pmc logo imageJournal ListSearchpmc logo image
Logo of microrevMicrobiol Mol Biol Rev ArchiveMicrobiol Rev Archive
Microbiol Rev. 1995 December; 59(4): 646–672.
PMCID: PMC239393
Production and function of cytokines in natural and acquired immunity to Candida albicans infection.
R B Ashman and J M Papadimitriou
Department of Pathology, University of Western Australia, Nedlands, Australia.
Abstract
Host resistance against infections caused by the yeast Candida albicans is mediated predominantly by polymorphonuclear leukocytes and macrophages. Antigens of Candida stimulate lymphocyte proliferation and cytokine synthesis, and in both humans and mice, these cytokines enhance the candidacidal functions of the phagocytic cells. In systemic candidiasis in mice, cytokine production has been found to be a function of the CD4+ T helper (Th) cells. The Th1 subset of these cells, characterized by the production of gamma interferon and interleukin-2, is associated with macrophage activation and enhanced resistance against reinfection, whereas the Th2 subset, which produces interleukins-4, -6, and -10, is linked to the development of chronic disease. However, other models have generated divergent data. Mucosal infection generally elicits Th1-type cytokine responses and protection from systemic challenge, and identification of cytokine mRNA present in infected tissues of mice that develop mild or severe lesions does not show pure Th1- or Th2-type responses. Furthermore, antigens of C. albicans, mannan in particular, can induce suppressor cells that modulate both specific and nonspecific cellular and humoral immune responses, and there is an emerging body of evidence that molecular mimicry may affect the efficiency of anti-Candida responses within defined genetic contexts.
Full Text
The Full Text of this article is available as a PDF (421K).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
  • Akagawa, G; Abe, S; Yamaguchi, H. Mortality of Candida albicans-infected mice is facilitated by superinfection of Escherichia coli or administration of its lipopolysaccharide. J Infect Dis. 1995 Jun;171(6):1539–1544. [PubMed]
  • Alaei, S; Larcher, C; Ebenbichler, C; Prodinger, WM; Janatova, J; Dierich, MP. Isolation and biochemical characterization of the iC3b receptor of Candida albicans. Infect Immun. 1993 Apr;61(4):1395–1399. [PubMed]
  • Allendoerfer, R; Magee, DM; Smith, JG; Bonewald, L; Graybill, JR. Induction of tumor necrosis factor-alpha in murine Candida albicans infection. J Infect Dis. 1993 May;167(5):1168–1172. [PubMed]
  • Desmond, FB; Eastcott, DF; Anyon, CP. A study of candida in one thousand and seven women. N Z Med J. 1971 Jan;73(464):9–13. [PubMed]
  • Arai, KI; Lee, F; Miyajima, A; Miyatake, S; Arai, N; Yokota, T. Cytokines: coordinators of immune and inflammatory responses. Annu Rev Biochem. 1990;59:783–836. [PubMed]
  • Arancia, G; Molinari, A; Crateri, P; Stringaro, A; Ramoni, C; Dupuis, ML; Gomez, MJ; Torosantucci, A; Cassone, A. Noninhibitory binding of human interleukin-2-activated natural killer cells to the germ tube forms of Candida albicans. Infect Immun. 1995 Jan;63(1):280–288. [PubMed]
  • Ashman, RB. The influence of graft size on the induction of immunity versus tolerance to H-Y in H-2k strains of mice. Immunogenetics. 1985;22(6):585–591. [PubMed]
  • Ashman, RB. Mouse candidiasis. II. Host responses are T-cell dependent and regulated by genes in the major histocompatibility complex. Immunogenetics. 1987;25(3):200–203. [PubMed]
  • Ashman, RB. Murine candidiasis. III. Host inflammatory responses are regulated in part by class I MHC genes. J Immunogenet. 1987 Dec;14(6):317–321. [PubMed]
  • Ashman, RB. Murine candidiasis: cell-mediated immune responses correlate directly with susceptibility and resistance to infection. Immunol Cell Biol. 1990 Feb;68 (:15–20. [PubMed]
  • Ashman, RB. Murine candidiasis: susceptibility is associated with the induction of T cell-mediated, strain-specific autoreactivity. Immunol Cell Biol. 1990 Jun;68 (:179–185. [PubMed]
  • Ashman, RB. Enhancement of MHC class II antigen expression by exposure to Candida albicans. Immunol Lett. 1991 Oct;30(2):255–260. [PubMed]
  • Ashman, RB; Bolitho, EM. Strain differences in the severity of lesions in murine systemic candidiasis correlate with the production of functional gamma interferon by Candida-activated lymphocytes in vitro. Lymphokine Cytokine Res. 1993 Dec;12(6):471–476. [PubMed]
  • Ashman, RB; Bolitho, EM; Fulurija, A. Cytokine mRNA in brain tissue from mice that show strain-dependent differences in the severity of lesions induced by systemic infection with Candida albicans yeast. J Infect Dis. 1995 Sep;172(3):823–830. [PubMed]
  • Ashman, RB; Bolitho, EM; Papadimitriou, JM. Patterns of resistance to Candida albicans in inbred mouse strains. Immunol Cell Biol. 1993 Jun;71 (:221–225. [PubMed]
  • Ashman, RB; Kay, PH; Lynch, DM; Ott, K. Association of a complement allotype (C3F) with acute inflammatory responses to Candida albicans infection. Med J Aust. 1994 Jun 6;160(11):732–733. [PubMed]
  • Ashman, RB; Kay, PH; Lynch, DM; Papadimitriou, JM. Murine candidiasis: sex differences in the severity of tissue lesions are not associated with levels of serum C3 and C5. Immunol Cell Biol. 1991 Feb;69 (:7–10. [PubMed]
  • Ashman, RB; Ott, AK. Autoimmunity as a factor in recurrent vaginal candidosis and the minor vestibular gland syndrome. J Reprod Med. 1989 Apr;34(4):264–266. [PubMed]
  • Ashman, RB; Papadimitriou, JM. Murine candidiasis. Pathogenesis and host responses in genetically distinct inbred mice. Immunol Cell Biol. 1987 Apr;65 (:163–171. [PubMed]
  • Ashman, RB; Papadimitriou, JM. Murine candidiasis: strain dependence of host responses after immunization. Immunol Cell Biol. 1988 Jan;66 (:231–237. [PubMed]
  • Ashman, RB; Papadimitriou, JM. Genetic regulation of pathogenesis and host responses in fungal infection. Immunol Ser. 1989;47:347–371. [PubMed]
  • Ashman, RB; Papadimitriou, JM. What's new in the mechanisms of host resistance to Candida albicans infection? Pathol Res Pract. 1990 Aug;186(4):527–534. [PubMed]
  • Ashman, RB; Papadimitriou, JM. Chronic osteomyelitis as a consequence of systemic Candida albicans infection. Immunol Cell Biol. 1991 Dec;69 (:427–429. [PubMed]
  • Ashman, RB; Papadimitriou, JM. Susceptibility of beige mutant mice to candidiasis may be linked to a defect in granulocyte production by bone marrow stem cells. Infect Immun. 1991 Jun;59(6):2140–2146. [PubMed]
  • Ashman, RB; Papadimitriou, JM. Genetic resistance to Candida albicans infection is conferred by cells derived from the bone marrow. J Infect Dis. 1992 Oct;166(4):947–948. [PubMed]
  • Ashman, RB; Papadimitriou, JM. Strain dependence of antibody-mediated protection in murine systemic candidiasis. J Infect Dis. 1993 Aug;168(2):511–513. [PubMed]
  • Ashman, RB; Papadimitriou, JM; Ott, AK; Warmington, JR. Antigens and immune responses in Candida albicans infection. Immunol Cell Biol. 1990 Feb;68 (:1–13. [PubMed]
  • Attia, WY; Badamchian, M; Goldstein, AL; Spangelo, BL. Thymosin stimulates interleukin-6 production from rat spleen cells in vitro. Immunopharmacology. 1993 26(2):171–179.Sep–Oct; [PubMed]
  • Ausiello, CM; Spagnoli, GC; Antonelli, G; Malavasi, F; Dianzani, F; Casciani, CU; Cassone, A. Generation and characterization of cytotoxic activity against tumor cell lines in human peripheral blood mononuclear cells stimulated "in vitro" by a glucomannan-protein preparation of Candida albicans. J Biol Regul Homeost Agents. 1987 1(2):59–68.Apr–Jun; [PubMed]
  • Ausiello, CM; Spagnoli, GC; Boccanera, M; Casalinuovo, I; Malavasi, F; Casciani, CU; Cassone, A. Proliferation of human peripheral blood mononuclear cells induced by Candida albicans and its cell wall fractions. J Med Microbiol. 1986 Nov;22(3):195–202. [PubMed]
  • Ausiello, CM; Urbani, F; Gessani, S; Spagnoli, GC; Gomez, MJ; Cassone, A. Cytokine gene expression in human peripheral blood mononuclear cells stimulated by mannoprotein constituents from Candida albicans. Infect Immun. 1993 Oct;61(10):4105–4111. [PubMed]
  • Baccarini, M; Bistoni, F; Lohmann-Matthes, ML. In vitro natural cell-mediated cytotoxicity against Candida albicans: macrophage precursors as effector cells. J Immunol. 1985 Apr;134(4):2658–2665. [PubMed]
  • Baghian, A; Lee, KW. Systemic candidosis in beige mice. J Med Vet Mycol. 1989;27(1):51–55. [PubMed]
  • Baghian, A; Lee, KW. Elimination of Candida albicans from kidneys of mice during short-term systemic infections. Kidney Int. 1991 Sep;40(3):400–405. [PubMed]
  • Balish, E; Filutowicz, H; Oberley, TD. Correlates of cell-mediated immunity in Candida albicans-colonized gnotobiotic mice. Infect Immun. 1990 Jan;58(1):107–113. [PubMed]
  • Balish, E; Jensen, J; Warner, T; Brekke, J; Leonard, B. Mucosal and disseminated candidiasis in gnotobiotic SCID mice. J Med Vet Mycol. 1993;31(2):143–154. [PubMed]
  • Baschieri, S; Lees, RK; Lussow, AR; MacDonald, HR. Clonal anergy to staphylococcal enterotoxin B in vivo: selective effects on T cell subsets and lymphokines. Eur J Immunol. 1993 Oct;23(10):2661–2666. [PubMed]
  • Beno, DW; Stöver, AG; Mathews, HL. Growth inhibition of Candida albicans hyphae by CD8+ lymphocytes. J Immunol. 1995 May 15;154(10):5273–5281. [PubMed]
  • Beno, DW; Mathews, HL. Growth inhibition of Candida albicans by interleukin-2-induced lymph node cells. Cell Immunol. 1990 Jun;128(1):89–100. [PubMed]
  • Beno, DW; Mathews, HL. Growth inhibition of Candida albicans by interleukin-2-activated splenocytes. Infect Immun. 1992 Mar;60(3):853–863. [PubMed]
