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Abstract

Herein we present a computational technique for generating helix-membrane protein folds matching a
predefined set of distance constraints, such as those obtained from NMR NOE, chemical cross-linking,
dipolar EPR, and FRET experiments. The purpose of the technique is to provide initial structures for local
conformational searches based on either energetic considerations or ad-hoc scoring criteria. In order to
properly screen the conformational space, the technique generates an exhaustive list of conformations within
a specified root-mean-square deviation (RMSD) where the helices are positioned in order to match the
provided distances. Our results indicate that the number of structures decreases exponentially as the number
of distances increases, and increases exponentially as the errors associated with the distances increases. We
also found the number of solutions to be smaller when all the distances share one helix in common,
compared to the case where the distances connect helices in a daisy-chain manner. We found that for 7
helices, at least 15 distances with errors up to 8 Å are needed to produce a number of solutions that is not
too large to be processed by local search refinement procedures. Finally, without energetic considerations,
our enumeration technique retrieved the transmembrane domains of Bacteriorhodopsin (PDB entry1c3w),
Halorhodopsin (1e12), Rhodopsin (1f88), Aquaporin-1 (1fqy), Glycerol uptake facilitator protein (1fx8),
Sensory Rhodopsin (1jgj), and a subunit of Fumarate reductase flavoprotein (1qlaC) with C� level RMSDs
of 3.0 Å, 2.3 Å, 3.2 Å, 4.6 Å, 6.0 Å, 3.7 Å, and 4.4 Å, respectively.
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Unlike soluble proteins, only a few membrane protein struc-
tures have been solved using conventional methods such as
NMR and crystallography. Considering the pace at which
membrane protein structures are elucidated experimentally,
membrane protein fold recognition based on structural ho-
mology does not appear to be a practical option for the near
future.

Alternative membrane protein structural modeling ap-
proaches take advantage of the fact that many membrane
proteins contain regions of highly hydrophobic transmem-
brane helical fragments (e.g., helix bundle). The structural
constraints placed on transmembrane helices by the lipid

bilayer limit the number of possible membrane protein folds
to a point that several ab initio computational techniques
have been considered (Bowie 1999; Nikiforovich et al. 2001;
Vaidehi et al. 2002). These techniques decompose the mem-
brane protein folding problem into the following steps:
(1) prediction of transmembrane regions, (2) construction
and optimization of individual helices, (3) assembly of the
helix bundle, and (4) addition of the interhelical loops.

Several codes have been developed to predict the trans-
membrane regions of Step 1 (Hirokawa et al. 1998; Gromiha
1999; Nikiforovich et al. 2001; Vaidehi et al. 2002). The
regions are generally determined using hydropathicity
analysis. Step 2 requires energy minimization or molecular
dynamics simulations (Vaidehi et al. 2002) to predict se-
quence-specific distortions in the helices, such as kinks in-
duced by proline. Step 3 is the main subject of this paper.
The approaches that have been taken thus far to attack the
problem of assembling helix bundles are different in nature.
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Bowie (1999) argued that the conformational space of a
membrane protein can effectively be sampled and gives a
truly ab initio technique where all possible helix bundles are
enumerated. However, in Bowie’s calculations (1999), the
orientations of the individual helices around their respective
axes are not taken into account. Nikiforovich et al. (2001)
used the similarity between the X-ray structures of bacte-
riorhodopsin and rhodopsin to find the helix packing in the
membrane plane. Specifically, the intersections between the
helical axes and the plane crossing the membrane are fixed
at values derived from the two X-ray structures. Vaidehi et
al. (2002) oriented each helical axis of the helix bundle
according to the 7.5 Å electron density map of rhodopsin.
Although the two previous methods use energetic calcula-
tions and molecular simulations to further refine the helical
arrangements, both techniques are potentially biased toward
the structures of bacteriorhodopsin and rhodopsin and have
yet to be validated for other membrane proteins. The addi-
tion of loops in Step 4 can be performed using commercially
available software such as WHATIF (Vriend 1990), SCWRL
(Bowers et al. 1997), and Jackal (Xiang et al. 2002),
whereas other solutions that segregate between small and
medium loops have also been proposed (Nikiforovich et al.
2001).

The technique presented in this paper is concerned with
helix bundle assembly (Step 3). We assume that transmem-
brane regions have been predicted and that individual heli-
ces have been built and optimized. The method takes as
input a set of helices in PDB format and a set of distances
between pairs of atoms on these helices. The technique
outputs all possible helix arrangements matching the input
data, each solution differing from another by a predefined
RMSD. The arrangements that are produced are constructed
at an atomistic level and can thus be further refined using
local conformational search.

