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A new approach is proposed for X-ray dynamical diffraction theory in distorted

crystals. The theory allows one to perform dynamical diffraction simulations

between Bragg peaks for non-ideal crystals, using a simple approach of two

distorted waves. It can be directly applied for reciprocal-space simulation. The

formalism is used to analyse high-resolution X-ray diffraction data, obtained for

an InSb/InGaSb/InSb/InAs superlattice grown on top of a GaSb buffer layer on

a (001) GaSb substrate.

1. Introduction

High-resolution X-ray diffraction (see e.g. Fewster, 2003;

Pietsch et al., 2004) has become a standard tool for the non-

destructive characterization of epitaxic layers, films and

complex multilayer semiconductor structures, e.g. super-

lattices (SLs). The layer thickness, chemical composition and

strain distribution within such multilayer structures can be

successfully obtained by comparing experimental data with

simulations, using well developed approaches to X-ray dyna-

mical diffraction theory in deformed crystals (see e.g. Takagi,

1962; Taupin, 1964; Afanas’ev & Kohn, 1971; Pinsker, 1978;

Bartels et al., 1986; Härtwig, 2001). However, those approa-

ches are restricted by the strong approximation of small

angular deviation from the appropriate angular Bragg position

�B (|� � �B|� 1). Such an approximation results in incorrect

angular peak positions for strongly strained layers in hetero-

structures or SLs (Zaus et al., 1991; Servidori et al., 1992).

To solve this problem, Zaus (1993) represented an inho-

mogeneous layer by a combination of thin homogeneous

lamellae; for each lamella, he employed the dynamical

diffraction theory for an ideal crystal. Such an approach can

partially solve the problem; however, it does not take into

account that the two-beam approximation will be incorrect for

large deviation angles. Grundmann & Krost (2000) have

tested all commercially available simulation programs, based

on the dynamical diffraction theory, and found that these

programs produce incorrect results for large angular scans.

One of the major reasons, as they pointed out, is the two-beam

diffraction restriction, where the appropriate simulation

parameters are developed around only one vector in reci-

procal space. The other reason, as they mentioned, lies in

the approximations for the angular parameters ðk2
h � k2

0Þ=k2
0

usually used in dynamical diffraction theories.

Grundmann & Krost (2000) have also reported that the

generalized dynamical diffraction approach (De Caro et al.,

1997), taking into account e.g. all four solutions of the secular

equation as well as the asymptotic sphericity of the dispersion

surface, does not correctly describe the scattering intensity far

from the appropriate Bragg position, again due to the two-

beam diffraction approximation. As an alternative, they used

kinematical diffraction theory. However, even for thin layers,

the kinematical theory can produce incorrect results, e.g. in the

case of multilayer structures, where the dynamical interaction

between waves needs to be taken into account (Bartels et al.,

1986; Vardanyan et al., 1985). Caticha (1994) used the Darwin

(1914) approach for the case of symmetrical diffraction at an

ideal (undeformed) crystal to build an extended version of

the dynamical diffraction theory, which takes into account

multiple beam effects within the two-beam formalism.

However, he did not consider the important case of chemically

inhomogeneous structures with an arbitrary deformation field,

which is typical for modern opto- and microelectronic struc-

tures (see e.g. Fewster, 2003). Recently, Holý & Fewster

(2003), using Laue-type theory and the 6� 6 matrix formalism

investigated the three-beam diffraction case in a crystal with a

SL, which is an extension of the standard two-beam diffraction

approach.