  • Bistoni, F; Baccarini, M; Blasi, E; Riccardi, C; Marconi, P; Garaci, E. Modulation of polymorphonucleate-mediated cytotoxicity against Candida albicans by thymosin alpha 1. Thymus. 1985;7(2):69–84. [PubMed]
  • Bistoni, F; Cenci, E; Mencacci, A; Schiaffella, E; Mosci, P; Puccetti, P; Romani, L. Mucosal and systemic T helper cell function after intragastric colonization of adult mice with Candida albicans. J Infect Dis. 1993 Dec;168(6):1449–1457. [PubMed]
  • Bistoni, F; Marconi, P; Frati, L; Bonmassar, E; Garaci, E. Increase of mouse resistance to Candida albicans infection by thymosin alpha 1. Infect Immun. 1982 May;36(2):609–614. [PubMed]
  • Bistoni, F; Vecchiarelli, A; Cenci, E; Puccetti, P; Marconi, P; Cassone, A. Evidence for macrophage-mediated protection against lethal Candida albicans infection. Infect Immun. 1986 Feb;51(2):668–674. [PubMed]
  • Bistoni, F; Verducci, G; Perito, S; Vecchiarelli, A; Puccetti, P; Marconi, P; Cassone, A. Immunomodulation by a low-virulence, agerminative variant of Candida albicans. Further evidence for macrophage activation as one of the effector mechanisms of nonspecific anti-infectious protection. J Med Vet Mycol. 1988;26(5):285–299. [PubMed]
  • Blanchard, DK; Michelini-Norris, MB; Djeu, JY. Production of granulocyte-macrophage colony-stimulating factor by large granular lymphocytes stimulated with Candida albicans: role in activation of human neutrophil function. Blood. 1991 May 15;77(10):2259–2265. [PubMed]
  • Blanden, RV; Hodgkin, PD; Hill, A; Sinickas, VG; Müllbacher, A. Quantitative considerations of T-cell activation and self tolerance. Immunol Rev. 1987 Aug;98:75–93. [PubMed]
  • Blanden, RV; Ashman, RB; O'Neill, HC; Woodhams, CE; Kees, UR; Andrew, ME. Incomplete tolerance to MHC antigens in irradiation chimeras: implications for MHC restriction and self tolerance. Immunol Rev. 1981;58:25–36. [PubMed]
  • Blasi, E; Pitzurra, L; Bartoli, A; Puliti, M; Bistoni, F. Tumor necrosis factor as an autocrine and paracrine signal controlling the macrophage secretory response to Candida albicans. Infect Immun. 1994 Apr;62(4):1199–1206. [PubMed]
  • Blasi, E; Pitzurra, L; Chimienti, AR; Mazzolla, R; Puliti, M; Barluzzi, R; Bistoni, F. Differential susceptibility of yeast and hyphal forms of Candida albicans to proteolytic activity of macrophages. Infect Immun. 1995 Apr;63(4):1253–1257. [PubMed]
  • Blasi, E; Pitzurra, L; Puliti, M; Chimienti, AR; Mazzolla, R; Barluzzi, R; Bistoni, F. Differential susceptibility of yeast and hyphal forms of Candida albicans to macrophage-derived nitrogen-containing compounds. Infect Immun. 1995 May;63(5):1806–1809. [PubMed]
  • Blasi, E; Pitzurra, L; Puliti, M; Lanfrancone, L; Bistoni, F. Early differential molecular response of a macrophage cell line to yeast and hyphal forms of Candida albicans. Infect Immun. 1992 Mar;60(3):832–837. [PubMed]
  • Blasi, E; Puliti, M; Pitzurra, L; Barluzzi, R; Mazzolla, R; Adami, C; Cox, GW; Bistoni, F. Comparative studies on functional and secretory properties of macrophage cell lines derived from different anatomical sites. FEMS Immunol Med Microbiol. 1994 Sep;9(3):207–215. [PubMed]
  • Blasi, E; Puliti, M; Pitzurra, L; Bartoli, A; Bistoni, F. Heterogeneous secretory response of phagocytes from different anatomical districts to the dimorphic fungus Candida albicans. Cell Immunol. 1994 Jan;153(1):239–247. [PubMed]
  • Bodey, GP. Fungal infections complicating acute leukemia. J Chronic Dis. 1966 Jun;19(6):667–687. [PubMed]
  • Brummer, E; McEwen, JG; Stevens, DA. Fungicidal activity of murine inflammatory polymorphonuclear neutrophils: comparison with murine peripheral blood PMN. Clin Exp Immunol. 1986 Dec;66(3):681–690. [PubMed]
  • Brummer, E; Morrison, CJ; Stevens, DA. Recombinant and natural gamma-interferon activation of macrophages in vitro: different dose requirements for induction of killing activity against phagocytizable and nonphagocytizable fungi. Infect Immun. 1985 Sep;49(3):724–730. [PubMed]
  • Brummer, E; Stevens, DA. Candidacidal mechanisms of peritoneal macrophages activated with lymphokines or gamma-interferon. J Med Microbiol. 1989 Mar;28(3):173–181. [PubMed]
  • Brummer, E; Sugar, AM; Stevens, DA. Enhanced oxidative burst in immunologically activated but not elicited polymorphonuclear leukocytes correlates with fungicidal activity. Infect Immun. 1985 Aug;49(2):396–401. [PubMed]
  • Budtz-Jörgensen, E. Etiology, pathogenesis, therapy, and prophylaxis of oral yeast infections. Acta Odontol Scand. 1990 Feb;48(1):61–69. [PubMed]
  • Cantorna, M; Mook, D; Balish, E. Resistance of congenitally immunodeficient gnotobiotic mice to vaginal candidiasis. Infect Immun. 1990 Nov;58(11):3813–3815. [PubMed]
  • Cantorna, MT; Balish, E. Mucosal and systemic candidiasis in congenitally immunodeficient mice. Infect Immun. 1990 Apr;58(4):1093–1100. [PubMed]
  • Cantorna, MT; Balish, E. Acquired immunity to systemic candidiasis in immunodeficient mice. J Infect Dis. 1991 Nov;164(5):936–943. [PubMed]
  • Cantorna, MT; Balish, E. Role of CD4+ lymphocytes in resistance to mucosal candidiasis. Infect Immun. 1991 Jul;59(7):2447–2455. [PubMed]
  • Cardell, S; Sander, B; Möller, G. Helper interleukins are produced by both CD4 and CD8 splenic T cells after mitogen stimulation. Eur J Immunol. 1991 Oct;21(10):2495–2500. [PubMed]
  • Carlson, E. Synergistic effect of Candida albicans and Staphylococcus aureus on mouse mortality. Infect Immun. 1982 Dec;38(3):921–924. [PubMed]
  • Carlson, E. Effect of strain of Staphylococcus aureus on synergism with Candida albicans resulting in mouse mortality and morbidity. Infect Immun. 1983 Oct;42(1):285–292. [PubMed]
  • Carlson, E. Enhancement by Candida albicans of Staphylococcus aureus, Serratia marcescens, and Streptococcus faecalis in the establishment of infection in mice. Infect Immun. 1983 Jan;39(1):193–197. [PubMed]
  • Carrow, EW; Domer, JE. Immunoregulation in experimental murine candidiasis: specific suppression induced by Candida albicans cell wall glycoprotein. Infect Immun. 1985 Jul;49(1):172–181. [PubMed]
  • Cech, P; Lehrer, RI. Heterogeneity of human neutrophil phagolysosomes: functional consequences for candidacidal activity. Blood. 1984 Jul;64(1):147–151. [PubMed]
  • Cenci, E; Bartocci, A; Puccetti, P; Mocci, S; Stanley, ER; Bistoni, F. Macrophage colony-stimulating factor in murine candidiasis: serum and tissue levels during infection and protective effect of exogenous administration. Infect Immun. 1991 Mar;59(3):868–872. [PubMed]
  • Cenci, E; Mencacci, A; Spaccapelo, R; Tonnetti, L; Mosci, P; Enssle, KH; Puccetti, P; Romani, L; Bistoni, F. T helper cell type 1 (Th1)- and Th2-like responses are present in mice with gastric candidiasis but protective immunity is associated with Th1 development. J Infect Dis. 1995 May;171(5):1279–1288. [PubMed]
  • Cenci, E; Romani, L; Mencacci, A; Spaccapelo, R; Schiaffella, E; Puccetti, P; Bistoni, F. Interleukin-4 and interleukin-10 inhibit nitric oxide-dependent macrophage killing of Candida albicans. Eur J Immunol. 1993 May;23(5):1034–1038. [PubMed]
  • Cenci, E; Romani, L; Vecchiarelli, A; Puccetti, P; Bistoni, F. Role of L3T4+ lymphocytes in protective immunity to systemic Candida albicans infection in mice. Infect Immun. 1989 Nov;57(11):3581–3587. [PubMed]
  • Cenci, E; Romani, L; Vecchiarelli, A; Puccetti, P; Bistoni, F. T cell subsets and IFN-gamma production in resistance to systemic candidosis in immunized mice. J Immunol. 1990 Jun 1;144(11):4333–4339. [PubMed]
  • Chakir, J; Côté, L; Coulombe, C; Deslauriers, N. Differential pattern of infection and immune response during experimental oral candidiasis in BALB/c and DBA/2 (H-2d) mice. Oral Microbiol Immunol. 1994 Apr;9(2):88–94. [PubMed]
  • Cheers, C; Waller, R. Activated macrophages in congenitally athymic "nude mice" and in lethally irradiate mice. J Immunol. 1975 Sep;115(3):844–847. [PubMed]
  • Chensue, SW; Warmington, KS; Hershey, SD; Terebuh, PD; Othman, M; Kunkel, SL. Evolving T cell responses in murine schistosomiasis. Th2 cells mediate secondary granulomatous hypersensitivity and are regulated by CD8+ T cells in vivo. J Immunol. 1993 Aug 1;151(3):1391–1400. [PubMed]
  • Cockayne, A; Odds, FC. Interactions of Candida albicans yeast cells, germ tubes and hyphae with human polymorphonuclear leucocytes in vitro. J Gen Microbiol. 1984 Mar;130(3):465–471. [PubMed]
  • Cohen, IR; Young, DB. Autoimmunity, microbial immunity and the immunological homunculus. Immunol Today. 1991 Apr;12(4):105–110. [PubMed]
  • Coker, LA, 3rd; Mercadal, CM; Rouse, BT; Moore, RN. Differential effects of CD4+ and CD8+ cells in acute, systemic murine candidosis. J Leukoc Biol. 1992 Mar;51(3):305–306. [PubMed]
  • Costantino, PJ; Gare, NF; Warmington, JR. Humoral immune responses to systemic Candida albicans infection in inbred mouse strains. Immunol Cell Biol. 1995 Apr;73(2):125–133. [PubMed]
  • Croft, M; Carter, L; Swain, SL; Dutton, RW. Generation of polarized antigen-specific CD8 effector populations: reciprocal action of interleukin (IL)-4 and IL-12 in promoting type 2 versus type 1 cytokine profiles. J Exp Med. 1994 Nov 1;180(5):1715–1728. [PubMed]
  • Cuff, CF; Packer, B; Rivas, V; Rogers, CM; Cassone, A; Donnelly, R; Rogers, TJ. Induction of immunosuppressive B-lymphocytes with components of Candida albicans. Adv Exp Med Biol. 1988;239:367–378. [PubMed]
  • Cuff, CF; Packer, BJ; Rogers, TJ. A further characterization of Candida albicans-induced suppressor B-cell activity. Immunology. 1989 Sep;68(1):80–86. [PubMed]
  • Cuff, CF; Rogers, CM; Lamb, BJ; Rogers, TJ. Induction of suppressor cells in vitro by Candida albicans. Cell Immunol. 1986 Jun;100(1):47–56. [PubMed]
