatus at 3 Å resolution. FEBS Lett., 267, 268-272.

Eisele, J.L. & Rosenbusch, J.P. (1989). Crystallization of porins using short chain phospholipids. J. Mol. Biol, 206, 209-212.

 

DIVERSE STRUCTURES: CHANNELS, TOLC, ATPase

Chang, G. & Roth, C.B. (2001). Structure of MsbA from E. coli: a homolog of the multidrug resistance ATP binding cassette (ABC) transpoters. Science, 293, 1793-1800.

Toyoshima, C. et al. (2000). Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature, 405, 647-655.

Stock, D. et al. (1999). Molecular architecture of the rotary motor in ATP synthase. Science, 286, 1700-1705.

Rastogi, V.K. & Girvin, M.E. (1999). Structural changes linked to proton translocation by subunit c of the ATP synthase. Nature, 402, 263-268.

Fu, D. et al. (2000). Structure of a glycerol-conducting channel and the basis for its selectivity. Science, 290, 481-486.

Doyle, D.A. et al. (1998). The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science, 280, 69-77.

Chang, G. et al. (1999). Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science, 282, 2220-2225.

Song, L. et al. (1996). Structure of staphylococcal a-hemolysin, a heptameric transmembrane pore. Science, 274, 1859-1866.

Parker, M.W. et al. (1993). Structure of the membrane-pore-forming fragment of colicin A. Nature, 337, 93-96.

Wiener, M. et al. (1997). Crystal structure of colicin Ia. Nature, 385, 461-464.

Koronakis, V. et al. (2000). Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature, 405, 914-919.

Ferguson, A.D. et al. (1998). Siderophore-mediated iron transport: crystal structure of FhuA with bound lipopolysaccharide. Science, 282, 2215-2220.

Locher, K.P. et al. (1998). Transmembrane signaling across the ligand-gated FhuA receptor: crystal structure of free and ferrichrome-bound states reveal allosteric changes. Cell, 95, 771-778.

Buchanan, S.K. et al. (1999). Crystal structure of the outer membrane active transporter FepA from Escherichia coli. Nat. Struc. Biol., 6, 56-63.

Olson, R. et al. (1999). Crystal structure of staphylococcal LukF delineates conformational changes accompanying formation of a transmembrane channel. Nat. Struc. Biol., 6, 134-140.

 

AND MORE THAN DIVERSE…

Pashkov, V.S. et al. (1999). Spatial structure of the M2 transmembrane segment of the nicotinic acetylcholine receptor a-subunits. FEBS Lett., 457, 117-121.

Lugovskoy, A.A. et al. (1998). Spatial structure of the M3 transmembrane segment of the nicotinic acetylcholine receptor a-subunits. Eur. J. Biochem., 255, 455-461.

Mackenzie, K.R. et al. (1997). A transmembrane helix dimer: structure and implications. Science, 276, 131-133.

Kurumbail, R.G. et al. (1996). Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature, 384, 644-648.

Picot, D. et al. (1994). The X-ray crystal structure of the membrane protein prostaglandin H2 synthase-1. Nature, 367, 243-249.

Arora, A., et al. (2001). Structure of outer membrane protein A transmembrane domain by NMR spectroscopy. Nat. Struc. Biol., 8, 334-338.

Mao, Y. et al. (2000). Crystal structure of the VHS and FYVE tandem domains of Hrs, a protein involved in membrane trafficking and signal transduction. Cell, 100, 447-456.

Laguri, C. et al. (2001). Structural characterization of the LEM motif common to three human inner nuclear membrane proteins. Structure, 9, 503-511.

 

OXIDO-REDUCTASES

Hunte, C. et al. (2000). Structure at 2.3 Å resolution of the cytochrome bc1 complex from the yeast Saccharomyces cerevisiae co-crystallized with an antibody Fv fragment. Structure, 8, 669-684.

Tsukihara, T. & Yoshikawa, S. (1998). Crystal structural studies of a membrane protein complex cytochrome c oxidase from bovine heart. Acta Cryst., A54, 895-904.

Iwata S. et al. (1998). Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex. Science, 281, 64-71

Zhang et al. (1998). Electron transfer by domain movement in cytochrome bc1. Nature, 392, 677-684.

Xia, D. et al. (1997). Crystal structure of the cytochrome bc1 complex from bovine heart mitochondria. Science, 277, 60-66.

Soulimane, T. et al. (2000). Structure and mechanism of the aberrant ba3-cytochrome c oxydase from Thermus thermophilus. EMBO, 19, 1766-1776.