Distance constraints are needed because, as we will see in
the next section, the conformation space for membrane pro-
teins is too large to perform energetic calculations on each
conformation. These distances can come from a variety of
experiments including chemical cross-linking, dipolar elec-
tron paramagnetic resonance (dipolar EPR), fluorescence
resonance energy transfer (FRET), and NMR, to name a
few. Each of these methods has advantages and disadvan-
tages in terms of high-throughput capability, distance mea-
surement accuracy, and structural model building. The pur-
pose of the present article is to show the utility of a set of
distance constraints for membrane protein structural mod-
eling. For validation purposes on a set of membrane proteins
for which crystal structures are available, the distances we
consider here correspond to pairs of amino acids (K-K,
K-D, K-E, K-C, and C-C) that could potentially be cross-
linked using chemical cross-linkers. However, we stress that
the method is not limited to the consideration of distances
derived from cross-linking experiments, and we also dem-

onstrate the method on the dark-adapted rhodopsin structure
(1f88) using a set of disulfide mapping, cross-linking, and
dipolar EPR distances gathered from the literature.

Essential to the understanding of our method is the con-
cept of a distance graph, which was used on several occa-
sions in this study and is illustrated in Figure 1. The distance
graph for a given set of helices and interhelical distances is
derived by representing each helix as a vertex and each
distance as an edge connecting the two vertices correspond-
ing to the helices between which the distance was measured:
For each distance between two helices, an edge is added to
the graph between the corresponding vertices. Associated
with a distance graph is its radius. The radius of the distance
graph is the minimum number of consecutive edges one
must follow to reach all the vertices of the graph.

Throughout this article we also use a specific terminology
to characterize increasing levels of membrane protein fold
complexity. A template is a set of helices fully positioned in
the membrane. Precisely, the helices are positioned in a
reference system with origin in the bilayer central plane, and
with z-axis pointing toward the extracellular side of the
membrane and parallel to the bilayer normal. Because we do
not attempt to position our helices toward other components
of the membrane such as lipids, the origin is chosen arbi-
trarily in the bilayer central plane, and the x- and y-axes are
any pair of orthogonal vectors in that plane. We refer to an
unlabeled template when the sequence order of the helices
is not known. In the unlabeled case, the coordinates of the
helix center of mass in the bilayer reference system and the
coordinates of the helix axis unit vector are used to repre-
sent each helix. A template is said to be labeled when the
order of the helices is known, that is, the helix numbered
i in the template corresponds to the ith membrane helix in
the protein sequence. Each helix in a labeled template is
represented by its sequence number and the coordinates of
both its center of mass and its unit axial vector. An oriented
template is a labeled template where the helices have been
oriented around their helical axes. A helix in an oriented
template is represented as a labeled template to which the
coordinates of any backbone atom have been added. Finally,
an atomistic template is a template composed of the coor-
dinates in the bilayer reference system of all atoms of the
helices. If one assumes that backbone atoms in helices are
fixed, then there is only one atomistic template per oriented
template, because if one knows the position of the center of
mass, the axis vector, and the position of any backbone
atom of a helix, then one knows the position of all backbone
atoms of that helix. Consequently we will not make a dis-
tinction between oriented templates and atomistic tem-
plates.

Results and Discussion

In the following three subsections, we probe the number of
membrane protein templates generated using our technique
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with various constraints. In the fourth subsection, we exam-
ine the ability of our technique to retrieve known membrane
protein structures.

Conformational space size without distance constraints

Bowie (1999) argues that, for membrane proteins of up to
seven helices, unlabeled templates can be generated to cover

the entire conformational space of the membrane protein
folds. Precisely, he observes that conformational space is at
least 80% covered by no more than 10 templates for three
helices, 250 templates for four helices, 2500 templates for
five helices, 25,000 templates for six helices, and 150,000
templates for seven helices. Now, for n helices there are 2n!
ways to label the helices, which gives 10,080 labelings per
unlabeled template for seven helices; however, this number

Figure 1. Distance constraints and distance graph. (A) Distance list computed for rhodopsin (1f88). (B) Corresponding distance graph.
An edge is drawn between two helices if a distance exists between these helices. All helices are linked to helix H7, thus the radius of
the distance graph is 1. (C) Distance graph corresponding to the distances in italics in the distance list (A). The radius of this distance
graph is 3, because every helix can be reached from H7 using no more than three links.
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can be drastically reduced by adding interhelix connection
constraints (Bowie 1999). These constraints specify that
(1) consecutive helices must be in contact, (2) the distance
between the end points of consecutive helices must be in the
range observed in known membrane protein structures, and
(3) loops connecting helix end points cannot cross each
other. Figure 2 gives the distribution of the number of la-
belings over a set of 50,000 unlabeled templates composed
of seven helices. This distribution was obtained by running
an algorithm described in Materials and Methods. The av-
erage number of labelings per template is 27.25, with a large
standard deviation of 26.07. Constraint number (3) is not
valid for all known membrane proteins. In fact, the structure
of aquaporin-1 (1fqy) provides an example in which the
loop between helices 3 and 5 and the loop between helices
5 and 6 may cross. Removing this constraint only slightly
increases the number of labelings per template to 33.67.
These numbers are comparable to the number of labelings,
30, reported by Bowie (1999), and a library of 150,000
unlabeled structures gives about 4.5 × 106 labeled templates.
Recall that a labeled template is oriented once an arbitrary
atom has been positioned for each helix in the bilayer ref-
erence system. If one imposes two orientations separated by
at least ��, then for n helices there are (360/��−1)n pos-
sible orientations per labeled template. For ideal helices, for
example, poly-alanine helices, where the �-carbons are at a
distance less than 2.5 Å from their helix axis, �� � 60°
leads to an RMSD no greater than 2.5 Å between two con-
secutive orientations. Thus, using �� � 60°, a labeled li-
brary of 4.5 × 106 labeled templates with seven helices will
give 78,125 possible orientations per template, and a total of
351.5 × 109 oriented or atomistic templates. Even if these
templates are clustered with an RMSD of 2.5 Å, which
according to Bowie leads to three times fewer structures
(Bowie 1999), the number is still too large to perform en-
ergetic calculations on each template.