  • Cuff, CF; Taub, DD; Rogers, TJ. The induction of T-suppressor cells with a soluble extract of Candida albicans. Cell Immunol. 1989 Aug;122(1):71–82. [PubMed]
  • Cutler, JE. Acute systemic candidiasis in normal and congenitally thymic-deficient (nude) mice. J Reticuloendothel Soc. 1976 Feb;19(2):121–124. [PubMed]
  • Cutler, JE; Lloyd, RK. Enhanced antibody responses induced by Candida albicans in mice. Infect Immun. 1982 Dec;38(3):1102–1108. [PubMed]
  • Danley, DL; Hilger, AE. Stimulation of oxidative metabolism in murine polymorphonuclear leukocytes by unopsonized fungal cells: evidence for a mannose-specific mechanism. J Immunol. 1981 Aug;127(2):551–556. [PubMed]
  • Danley, DL; Polakoff, J. Rapid killing of monocytes in vitro by Candida albicans yeast cells. Infect Immun. 1986 Jan;51(1):307–313. [PubMed]
  • de Boer, JP; Wolbink, GJ; Thijs, LG; Baars, JW; Wagstaff, J; Hack, CE. Interplay of complement and cytokines in the pathogenesis of septic shock. Immunopharmacology. 1992 24(2):135–148.Sep–Oct; [PubMed]
  • Decker, T; Baccarini, M; Lohmann-Matthes, ML. Liver-associated macrophage precursors as natural cytotoxic effectors against Candida albicans and Yac-1 cells. Eur J Immunol. 1986 Jun;16(6):693–699. [PubMed]
  • Decker, T; Lohmann-Matthes, ML; Baccarini, M. Heterogeneous activity of immature and mature cells of the murine monocyte-macrophage lineage derived from different anatomical districts against yeast-phase Candida albicans. Infect Immun. 1986 Nov;54(2):477–486. [PubMed]
  • Diamond, RD; Haudenschild, CC. Monocyte-mediated serum-independent damage to hyphal and pseudohyphal forms of Candida albicans in vitro. J Clin Invest. 1981 Jan;67(1):173–182. [PubMed]
  • Diamond, RD; Lyman, CA; Wysong, DR. Disparate effects of interferon-gamma and tumor necrosis factor-alpha on early neutrophil respiratory burst and fungicidal responses to Candida albicans hyphae in vitro. J Clin Invest. 1991 Feb;87(2):711–720. [PubMed]
  • di Francesco, P; Gaziano, R; Casalinuovo, IA; Belogi, L; Palamara, AT; Favalli, C; Garaci, E. Combined effect of fluconazole and thymosin alpha 1 on systemic candidiasis in mice immunosuppressed by morphine treatments. Clin Exp Immunol. 1994 Sep;97(3):347–352. [PubMed]
  • Djeu, JY. Cytokines and anti-fungal immunity. Adv Exp Med Biol. 1992;319:217–223. [PubMed]
  • Djeu, JY; Blanchard, DK. Regulation of human polymorphonuclear neutrophil (PMN) activity against Candida albicans by large granular lymphocytes via release of a PMN-activating factor. J Immunol. 1987 Oct 15;139(8):2761–2767. [PubMed]
  • Djeu, JY; Blanchard, DK; Halkias, D; Friedman, H. Growth inhibition of Candida albicans by human polymorphonuclear neutrophils: activation by interferon-gamma and tumor necrosis factor. J Immunol. 1986 Nov 1;137(9):2980–2984. [PubMed]
  • Djeu, JY; Blanchard, DK; Richards, AL; Friedman, H. Tumor necrosis factor induction by Candida albicans from human natural killer cells and monocytes. J Immunol. 1988 Dec 1;141(11):4047–4052. [PubMed]
  • Djeu, JY; Liu, JH; Wei, S; Rui, H; Pearson, CA; Leonard, WJ; Blanchard, DK. Function associated with IL-2 receptor-beta on human neutrophils. Mechanism of activation of antifungal activity against Candida albicans by IL-2. J Immunol. 1993 Feb 1;150(3):960–970. [PubMed]
  • Djeu, JY; Matsushima, K; Oppenheim, JJ; Shiotsuki, K; Blanchard, DK. Functional activation of human neutrophils by recombinant monocyte-derived neutrophil chemotactic factor/IL-8. J Immunol. 1990 Mar 15;144(6):2205–2210. [PubMed]
  • Djeu, JY; Serbousek, D; Blanchard, DK. Release of tumor necrosis factor by human polymorphonuclear leukocytes. Blood. 1990 Oct 1;76(7):1405–1409. [PubMed]
  • Domer, J; Elkins, K; Ennist, D; Baker, P. Modulation of immune responses by surface polysaccharides of Candida albicans. Rev Infect Dis. 1988 10 Suppl 2:S419–S422.Jul–Aug; [PubMed]
  • Domer, JE. Intragastric colonization of infant mice with Candida albicans induces systemic immunity demonstrable upon challenge as adults. J Infect Dis. 1988 May;157(5):950–958. [PubMed]
  • Domer, JE. Candida cell wall mannan: a polysaccharide with diverse immunologic properties. Crit Rev Microbiol. 1989;17(1):33–51. [PubMed]
  • Domer, JE; Garner, RE; Befidi-Mengue, RN. Mannan as an antigen in cell-mediated immunity (CMI) assays and as a modulator of mannan-specific CMI. Infect Immun. 1989 Mar;57(3):693–700. [PubMed]
  • Domer, JE; Human, LG; Andersen, GB; Rudbach, JA; Asherson, GL. Abrogation of suppression of delayed hypersensitivity induced by Candida albicans-derived mannan by treatment with monophosphoryl lipid A. Infect Immun. 1993 May;61(5):2122–2130. [PubMed]
  • Domer, JE; Stashak, PW; Elkins, K; Prescott, B; Caldes, G; Baker, PJ. Separation of immunomodulatory effects of mannan from Candida albicans into stimulatory and suppressive components. Cell Immunol. 1986 Sep;101(2):403–414. [PubMed]
  • Dunstone, M. The common infectious diseases in Australia. A report from the australian general practitioner morbidity and prescribing survey. Med J Aust. 1976 Jan 17;1(3):57–60. [PubMed]
  • Durandy, A; Fischer, A; Le Deist, F; Drouhet, E; Griscelli, C. Mannan-specific and mannan-induced T-cell suppressive activity in patients with chronic mucocutaneous candidiasis. J Clin Immunol. 1987 Sep;7(5):400–409. [PubMed]
  • Edwards, JE, Jr; Rotrosen, D; Fontaine, JW; Haudenschild, CC; Diamond, RD. Neutrophil-mediated protection of cultured human vascular endothelial cells from damage by growing Candida albicans hyphae. Blood. 1987 May;69(5):1450–1457. [PubMed]
  • Ekenna, O; Sherertz, RJ. Factors affecting colonization and dissemination of Candida albicans from the gastrointestinal tract of mice. Infect Immun. 1987 Jul;55(7):1558–1563. [PubMed]
  • Enelow, RI; Sullivan, GW; Carper, HT; Mandell, GL. Cytokine-induced human multinucleated giant cells have enhanced candidacidal activity and oxidative capacity compared with macrophages. J Infect Dis. 1992 Sep;166(3):664–668. [PubMed]
  • Enweani, IB; Ogbonna, CI; Kozak, W. The incidence of candidiasis amongst the asymptomatic female students of the University of Jos, Nigeria. Mycopathologia. 1987 Sep;99(3):135–141. [PubMed]
  • Fabian, I; Kletter, Y; Mor, S; Geller-Bernstein, C; Ben-Yaakov, M; Volovitz, B; Golde, DW. Activation of human eosinophil and neutrophil functions by haematopoietic growth factors: comparisons of IL-1, IL-3, IL-5 and GM-CSF. Br J Haematol. 1992 Feb;80(2):137–143. [PubMed]
  • Fabian, I; Shapira, E; Gadish, M; Kletter, Y; Nagler, A; Flidel, O; Slavin, S. Effects of human interleukin 3, macrophage and granulocyte-macrophage colony-stimulating factor on monocyte function following autologous bone marrow transplantation. Leuk Res. 1992 16(6-7):703–709.Jun–Jul; [PubMed]
  • Ferrante, A. Tumor necrosis factor alpha potentiates neutrophil antimicrobial activity: increased fungicidal activity against Torulopsis glabrata and Candida albicans and associated increases in oxygen radical production and lysosomal enzyme release. Infect Immun. 1989 Jul;57(7):2115–2122. [PubMed]
  • Ferrick, DA; Schrenzel, MD; Mulvania, T; Hsieh, B; Ferlin, WG; Lepper, H. Differential production of interferon-gamma and interleukin-4 in response to Th1- and Th2-stimulating pathogens by gamma delta T cells in vivo. Nature. 1995 Jan 19;373(6511):255–257. [PubMed]
  • Fidel, PL, Jr; Lynch, ME; Conaway, DH; Tait, L; Sobel, JD. Mice immunized by primary vaginal Candida albicans infection develop acquired vaginal mucosal immunity. Infect Immun. 1995 Feb;63(2):547–553. [PubMed]
  • Fidel, PL, Jr; Lynch, ME; Redondo-Lopez, V; Sobel, JD; Robinson, R. Systemic cell-mediated immune reactivity in women with recurrent vulvovaginal candidiasis. J Infect Dis. 1993 Dec;168(6):1458–1465. [PubMed]
  • Fidel, PL, Jr; Lynch, ME; Sobel, JD. Candida-specific cell-mediated immunity is demonstrable in mice with experimental vaginal candidiasis. Infect Immun. 1993 May;61(5):1990–1995. [PubMed]
  • Fidel, PL, Jr; Lynch, ME; Sobel, JD. Candida-specific Th1-type responsiveness in mice with experimental vaginal candidiasis. Infect Immun. 1993 Oct;61(10):4202–4207. [PubMed]
  • Fidel, PL, Jr; Lynch, ME; Sobel, JD. Effects of preinduced Candida-specific systemic cell-mediated immunity on experimental vaginal candidiasis. Infect Immun. 1994 Mar;62(3):1032–1038. [PubMed]
  • Fidel, PL, Jr; Lynch, ME; Sobel, JD. Circulating CD4 and CD8 T cells have little impact on host defense against experimental vaginal candidiasis. Infect Immun. 1995 Jul;63(7):2403–2408. [PubMed]
  • Fischer, A; Ballet, JJ; Griscelli, C. Specific inhibition of in vitro Candida-induced lymphocyte proliferation by polysaccharidic antigens present in the serum of patients with chronic mucocutaneous candidiasis. J Clin Invest. 1978 Nov;62(5):1005–1013. [PubMed]
  • Fong, TA; Mosmann, TR. Alloreactive murine CD8+ T cell clones secrete the Th1 pattern of cytokines. J Immunol. 1990 Mar 1;144(5):1744–1752. [PubMed]
  • Franklyn, KM; Warmington, JR; Ott, AK; Ashman, RB. An immunodominant antigen of Candida albicans shows homology to the enzyme enolase. Immunol Cell Biol. 1990 Jun;68 (:173–178. [PubMed]
  • Futenma, M; Kawakami, K; Saito, A. Production of tumor necrosis factor-alpha in granulocytopenic mice with pulmonary candidiasis and its modification with granulocyte colony-stimulating factor. Microbiol Immunol. 1995;39(6):411–417. [PubMed]
  • Gajewski, TF; Schell, SR; Nau, G; Fitch, FW. Regulation of T-cell activation: differences among T-cell subsets. Immunol Rev. 1989 Oct;111:79–110. [PubMed]