Ostermeier, C. et al. (1997). Structure at 2.7 Å resolution of the Paracoccus denitrificans two-subunit cytochrome c oxidase complexed with an antibody Fv fragment. Proc. Natl. Acad. Sci. USA, 94, 10547-10553.

Yoshikawa, S. et al. (1998). Redox-coupled crystal structural changes in bovine heart cytochrome c oxidase. Science, 280, 1723-1729

Tsukihara, T. et al. (1996). The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 Å. Science, 272, 1136-1144.

Ostermeier, C. et al. (1995). Fv fragment-mediated crystallization of the membrane protein bacterial cytochrome c oxidase. Nat. Struc. Biol., 2, 842-845.

Tsukihara, T. et al. (1995). Structure of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 Å. Science, 269, 1069-1074.

Iwata, S. et al. (1995). Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature, 376, 660-669.

Abramson, J. et al. (2000). The structure of the ubiquinol oxidase from Escherichia coli and its ubiquinone binding site. Nat. Struc. Biol., 7, 910-917.

Lancaster C. Roy D. et al. (2001). A third crystal form of Wolinella succigenes quinol:fumarate reductase reveals domain closure at the site of fumarate reduction. Eur. J. Biochem., 268, 1820-1827.

Lancaster C. Roy D. et al. (1999). Structure of fumarate reductase from Wolinella succigenes at 2.2 Å resolution. Nature, 402, 377-384.

Iverson, T.M. et al. (1999). Structure of the Escherichia coli fumarate reductase respiratory complex. Science, 284, 1961-1966.

 

PHOTOSYSTEM

Jordan, P, et al. (2001). Three-dimensionnal structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature, 411, 909-917.

Zouni, A. et al. (2001). Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature, 409, 739-743.

Nogi, T. et al. (2000). Crystal structures of photosynthetic reaction center and high potential iron sulfur protein from Thermochromatium tepidum: thermostability and electron transfer. Proc. Natl. Acad. Sci. USA, 97, 13561-13566.

Lancaster C. Roy D. & Michel H. (1997). The coupling of light-induced electron transfer and proton uptake as derived from crystal structures of reaction centres from Rhodopseudomonas viridis modified at the binding site of the secondary quinone, QB. Structure, 5, 1339-1359.

Schubert W.D., et al. (1997). Photosystem I of Synechococcus elongatus at 4 Å resolution: comprehensive structure analysis. J. Mol. Biol., 272, 741-769.

Stowell, M.H.B. et al. (1997). Light-induced structural changes in photosynthetic reaction center: implications for mechanism of electron-proton transfer. Science, 276, 812-816.

Krauss, N. et al. (1996). Photosystem I at 4 Å resolution represents the first structural model of a joint photosynthetic reaction centre and core antenna system. Nat. Struc. Biol., 3, 965-973.

Koepke, J. et al. (1996). The crystal structure of the light-harvesting complex II (B800-850) from Rhodospirillum molischianum. Structure, 4, 581-597.

McDermott, G. et al. (1995). Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature, 374, 517-521.

Deisenhofer, J. et al. (1995). Crystallographic refinement at 2.3 Å resolution and refined model of the photosynthetic reaction centre from Rhodopseudomonas viridis. J. Mol. Biol., 246, 429-457.

Ermler, U. et al. (1994). Structure of the photosynthetic reaction centre from Rhodobacter sphaeroides at 2.65 Å resolution: cofactor and protein-cofactor interactions. Structure, 2, 925-936.

Kúhlbrandt, W. et al. (1994). Atomic model of plant light-harvesting complex by electron crystallography. Nature, 367, 614-621.

Allen, J.P. et al. (1987). Structure of the reaction center from Rhodobacter sphaeroides R-26: the protein subunits. Proc. Natl. Acad. Sci. USA, 84, 6162-6166.

Deisenhofer, J. et al. (1985). Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3 Å resolution. Nature, 318, 618-624.

Deisenhofer, J. et al. (1984). X-ray structure analysis of a membrane protein complex. Electron density map at 3 Å resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis. J. Mol. Biol., 180, 385-298.

Michel, H. (1982). Three-dimensional crystal of a membrane protein complex. The photosynthetic reaction centre from Rhodopseudomonas viridis. J. Mol. Biol., 158, 567-572.

 

RHODOPSIN AND BACTERIORHODOPSIN

Royant A. et al. (2001). X-ray structure of sensory rhodopsin II at 2.1 Å resolution. Proc. Natl. Acad. Sci. USA, 98, 10131-10136.