Conformational space size with exact
distance constraints

In this section, we probe the number of oriented templates
when exact interhelix distances are provided. We assume
we have generated all possible labeled templates and we are
given a set of exact distances between backbone atoms of
the helices. All backbone atoms are fully positioned relative
to their respective helices, and all helices belong to a labeled
template. Because each helix can freely rotate around its
axis, each atom lies on a circle perpendicular to its helix axis
(cf. atom Pj in Fig. 3A). Now let us assume some helix Hi

has already been positioned in the bilayer reference system
and also assume that a distance dij is given between an atom
of Hi and an atom of a second helix Hj. Given these as-
sumptions, there are no more than two possible positions for
Hj. In fact, as illustrated in Figure 3, finding the position(s)
of helix Hj using distance dij from helix Hi that has already
been positioned leads to no position (A), one position (B),
or two positions (C), depending on the number of points
obtained when intersecting a circle with a sphere. Now that
helix Hj has been oriented, positioning helix Hk from Hj

using distance djk should lead to no more than two positions
for each Hj position, and consequently to no more than four
positions from Hi. Although according to the previous sec-
tion we have 360/��−1 possible positions for Hi, if all n−1

Figure 3. Helix positioning using distance constraints. We assume that
helix Hi has already been positioned and that we are provided with the
distance dij between points Pi and Pj. Helix Hj is defined by its center of
mass Cj and its unit vector Vj. Pj is an atom of Hj, which without distance
information can be at any position on a circle induced by the possible
orientations of Hj around its axis. Positioning helix Hj consists of finding
a position for Pj such that Pj lies on its circle and is at distance dij from Pi,
or in other words is on the sphere centered on Pi and of radius dij. (A) Circle
and sphere do not intersect; all possible Pj positions are too far from Pi. The
other situation without solution (not represented here) is when all possible
Pj positions are too close to Pi, in which case the circle is inside the sphere.
(B) The circle is tangent to the sphere; only one Pj position is at distance
dij from Pi. (C) The circle crosses the sphere and the two intersection points
are the two possible positions for Pj.

Figure 2. Labeling distribution for seven-helix templates.
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helices are positioned from Hi, the final number of oriented
templates is bounded by 2n−1(360/��−1). This result is
valid as long as there is no cycle in the distance graph.
Indeed, as illustrated in Figure 4, when a cycle is introduced
only one position remains for all helices belonging to the
cycle. Although we do not rigorously prove the above state-
ment, in all the tests carried out for this study we observed
that only one position per helix permits formation of a cycle.
Let n0 be the number of helices that are not linked to any
other helix through a distance, and let n2 be the number of
helices that are in at least one cycle in the distance graph.
According to the above discussion, the total number of
orientations of a given labeled template is at most
2n−n0−n2(360/��−1)n0. Note that this number ranges from 1
when n2 � n, that is, when the distance graph is a cyclic
graph, to 26(360/��−1) � 320 for seven helices and
�� � 60° when the distance graph is connected but con-
tains no cycles.

Conformational space size with experimental
distance constraints

Experimental distances are never exact. For instance, NOE
NMR distances are generally reported in bins of 2 Å and

thus have an associated error of at least 1 Å. Cross-link
distances have errors depending on the length and the flex-
ibility of the cross-linker and the crosslinked amino acid
side chains. For instance, the homobifunctional lysine-spe-
cific crosslinker BS3 (Pierce Biotechnology) yields C�-C�
distance information in the range 5–24 Å (Young et al.
2000). Dipolar EPR distance measurements, ignoring inter-
spin orientation, have errors of approximately 5 Å (Raben-
stein and Shin 1995). Intuitively, for a given set of dis-
tances, as error increases so should the number of oriented
templates matching the provided data. Less intuitive is the
fact that the number of oriented templates also increases
with the radius of the distance graph. In order to simplify
our discussion, let us assume as illustrated in Figure 5 that
we have four points, P1 through P4, embedded in a one-
dimensional space. In the first case (A), distances d12, d13,
and d14 are provided, each having an error of one arbitrary
unit. Note that because each point is linked to P1, the radius
of the distance graph is 1. We are interested in counting the
number of possible configurations that are separated by one
unit. Clearly, each point Pi, i�2,3,4 has three possible po-
sitions for which each configuration is separated by one
unit: Pi−1, Pi, and Pi+1, where Pi � P1+d1i. The total number