  • Garner, RE; Childress, AM; Human, LG; Domer, JE. Characterization of Candida albicans mannan-induced, mannan-specific delayed hypersensitivity suppressor cells. Infect Immun. 1990 Aug;58(8):2613–2620. [PubMed]
  • Garner, RE; Domer, JE. Lack of effect of Candida albicans mannan on development of protective immune responses in experimental murine candidiasis. Infect Immun. 1994 Feb;62(2):738–741. [PubMed]
  • Garner, RE; Kuruganti, U; Czarniecki, CW; Chiu, HH; Domer, JE. In vivo immune responses to Candida albicans modified by treatment with recombinant murine gamma interferon. Infect Immun. 1989 Jun;57(6):1800–1808. [PubMed]
  • Garner, RE; Rubanowice, K; Sawyer, RT; Hudson, JA. Secretion of TNF-alpha by alveolar macrophages in response to Candida albicans mannan. J Leukoc Biol. 1994 Feb;55(2):161–168. [PubMed]
  • Gatenby, PA. Reduced CD4+ T cells and candidiasis in absence of HIV infection. Lancet. 1989 May 6;1(8645):1027–1028. [PubMed]
  • Gauchat, JF; Gauchat, D; De Weck, AL; Stadler, BM. Cytokine mRNA levels in antigen-stimulated peripheral blood mononuclear cells. Eur J Immunol. 1989 Jun;19(6):1079–1085. [PubMed]
  • Giger, DK; Domer, JE; Moser, SA; McQuitty, JT., Jr Experimental murine candidiasis: pathological and immune responses in T-lymphocyte-depleted mice. Infect Immun. 1978 Sep;21(3):729–737. [PubMed]
  • Gilmore, BJ; Retsinas, EM; Lorenz, JS; Hostetter, MK. An iC3b receptor on Candida albicans: structure, function, and correlates for pathogenicity. J Infect Dis. 1988 Jan;157(1):38–46. [PubMed]
  • Gough, PM; Warnock, DW; Richardson, MD; Mansell, NJ; King, JM. IgA and IgG antibodies to Candida albicans in the genital tract secretions of women with or without vaginal candidosis. Sabouraudia. 1984;22(4):265–271. [PubMed]
  • Greenfield, RA; Abrams, VL; Crawford, DL; Kuhls, TL. Effect of abrogation of natural killer cell activity on the course of candidiasis induced by intraperitoneal administration and gastrointestinal candidiasis in mice with severe combined immunodeficiency. Infect Immun. 1993 Jun;61(6):2520–2525. [PubMed]
  • Guerder, S; Matzinger, P. A fail-safe mechanism for maintaining self-tolerance. J Exp Med. 1992 Aug 1;176(2):553–564. [PubMed]
  • Gustafson, KS; Vercellotti, GM; Bendel, CM; Hostetter, MK. Molecular mimicry in Candida albicans. Role of an integrin analogue in adhesion of the yeast to human endothelium. J Clin Invest. 1991 Jun;87(6):1896–1902. [PubMed]
  • Hall, NR; McGillis, JP; Spangelo, BL; Goldstein, AL. Evidence that thymosins and other biologic response modifiers can function as neuroactive immunotransmitters. J Immunol. 1985 Aug;135(2 Suppl):806s–811s. [PubMed]
  • Hamilton, JR; Overall, JC; Glasgow, LA. Synergistic effect on mortality in mice with murine cytomegalovirus and Pseudomonas aeruginosa, Staphylococcus aureus, or Candida albicans infections. Infect Immun. 1976 Oct;14(4):982–989. [PubMed]
  • Hamilton, JR; Overall, JC, Jr; Glasgow, LA. Synergistic infection with murine cytomegalovirus and Candida albicans in mice. J Infect Dis. 1977 Jun;135(6):918–924. [PubMed]
  • Hector, RF; Domer, JE; Carrow, EW. Immune responses to Candida albicans in genetically distinct mice. Infect Immun. 1982 Dec;38(3):1020–1028. [PubMed]
  • Heinzel, FP; Sadick, MD; Holaday, BJ; Coffman, RL; Locksley, RM. Reciprocal expression of interferon gamma or interleukin 4 during the resolution or progression of murine leishmaniasis. Evidence for expansion of distinct helper T cell subsets. J Exp Med. 1989 Jan 1;169(1):59–72. [PubMed]
  • Henderson, DC; Rippin, JJ. Stimulus-dependent production of cytokines and pterins by peripheral blood mononuclear cells. Immunol Lett. 1995 Feb;45(1-2):29–34. [PubMed]
  • Hidore, MR; Nabavi, N; Sonleitner, F; Murphy, JW. Murine natural killer cells are fungicidal to Cryptococcus neoformans. Infect Immun. 1991 May;59(5):1747–1754. [PubMed]
  • Hilger, AE; Danley, DL. Alteration of polymorphonuclear leukocyte activity by viable Candida albicans. Infect Immun. 1980 Mar;27(3):714–720. [PubMed]
  • Høgåsen, AK; Abrahamsen, TG; Gaustad, P. Various Candida and Torulopsis species differ in their ability to induce the production of C3, factor B and granulocyte-macrophage colony-stimulating factor (GM-CSF) in human monocyte cultures. J Med Microbiol. 1995 Apr;42(4):291–298. [PubMed]
  • Høgåsen, AK; Abrahamsen, TG. Increased C3 production in human monocytes after stimulation with Candida albicans is suppressed by granulocyte-macrophage colony-stimulating factor. Infect Immun. 1993 May;61(5):1779–1785. [PubMed]
  • Høgåsen, AK; Hestdal, K; Høgåsen, K; Abrahamsen, TG. Transforming growth factor beta modulates C3 and factor B biosynthesis and complement receptor 3 expression in cultured human monocytes. J Leukoc Biol. 1995 Feb;57(2):287–296. [PubMed]
  • Hsieh, CS; Macatonia, SE; O'Garra, A; Murphy, KM. T cell genetic background determines default T helper phenotype development in vitro. J Exp Med. 1995 Feb 1;181(2):713–721. [PubMed]
  • Huang, KY; Kind, PD; Jagoda, EM; Goldstein, AL. Thymosin treatment modulates production of interferon. J Interferon Res. 1981;1(3):411–420. [PubMed]
  • Hume, DA; Denkins, Y. The deleterious effect of macrophage colony-stimulating factor (CSF-1) on the pathology of experimental candidiasis in mice. Lymphokine Cytokine Res. 1992 Apr;11(2):95–98. [PubMed]
  • Hurley, R. Inveterate vaginal thrush. Practitioner. 1975 Dec;215(1290):753–756. [PubMed]
  • Hurley, R; De Louvois, J. Candida vaginitis. Postgrad Med J. 1979 Sep;55(647):645–647. [PubMed]
  • Ishiguro, A; Homma, M; Sukai, T; Higashide, K; Torii, S; Tanaka, K. Immunoblotting analysis of sera from patients with candidal vaginitis and healthy females. J Med Vet Mycol. 1992;30(4):281–292. [PubMed]
  • Jeganathan, S; Lin, CC. Denture stomatitis--a review of the aetiology, diagnosis and management. Aust Dent J. 1992 Apr;37(2):107–114. [PubMed]
  • Jensen, J; Vazquez-Torres, A; Balish, E. Poly(I.C)-induced interferons enhance susceptibility of SCID mice to systemic candidiasis. Infect Immun. 1992 Nov;60(11):4549–4557. [PubMed]
  • Jensen, J; Warner, T; Balish, E. Resistance of SCID mice to Candida albicans administered intravenously or colonizing the gut: role of polymorphonuclear leukocytes and macrophages. J Infect Dis. 1993 Apr;167(4):912–919. [PubMed]
  • Jensen, J; Warner, T; Balish, E. The role of phagocytic cells in resistance to disseminated candidiasis in granulocytopenic mice. J Infect Dis. 1994 Oct;170(4):900–905. [PubMed]
  • Jeremias, J; Kalo-Klein, A; Witkin, SS. Individual differences in tumour necrosis factor and interleukin-1 production induced by viable and heat-killed Candida albicans. J Med Vet Mycol. 1991;29(3):157–163. [PubMed]
  • Jones-Carson, J; Vazquez-Torres, A; Balish, E. Defective killing of Candida albicans hyphae by neutrophils from beige mice. J Infect Dis. 1995 Jun;171(6):1664–1667. [PubMed]
  • Jones-Carson, J; Vazquez-Torres, A; van der Heyde, HC; Warner, T; Wagner, RD; Balish, E. Gamma delta T cell-induced nitric oxide production enhances resistance to mucosal candidiasis. Nat Med. 1995 Jun;1(6):552–557. [PubMed]
  • Jontell, M; Scheynius, A; Ohman, SC; Magnusson, B. Expression of Class II transplantation antigens by epithelial cells in oral candidosis, oral lichen planus and gingivitis. J Oral Pathol. 1986 Oct;15(9):484–488. [PubMed]
  • Jouault, T; Bernigaud, A; Lepage, G; Trinel, PA; Poulain, D. The Candida albicans phospholipomannan induces in vitro production of tumour necrosis factor-alpha from human and murine macrophages. Immunology. 1994 Oct;83(2):268–273. [PubMed]
  • Kagaya, K; Fukazawa, Y. Murine defense mechanism against Candida albicans infection. II. Opsonization, phagocytosis, and intracellular killing of C. albicans. Microbiol Immunol. 1981;25(8):807–818. [PubMed]
  • Kagaya, K; Shinoda, T; Fukazawa, Y. Murine defense mechanism against Candida albicans infection. I. Collaboration of cell-mediated and humoral immunities in protection against systemic C. albicans infection. Microbiol Immunol. 1981;25(7):647–654. [PubMed]
  • Kalo-Klein, A; Witkin, SS. Candida albicans: cellular immune system interactions during different stages of the menstrual cycle. Am J Obstet Gynecol. 1989 Nov;161(5):1132–1136. [PubMed]
  • Kalo-Klein, A; Witkin, SS. Regulation of the immune response to Candida albicans by monocytes and progesterone. Am J Obstet Gynecol. 1991 May;164(5 Pt 1):1351–1354. [PubMed]
  • Karbassi, A; Becker, JM; Foster, JS; Moore, RN. Enhanced killing of Candida albicans by murine macrophages treated with macrophage colony-stimulating factor: evidence for augmented expression of mannose receptors. J Immunol. 1987 Jul 15;139(2):417–421. [PubMed]
  • Kawabe, Y; Ochi, A. Selective anergy of V beta 8+,CD4+ T cells in Staphylococcus enterotoxin B-primed mice. J Exp Med. 1990 Oct 1;172(4):1065–1070. [PubMed]
  • Kawai, K; Ohashi, PS. Immunological function of a defined T-cell population tolerized to low-affinity self antigens. Nature. 1995 Mar 2;374(6517):68–69. [PubMed]
  • Kelso, A; Troutt, AB; Maraskovsky, E; Gough, NM; Morris, L; Pech, MH; Thomson, JA. Heterogeneity in lymphokine profiles of CD4+ and CD8+ T cells and clones activated in vivo and in vitro. Immunol Rev. 1991 Oct;123:85–114. [PubMed]
  • Khwaja, A; Johnson, B; Addison, IE; Yong, K; Ruthven, K; Abramson, S; Linch, DC. In vivo effects of macrophage colony-stimulating factor on human monocyte function. Br J Haematol. 1991 Jan;77(1):25–31. [PubMed]
  • Kim, MH; Rodey, GE; Good, RA; Chilgren, RA; Quie, PG. Defective candidacidal capacity of polymorphonuclear leukocytes in chronic granulomatous disease of childhood. J Pediatr. 1969 Aug;75(2):300–303. [PubMed]