Luecke, H. et al. (2001). Crystal structure of sensory rhodopsin II at 2.4 angstroms: insight into color tuning and transducer interaction. Science, 293, 1499-1503.

Okada, T. & Palczewski, K. (2001). Crystal structure of rhodopsin: implication for vision and beyond. Curr. Opin. Struct. Biol., 11, 420-426.

Kolbe, M. et al. (2000). Structure of the light-driven chloride pump halorhodopsin at 1.8 Å resolution. Science, 288, 1390-1396.

Palczewski, K. et al. (2000). Crystal structure of rhodopsin: a G-protein-coupled receptor. Science, 289, 739-745.

Subramanlam, S. & Henderson, R. (2000). Molecular mechanism of vectorial proton translocation by bacteriorhodopsin. Nature, 406, 653-657.

Royant, A. et al. (2000). Helix deformation is coupled to vectorial proton transport in the photocycle of bacteriorhodopsin. Nature, 406, 645-648.

Belrhali, H. et al. (1999). Protein, lipid and water organization in bacteriorhodopsin crystals: a molecular view of the purple membrane at 1.9 Å resolution. Structure, 7, 909-917.

Luecke, H. et al. (1999). Structure of bacteriorhodopsin at 1.55 Å resolution. J. Mol. Biol., 291, 899-911.

Sato, H. et al. (1999). Specific lipid-protein interaction in a novel honeycomb lattice structure of bacteriorhodopsin. Acta Cryst., D55, 1251-1256.

Luecke, H. et al. (1999). Structural changes in bacteriorhodopsin during ion transport at 2 angstrom resolution. Science, 286, 255-260.

Essen, L.-O. et al. (1998). Lipid patches in membrane protein oligomers: crystal structure of the bacteriorhdopsin-lipid complex. Proc. Natl. Acad. Sci. USA, 95, 11673-11678.

Luecke, H. et al. (1998). Proton transfer pathway in bacteriorhodopsin at 2.3 angstrom resolution. Science, 280, 1934-1937.

Takeda, K. et al. (1998). A novel three-dimensional crystal of bacteriorhodopsin obtained by successive fusion of the vesicular assemblies. J. Mol. Biol., 283, 463-474.

Pebay-Peyroula, E. et al. (1997). X-ray structure of bacteriorhodopsin at 2.5 angstrom from microcrystals grown in lipidic cubic phases. Science, 277, 1676-1681.

Kimura, Y. et al. (1997). Surface of bacteriorhodopsin revealed by high-resolution electron crystallography. Nature, 389, 206-211.

Grigorieff, N. et al. (1996). Electron-crystallographic refinement of the structure of bateriorhodopsin. J. Mol. Biol., 259, 393-421.

 

THE CUBIC LIPIDIC PHASES

Tsapis N., et al. (2001). Self diffusion and spectral modifications of a membrane protein, the Rubrivivax gelatinosus LH2 complex, incorporated into a monolein cubic phase. Biophys. J., 81, 1613-1623.

Cherezov, V. et al. (2001). Crystallization screens: compatibility with the lipidic cubic phase for in meso crystallization of membrane proteins. Biophys. J., 81, 225-242.

Rosenbusch, J.P. et al. (2001). Approaches to determining membrane protein stuctures to high resolution: do selections of subpopulation occurs? Micron, 32, 75-90.

Ai, X. & Caffrey, M. (2000). Membrane protein crystallization in mesophases: detergent effects. Biophys. J., 79, 394-405.

Pebay-Peroula, E., et al. (2000). Lipidic cubic phase crystallization of bacteriorhodopsin and cryotrapping of intermediates: towards resolving a resolving photocycle. Biochim. Biophys. Acta, 1460, 119-132.

Shipley, G.G. (2000). Lipids. Bilayers and nonbilayers: structure, forces and protein crystallization. Curr. Opin. Struct. Biol., 10, 471-473.

Caffey, M. (2000). A lipid’s eye view of membrane protein crystallization in mesophase. Curr. Opin. Struct. Biol., 10, 486-497.

Chiu, M.L. et al. (2000). Crystallization in cubo: general applicability to membrane proteins. Acta Cryst., D56, 781-784.

Qiu, H. & Caffrey M. (2000). The phase diagram of the monolein/water system: metastability and equilibrium aspects. Biomaterials, 21, 223-234.

Nollert, P. et al. (1999). Detergent-free membrane protein crystallization. FEBS Lett., 457, 205-208.

Luecke, H. et al. (1999). Structure of bacteriorhodopsin at 1.55 Å resolution. J. Mol. Biol., 291, 899-911.