In this article, we introduce a new approach to X-ray

dynamical diffraction theory in distorted crystals, which

implicitly includes coplanar multiple beam diffraction in the

two-beam diffraction case. It allows us to perform dynamical

diffraction simulations between Bragg peaks for non-ideal

crystals, using a simple approach of two distorted waves. We

exclude from our consideration the limit cases (rarely used for

multilayer structure characterization) of grazing incidence

diffraction (see e.g. Stepanov et al., 1998, and references

therein) and when the Bragg angle is close to �/2 (see e.g.
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Souvorov et al., 2004, and references therein). We also do not

consider the complex case of multiple beam diffraction when

several strong reflections occur simultaneously (see e.g. Kohn,

1991; Okitsu, 2003, and references therein), because such a

situation is usually avoidable by appropriate experimental

planning. Further, we introduce a new integral representation

for the angular shift caused by lattice deformations, which can

also be employed for the case of relatively strong deforma-

tions causing interbranch scattering (Penning, 1966; Authier,

1967, 2005).

2. Theory

To describe dynamical X-ray diffraction by solving the

Maxwell equations in a distorted crystal, the total wavefield

will be sought as a composition of incident and diffracted

waves:

E r; sð Þ ¼ E0 r; sð Þ exp ik0rð Þ þ Es r; sð Þ exp iksrð Þ: ð1Þ

Here, |k0| = |ks| = k = 2�/�, � is the wavelength in vacuum and

E0,s(r) are slowly varying functions for the transmitted and

scattered wave, respectively. The vectors k0 and ks are wave-

vectors of the incident and scattered waves, respectively, and

s = ks � k0 are the scattering vectors. Note that the effects of

refraction, attenuation and dispersion in the medium are

represented in our approach through the slowly changing

amplitudes E0,s(r), in contrast to the usual dynamical diffrac-

tion approaches (see e.g. Pinsker, 1978; Authier, 2005)

employing dispersion in the wavevectors k0,s.

From the Helmholtz equation (see e.g. Afanas’ev & Kohn,

1971),

�EðrÞ þ k2½1þ �ðrÞ�EðrÞ ¼ 0; ð2Þ

we obtain (see also Podorov & Förster, 2000)

2i k0 � rrrð ÞE0 þ k2�ðrÞE0

� �
expðik0rÞ

þ 2i ks � rrrð ÞEs þ k2�ðrÞEs

� �
expðiksrÞ ¼ 0; ð2aÞ

where � is the polarizability of the crystal. If the deformation

u(r) does not cause the overlapping of the core electron

wavefunctions of the displaced atoms (i.e. @ui=@xj � 1), the

Takagi approximation (Takagi, 1962, 1969) �(r) = �id(r� u(r))

can be used (Kuriyama, 1967). Then the polarizability can be

represented as (see e.g. Takagi, 1969)

�ðrÞ ¼P
g

�gðrÞ exp½igr� iguðrÞ�: ð3Þ

Here, g are reciprocal lattice vectors, and u(r) is the displa-

cement of atoms from their positions in an ideal crystal lattice.

We slightly modify the expression for the argument of the

exponents in equation (3):

gr� gu rð Þ ¼ gr� Rr
0

rrr gu ~rrð Þ½ � d~rr

¼ Rr
0

g� rrr gu ~rrð Þ½ �� �
d~rr

¼ Rr
0

~gg ~rrð Þ d~rr

¼ Rr
0

2�

d ~rrð Þ n~gg ~rrð Þ
� �

d~rr: ð4Þ

Here ~ggðrÞ is the local vector of the reciprocal lattice, n~gg is the

local unit vector parallel to the vector ~ggðrÞ, and d(r) is the local

interplanar spacing. We also used the fact that u(0)� 0, where

the origin corresponds to the surface of the crystal. Thus, by

using equations (3) and (4), we do not need any higher-order

correction for the deformation field [e.g. the second-order

approximations used by De Caro et al. (1996) to describe the

case of strong deformations], because our derivations use only

the local interplanar spacings.