  • Kirkpatrick, CH. Host factors in defense against fungal infections. Am J Med. 1984 Oct 30;77(4D):1–12. [PubMed]
  • Kirkpatrick, CH. Chronic mucocutaneous candidiasis. Eur J Clin Microbiol Infect Dis. 1989 May;8(5):448–456. [PubMed]
  • Kirkpatrick, CH. Chronic mucocutaneous candidiasis. J Am Acad Dermatol. 1994 Sep;31(3 Pt 2):S14–S17. [PubMed]
  • Klein, RS; Harris, CA; Small, CB; Moll, B; Lesser, M; Friedland, GH. Oral candidiasis in high-risk patients as the initial manifestation of the acquired immunodeficiency syndrome. N Engl J Med. 1984 Aug 9;311(6):354–358. [PubMed]
  • Kouttab, NM; Goldstein, AL; Lu, M; Lu, L; Campbell, B; Maizel, AL. Production of human B and T cell growth factors is enhanced by thymic hormones. Immunopharmacology. 1988 16(2):97–105.Sep–Oct; [PubMed]
  • Krause, W; Matheis, H; Wulf, K. Fungaemia and funguria after oral administration of Candida albicans. Lancet. 1969 Mar 22;1(7595):598–599. [PubMed]
  • Kroemer, G; Moreno de Alborán, I; Gonzalo, JA; Martínez, C. Immunoregulation by cytokines. Crit Rev Immunol. 1993;13(2):163–191. [PubMed]
  • Kubo, A; Sasada, M; Nishimura, T; Moriguchi, T; Kakita, T; Yamamoto, K; Uchino, H. Oxygen radical generation by polymorphonuclear leucocytes of beige mice. Clin Exp Immunol. 1987 Dec;70(3):658–663. [PubMed]
  • Kullberg, BJ; van 't Wout, JW; Hoogstraten, C; van Furth, R. Recombinant interferon-gamma enhances resistance to acute disseminated Candida albicans infection in mice. J Infect Dis. 1993 Aug;168(2):436–443. [PubMed]
  • Kurlander, RJ; Hoffman, M; Kratz, SS; Gates, J. Comparison of the effects of IL-1 alpha and TNF-alpha on phagocyte accumulation and murine antibacterial immunity. Cell Immunol. 1989 Oct 1;123(1):9–22. [PubMed]
  • Lacasse, M; Fortier, C; Chakir, J; Côté, L; Deslauriers, N. Acquired resistance and persistence of Candida albicans following oral candidiasis in the mouse: a model of the carrier state in humans. Oral Microbiol Immunol. 1993 Oct;8(5):313–318. [PubMed]
  • Lal, S; Mitsuyama, M; Miyata, M; Ogata, N; Amako, K; Nomoto, K. Pulmonary defence mechanism in mice. A comparative role of alveolar macrophages and polymorphonuclear cells against infection with Candida albicans. J Clin Lab Immunol. 1986 Mar;19(3):127–133. [PubMed]
  • Lehmann, PF. Immunology of fungal infections in animals. Vet Immunol Immunopathol. 1985 Oct;10(1):33–69. [PubMed]
  • Lehrer, RI; Cline, MJ. Leukocyte candidacidal activity and resistance to systemic candidiasis in patients with cancer. Cancer. 1971 May;27(5):1211–1217. [PubMed]
  • Lombardi, G; Di Massimo, AM; Del Gallo, F; Vismara, D; Piccolella, E; Pugliese, O; Colizzi, V. Mechanism of action of an antigen nonspecific inhibitory factor produced by human T cells stimulated by MPPS and PPD. Cell Immunol. 1986 Apr 1;98(2):434–443. [PubMed]
  • Lombardi, G; Vismara, D; Piccolella, E; Colizzi, V; Asherson, GL. A non-specific inhibitor produced by Candida albicans activated T cells impairs cell proliferation by inhibiting interleukin-1 production. Clin Exp Immunol. 1985 May;60(2):303–310. [PubMed]
  • Louie, A; Baltch, AL; Smith, RP; Franke, MA; Ritz, WJ; Singh, JK; Gordon, MA. Tumor necrosis factor alpha has a protective role in a murine model of systemic candidiasis. Infect Immun. 1994 Jul;62(7):2761–2772. [PubMed]
  • Lyon, FL; Hector, RF; Domer, JE. Innate and acquired immune responses against Candida albicans in congenic B10.D2 mice with deficiency of the C5 complement component. J Med Vet Mycol. 1986 Oct;24(5):359–367. [PubMed]
  • Mahanty, S; Greenfield, RA; Joyce, WA; Kincade, PW. Inoculation candidiasis in a murine model of severe combined immunodeficiency syndrome. Infect Immun. 1988 Dec;56(12):3162–3166. [PubMed]
  • Marconi, P; Scaringi, L; Tissi, L; Boccanera, M; Bistoni, F; Bonmassar, E; Cassone, A. Induction of natural killer cell activity by inactivated Candida albicans in mice. Infect Immun. 1985 Oct;50(1):297–303. [PubMed]
  • Maródi, L; Forehand, JR; Johnston, RB., Jr Mechanisms of host defense against Candida species. II. Biochemical basis for the killing of Candida by mononuclear phagocytes. J Immunol. 1991 Apr 15;146(8):2790–2794. [PubMed]
  • Maródi, L; Johnston, RB., Jr Enhancement of macrophage candidacidal activity by interferon-gamma. Immunodeficiency. 1993;4(1-4):181–185. [PubMed]
  • Maródi, L; Káposzta, R; Campbell, DE; Polin, RA; Csongor, J; Johnston, RB., Jr Candidacidal mechanisms in the human neonate. Impaired IFN-gamma activation of macrophages in newborn infants. J Immunol. 1994 Dec 15;153(12):5643–5649. [PubMed]
  • Maródi, L; Schreiber, S; Anderson, DC; MacDermott, RP; Korchak, HM; Johnston, RB., Jr Enhancement of macrophage candidacidal activity by interferon-gamma. Increased phagocytosis, killing, and calcium signal mediated by a decreased number of mannose receptors. J Clin Invest. 1993 Jun;91(6):2596–2601. [PubMed]
  • Marquis, G; Montplaisir, S; Pelletier, M; Auger, P; Lapp, WS. Genetics of resistance to infection with Candida albicans in mice. Br J Exp Pathol. 1988 Oct;69(5):651–660. [PubMed]
  • Marquis, G; Montplaisir, S; Pelletier, M; Mousseau, S; Auger, P. Strain-dependent differences in susceptibility of mice to experimental candidosis. J Infect Dis. 1986 Nov;154(5):906–909. [PubMed]
  • Mathur, S; Mathur, RS; Goust, JM; Williamson, HO; Fudenberg, HH. Cyclic variations in white cell subpopulations in the human menstrual cycle: correlations with progesterone and estradiol. Clin Immunol Immunopathol. 1979 Jul;13(3):246–253. [PubMed]
  • Mathur, S; Melchers, JT, 3rd; Ades, EW; Williamson, HO; Fudenberg, HH. Anti-ovarian and anti-lymphocyte antibodies in patients with chronic vaginal candidiasis. J Reprod Immunol. 1980 Dec;2(5):247–262. [PubMed]
  • Matsumoto, M; Matsubara, S; Matsuno, T; Ono, M; Yokota, T. Protective effect of recombinant human granulocyte colony-stimulating factor (rG-CSF) against various microbial infections in neutropenic mice. Microbiol Immunol. 1990;34(9):765–773. [PubMed]
  • Matthews, R; Burnie, J. The role of hsp90 in fungal infection. Immunol Today. 1992 Sep;13(9):345–348. [PubMed]
  • Matthews, R; Burnie, J; Smith, D; Clark, I; Midgley, J; Conolly, M; Gazzard, B. Candida and AIDS: evidence for protective antibody. Lancet. 1988 Jul 30;2(8605):263–266. [PubMed]
  • Matthews, RC; Burnie, JP; Howat, D; Rowland, T; Walton, F. Autoantibody to heat-shock protein 90 can mediate protection against systemic candidosis. Immunology. 1991 Sep;74(1):20–24. [PubMed]
  • Matthews, RC; Burnie, JP; Tabaqchali, S. Immunoblot analysis of the serological response in systemic candidosis. Lancet. 1984 Dec 22;2(8417-8418):1415–1418. [PubMed]
  • Mayer, CL; Diamond, RD; Edwards, JE., Jr Recognition of binding sites on Candida albicans by monoclonal antibodies to human leukocyte antigens. Infect Immun. 1990 Nov;58(11):3765–3769. [PubMed]
  • Mayer, P; Schütze, E; Lam, C; Kricek, F; Liehl, E. Recombinant murine granulocyte-macrophage colony-stimulating factor augments neutrophil recovery and enhances resistance to infections in myelosuppressed mice. J Infect Dis. 1991 Mar;163(3):584–590. [PubMed]
  • McNamara, MP; Wiessner, JH; Collins-Lech, C; Hahn, BL; Sohnle, PG. Neutrophil death as a defence mechanism against Candida albicans infections. Lancet. 1988 Nov 19;2(8621):1163–1165. [PubMed]
  • Meech, RJ; Smith, JM; Chew, T. Pathogenic mechanisms in recurrent genital candidosis in women. N Z Med J. 1985 Jan 23;98(771):1–5. [PubMed]
  • Mencacci, A; Romani, L; Mosci, P; Cenci, E; Tonnetti, L; Vecchiarelli, A; Bistoni, F. Low-dose streptozotocin-induced diabetes in mice. II. Susceptibility to Candida albicans infection correlates with the induction of a biased Th2-like antifungal response. Cell Immunol. 1993 Aug;150(1):36–44. [PubMed]
  • Mencacci, A; Torosantucci, A; Spaccapelo, R; Romani, L; Bistoni, F; Cassone, A. A mannoprotein constituent of Candida albicans that elicits different levels of delayed-type hypersensitivity, cytokine production, and anticandidal protection in mice. Infect Immun. 1994 Dec;62(12):5353–5360. [PubMed]
  • Mendling, W; Koldovsky, U. Immunological findings in patients with chronically recurrent vaginal candidosis and new therapeutic approaches. Mycoses. 1989 Aug;32(8):386–390. [PubMed]
  • Meuwissen, HJ; Rhee, MS; Rynes, RI; Pickering, RJ. Phagocytosis, chemoluminescence, and intracellular killing of fungi by phagocytes from subjects with deficiency of the second component of complement. Int Arch Allergy Appl Immunol. 1982;68(1):22–27. [PubMed]
  • Ming, WJ; Bersani, L; Mantovani, A. Tumor necrosis factor is chemotactic for monocytes and polymorphonuclear leukocytes. J Immunol. 1987 Mar 1;138(5):1469–1474. [PubMed]
  • Miyake, T; Takeya, K; Nomoto, K; Muraoka, S. Cellular elements in the resistance to candida infection in mice. I. Contribution of T lymphocytes and phagocytes at various stages of infection. Microbiol Immunol. 1977;21(12):703–725. [PubMed]
  • Morelli, Remo; Rosenberg, Leon T. Role of Complement During Experimental Candida Infection in Mice. Infect Immun. 1971 Apr;3(4):521–523. [PubMed]
  • Morelli, R; Rosenberg, LT. The role of complement in the phagocytosis of Candida albicans by mouse peripheral blood leukocytes. J Immunol. 1971 Aug;107(2):476–480. [PubMed]
  • Morris, L; Troutt, AB; McLeod, KS; Kelso, A; Handman, E; Aebischer, T. Interleukin-4 but not gamma interferon production correlates with the severity of murine cutaneous leishmaniasis. Infect Immun. 1993 Aug;61(8):3459–3465. [PubMed]
  • Morrison, CJ; Brummer, E; Isenberg, RA; Stevens, DA. Activation of murine polymorphonuclear neutrophils for fungicidal activity by recombinant gamma interferon. J Leukoc Biol. 1987 May;41(5):434–440. [PubMed]