Belrhali, H. et al. (1999). Protein, lipid and water organization in bacteriorhodopsin crystals: a molecular view of the purple membrane at 1.9 Å resolution. Structure, 7, 909-917.

Rummel, G. et al. (1998). Lipidic cubic phases: new matrices for the three-dimensional crystallization of membrane proteins. J. Struct. Biol., 121, 82-91.

Cheng, A. et al. (1998). A simple mechanical mixer for small viscous lipid-containing samples. Chem. Phys. Lipids, 95, 11-21.

Pebay-Peyroula, E. et al. (1997). X-ray structure of bacteriorhodopsin at 2.5 angstrom from microcrystals grown in lipidic cubic phases. Science, 277, 1676-1681.

Landau, E.M. & Rosenbusch, J.P. (1996). Lipidic cubic phases: a novel concept for the crystallization of membrane protein. Proc. Natl. Acad. Sci. USA, 93, 10131-10136

 

 

CRYSTALLIZATION CONDITIONS

OF MEMBRANE PROTEINS

Protein

Buffer and pH

Detergent

Salts

Precipitants

PDB entry

PORINS

OmpT (Vandeputte-Rutten et al., 2001)

20 mg/ml

0.1 M Na Cit pH 5.5

1.0 % OG

0.5 M NaCl

28.0 % (v/v) MPD

1I78

Omp32 (Zeth et al., 2000)

10mg/ml

0.02 M Tris pH 8.0

0.1 M HEPES pH 7.5 or 0.1 M Tris pH 8.6

2 % b-D octylglucoside

-

1.3-1.4 M LiSO4
or 1.7-1.8 M NH4S or 1.3 M NH4S

-

1E54

OmpA (wt) (Pautsch & Schulz, 2000)

0.1 M NH4Ac pH 4.6

C8E4 0.6 % (w/v)

1.4 M NH4S (w/v)

3.8 % 2-propanol (v/v)

1.8 % hexyldimethylaminoxide (w/v)

1QJP

OmpA171d

0.1 M Hepes pH 7.1

idem

0.2 M CaCl2

15.0 % PEG400 (w/v)

15.0 % glycerol (w/v/)

 

OmpA171t

0.025 M KH2PO4 pH 5.1

idem

-

12.0 % PEG 8K (w/v)

10.0 % MPD (v/v)

 

OmpLA (monomer) (Snijder et al., 1999)

8.0 mg/ml

0.1 M bis-Tris pH 5.9-6.0

1.5 % b-OG

1 mM NaN3

1.0 mM CaCl2

25.0-29.0 % MPD (v/v)

1QD5

1QD6

OmpLA (dimer) (Snijder et al. 1999)

10.0 mg/ml

2.0 mM Tris pH 6.6

1.95 % B-OG (w/v)

10.0 mM KCl

Reservoir:12.0-17.0 % PEG400

(v/v)

1QD5

1QD6

OmpX (Vogt & Schulz, 1999)

20.0 mg/ml

0.1 M NaAc pH4.6

0.6 % C8E4 (w/v)

0.2 M CaCl2

30.0 % 2-propanol (v/v)

20.0 % glycerol (v/v)

1QJ8

1QJ9

OmpK36 (Dutzler et al., 1999)

12.0 mg/ml

0.05 M Tris-HCl pH 9.8

0.6% C8HESO

0.1% octyl-POE

0.5 M MgCl2

15.0 % PEG 2K

1OSM

OmpA171 10mg/ml (Pautsh & Schultz 1998)

0.025 M KH2PO4 pH 5.1

C8E4 0.6 % (w/v)

-

12.0 % PEG 8K (w/v)

10.0 % MPD (v/v)

1BXW

ScrY (Forst et al., 1998)

5.0-7.0 mg/ml

0.02 M Tris-HCl pH 7.7

1.2 % b-OG

1.0 % C6DAO

1.0 % B-HG

0.1 M LiCl

0.02 M MgSO4

6.0-9.0 % PEG 2K

Reservoir: 12.0-15.0 % PEG 2K

1AOS

Maltoporin (Dutzler et al., 1995)

0.02 M HEPES pH 7.0

0.4 % (w/w) b-D decylmaltoside

0.1 M MgCl2

11.0-12.5 % PEG 2K

1MPM

1MPN

1MPO

Maltoporin (Meyer et al., 1997)

5.0 to 8.0 mg/ml

No buffer

0.3 % C8E4

0.8% C6DAO

1.0 mM MgCl2

1.0 mM CaCl2

14.0 -18.0 % PEG1500

Reservoir: 28.0-32.0 % PEG1500

1MPR

2MPR

Maltoporin (Meyer et al., 1997)