Figure 4. Enumerating oriented templates. S0 is the initial labeled template composed on three helices viewed from the top. We
assume that helix H1 has already been positioned and that distances d13 � D(P1,P3), d45 � D(P4,P5), and d62 � D(P6,P2) are provided.
Helices H2 and H3 are arbitrarily positioned in S1. As explained in Figure 3, there are two positions for P3, both being at distance
d13 from P1; these are represented by templates S1 and S2. Similarly there are two positions for P5 at distance d45 from P4 (templates
S11 and S12). Template S11 is rejected because distance d62 is not matched; template S21 is also rejected because distance d45 is too
short. Template S12 is the only one passing all distance tests.
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of configurations is thus 27. In case (B), the provided dis-
tances are d12, d23, and d14, and the radius of the distance
graph is 2. For the reason mentioned above, points P2 and P4

have three possible configurations, and each P2 position
leads to three possible positions for P3: P2+d23−1, P2+d23

and P2+d23+1. Now, the three positions for P2 are P1+d12−1,
P1+d12, and P1+d12+1, and these lead to five final positions
for P3 relative to P1: P1+d12+d23−2, P1+d12+d23–1,
P1+d12+d23, P1+d12+d23+1, and P1+d12+d23+2. Conse-
quently the total number of configurations for case (B) is 45.

The algorithm used for enumerating oriented templates
matching a set of distances with errors is detailed in Mate-
rials and Methods. This algorithm was used to probe
changes in the numbers of unlabeled, labeled, and oriented
templates with increasing number of distances, increasing
error, and increasing radius of the distance graph. All runs
were performed on a library of 150,000 unlabeled templates
composed of seven helices generated using Bowie’s code,
which is also briefly described in Materials and Methods.
The distances were compiled for rhodopsin (PDB entry
1f88) and are listed in Figure 1. All labeled templates
matching the distances were clustered with a clustering al-
gorithm given in Materials and Methods using clustering

RMSD values of 4 Å and 6 Å. Oriented templates were not
clustered; however, the number of oriented templates
matching the provided distances was computed on the clus-
tered labeled templates.

Table 1 and Figure 6 report the number of templates with
number of distances ranging from 7 to 38. The 38 distances
represent potential chemically cross-linkable amino acid
pairs (K-K, K-D, K-E, K-C, C-C) and are listed in Figure 1.
From this set, distances were removed at random, and an
error of ±4 Å was attributed to each residual distance. It is
clear from Figure 6 that the number of unlabeled, labeled,
and oriented templates decreases exponentially as the num-
ber of distances increases. Specifically, the slopes in Figure
6 are −0.10 for unlabeled templates, −0.13 for labeled
templates, and −0.22 for oriented templates. For Nd dis-
tances, the number of unlabeled templates scales as
150,000 × 0.78Nd, the number of labeled templates scales as
4.5 × 106 × 0.73Nd, and the number of oriented template
scales as 351.5 × 109 × 0.59Nd. Hence, the number of ori-
ented templates decreases slightly faster than the other tem-
plate types as the number of distances increases.

As mentioned in the introduction, the purpose of our
enumeration algorithm is to provide starting structures for
further refinement with energetic calculations and molecu-
lar simulations. Local conformational search is a well-es-
tablished technique in computational chemistry and has
long been used for soluble protein fold recognition (Godzik
et al. 1992). More recently, local search techniques have
been proposed that are specific for membrane proteins. Ni-
kiforovich et al. (2001) proposed a technique for searching
the energetically favored orientation of pairs of helices. Pro-
vided that the two helices have been positioned in the bi-
layer reference system, the method exhaustively enumerates
all possible helix rotations with an angular increment of 30°.
Energy calculations are performed using the ECEPPP/2
force fields (Dunfield et al. 1978), and low-energy confor-
mations are retained. Using this method, Nikiforovich et al.
(2001) generated low-energy conformations for bacteriorho-
dopsin that are 3.13 Å RMSD from the crystal structure.
Vaidehi et al. (2002) reported a molecular dynamics code,

Figure 5. (A) The radius of the distance graph is 1 and the number of
possible positions is 3 for points P2, P3, and P4. The total number of
configurations is 27. (B) The radius of the distance graph is 2; points P1 and
P4 have 3 possible positions, and point P3 has 5 positions; thus the total
number of configurations is 45.

Table 1. Number of seven-helix membrane protein templates vs. number of distances

nbr
distances

Unlabeled
templates

Labeled
templates

Oriented
templates

Labeled
clustered

RMSDHel � 4 Å

Labeled
clustered

RMSDHel � 6 Å

Oriented
clustered

RMSDHel � 4 Å

Oriented
clustered

RMSDHel � 6 Å

7 39,606 84,289 2,671,680 50,189 8192 1,590,824 259,659
10 32,298 66,295 1,926,966 36,480 5372 1,060,347 156,145
15 12,826 18,212 394,705 10,738 1954 232,722 42,349
20 1274 1369 14,656 573 127 6134 1360
30 71 73 518 65 32 461 227
38 33 35 44 31 16 39 20

Results obtained using a distance error of ±4 Å and clustered with RMSDHel values of 4 Å and 6 Å (see Materials and Methods for definition of RMSDHel).
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COARSEROT, which performs coarse-grain rotations of the
helical orientations around their axis through a grid of ro-
tation angles. Using this technique, those authors retrieved
the seven-helix bundles of bacteriorhodopsin and bovine
rhodopsin with RMSDs of 2.9 Å and 3.1 Å, respectively.