  • Mosci, P; Vecchiarelli, A; Cenci, E; Puliti, M; Bistoni, F. Low-dose streptozotocin-induced diabetes in mice. I. Course of Candida albicans infection. Cell Immunol. 1993 Aug;150(1):27–35. [PubMed]
  • Mosmann, TR; Coffman, RL. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol. 1989;7:145–173. [PubMed]
  • Narayanan, R; Joyce, WA; Greenfield, RA. Gastrointestinal candidiasis in a murine model of severe combined immunodeficiency syndrome. Infect Immun. 1991 Jun;59(6):2116–2119. [PubMed]
  • Nathan, CF; Murray, HW; Wiebe, ME; Rubin, BY. Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp Med. 1983 Sep 1;158(3):670–689. [PubMed]
  • Nelson, RD; Shibata, N; Podzorski, RP; Herron, MJ. Candida mannan: chemistry, suppression of cell-mediated immunity, and possible mechanisms of action. Clin Microbiol Rev. 1991 Jan;4(1):1–19. [PubMed]
  • Nemunaitis, J; Meyers, JD; Buckner, CD; Shannon-Dorcy, K; Mori, M; Shulman, H; Bianco, JA; Higano, CS; Groves, E; Storb, R, et al. Phase I trial of recombinant human macrophage colony-stimulating factor in patients with invasive fungal infections. Blood. 1991 Aug 15;78(4):907–913. [PubMed]
  • Neta, R; Salvin, SB. Resistance and susceptibility to infection in inbred murine strains. II. Variations in the effect of treatment with thymosin fraction 5 on the release of lymphokines in vivo. Cell Immunol. 1983 Jan;75(1):173–180. [PubMed]
  • Nohmi, T; Abe, S; Dobashi, K; Tansho, S; Yamaguchi, H. Suppression of anti-Candida activity of murine neutrophils by progesterone in vitro: a possible mechanism in pregnant women's vulnerability to vaginal candidiasis. Microbiol Immunol. 1995;39(6):405–409. [PubMed]
  • Nose, Y; Komori, K; Inouye, H; Nomura, K; Yamamura, M; Tsuji, K. Relationship between HLA-D and in vitro and in vivo responsiveness to Candida allergen. Clin Exp Immunol. 1980 May;40(2):345–350. [PubMed]
  • Nose, Y; Komori, K; Inouye, H; Nomura, K; Yamamura, M; Tsuji, K. Role of macrophages in T lymphocyte response to Candida allergen in man with special reference to HLA-D and DR. Clin Exp Immunol. 1981 Jul;45(1):152–157. [PubMed]
  • Nugent, KM; Onofrio, JM. Pulmonary tissue resistance to Candida albicans in normal and in immunosuppressed mice. Am Rev Respir Dis. 1983 Nov;128(5):909–914. [PubMed]
  • Ochi, A; Yuh, K; Migita, K; Kawabe, Y. Effects of staphylococcal toxins on T-cell activity in vivo. Chem Immunol. 1992;55:115–136. [PubMed]
  • Ohman, SC; Jontell, M; Jonsson, R. Phenotypic characterization of mononuclear cells and class II antigen expression in angular cheilitis infected by Candida albicans or Staphylococcus aureus. Scand J Dent Res. 1989 Apr;97(2):178–185. [PubMed]
  • Orme, IM; Roberts, AD; Griffin, JP; Abrams, JS. Cytokine secretion by CD4 T lymphocytes acquired in response to Mycobacterium tuberculosis infection. J Immunol. 1993 Jul 1;151(1):518–525. [PubMed]
  • Oh, AK; Franklyn, K; Warmington, JR; Ashman, RB. A Candida-specific antibody in patients with vaginitis. Med J Aust. 1990 Apr 2;152(7):390–391. [PubMed]
  • Palma, C; Cassone, A; Serbousek, D; Pearson, CA; Djeu, JY. Lactoferrin release and interleukin-1, interleukin-6, and tumor necrosis factor production by human polymorphonuclear cells stimulated by various lipopolysaccharides: relationship to growth inhibition of Candida albicans. Infect Immun. 1992 Nov;60(11):4604–4611. [PubMed]
  • Palma, C; Serbousek, D; Torosantucci, A; Cassone, A; Djeu, JY. Identification of a mannoprotein fraction from Candida albicans that enhances human polymorphonuclear leukocyte (PMNL) functions and stimulates lactoferrin in PMNL inhibition of candidal growth. J Infect Dis. 1992 Nov;166(5):1103–1112. [PubMed]
  • Pankhurst, C; Peakman, M. Reduced CD4 + T cells and severe oral candidiasis in absence of HIV infection. Lancet. 1989 Mar 25;1(8639):672–672. [PubMed]
  • Papadimitriou, JM; Ashman, RB. The pathogenesis of acute systemic candidiasis in a susceptible inbred mouse strain. J Pathol. 1986 Dec;150(4):257–265. [PubMed]
  • Parker, JC, Jr; McCloskey, JJ; Solanki, KV; Goodman, NL. Candidosis: the most common postmortem cerebral mycosis in an endemic fungal area. Surg Neurol. 1976 Aug;6(2):123–128. [PubMed]
  • Pecyk, RA; Fraser-Smith, EB; Matthews, TR. Efficacy of interleukin-1 beta against systemic Candida albicans infections in normal and immunosuppressed mice. Infect Immun. 1989 Oct;57(10):3257–3258. [PubMed]
  • Pereira, HA; Hosking, CS. The role of complement and antibody in opsonization and intracellular killing of Candida albicans. Clin Exp Immunol. 1984 Aug;57(2):307–314. [PubMed]
  • Pernis, A; Gupta, S; Gollob, KJ; Garfein, E; Coffman, RL; Schindler, C; Rothman, P. Lack of interferon gamma receptor beta chain and the prevention of interferon gamma signaling in TH1 cells. Science. 1995 Jul 14;269(5221):245–247. [PubMed]
  • Peterson, PK; Lee, D; Suh, HJ; Devalon, M; Nelson, RD; Keane, WF. Intracellular survival of Candida albicans in peritoneal macrophages from chronic peritoneal dialysis patients. Am J Kidney Dis. 1986 Feb;7(2):146–152. [PubMed]
  • Piccolella, E; Lombardi, G; Morelli, R. Generation of suppressor cells in the response of human lymphocytes to a polysaccharide from Candida albicans. J Immunol. 1981 Jun;126(6):2151–2155. [PubMed]
  • Pittet, D; Wenzel, RP. Nosocomial bloodstream infections. Secular trends in rates, mortality, and contribution to total hospital deaths. Arch Intern Med. 1995 Jun 12;155(11):1177–1184. [PubMed]
  • Podzorski, RP; Gray, GR; Nelson, RD. Different effects of native Candida albicans mannan and mannan-derived oligosaccharides on antigen-stimulated lymphoproliferation in vitro. J Immunol. 1990 Jan 15;144(2):707–716. [PubMed]
  • Polak-Wyss, A. Protective effect of human granulocyte colony stimulating factor (hG-CSF) on Candida infections in normal and immunosuppressed mice. Mycoses. 1991 34(3-4):109–118.Mar–Apr; [PubMed]
  • Puccetti, P; Mencacci, A; Cenci, E; Spaccapelo, R; Mosci, P; Enssle, KH; Romani, L; Bistoni, F. Cure of murine candidiasis by recombinant soluble interleukin-4 receptor. J Infect Dis. 1994 Jun;169(6):1325–1331. [PubMed]
  • Raponi, G; Ghezzi, MC; Mancini, C; Filadoro, F. Culture filtrates and whole heat-killed Candida albicans stimulate human monocytes to release interleukin-6. New Microbiol. 1993 Jul;16(3):267–274. [PubMed]
  • Raponi, G; Ghezzi, MC; Mancini, C; Filadoro, F. Preincubation of Candida albicans strains with amphotericin B reduces tumor necrosis factor alpha and interleukin-6 release by human monocytes. Antimicrob Agents Chemother. 1993 Sep;37(9):1958–1961. [PubMed]
  • Raptopoulou, M; Goulis, G. Physiological variations of T cells during the menstrual cycle. Clin Exp Immunol. 1977 Jun;28(3):458–460. [PubMed]
  • Ray, TL; Wuepper, KD. Activation of the alternative (properdin) pathway of complement by Candida albicans and related species. J Invest Dermatol. 1976 Dec;67(6):700–703. [PubMed]
  • Ray, TL; Wuepper, KD. Experimental cutaneous candidiasis in rodents; II. Role of the stratum corneum barrier and serum complement as a mediator of a protective infalmmatory response. Arch Dermatol. 1978 Apr;114(4):539–543. [PubMed]
  • Redmond, HP; Shou, J; Gallagher, HJ; Kelly, CJ; Daly, JM. Macrophage-dependent candidacidal mechanisms in the murine system. Comparison of murine Kupffer cell and peritoneal macrophage candidacidal mechanisms. J Immunol. 1993 Apr 15;150(8 Pt 1):3427–3433. [PubMed]
  • Rementería, A; García-Tobalina, R; Sevilla, MJ. Nitric oxide-dependent killing of Candida albicans by murine peritoneal cells during an experimental infection. FEMS Immunol Med Microbiol. 1995 Jun;11(3):157–162. [PubMed]
  • Richardson, MD; Brownlie, CE; Shankland, GS. Enhanced phagocytosis and intracellular killing of Candida albicans by GM-CSF-activated human neutrophils. J Med Vet Mycol. 1992;30(6):433–441. [PubMed]
  • Richardson, MD; Smith, H. Resistance of virulent and attenuated strains of Candida albicans to intracellular killing by human and mouse phagocytes. J Infect Dis. 1981 Dec;144(6):557–564. [PubMed]
  • Rifkind, D; Frey, JA. Influence of gonadectomy on Candida albicans urinary tract infection in CFW mice. Infect Immun. 1972 Mar;5(3):332–336. [PubMed]
  • Rigg, D; Miller, MM; Metzger, WJ. Recurrent allergic vulvovaginitis: treatment with Candida albicans allergen immunotherapy. Am J Obstet Gynecol. 1990 Feb;162(2):332–336. [PubMed]
  • Riipi, L; Carlson, E. Tumor necrosis factor (TNF) is induced in mice by Candida albicans: role of TNF in fibrinogen increase. Infect Immun. 1990 Sep;58(9):2750–2754. [PubMed]
  • Rivas, V; Rogers, TJ. Studies on the cellular nature of Candida albicans-induced suppression. J Immunol. 1983 Jan;130(1):376–379. [PubMed]
  • Röcken, M; Urban, JF; Shevach, EM. Infection breaks T-cell tolerance. Nature. 1992 Sep 3;359(6390):79–82. [PubMed]
  • Rogers, TJ; Balish, E. Suppression of lymphocyte blastogenesis by Candida albicans. Clin Immunol Immunopathol. 1978 Jul;10(3):298–305. [PubMed]
  • Rogers, TJ; Balish, E; Manning, DD. The role of thymus-dependent cell-mediated immunity in resistance to experimental disseminated candidiasis. J Reticuloendothel Soc. 1976 Oct;20(4):291–298. [PubMed]
  • Roilides, E; Holmes, A; Blake, C; Pizzo, PA; Walsh, TJ. Effects of granulocyte colony-stimulating factor and interferon-gamma on antifungal activity of human polymorphonuclear neutrophils against pseudohyphae of different medically important Candida species. J Leukoc Biol. 1995 Apr;57(4):651–656. [PubMed]