7.5 mg/ml

5.0 mM NaAc-HCl pH 6.0

0.3 % C8E4

0.75% C6DAO

1.0 mM MgCl2

1.0 mM CaCl2

21.0 % PEG1500 (w/v)

Reservoir: 30.0 % PEG1500 (w/v)

1MPR

2MPR

Maltoporin (Meyer et al., 1997)

7.3 mg/ml

0.02 M Tris-HCl pH7.5

Reservoir: 0.01 M Tris-HCl pH7.5

0.4 % C8E4

2.5% C6DAO

0.06 M LiCl

0.015 M MgCl2

Reservoir: 0.1 M LiCl

0.025 M MgCl2

9.2 % PEG 4K (w/v)

Reservoir: 14.0 % PEG 4K

(w/v)

1MPR

2MPR

Porin (Hirsh et al., 1997)

0.02 M Tris-HCl pH 7.5

0.08 % LDAO or 1.0 % OG or 0.2 % DM

0.2 M KCl

0.01 M CaCl2

14.0-18.0 % PEG600

Reservoir: 28.0-32.0 % PEG600

 

OmpF Cowan, 1995 5.0 mg/ml

0.1 M NaP pH 7.0

0.5 % b octylglucoside

Reservoir: 0.5 M NaCl

3.0-6.0 % PEG 4K Reservoir: 18.0 % PEG 4K

1OPF

Maltoporin (Shirmer et al., 1995)

7.0 mg/ml

0.02 M HEPES pH 7.0

0.4 % b-decylmaltoside, 0.1 % C12E9

0.1 M MgCl2

15.0-18.0 % PEG 2K

1MAL

Porin (Kreusch et al., 1993)

5.0 mg/ml

0.02 M Tris-HCl pH 6.8

0.6 % C8E4

0.3-0.4 M LiCl

12.0-18.0 % PEG600

Reservoir: 30.0- 38.0 % PEG600

1PRN

OmpF (Cowan et al., 1992)

10.0 mg/ml

0.05 M Tris-HCl pH 9.8

0.6 % (w/w) n-octyl-2-hydroxyethylsulfoxyde and 0.1 % octylPOE

0.7 M MgCl2

8.5 to 10.5% PEG 2K

1PHO

Porin

(Weiss & Schulz 1992)

5.0-7.0. mg/ml

0.02 M Tris

0.6 % (w/v) n-octyltetraoxyethylene

0.3 M LiCl

7.0-10.0 % (w/v) PEG600

Reservoir: 23.0-30.0 % PEG600

2POR

DIVERSE AND MORE THAN DIVERSE

MsbA (Chang & Roth, 2001)

0.02 M Tris-HCl pH 7.5

0.1-0.2 M NaCit (pH 4.8-5.4)

0.05 % DDM

0.08-0.12 M Li2SO4

15.0-20.0 % PEG300

 

Calcium pump (Toyoshima et al., 2000)

0.1 M Tris pH 8.0

 

0.15 M NaCl

12.0 % PEG 6K

1EUL

Glycerol channel (Fu et al., 2000)

15.0-20.0 mg/ml

0.1 M Bicine

pH 8.9

0.035 M n-octyl-b-D-glucoside

0.3 M MgCl2

28.0 % PEG 2K (w/v)

15.0 % v/v glycerol

1FX8

Potassium channel

(Doyle et al., 1998)

5.0-10.0 mg/ml

0.05 M Tris pH 7.5

Reservoir: 0.1 M Hepes pH 7.5

5.0 mM LDAO

0.1 M KCl

Reservoir: 0.2 M CaCl2

 

Reservoir:

48.0 % PEG400

1BL8

MscL

(Chang et al., 1998)

10.0-15.0 mg/ml

0.1 M Glycine pH 3.6-3.8

0.05 % DDM

0.1-0.12 M NH4S

23.0-27.0 % TEG

1MSL

Hemolysin (Song et al. 1996)

0.075 M NaCaco pH 6.0

0.025 M b-octyl glucoside

2.5 M NH4S

0.25 % PEG 5K MME

7AHL

Colicine (Parker et al., 1989)

14.0 mg/ml

0.05 M Cit or succinate pH 4.4

 

 2.3 M NH4S

 

1COL

Colicin 1a (Wiener et al., 1997)

2.0-3.0 mg/ml

0.02 M NaCit pH 5.2

 

1.06-1.11 M NH4S 0.2 M NaCl

 

1CII

TolC (Koronakis et al., 2000)