To divide equation (2a) into two independent differential

equations, we multiply equation (2a) by the factor expð�i k0rÞ
and average over one elementary cell volume (see e.g. Takagi,

1962, 1969):

2i k0 � rrrð ÞE0 þ k2E0

P
g

�gðrÞ�ð~gg; rÞ

þ 2iC�ðsÞ ks � rrrð ÞEs þ k2CEs

P
g

�gðrÞ�ð~ggþ s; rÞ ¼ 0: ð5Þ

The same procedure with multiplicative factor expð�i ksrÞ
gives

2i ks � rrrð ÞEs þ k2Es

P
g

�gðrÞ�ð~gg; rÞ

þ 2iC�ð�sÞ k0 � rrrð ÞE0 þ k2CE0

P
g

�gðrÞ�ð~gg� s; rÞ ¼ 0; ð6Þ

�ðsþ ~gg; rÞ ¼ 1

Ve:c:

R
Ve:c:

exp i
Rr
0

sþ ~ggð~rrÞ½ � d~rr

� �
dV; ð7Þ

�ðsÞ ¼ 1

Ve:c:

Z
Ve:c:

exp isrð Þ dV; ð8Þ

and Ve:c: is the volume of the elementary cell at point r.

C is the polarization factor, which is 1 for � polarization

and ðk0 � ksÞ=k2 for � polarization. Note that in equations (5)

and (6) we include the full range of Fourier components

of the polarizability �g. This takes into account multiwave

diffraction in a manner similar to that used by Caticha

(1994). The factor �ðs� ~gg; rÞ includes the usual component

expfi ½sr� grþ guðrÞ�g, and a small correction. Note that with

correction [equation (4)] we fulfil the Bragg condition exactly.

For the special case s ’ g, equations (5) and (6) reduce to the

Takagi–Taupin equations. The system of equations (5) and (6)

extends the Takagi–Taupin theory for simulation of the

reflection curve over very large angular ranges including

several orders of reflection. As we use an arbitrary scattering

vector, the theory is suitable for simulation of the reciprocal-

space map of nano-sized structures.
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As one of the applications of the theory, we consider a one-

dimensional case where the functions u(r) and �g(r) depend

only on the coordinate z. This approximation is applicable to a

broad class of multilayer structures in which the layers are

homogeneous in both lateral directions. We also restrict

ourselves to modelling !–2� scans (rotation speed of the

detector/analyser crystal is twice that of the sample) in the

symmetrical geometry. Then s = sn = 2k sin � n, where � is the

angle between k0 and the crystal surface, and n is the outward

normal to the crystal surface. Then the system of equations (5)

and (6) can be transformed to a one-dimensional differential

equation similar to the Taupin (1964) equation.

3. Application

We demonstrate the power of the new approach by studying,

via high-resolution X-ray diffraction, an InSb/InGaSb/InSb/

InAs superlattice grown on top of a GaSb buffer layer on a

(001) GaSb substrate. This multilayered periodic hetero-

composition was grown by molecular beam epitaxy (MBE) on

a precisely oriented GaSb(001) substrate at �773 K. A thick

GaSb buffer layer (�0.5 mm) was used to improve the quality

of the growth surface. The primary part of the periodical

structure consisted of one monolayer of InSb, 4.5 nm of

GaxIn1�xSb, one monolayer of InSb and 9 nm of InAs, repe-

ated 60 times to form a superlattice. The composition of the

GaxIn1�xSb layers perfectly matched the average lattice

parameter of the periodic structure to the lattice parameter of

the GaSb substrate.

X-ray measurements were performed on a Rigaku Ultima

III X-ray diffractometer aligned to quasi-high-resolution

mode with a high-brilliance multilayer mirror, two-bounce

Ge(110) monochromator, 220 reflection, and narrow receiving

slits in front of the detector. Corresponding !�2� rocking

curves (RCs) were measured over a wide angular range,

including diffracted RCs around the GaSb 002, 004 and 006

reflections. Extensive interference patterns revealed high

crystalline perfection of the investigated structure: indeed, the

estimated roughness of the interfaces is less than a couple of

monolayers. We did not observe any overlapping or non-

coincidence of SL peaks from different reflections, caused by

unevenness of the period of the SL in comparison with the

main lattice parameter (Schuster et al., 1995). The SL peaks

smoothly turn from one reflection into the other, without

visible interruptions.

