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Use of the Schulz or Gamma distribution in the description of particle sizes

facilitates calculation of analytic polydisperse form factors using Laplace

transforms, L[f(u)]. Here, the Laplace transform approach is combined with the

separated form factor (SFF) approximation [Kiselev et al. (2002). Appl. Phys. A,

74, S1654–S1656] to obtain expressions for form factors, P(q), for polydisperse

spherical vesicles with various forms of membrane scattering length density

(SLD) profile. The SFF approximation is tested against exact form factors that

have been numerically integrated over the size distribution, and is shown to

represent the vesicle form factor accurately for typical vesicle sizes and

membrane thicknesses. Finally, various model SLD profiles are used with the

SFF approximation to fit experimental small-angle neutron scattering (SANS)

curves from extruded unilamellar vesicles.

1. Introduction

In biological systems, membranes play an essential role as

selectively permeable barriers and as platforms for locating

delivery and exchange systems (Alberts et al., 1989). Since

they are more easily characterized than their more complex

biological counterparts, yet share many of the same properties,

unilamellar vesicles (ULVs) are frequently used as model

membrane systems. ULVs also have an important role as

capsules for drug delivery (Gregoriadis, 1995), and have been

utilized as reaction compartments for the controlled synthesis

of nanometre-sized crystals (Korgel & Monbouquette, 2000).

ULVs, shown schematically in Fig. 1, are essentially hollow

shells, suspended in and containing aqueous media. The ULV

shell (also shown schematically in Fig. 1) is composed of a lipid

bilayer membrane, which has a hydrophilic surface (composed

of lipid headgroups) and hydrophobic interior (composed of

hydrophobic lipid tails).

Over the years, there have been a wide variety of studies to

characterize membrane structure, hydrophobic thickness and

interfacial hydration (e.g. Worcester & Franks, 1976; Hristova

& White, 1998; Marsh, 2002). Typically, these studies have

been motivated by the potential importance of membrane

thickness in modulating protein insertion (Ridder et al., 2002),

activity (Ben-Shooshan et al., 2002) and membrane lateral

organization (Killian, 1998; Dumas et al., 1999). Small-angle

scattering (e.g. Wilkins et al., 1971; Pencer & Hallett, 2000;

Schmiedel et al., 2001; Kiselev, Zbytovská et al., 2004; Kiselev,

Zemlyanaya & Aswal, 2004; Kučerka et al., 2004; Zbytovská et

al., 2005; Nieh et al., 2005; Pencer, Nieh et al., 2005) and

diffraction studies (e.g. Worcester & Franks, 1976; King et al.,

1985; Jacobs & White, 1989; Katsaras et al., 1992; Raghunathan

& Katsaras, 1995; Marsan et al., 1998; Darkes & Bradshaw,

2000) have proven to be particularly effective in providing

information about the lipid bilayer hydrophobic thickness,

degree of hydration, and influence on these parameters by

additives such as steroids and hydrophobic solutes.

While the application of small-angle scattering to the study

of membrane structure in vesicles or liposomes is certainly not

new (see e.g. Wilkins et al., 1971), structural studies on ULVs

continue to garner interest. Recently, several different

Figure 1
Schematic representation of a unilamellar vesicle (ULV) (left), lipid
bilayer (middle) and typical phospholipid (right). In the left and center
figures, the hydrophilic lipid heads are shown in red and hydrophobic tails
are shown in green. In the space-filling model of a lipid on the right, C and
N atoms are shown in green, O atoms in red, H atoms in white and P
in magenta.
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approaches have been applied to extract detailed membrane

structural parameters from ULV SANS and small-angle X-ray

scattering (SAXS) data (Schmiedel et al., 2001; Riske et al.,

2001; Pabst et al., 2003; Kiselev, Zemlyanaya & Aswal, 2004;

Brzustowicz & Brunger, 2005). The SLD profiles of ULV

membranes, in particular, have been successfully modeled

using a ‘top-hat’ function or uniform shell (e.g. Pencer &

Hallett, 2000), a series of uniform shells or sum of ‘top-hat’

functions (e.g. Riske et al., 2001; Schmiedel et al., 2001; Pencer,

Mills et al., 2005), a combination of layers of uniform and

linearly varying SLD (e.g. Kučerka et al., 2004) or sum of

Gaussians (e.g. Pabst et al., 2003; Brzustowicz & Brunger,

2005).