10.0-15.0 mg/ml

0.02 M Tris-HCl pH 7.4

Reservoir: 0.02 M Tris-HCl pH 7.4

0.6 % of a mixture, n-dodecyl, hexyl, heptyl, octyl, -b-glucopyranoside

0.01 M NaCl

0.02 M MgCl2

Reservoir 0.4 M NaCl

1.5 % 1,2,3 heptanetriol, 7.0 % MPEG200, 10.0 % PEG400

Reservoir: 12.5 % MPEG2000

1EK9

Cyclooxygenase

(Kurumbail et al., 1996)

10.0 mg/ml

0.05 M EPPS pH 8.0

0.6 % b-OG

0.01-0.24 M MgCl2

20.0-34.0 % MPEG550

1CX2

3PGH

4COX

5COX

6COX

Prostaglandine H2 (Picot et al., 1994)

0.02 M NaP pH 6.7

0.6 % B-OG

-

PEG400

PEG 4K

1CQE

1PRH

FhuA (Ferguson et al., 1998)

6.5 mg/ml

0.1 M NaCaco pH 6.4

 

-

11.0 % MPEG2000
20.0 % glycerol

3.0 % PEG200

1FCP

2FCP

FhuA (Lohrer et al., 1998)

12.3 mg/ml

0.15 M NaP pH 6.2

0.5 % n-octyl-2-hydroxyethyl-sulfoxide

0.45 M NaCl

33.0 % PEG 2K

1BY3

1BY5

FepA (Buckanan et al., 1999)

7.5 mg/ml

0.05 M Tricine pH 8.0 0.0125 MOPS pH 7.0

0.055 % LDAO Reservoir: 0.06 % LDAO

0.35 M NaCl

Reservoir: 0.35 M NaCl

14.0 % PEG 1000 1.75 % heptane 1,2,3 triol 15.0 % glycerol Reservoir: 28.0 % PEG 1000 10 % glycerol

1FEP

LuckF (Olson et al., 1999)

4.0-10.0 mg/ml in 0.03 M HEPES,0.08M NaCl, pH 7.5

1.0 M Tris-HCl pH 8.5

or 0.1 M Bicine pH 9.5

 

-

25.0-30.0 % PEG3000

1LKF

2LKF

3LKF

OXIDO-REDUCTASES

ybc1 (Hunte et al., 2000)

0.1 M Tris HCl, pH 8.0

0.05% UDM

-

PEG 4K

1EZV

Cox (Tsukiara & Yoshikawa, 1998)

Yoshikawa et al., 1998

 

 

 

-

bbc1 (Iwata et al., 1998)

 

pH 7.2

0.015 % DDM

or DDM-HECAMEG

0.1 M NaCl

6.0-8.0 % PEG 4K

1BE3

1BGY

cbc1 (Zhang et al., 1998)

0.02 M KMES pH 6.7

20.0 g/l b-OG

75.0 mM NaCl

10.0 % glycerol

6.0 % PEG 4K

Reservoir: 30.0 % glycerol

1BCC

2BCC

3BCC

bbc1 (Xia et al., 1997)

20.0 mg/ml

0.05 M MOPS pH 7.2

Reservoir: 0.02 M Tris-HCl pH 7.0

0.1 % DMG or 0.1 % SPC

0.02 M NH4Ac

0.5 M KCl

Reservoir: 0.5 M KCl

12.0 % PEG 4K

20.0 % glycerol

Reservoir: 18.0 % PEG 4K

1QCR

ba3 (Soulimane et al., 2000)

8.0 mg/ml

0.01 M Tris-HCl pH 7.0 or

0.02 M Bis-Tris HCl pH 7.0

0.4 % nonyl-b-D-glucoside

-

6.0 % PEG 2K

or 14.0 % PEG 2K

1EHK

Cox (Ostermeier et al., 1997)

10.0-20.0 mg/ml

0.1 M NaAc pH 5.7-7.0

0.06 % undecyl-b-D-maltoside

-

8.5 % MPEG2000

1AR1

Cox (Yoshikawa et al., 1998)

-

-

-

-

1OCO 1OCZ

1OCR 2OCC

Cox (Tsukihara et al., 1996)

0.04 M NaK pH 6.8

0.2 % decyl maltoside

-

PEG 4K

1OCC

Cox (Ostermeier et al., 1995)

6.0 mg/ml

pH 8.0

Dodecyl-b-D-maltoside

0.2 M NH4Ac

Reservoir: 0.4 M NH4Ac

6.0 % MPEG2000

Reservoir: 12.0 % MPEG2000

-

Cox (Tsukihara et al., 1995)

9.0 % (w/v)