The extended diffraction pattern, measured around the

GaSb 004 reflection, is shown in Fig. 1. Along with the main

superlattice peaks, corresponding to the main superlattice

period of the heterostructure (14.5 nm), all RCs show addi-

tional sharp peaks between major satellites, equidistant from

the main SL peaks and corresponding to an additional super-

superlattice periodicity (Punegov, 2003; Rettig et al., 1998),

unintentionally created during epitaxic growth, probably as a

result of a small periodic change of the In incorporation rate at

epitaxic layers.

Equations (5) and (6) were solved numerically by a fourth-

order Runge–Kutta method in the one-dimensional case, and

were subsequently used for curve fitting. Preliminary calcu-

lations and best fits have shown that the period of the super-

superlattice variations is about 2.5 times greater than the

period of the main superlattice. It was deduced that the main

superlattice period is equal to 14.5 nm and the additional

super-superlattice period is equal to 36.0 nm (see Fig. 2 and

Table 1). As the present theory is not formulated in terms of

the deformation field, but rather in terms of the lattice para-

meter distribution a(z), it could give a means to determine the

lattice-parameter distribution with greater precision. It is
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Figure 1
Experimental rocking curve (upper) for GaSb 004 reflection and fitted
simulated curve. Intensity is shown on logarithmic scale; curves are
displaced vertically for clarity.

Figure 2
Lattice parameter in the InSb/InGaSb/InSb/InAs superlattice (fragment).

Table 1
Best-fit parameters for an InSb/InGaSb/InSb/InAs superlattice.

Layers 1 through 4 are repeated 60 times to form the superlattice.

Layer
Chemical
composition Thickness

Average interplanar
spacing for
004 reflection plane

1 InSb 0.7 nm 0.1575 nm†
2 GaxIn1�xSb 4.3 nm 0.1530 nm†
3 InSb 0.7 nm 0.1575 nm†
4 InAs 8.8 nm 0.1515 nm
5 GaSb (001)-GaSb substrate 0.1524 nm

† These parameters vary with a superperiod of 36.0 nm and modulation amplitude of
0.0004 nm; see Fig. 2.
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possible to conclude from our simulations that within the SL

period, two InSb monolayers, divided by the GaInSb layer,

have different interplanar spacing and hence slightly different

chemical composition due to layer intermixing. Small differ-

ences between the simulated and the experimental rocking

curves may be explained by an additional weak variation of

chemical composition in the multilayers. A difference between

our method and the conventional Takagi–Taupin theory with

Zaus correction of the angular variable (Zaus, 1993) is shown

in Fig. 3. The present theory gives a simple way to simulate

reflection curves over a very large angular range. For simu-

lation of diffraction by crystals with three-dimensional defor-

mation fields, see the work of Podorov & Förster (2000).

4. Conclusion

In summary, we have introduced a new approach to X-ray

dynamical diffraction theory in distorted crystals. The theory

allowed us, for the first time, to perform multiwave dynamical

diffraction simulations between Bragg peaks for non-ideal

crystals, using a simple approach of two distorted waves. The

formalism was then applied to yield precise structural infor-

mation for an InSb/InGaSb/InSb/InAs superlattice, from high-

resolution X-ray diffraction data. We anticipate that the new

formalism may sharpen the precision with which X-ray

diffraction is employed as an analytical tool for the non-

destructive quantitative characterization of epitaxic layers,

films and complex multilayer semiconductor structures.

The authors acknowledge funding from the Australian

Research Council.
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Figure 3
Simulated curves from present theory (upper) and from Takagi–Taupin
theory with Zaus correction. Intensity is shown on logarithmic scale;
curves are offset for clarity.

electronic reprint