  • Roilides, E; Uhlig, K; Venzon, D; Pizzo, PA; Walsh, TJ. Neutrophil oxidative burst in response to blastoconidia and pseudohyphae of Candida albicans: augmentation by granulocyte colony-stimulating factor and interferon-gamma. J Infect Dis. 1992 Sep;166(3):668–673. [PubMed]
  • Roilides, E; Walsh, TJ; Pizzo, PA; Rubin, M. Granulocyte colony-stimulating factor enhances the phagocytic and bactericidal activity of normal and defective human neutrophils. J Infect Dis. 1991 Mar;163(3):579–583. [PubMed]
  • Romagnani, S. Human TH1 and TH2 subsets: regulation of differentiation and role in protection and immunopathology. Int Arch Allergy Immunol. 1992;98(4):279–285. [PubMed]
  • Romani, L; Cenci, E; Mencacci, A; Spaccapelo, R; Grohmann, U; Puccetti, P; Bistoni, F. Gamma interferon modifies CD4+ subset expression in murine candidiasis. Infect Immun. 1992 Nov;60(11):4950–4952. [PubMed]
  • Romani, L; Mencacci, A; Cenci, E; Mosci, P; Vitellozzi, G; Grohmann, U; Puccetti, P; Bistoni, F. Course of primary candidiasis in T cell-depleted mice infected with attenuated variant cells. J Infect Dis. 1992 Dec;166(6):1384–1392. [PubMed]
  • Romani, L; Mencacci, A; Cenci, E; Spaccapelo, R; Mosci, P; Puccetti, P; Bistoni, F. CD4+ subset expression in murine candidiasis. Th responses correlate directly with genetically determined susceptibility or vaccine-induced resistance. J Immunol. 1993 Feb 1;150(3):925–931. [PubMed]
  • Romani, L; Mencacci, A; Cenci, E; Spaccapelo, R; Schiaffella, E; Tonnetti, L; Puccetti, P; Bistoni, F. Natural killer cells do not play a dominant role in CD4+ subset differentiation in Candida albicans-infected mice. Infect Immun. 1993 Sep;61(9):3769–3774. [PubMed]
  • Romani, L; Mencacci, A; Grohmann, U; Mocci, S; Mosci, P; Puccetti, P; Bistoni, F. Neutralizing antibody to interleukin 4 induces systemic protection and T helper type 1-associated immunity in murine candidiasis. J Exp Med. 1992 Jul 1;176(1):19–25. [PubMed]
  • Romani, L; Mencacci, A; Tonnetti, L; Spaccapelo, R; Cenci, E; Puccetti, P; Wolf, SF; Bistoni, F. IL-12 is both required and prognostic in vivo for T helper type 1 differentiation in murine candidiasis. J Immunol. 1994 Dec 1;153(11):5167–5175. [PubMed]
  • Romani, L; Mencacci, A; Tonnetti, L; Spaccapelo, R; Cenci, E; Wolf, S; Puccetti, P; Bistoni, F. Interleukin-12 but not interferon-gamma production correlates with induction of T helper type-1 phenotype in murine candidiasis. Eur J Immunol. 1994 Apr;24(4):909–915. [PubMed]
  • Romani, L; Mocci, S; Bietta, C; Lanfaloni, L; Puccetti, P; Bistoni, F. Th1 and Th2 cytokine secretion patterns in murine candidiasis: association of Th1 responses with acquired resistance. Infect Immun. 1991 Dec;59(12):4647–4654. [PubMed]
  • Romani, L; Mocci, S; Cenci, E; Mencacci, A; Sbaraglia, G; Puccetti, P; Bistoni, F. Antigen-specific cytolysis of infected cells in murine candidiasis. Eur J Epidemiol. 1992 May;8(3):368–376. [PubMed]
  • Romani, L; Mocci, S; Cenci, E; Rossi, R; Puccetti, P; Bistoni, F. Candida albicans-specific Ly-2+ lymphocytes with cytolytic activity. Eur J Immunol. 1991 Jun;21(6):1567–1570. [PubMed]
  • Romani, L; Puccetti, P; Mencacci, A; Cenci, E; Spaccapelo, R; Tonnetti, L; Grohmann, U; Bistoni, F. Neutralization of IL-10 up-regulates nitric oxide production and protects susceptible mice from challenge with Candida albicans. J Immunol. 1994 Apr 1;152(7):3514–3521. [PubMed]
  • Romani, L; Puccetti, P; Mencacci, A; Spaccapelo, R; Cenci, E; Tonnetti, L; Bistoni, F. Tolerance to staphylococcal enterotoxin B initiated Th1 cell differentiation in mice infected with Candida albicans. Infect Immun. 1994 Sep;62(9):4047–4053. [PubMed]
  • Rosati, E; Scaringi, L; Cornacchione, P; Fettucciari, K; Sabatini, R; Rossi, R; Marconi, P. Cytokine response to inactivated Candida albicans in mice. Cell Immunol. 1995 May;162(2):256–264. [PubMed]
  • Rosenfeld, SI; Baum, J; Steigbigel, RT; Leddy, JP. Hereditary deficiency of the fifth component of complement in man. II. Biological properties of C5-deficient human serum. J Clin Invest. 1976 Jun;57(6):1635–1643. [PubMed]
  • Salvin, SB; Neta, R. Resistance and susceptibility to infection in inbred murine strains. I. Variations in the response to thymic hormones in mice infected with Candida albicans. Cell Immunol. 1983 Jan;75(1):160–172. [PubMed]
  • SALVIN, SB; PETERSON, RD; GOOD, RA. THE ROLE OF THE THYMUS IN RESISTANCE TO INFECTION AND ENDOTOXIN TOXICITY. J Lab Clin Med. 1965 Jun;65:1004–1022. [PubMed]
  • Salvin, SB; Tanner, EP. Resistance and susceptibility to infection in inbred murine strains. III. Effect of thymosin on cellular immune responses of alloxan diabetic mice. Clin Exp Immunol. 1984 Jan;55(1):133–139. [PubMed]
  • Sasada, M; Kubo, A; Nishimura, T; Kakita, T; Moriguchi, T; Yamamoto, K; Uchino, H. Candidacidal activity of monocyte-derived human macrophages: relationship between Candida killing and oxygen radical generation by human macrophages. J Leukoc Biol. 1987 Apr;41(4):289–294. [PubMed]
  • Sawyer, RT. Experimental pulmonary candidiasis. Mycopathologia. 1990 Feb;109(2):99–109. [PubMed]
  • Sawyer, RT; Harmsen, AG. The relative contribution of resident pulmonary alveolar macrophage and inflammatory polymorphonuclear neutrophils in host resistance to pulmonary infection by Candida albicans. Mycopathologia. 1989 Nov;108(2):95–105. [PubMed]
  • Scaringi, L; Blasi, E; Rosati, E; Marconi, P; Bistoni, F. Fungicidal activity of Candida albicans-induced murine lymphokine-activated killer cells against C. albicans hyphae in vitro. J Gen Microbiol. 1991 Dec;137(12):2851–2856. [PubMed]
  • Scaringi, L; Cornacchione, P; Rosati, E; Boccanera, M; Cassone, A; Bistoni, F; Marconi, P. Induction of LAK-like cells in the peritoneal cavity of mice by inactivated Candida albicans. Cell Immunol. 1990 Sep;129(2):271–287. [PubMed]
  • Scaringi, L; Cornacchione, P; Rosati, E; Fettucciari, K; Rossi, R; Marconi, P. Induction and persistence in vivo of NK/LAK activity by a mannoprotein component of Candida albicans cell wall. Cell Immunol. 1994 May;155(2):265–282. [PubMed]
  • Scaringi, L; Rosati, E; Cornacchione, P; Rossi, R; Marconi, P. In vivo modulation of lymphokine-activated killer cell activity by cell wall components of Candida albicans. Cell Immunol. 1992 Feb;139(2):438–454. [PubMed]
  • Schneider, J; Vicandi, J; Regulez, P; Quindós, G; Pontón, J; Cisterna, R. Different antibody response against Candida albicans cell wall antigens in cervicovaginal secretions of patients with vulvovaginal candidiasis. Gynecol Obstet Invest. 1990;30(3):174–177. [PubMed]
  • Scott, P; Natovitz, P; Coffman, RL; Pearce, E; Sher, A. Immunoregulation of cutaneous leishmaniasis. T cell lines that transfer protective immunity or exacerbation belong to different T helper subsets and respond to distinct parasite antigens. J Exp Med. 1988 Nov 1;168(5):1675–1684. [PubMed]
  • Shankar, AH; Titus, RG. T cell and non-T cell compartments can independently determine resistance to Leishmania major. J Exp Med. 1995 Mar 1;181(3):845–855. [PubMed]
  • Sieck, TG; Moors, MA; Buckley, HR; Blank, KJ. Protection against murine disseminated candidiasis mediated by a Candida albicans-specific T-cell line. Infect Immun. 1993 Aug;61(8):3540–3543. [PubMed]
  • Simark-Mattsson, C; Bergenholtz, G; Jontell, M; Tarkowski, A; Dahlgren, UI. T cell receptor V-gene usage in oral lichen planus; increased frequency of T cell receptors expressing V alpha 2 and V beta 3. Clin Exp Immunol. 1994 Dec;98(3):503–507. [PubMed]
  • Sinha, BK; Prasad, S; Monga, DP. Studies of experimental candidiasis in T-cell-deficient mice. Zentralbl Bakteriol Mikrobiol Hyg [A]. 1987 Jun;265(1-2):203–209. [PubMed]
  • Smith, PD; Lamerson, CL; Banks, SM; Saini, SS; Wahl, LM; Calderone, RA; Wahl, SM. Granulocyte-macrophage colony-stimulating factor augments human monocyte fungicidal activity for Candida albicans. J Infect Dis. 1990 May;161(5):999–1005. [PubMed]
  • Sobel, JD. Epidemiology and pathogenesis of recurrent vulvovaginal candidiasis. Am J Obstet Gynecol. 1985 Aug 1;152(7 Pt 2):924–935. [PubMed]
  • Sohnle, PG; Collins-Lech, C; Wiessner, JH. Antimicrobial activity of an abundant calcium-binding protein in the cytoplasm of human neutrophils. J Infect Dis. 1991 Jan;163(1):187–192. [PubMed]
  • Solomkin, JS; Mills, EL; Giebink, GS; Nelson, RD; Simmons, RL; Quie, PG. Phagocytosis of Candida albicans by human leukocytes: opsonic requirements. J Infect Dis. 1978 Jan;137(1):30–37. [PubMed]
  • Sordelli, DO; Cassino, RJ; Macri, CN; Kohan, M; Dillon, MH; Pivetta, OH. Phagocytosis of Candida albicans by alveolar macrophages from patients with cystic fibrosis. Clin Immunol Immunopathol. 1982 Feb;22(2):153–158. [PubMed]
  • Spaccapelo, R; Romani, L; Tonnetti, L; Cenci, E; Mencacci, A; Del Sero, G; Tognellini, R; Reed, SG; Puccetti, P; Bistoni, F. TGF-beta is important in determining the in vivo patterns of susceptibility or resistance in mice infected with Candida albicans. J Immunol. 1995 Aug 1;155(3):1349–1360. [PubMed]
  • Stein, DK; Malawista, SE; Van Blaricom, G; Wysong, D; Diamond, RD. Cytoplasts generate oxidants but require added neutrophil granule constituents for fungicidal activity against Candida albicans hyphae. J Infect Dis. 1995 Aug;172(2):511–520. [PubMed]
  • Steinbakk, M; Naess-Andresen, CF; Lingaas, E; Dale, I; Brandtzaeg, P; Fagerhol, MK. Antimicrobial actions of calcium binding leucocyte L1 protein, calprotectin. Lancet. 1990 Sep 29;336(8718):763–765. [PubMed]
  • Steinshamn, S; Bergh, K; Waage, A. Effects of stem cell factor and granulocyte colony-stimulating factor on granulocyte recovery and Candida albicans infection in granulocytopenic mice. J Infect Dis. 1993 Dec;168(6):1444–1448. [PubMed]