0.04 M NaK pH 6.8

0.2 % decyl maltoside

-

PEG 4K

-

Cox (Iwata et al., 1995)

 

 

 

 

-

Ub-ox (Abramson et al., 2000)

20.0 mg/ml

0.02 M Tris-HCl pH 7.5

1.0 % OG

0.1 M NaCl

0.1 M MgCl2

9.0-10.0 % PEG 1500 (w/v)

5.0 % EtOH (v/v)

1FFT

Fumarate reductase (Lancaster et al., 2001)

9.5 mg/ml

0.01 M malonate

0.01 M HEPES

0.01 M citrate pH 6.4

Reservoir: 0.02 M citrate pH 5.6

1.0 % dodecyl-b-D-maltoside

 

0.1 % decyl-b-D-maltoside

0.075 M NaCl

1.0 mM K3Fe(CN)6

Reservoir: 0.15 M NaCl

1.2 % benzamidine

5.0 % PEG3350

1.0 mM DMN, 5.0 % DMF

Reservoir: 10.0 % PEG3350

1E7P

Fumarate reductase (Lancaster et al., 1999)

9.5 mg/ml

1.0 mM malonate 0.01 M HEPES

0.01 M citrate pH 6.4

Reservoir: 0.02 M citrate pH 5.6

0.05 % dodecyl-b-D-maltoside

0.2% decylmaltoside

0.075 M NaCl

1.0 mM K3Fe(CN)6

Reservoir: 0.15 M NaCl

2.4 % benzamidine

5% PEG3350

1.0 mM DMN, 5.0 % DMF

Reservoir: 10.0 % PEG3350

1QLA

1QLB

Fumarate reductase (Iverson et al., 1999)

Reservoir: 0.1 M NaCit pH 5.8

0.7 % Thesit

Reservoir: 0.085 M Mg(Ac)2

Reservoir: 8.0 % PEG 10K

1FUM

PHOTOSYSTEM

Photosysteme I (Jordan et al., 2001)

1.0 mM

5.0 mM MES pH 6.5

0.02 % b-DM

6.0 mM MgSO4

-

1JB0

Photosysteme II (Zouni et al., 2001)

Zouni et al., 1998

 

 

 

1ILX

RC (Nogi et al., 2000)

20.0-40.0 mg/ml

0.015 M P pH 7.0

0.8 % n-octyl b-D-glucopyranoside

 0.36 M NaCl

 4.0-7.0 % PEG 4K

1EYS

1EYT

RC (Lancaster & Michel, 1997.)

pH 6.0

0.1 % (w/v) N,N-Dodecyldimeth-ylamine N-oxyde

1.5 M NH4S against 3, 2.6, 2.4 M NH4S

3.0 % heptane-1,2,3-triol (w/v)

3.0 % triethylammonium phosphate

2PRC

3PRC

4PRC

Photosysteme I (Schubert et al., 1997)

Witt et al., 1992

 

 

 

1JB0

RC (Stowel et al., 1997)

10.0 mg/ml

0.01 M Tris-HCl pH 8.0

0.85 % b-octyl glucoside

 

6.0 % PEG 4K

0.4 % benzamidine

2.5 % heptane triol

Reservoir: 32.0 % PEG 4K

1AIG

1AIJ

Photosysteme I (Krauss et al., 1996)

80.0 mg/ml

5.0 mM MES pH 6.4

0.02 % b-dodecylmaltoside

Solubilization and recrystallization in 0.05 M MgSO4

 

2PPS

LH-2s

(Koepke et al., 1996)

20.0 mg/ml

0.15 M KP pH 6.5

0.2 % UDAO

4.0 M NH4S

Reservoir: 3.0-3.3 M NH4S

3.2 % HPTO

1LGH

LH2 (Dermott et al., 1995)

pH 9.5

1.0 % b-octoglucoside

0.9 M phosphate

Reservoir: 2.2 M NH4S

2.5 % benzamidine

1KZU

RC (Deisenhofer et al., 1995)

pH 6.0

0.1 % (w/v) N,N-Dodecyldimeth-ylamine N-oxyde

1.5 M NH4S against 3.0, 2.6, 2.4 M NH4S

3.0 % heptane-1,2,3-triol (w/v)

3.0 % triethylammonium phosphate

1PRC

RC (Ermler et al., 1994)

10.6 mg/ml

pH 6.5 or 7.0

0.1 % LDAO

1.0 M KP

Reservoir:1.5 M KP

3.0 % heptane -1,2,3 triol

1.0 % dioxane

1PRC

RC (Allen et al., 1987)