Now, for each labeled template, in order to fully explore
the conformational space of that template, one must rotate
all the helices around their axes and compute energetic pa-
rameters for each orientation. As detailed in Materials and
Methods, helix orientations in an oriented template are enu-
merated using an angular increment of �� � 60°; thus, the
local conformational space of each oriented template can be
fully explored by rotating each helix with an angle no
greater than 60°. Consequently, the refinement procedures
mentioned above should be able to process (360/60)7 � 279,936
oriented templates of seven helices in the same computa-
tional time it takes to run one labeled template. Using the

latter number as a threshold (according to Table 1) for sys-
tems of seven helices, at least 15 distances with an error of
4 Å are needed to be able to explore the conformational
space in a reasonable computational time.

Table 2 and Figure 7 give the number of templates for the
38 distances listed in Figure 1 with increasing distance er-
ror. All template numbers increase exponentially with the
distance error. The slopes computed from Table 2 are 0.62
for unlabeled and labeled templates and 0.75 for oriented
templates. The scaling behavior for unlabeled and labeled tem-
plates is 0.25 × 4.2�, where � is the error, and 0.35 × 5.6� for
oriented templates. Interestingly, although the slopes are
more pronounced for decreasing error than increasing num-
ber of distances (−0.62 versus −0.10 for unlabeled tem-
plates), the number of templates is not as large as one might
expect, and up to a fairly large error of ±8 Å, the number of
oriented templates is small enough to be manageable by
local conformational refinements.

The number of templates with increasing distance graph
radius is given in Table 3. Although not as pronounced as
with the distance error, the number of templates increases
exponentially with the radius. The scaling computed on
Table 3 is 500 × 2.9r, where r is the radius, for unlabeled
and labeled templates, and 2500 × 4.5r for oriented tem-
plates. As a consequence of this finding, it is preferable to
design experiments that will compute distances from the
same reference helix rather than generating distances link-
ing helices in a daisy-chain manner.

Specific membrane proteins

In order to validate the value of the proposed method for
generating structures suitable for energetic refinement, we
considered seven known crystal structures with varying
numbers of transmembrane helices and attempted to predict
the positions of the transmembrane helices. Specifically,
only those portions of the transmembrane helices com-
pletely embedded in the membrane were considered (e.g.,
the helix containing residues 68–79 of Glycerol uptake fa-
cilitator protein was not considered). For each structure we

Figure 6. Number of seven-helix membrane protein templates versus
number of distances (data listed in Table 1).

Table 2. Number of seven-helix membrane protein templates vs. distance error

Error
(Å)

Unlabeled
templates

Labeled
templates

Oriented
templates

Labeled
clustered

RMSDHel � 4 Å

Labeled
clustered

RMSDHel � 6 Å

Oriented
clustered

RMSDHel � 4 Å

Oriented
clustered

RMSDHel � 6 Å

±4 33 35 44 31 16 39 20
±5 408 417 2314 318 126 1765 699
±6 2259 2339 16,575 1578 438 11,182 3104
±7 6468 6892 65,117 4551 1049 42,999 9911
±8 12,851 14,162 159,832 9520 2073 107,442 23,396

Results obtained using the 38 distances listed in Fig. 1 and clustered with RMSDHel values of 4 Å and 6 Å (see Materials and Methods for definition of
RMSDHel).
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derived a set of distance constraints corresponding to pairs
of amino acids (K-K, K-D, K-E, K-C, and C-C) that could
potentially be cross-linked using chemical cross-linkers.
Specifically, we considered the following cases (PDB iden-
tifier and number of distance constraints in parentheses):
Bacteriorhodopsin (1c3w, 60), Halorhodopsin (1e12, 9),
Rhodopsin (1f88, 38), Aquaporin-1 (1fqy, 17), Glycerol up-
take facilitator protein (1fx8, 43), Sensory Rhodopsin (1jgj,
18), and a subunit of Fumarate reductase flavoprotein
(1qlaC, 58). For all cases the error assigned to each distance
constraint was ±4 Å, and library sizes of 300,000 unlabeled
templates for seven helices (twice the size used earlier),
150,000 for six helices, and 50,000 for five helices were
searched.

Table 4 reports the results for these seven cases in terms
of number of distance constraints, number of solutions, and
minimum RMSD among the computed structures and the
structure from the PDB across all C� atoms (C�–RMSD)
for each case (RMSD calculated using the MMTSB Tool
Set; Feig et al. 2001). In general, the predicted positions of
the helices in the helix assemblies were in good agreement
with the PDB structures, having C�–RMSD values ranging
from 2.3 Å to 6.0 Å for the seven test cases. As discussed
above, the number of solutions declines exponentially with
the number of distances. For our test cases the number of
solutions is heavily dependent on the number of distance
constraints ranging from 8,274,078 for the structure having
only nine distances to a minimum of 26 for the case with 58
constraints. Because our method involves searching a data
set of potential structures for structures that satisfy a set of
distance constraints, we did not expect the quality of the
best structures to depend on the number of distance con-
straints. Table 4 supports this expectation, with very little
correlation between RMSD and number of constraints. This

lack of correlation is likely due in part to the fact that the
quality of the computed structure is a function of the num-
ber of distance constraints, the error on each distance, and
the combination of sites among which the distances were
measured. Our stated goal is to provide starting structures
for further refinement using either energetic constraints
(force field methods) or ad hoc scoring functions based on
bioinformatics data. To this end, these results clearly show
that, given a set of experimental distance constraints, our
method generates sets of helical positions close to those of
the known structure, providing a set of candidate structures
from which further structural refinements can be performed.