  • Steinshamn, S; Waage, A. Tumor necrosis factor and interleukin-6 in Candida albicans infection in normal and granulocytopenic mice. Infect Immun. 1992 Oct;60(10):4003–4008. [PubMed]
  • Stevenhagen, A; van Furth, R. Interferon-gamma activates the oxidative killing of Candida albicans by human granulocytes. Clin Exp Immunol. 1993 Jan;91(1):170–175. [PubMed]
  • Stobo, JD; Paul, S; Van Scoy, RE; Hermans, PE. Suppressor thymus-derived lymphocytes in fungal infection. J Clin Invest. 1976 Feb;57(2):319–328. [PubMed]
  • Sundstrom, P; Jensen, J; Balish, E. Humoral and cellular immune responses to enolase after alimentary tract colonization or intravenous immunization with Candida albicans. J Infect Dis. 1994 Aug;170(2):390–395. [PubMed]
  • Syverson, RE; Buckley, H; Gibian, J; Ryan, GM., Jr Cellular and humoral immune status in women with chronic Candida vaginitis. Am J Obstet Gynecol. 1979 Jul 15;134(6):624–627. [PubMed]
  • Szabo, P; Weksler, ME. Is thymosin alpha 1 a thymic hormone? Clin Immunol Immunopathol. 1992 Dec;65(3):195–200. [PubMed]
  • Tavares, D; Ferreira, P; Vilanova, M; Videira, A; Arala-Chaves, M. Immunoprotection against systemic candidiasis in mice. Int Immunol. 1995 May;7(5):785–796. [PubMed]
  • Tavares, D; Salvador, A; Ferreira, P; Arala-Chaves, M. Immunological activities of a Candida albicans protein which plays an important role in the survival of the microorganism in the host. Infect Immun. 1993 May;61(5):1881–1888. [PubMed]
  • Thompson, HL; Wilton, JM. Interaction and intracellular killing of Candida albicans blastospores by human polymorphonuclear leucocytes, monocytes and monocyte-derived macrophages in aerobic and anaerobic conditions. Clin Exp Immunol. 1992 Feb;87(2):316–321. [PubMed]
  • Tonnetti, L; Spaccapelo, R; Cenci, E; Mencacci, A; Puccetti, P; Coffman, RL; Bistoni, F; Romani, L. Interleukin-4 and -10 exacerbate candidiasis in mice. Eur J Immunol. 1995 Jun;25(6):1559–1565. [PubMed]
  • Torosantucci, A; Bromuro, C; Gomez, MJ; Ausiello, CM; Urbani, F; Cassone, A. Identification of a 65-kDa mannoprotein as a main target of human cell-mediated immune response to Candida albicans. J Infect Dis. 1993 Aug;168(2):427–435. [PubMed]
  • Torosantucci, A; Palma, C; Boccanera, M; Ausiello, CM; Spagnoli, GC; Cassone, A. Lymphoproliferative and cytotoxic responses of human peripheral blood mononuclear cells to mannoprotein constituents of Candida albicans. J Gen Microbiol. 1990 Nov;136(11):2155–2163. [PubMed]
  • Treseler, CB; Maziarz, RT; Levitz, SM. Biological activity of interleukin-2 bound to Candida albicans. Infect Immun. 1992 Jan;60(1):183–188. [PubMed]
  • Uchida, K; Yamamoto, Y; Klein, TW; Friedman, H; Yamaguchi, H. Granulocyte-colony stimulating factor facilitates the restoration of resistance to opportunistic fungi in leukopenic mice. J Med Vet Mycol. 1992;30(4):293–300. [PubMed]
  • Valdez, JC; Mesón, OE; Sirena, A; de Alderete, NG. Characteristics of DTH suppressor cells in mice infected with Candida albicans. Mycopathologia. 1987 May;98(2):121–126. [PubMed]
  • van 't Wout, JW; Linde, I; Leijh, PC; van Furth, R. Contribution of granulocytes and monocytes to resistance against experimental disseminated Candida albicans infection. Eur J Clin Microbiol Infect Dis. 1988 Dec;7(6):736–741. [PubMed]
  • van 't Wout, JW; Poell, R; van Furth, R. The role of BCG/PPD-activated macrophages in resistance against systemic candidiasis in mice. Scand J Immunol. 1992 Nov;36(5):713–719. [PubMed]
  • Vazquez-Torres, A; Jones-Carson, J; Balish, E. Candidacidal activity of macrophages from immunocompetent and congenitally immunodeficient mice. J Infect Dis. 1994 Jul;170(1):180–188. [PubMed]
  • Vazquez-Torres, A; Jones-Carson, J; Balish, E. Nitric oxide production does not directly increase macrophage candidacidal activity. Infect Immun. 1995 Mar;63(3):1142–1144. [PubMed]
  • Vazquez-Torres, A; Jones-Carson, J; Warner, T; Balish, E. Nitric oxide enhances resistance of SCID mice to mucosal candidiasis. J Infect Dis. 1995 Jul;172(1):192–198. [PubMed]
  • Vecchiarelli, A; Cenci, E; Puliti, M; Blasi, E; Puccetti, P; Cassone, A; Bistoni, F. Protective immunity induced by low-virulence Candida albicans: cytokine production in the development of the anti-infectious state. Cell Immunol. 1989 Dec;124(2):334–344. [PubMed]
  • Vecchiarelli, A; Dottorini, M; Cociani, C; Pietrella, D; Todisco, T; Bistoni, F. Mechanism of intracellular candidacidal activity mediated by calcium ionophore in human alveolar macrophages. Am J Respir Cell Mol Biol. 1993 Jul;9(1):19–25. [PubMed]
  • Vecchiarelli, A; Mazzolla, R; Farinelli, S; Cassone, A; Bistoni, F. Immunomodulation by Candida albicans: crucial role of organ colonization and chronic infection with an attenuated agerminative strain of C. albicans for establishment of anti-infectious protection. J Gen Microbiol. 1988 Sep;134(9):2583–2592. [PubMed]
  • Vecchiarelli, A; Monari, C; Baldelli, F; Pietrella, D; Retini, C; Tascini, C; Francisci, D; Bistoni, F. Beneficial effect of recombinant human granulocyte colony-stimulating factor on fungicidal activity of polymorphonuclear leukocytes from patients with AIDS. J Infect Dis. 1995 Jun;171(6):1448–1454. [PubMed]
  • Vecchiarelli, A; Todisco, T; Puliti, M; Dottorini, M; Bistoni, F. Modulation of anti-Candida activity of human alveolar macrophages by interferon-gamma or interleukin-1-alpha. Am J Respir Cell Mol Biol. 1989 Jul;1(1):49–55. [PubMed]
  • Walker, KB; Butler, R; Colston, MJ. Role of Th-1 lymphocytes in the development of protective immunity against Mycobacterium leprae. Analysis of lymphocyte function by polymerase chain reaction detection of cytokine messenger RNA. J Immunol. 1992 Mar 15;148(6):1885–1889. [PubMed]
  • Walsh, TJ; Hathorn, JW; Sobel, JD; Merz, WG; Sanchez, V; Maret, SM; Buckley, HR; Pfaller, MA; Schaufele, R; Sliva, C, et al. Detection of circulating candida enolase by immunoassay in patients with cancer and invasive candidiasis. N Engl J Med. 1991 Apr 11;324(15):1026–1031. [PubMed]
  • Wang, M; Friedman, H; Djeu, JY. Enhancement of human monocyte function against Candida albicans by the colony-stimulating factors (CSF): IL-3, granulocyte-macrophage-CSF, and macrophage-CSF. J Immunol. 1989 Jul 15;143(2):671–677. [PubMed]
  • Watanabe, K; Kagaya, K; Yamada, T; Fukazawa, Y. Mechanism for candidacidal activity in macrophages activated by recombinant gamma interferon. Infect Immun. 1991 Feb;59(2):521–528. [PubMed]
  • Wei, S; Blanchard, DK; Liu, JH; Leonard, WJ; Djeu, JY. Activation of tumor necrosis factor-alpha production from human neutrophils by IL-2 via IL-2-R beta. J Immunol. 1993 Mar 1;150(5):1979–1987. [PubMed]
  • Wei, S; Blanchard, DK; McMillen, S; Djeu, JY. Lymphokine-activated killer cell regulation of T-cell-mediated immunity to Candida albicans. Infect Immun. 1992 Sep;60(9):3586–3595. [PubMed]
  • Wei, S; Serbousek, D; McMillen, S; Blanchard, DK; Djeu, JY. Suppression of human monocyte function against Candida albicans by autologous IL-2-induced lymphokine-activated killer cells. J Immunol. 1991 Jan 1;146(1):337–342. [PubMed]
  • Wey, SB; Mori, M; Pfaller, MA; Woolson, RF; Wenzel, RP. Hospital-acquired candidemia. The attributable mortality and excess length of stay. Arch Intern Med. 1988 Dec;148(12):2642–2645. [PubMed]
  • White, J; Herman, A; Pullen, AM; Kubo, R; Kappler, JW; Marrack, P. The V beta-specific superantigen staphylococcal enterotoxin B: stimulation of mature T cells and clonal deletion in neonatal mice. Cell. 1989 Jan 13;56(1):27–35. [PubMed]
  • Wilson, BD; Sohnle, PG. Neutrophil accumulation and cutaneous responses in experimental cutaneous candidiasis of genetically complement-deficient mice. Clin Immunol Immunopathol. 1988 Feb;46(2):284–293. [PubMed]
  • Witkin, SS. Inhibition of Candida-induced lymphocyte proliferation by antibody to Candida albicans. Obstet Gynecol. 1986 Nov;68(5):696–699. [PubMed]
  • Witkin, SS; Hirsch, J; Ledger, WJ. A macrophage defect in women with recurrent Candida vaginitis and its reversal in vitro by prostaglandin inhibitors. Am J Obstet Gynecol. 1986 Oct;155(4):790–795. [PubMed]
  • Witkin, SS; Jeremias, J; Ledger, WJ. A localized vaginal allergic response in women with recurrent vaginitis. J Allergy Clin Immunol. 1988 Feb;81(2):412–416. [PubMed]
  • Witkin, SS; Yu, IR; Ledger, WJ. Inhibition of Candida albicans--induced lymphocyte proliferation by lymphocytes and sera from women with recurrent vaginitis. Am J Obstet Gynecol. 1983 Dec 1;147(7):809–811. [PubMed]
  • Yamamoto, Y; Klein, TW; Friedman, H; Kimura, S; Yamaguchi, H. Granulocyte colony-stimulating factor potentiates anti-Candida albicans growth inhibitory activity of polymorphonuclear cells. FEMS Immunol Med Microbiol. 1993 Jun;7(1):15–22. [PubMed]
  • Yamamura, M; Valdimarsson, H. Participation of C3 in intracellular killing of Candida albicans. Scand J Immunol. 1977;6(6-7):591–594. [PubMed]
  • Zinkernagel, RM; Blanden, RV. Macrophage activation in mice lacking thymus-derived (T) cells. Experientia. 1975 May 15;31(5):591–593. [PubMed]
  • Zinkernagel, RM; Pfau, CJ; Hengartner, H; Althage, A. Susceptibility to murine lymphocytic choriomeningitis maps to class I MHC genes--a model for MHC/disease associations. Nature. 316(6031):814–817. [PubMed]
  • Zouali, M; Drouhet, E; Eyquem, A. Evaluation of auto-antibodies in chronic mucocutaneous candidiasis without endocrinopathy. Mycopathologia. 1984 Feb 15;84(2-3):87–93. [PubMed]
  • Zunino, SJ; Hudig, D. Interactions between human natural killer (NK) lymphocytes and yeast cells: human NK cells do not kill Candida albicans, although C. albicans blocks NK lysis of K562 cells. Infect Immun. 1988 Mar;56(3):564–569. [PubMed]