5.0 mg/ml

0.015 M Tris-HCl pH 8.0

0.06 % LDAO

0.36 M NaCl

Reservoir: 0.6 M NaCl

3.9 % heptane triol 12.0 % PEG 4K

Reservoir: 22.0 % PEG 4K

4RCR

RC (Deisenhofer et al., 1985)

pH 6.0

0.1 % (w/v) N,N-Dodecyldimeth-ylamine N-oxyde

1.5 M NH4S against 3.0, 2.6, 2.4 M NH4S

3.0 % heptane-1,2,3-triol (w/v)

3% triethylammonium phosphate

1PRC

RC (Deisenhofer et al., 1984)

pH 6.0

0.1 % (w/v) N,N-Dodecyldimeth-ylamine N-oxyde

1.5 M NH4S against 3.0, 2.6, 2.4 M NH4S

3.0 % heptane-1,2,3-triol (w/v)

3.0 % triethylammonium phosphate

1PRC

RC (Michel 1982)

pH 6.0

0.1 % (w/v) N,N-Dodecyldimeth-ylamine N-oxyde

1.5 M NH4S against 3.0, 2.6, 2.4 M NH4S

3.0 % heptane-1,2,3-triol (w/v)

3.0 % triethylammonium phosphate

1PRC

RHODOPSIN AND BACTERIORODOPSIN

Rhodopsin II (Royant et al., 2001)

4.5 mg/ml

0.075 M NaOAc pH4.6

0.005 % n-dodecyl-b-D-maltoside

1.5 M NaCl

Cubic phases

1H68

Rhodopsin II (Luecke et al., 2001)

28.0 mg/ml

0.05 M MES pH 5.3

Octylglucoside

3.5 M KCl

Cubic phases

1JGJ

Halorhodopsin (Kolbe et al., 2000)

3.3-4.0 mg/ml

0.05 M Tris-HCl

pH 6.5-7.4

b-octylglucoside

4.0 M KCl

Cubic phases

1E12

Rhodopsin (Palczewski et al., 2000)

0.03 M MES (pH 6.3-6.4) or NaAc (pH 6.0)

0.55-0.75 % HPTO

0.065-0.09 M Zn(OAc)2

0.84-0.86 M NH4S

Reservoir: 3.0-3.4 M NH4S

-

1F88

Bacteriorhodopsin (Royant et al., 2000; Edman et al, 1999; Belrhali et al., 1999; Luecke et al., 1999; Luecke et al., 1998)

pH 5.6

 

 

 

0.36-0.48 % OG

0.7-4.0 M Na/KP

1.5-3.75 % MPD

Cubic phases

1E0P

1QKO

1QKP

1QHJ

1C3W

1BRX

Bacteriorodhopsin (Luecke et al., 1999)

2.5-4.5 mg/ml

pH 5.6

0.36-0.48 % OG

0.7-4.0 M Na/KP

0.05-3.75 % MPD

Cubic phases

1C8R

1C8S

Bacteriorodhopsin (Essen et al., 1998)

18.0-23.0 mg/ml

0.5 M, NaP, pH 5.6

0.5 % (w/v) b-octyl glucopyranoside

3.0 M Na P

Reservoir: 1.8-2.3 M NH4S; pH 4.0-6.0

4.0 % (w/v) benzamidine

1BRR

Bacteriorodhopsin (Pebay-Peyroula et al., 1997)

2.5-4.5 mg/ml

pH 5.6

 

 

 

0.36-0.48 % OG

0.7-4.0 M Na/KP

1.5-3.75 % MPD

Cubic phases

1AP9

 

 

LINKS

Crystallogenesis

• BMCD

• Heavy Atom Data Bank

• Webelements Periodic Table

• Hampton Research Site

• Enrico Strura’s Home Page

 

Crystallography packages

• HKL 2000

• MOSFLM

• CCP4

• Uppsala software factory

• CNS_SOLVE

• PHASES

• SOLVE

• SnB

• Molscript

• Raster3D

• O

• Turbo-Frodo

 

Structure databases

• PDB

• CATH

• SCOP

• Membrane Proteins

 

Journals

• ActaD

• Biochemistry

• Cell

• Current Opinion in Structural Biology

• EMBO Journal

• FEBS Letters

• Journal of Biological Chemistry

• Journal of Molecular Biology

• Journal of Structural Biology

• Nature

• Nature Structural in Biology

• Proceedings of the National Academy of Sciences of the USA

• Protein Engineering

• Protein Science

• Proteins: Structure, Function, and Genetics

• Science

• Structure with Folding & Design