As a second validation we then predicted the positions
of the seven transmembrane helices of dark-adapted Rho-
dopsin (1f88) using a set of distance constraints compiled
from various experiments reported in the literature (Yeagle
et al. 2001). These included dipolar EPR distances (Farrens
et al. 1996; Yang et al. 1996; Albert et al. 1997; Galasco et al.
2000), disulfide mapping distances (Yu et al. 1995, 1999;
Sheikh et al. 1996; Cai et al. 1997, 1999), and distances
from electron cryomicroscopy (Unger and Schertler 1995).
The distance constraints are shown in Table 5. The average
distance error is ±3.75 Å.

Because the published EPR dipolar distances are between
nitroxide spin labels, they do not directly correspond to
distances between helical axes. To better represent the di-
polar EPR distances, we used a Monte Carlo minimization-
based method (Sale et al. 2002) to uncover the most prob-
able orientations of the spin label at each of the labeled sites
V139, K248, V249, V250, T251, and R252. From these
orientations, the mean length of the C� to nitroxide N vector
for the six sites was approximately 9 Å. This length was
used to adjust the lower and upper limits of the reported
distances in order to better represent the inter-nitroxide dis-
tances as helix backbone distances. For the disulfide map-
ping distances, we used a C� to C� distance of 5.68 Å,
which corresponds to two C� to S� bonds (1.82 Å) and one
S� to S� bond (2.04 Å), plus and minus the reported error.

The results are shown in the last row of Table 4. Using a
set of 27 distance constraints with differing amounts of
error, only 87 helical bundles of the possible 300,000 × 30 ×
78,125 � 0.7 × 1012 seven-helix configurations were found
that matched the set of distances. This yielded structures
with C�–RMSD values ranging from 4.3 Å to 9.5 Å. These
results show that even in the case of using only 27 distance
constraints taken from a variety of experimental methods
with differing levels of error, a reasonable number of struc-
tures suitable for further refinement can be extracted from a
large data set of possible helix bundles.

Conclusions

We have demonstrated a method for generating helical
bundles (oriented templates) satisfying a given set of inter-
helical distance constraints. Using the structure of rhodop-

Figure 7. Number of seven-helix membrane protein templates versus dis-
tance error (eps [data listed in Table 2]).
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sin (1f88) as a model, we showed that (1) the number of
templates decreases exponentially as the number of distance
constraints increases, (2) the number of templates increases
exponentially with increasing error on the distances, (3) the
number of templates increases exponentially with increas-
ing radius of the distance graph, and (4) experiments de-
signed to measure distances from the same reference helix
are preferable to those designed to generate distances link-
ing helices in a daisy-chain manner. We also note that the
slopes derived from Tables 1 and 2 indicate that decreasing
the error on the distance constraints decreases the number of
solution templates at a faster rate than does increasing the
number of distances. This indicates that in order to cut down
the number of solutions, one may want to lower the error of
a given experiment rather than adding new data points.

Conclusion (4) is particularly important to the design
of experiments in which distances are derived from the in-
teraction of external probe molecules incorporated at spe-
cific sites, such as in FRET and dipolar EPR experiments.
Our findings suggest that fewer measurements from a com-
mon helix to the other helices result in a reduced set of
possible structures compared to many measurements be-

tween distinct pairs of amino acids. The obvious conse-
quence of this finding is the need for fewer experiments
involving amino acid mutations and labeling. For poten-
tially higher-throughput methods such as chemical cross-
linking, this result may not assist in the initial experimental
design, as cross-linking does not require a directed muta-
genesis and labeling strategy. Conclusion (4) may, however,
provide a guide for the selection of cross-linking reagents or
sites for mutagenesis once a preliminary structural model
has been constructed.

Using a set of seven helical bundles with 5–7 helices and
varying numbers of distance constraints as test cases, we
found that a reasonable number (in terms of starting points
for further refinement) of helical bundles with helix posi-
tions near the native structure can be generated. The same
conclusion can also be drawn for rhodopsin (1f88) using 27
experimental distances taken from the literature. This find-
ing has important consequences in that further refinement
using either force field or ad hoc scoring methods with local
conformational search should produce reasonably accurate
model structures. Furthermore, given a set of model struc-
tures, experiments can then be designed to differentiate

Table 4. Results for seven membrane protein structures using distance constraints between potential cross-linking amino acid pairs
(K-K, K-D, K-E, K-C, C-C) and for the structure of rhodopsin using a set of experimental distances

Protein
PDB
entry

Number
of helicesa

Number of
distances

Number of solutions
for � � 4 Å

C�
RMSDb (Å)

Fumarate reductase flavoprotein 1qlaC 5 58 26 4.4
Aquaporin-1 1fqy 6 17 1,154,191 4.6
Glycerol uptake facilitator protein 1fx8 6 43 208 6.0
Bacteriorhodopsin 1c3w 7 60 330 3.0
Halorhodopsin 1e12 7 9 8,274,078 2.3
Sensory Rhodopsin 1jgj 7 18 329,502 3.7
Rhodopsin 1f88 7 38 108 3.2
Rhodopsin (Experimental Constraints

given in Table 5) 1f88 7 27 87 4.3

a Only those helices completely within the membrane were included. Specifically 1fqy helices corresponding to residues 76 to 85 and 192 to 201 were
removed and for 1fx8 helices corresponding to residues 68 to 79, 125 to 133, 203 to 217, and 221 to 226 were removed.
b Minimum C�-RMSD among all solutions (oriented templates) and the PDB entry shown in column 2.
The number of solutions reported for ±4 Å error are unclustered oriented or atomistic templates. Note that the number of solution obtained for rhodopsin
(108) is different from the one found in the first row of Table 2 (44), because we doubled the size of the unlabeled templates library. The average distance
error for rhodopsin in the last row is ±3.75 Å.

Table 3. Number of seven-helix membrane protein templates vs. distance graph radius

Radius
Unlabeled
templates

Labeled
templates

Oriented
templates

Labeled
clustered

RMSDHel � 4 Å

Labeled
clustered

RMSDHel � 6 Å

Oriented
clustered

RMSDHel � 4 Å

Oriented
clustered

RMSDHel � 6 Å

1 1354 1487 11510 1104 362 8545 2802
2 4873 5854 73,474 4591 1387 57,622 17,408
3 10,056 13,491 229,830 10,293 2671 175,350 45,503

Results obtained using 17 distances extracted from Fig. 1, a distance error of ±4 Å and clustered with RMSDHel values of 4 Å and 6 Å (see Materials and
Methods for definition of RMSDHel). The distance graph corresponding to radius 3 is given in Fig. 1.
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among the models and provide data for further structural
refinement.

Although the technique described here has been demon-
strated on transmembrane proteins with only up to seven
helices, there are no limitations on the number of helices
that can be processed. Note, however, that according to
Bowie (1999), the initial library of unlabeled templates has
a size that increases exponentially with the number of he-
lices. Consequently the method presented here is somewhat
limited by the ability to generate a library of unlabeled
templates comprising more than seven helices that is rep-
resentative of the entire conformational space. One possible
extension of this work is to modify Bowie’s code and in-
corporate distance information when generating unlabeled
templates.

Another possible extension of the code is to handle not
only helices but also �-strands and �-sheets. This extension
of our technique is straightforward, as �-strands and
�-sheets can be represented as special helices; that is, they
too can be modeled with a center of mass and a unit vector.
Furthermore, as with helices, if one knows the position of
one atom of the �-strand or -sheet, one knows the position
of all atoms. An important difference in the �-strand case is
the additional constraints imposed on the structure by the
interstrand hydrogen-bonding network. If pairs of adjacent
strands can be determined with their respective orientations,

the solution space of the corresponding template library is
expected to be quite small relative to the library of an all-
helical system of equivalent size.

The computer codes described next to generate labeled
and oriented templates are available upon request.

Materials and methods

The computer code described next, to generate labeled and ori-
ented templates, are available upon request.

Generating unlabeled templates

Unlabeled templates were generated using Bowie’s software,
which is described in detail in a previous paper (Bowie 1999). This
software generates random unlabeled templates matching specific
criteria determined from known membrane protein structures
(Bowie 1997). Briefly, the angle between each helix axis and the
bilayer normal is random but smaller than 40°. The distance of
closest approach between two neighboring helices is no greater
than 13.4 Å and no smaller than 6 Å. The angle between the axes
of two neighboring helices follows a distribution computed on
known membrane proteins and reported by Bowie (1997). The
output is a library of unlabeled templates each satisfying the above
criteria. The user specifies the number of helices and the desired
number of templates.

Generating labeled templates

Labeled templates were enumerated for each element of the library
of unlabeled templates. Theoretically, for n helices there are 2n!

Table 5. Experimental distances used for the Rhodopsin structure

Helix1 Helix2 Residue1 Residue2 Minimum distance Maximum distance

H3 H6 VAL_139 LYS_248 3.80 22.20
H3 H6 VAL_139 GLU_249 8.30 26.70
H3 H6 VAL_139 VAL_250 8.30 26.70
H3 H6 VAL_139 THR_251 3.80 22.20
H3 H6 VAL_139 ARG_252 8.30 26.70
H5 H6 VAL_204 PHE_276 3.18 8.18
H3 H5 CYS_140 CYS_222 1.18 10.18
H3 H5 CYS_140 GLN_225 4.18 7.18
H3 H6 ARG_135 VAL_250 2.18 9.18
H3 H5 TYR_136 CYS_222 4.18 7.18
H3 H5 TYR_136 GLN_225 3.18 8.18
H2 H3 PRO_71 GLU_134 7.00 15.00
H2 H3 GLY_90 PHE_116 5.00 10.00
H2 H4 FRO_71 ALA_153 4.00 11.00
H2 H4 MET_86 LEU_172 15.00 20.00
H3 H5 TYR_136 LEU_226 5.00 10.00
H3 H5 LEU_125 PRO_215 5.00 10.00
H4 H5 HIS_152 GLN_225 18.00 22.00
H5 H6 LEU_216 LEU_258 9.00 13.00
H6 H7 MET_253 MET_305 5.00 9.00
H6 H7 CYS_264 SER_298 5.00 9.00
H1 H7 MET_39 ILE_286 9.00 14.00
H3 H6 GLY_114 TYR_268 14.00 18.00
H4 H6 PRO_171 TYR_268 16.00 21.00
H2 H6 ASN_73 VAL_250 10.00 15.00
H1 H6 THR_62 VAL_250 16.00 20.00
H1 H6 LEU_47 CYS_264 15.00 20.00
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labelings of the helices. However, this number can be drastically
reduced if one adds the three following interhelix connection con-
straints: (1) The distance of closest approach between consecutive
helices is in the 6–13.4 Å range; (2) the distance between the end
points of consecutive helices is in the 7–22 Å range; and (3) there
are no cross-over connections. The justifications for the above
constraints can be found in Bowie (1999). Our enumeration algo-
rithm finds all possible labels for each helix sequentially. The
above constraints are applied on the fly by the algorithm even if
the template is not yet fully labeled. Running this algorithm, we
observed that most labelings are rejected before completion, and
we were able to process libraries comprising several thousand
templates quite efficiently in a couple of hours of CPU time on an
SGI/O2 workstation.

Generating oriented or atomistic templates with
distance constraints

Recall that a labeled template is oriented once an arbitrary back-
bone atom has been positioned in the bilayer reference system for
each helix. As discussed, for n helices there are n360/��−1 possible
orientations per labeled template, each being separated by at least
one �� angle. This number can be reduced by introducing distance
constraints using the algorithm described next and illustrated in
Figures 3 and 4. In order to minimize the effect of the distance
graph radius (cf. Table 3 and Results and Discussion section), the
first step of the algorithm consists of finding the helix that gives
the smallest radius in the distance graph. If the graph is not con-
nected (the radius is infinite), then the procedure halts, as the
helices cannot be oriented due to a lack of distances. Otherwise,
the algorithm then tests all possible orientations of the initial helix.
Each orientation is incremented by a 10° angle until a solution is
found and by a 60° angle if the previous angle led to at least one
solution. The 10° angular increment is small enough to avoid
missing solutions, whereas the 60° increment was chosen to pro-
vide a 2.5 Å RMSD between consecutive solutions. For each tested
orientation of the initial helix, the following steps are applied until
there are no more distances to be considered. (1) A helix, Hi, also
named the current helix, is chosen such that this helix has already
been positioned and is attached through distances to helices that
have not yet been positioned. Note that if no such helix can be
found then all helices have been positioned, and the algorithm then
verifies that all distance constraints are satisfied and rejects the
solution if there are unsatisfied distance constraints. Otherwise,
(2) one chooses an unused distance dij with associated error �ij

between two atoms Pi belonging to the current helix Hi, and Pj

belonging to a helix Hj. Because Hi is the current helix, Pi is fully
positioned in the bilayer reference system, whereas (as illustrated
in Fig. 3) Pj lies on a circle orthogonal to Vj, the axis of Hj. This
circle is centered on Cj + (CjPj · Vj) Vj, where Cj is the center of
mass of Hj, and has a radius |CjPj × Vj| (norm of the product
between vectors CjPj and Vj). (3) The position of Pj is found by
intersecting the circle on which Pj lies and the sphere centered on
Pi of radius dij ± �ij. The intersection of a sphere and a circle leads
to no solution, one position, or two positions. If no solution can be
found, the procedure halts and a new position of the initial helix is
tested. Otherwise for each Pj position found, helix Hj is rotated
clockwise and counterclockwise in 60° angular increments, and all
new Pj positions that are at distances dij ± �ij from Pi are retained.
Again, 60° was chosen to provide a 2.5 Å RMSD between con-
secutive solutions. Finally, for each Pj position stored, steps 1
through 3 are applied until all distances have been used. Each time
all distances have been processed successfully, the resulting tem-
plate is a solution and is added to the library of oriented templates.

Clustering labeled templates

Labeled templates are represented by numbered helices located in
the bilayer reference system through the coordinates of their center
of mass and unit axial vector. Templates are clustered using a
predefined RMSDHel value computed at the helix level. Precisely,
RMSDHel between two templates is calculated by averaging the
RMSD between the centers of mass and the two end points of
the helices of the templates. Prior to performing the calculation,
the templates are rotated in the bilayer plane in order to align the
vectors joining the first two helices. Bowie compared RMSD val-
ues for a full atom model with RMSDHel and found that for 100
structures with RMSDHel in the range 3.9–4.1 Å, the average
RMSD of the full atom models was 2.6 Å for 86% of the atoms.
In the present study, we clustered labeled templates using RMSDHel

of 4 Å and 6 Å.
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