In extracting membrane structural parameters from SANS

data, complications arise due to the polydispersity inherent in

ULV preparations. Typically, polydispersity is taken into

account in fits to SANS and SAXS data by numerical inte-

gration of the monodisperse form factor over the size distri-

bution (e.g. Pencer & Hallett, 2000). The use of analytic

polydisperse form factors (as in e.g. Wagner, 2004), on the

other hand, provides a rapid way to fit experimental data via

non-linear least-squares fitting.

Recently, the method of separated form factors (SFF) was

introduced, which facilitates the incorporation of any arbitrary

analytic or numerical SLD profile into the ULV scattering

function (Kiselev et al., 2002; Kiselev, Zbytovská et al., 2004;

Kiselev, Zemlyanaya & Aswal, 2004). Here, we take the

previously derived monodisperse SFF (Kiselev et al., 2002) and

from it derive an analytic expression for the SFF for poly-

disperse ULVs whose sizes are distributed via the Schulz or

Gamma distribution. Expressions for vesicle form factors are

then derived using several proposed membrane SLD profiles.

We test the accuracy of the polydisperse SFF approximation

against the exact form factor using the polydisperse uniform-

shell model (Bartlett & Ottewill, 1992). The SFF is also tested

against exact monodisperse form factors that have been

numerically integrated over the size distribution. Finally,

experimental SANS data from ULV samples of differing

chemical or isotopic composition are fitted, in order to

compare the various SLD models.

2. Theory

The intensity of neutrons scattered from a polydisperse

ensemble of interacting particles is given by (Kotlarchyk &

Chen, 1983)

IðqÞ ¼ nphPðqÞiS0ðqÞ; ð1Þ
where np is the particle number density, hPðqÞi denotes the size

distribution average of the monodisperse particle form factor,

P(q) = |F(q)|2, F(q) is the scattering amplitude, and S0(q) is the

polydisperse structure factor. S0(q) is given by

S0ðqÞ ¼ 1þ �ðqÞ SðqÞ � 1½ �; ð2Þ
where

�ðqÞ ¼ jhFðqÞij2=hjFðqÞj2i; ð3Þ

S(q) is the monodisperse structure factor, and the scattering

vector value, q, is defined by q = 4� sinð�=2Þ=�, where � is the

scattering angle and � is the wavelength of the incident beam.

2.1. The monodisperse form factor

By symmetry considerations, the Fourier transform of the

SLD for spherical shells, or vesicles, can be written as a radial

integral. The monodisperse form factor, P(q) = [F(q)]2, is then

calculated as

PðqÞ ¼ FðqÞ½ �2¼ 4�ð Þ2
Z1
0

�ðrÞ � �m

� �
r2 sinðqrÞ

qr
dr

8<
:

9=
;

2

; ð4Þ

where �(r) is the SLD as a function of the radial distance from

the center of the vesicle, and �m is the SLD of the medium.

Note that F and P are functions of the vesicle radius, R,

membrane thickness, t, and SLD, �, as well as q.

2.2. The method of separated form factors (SFF)

Recently, an approximation to the vesicle form factor, P(q),

the SFF approximation, had been introduced which takes

advantage of the small magnitude of the membrane thickness

compared with the vesicle radius, a characteristic feature of

phospholipid vesicles (Kiselev et al., 2002).

In the derivation of the SFF approximation, the integral

form of the monodisperse vesicle scattering amplitude,

F(q, R), is rewritten in terms of the vesicle radius, R, to give

(Kiselev et al., 2002)

Fðq;RÞ ¼ 4�

Zt=2

�t=2

�ðxÞ � �m

� � sin ðRþ xÞq½ �
ðRþ xÞq ðRþ xÞ2 dx; ð5Þ

where x = 0 corresponds to the bilayer midplane, the

membrane SLD �ðxÞ 6¼ �s for �t/2 < x < t/2, where �m is the

SLD of the medium, and R corresponds to the vesicle radius,

or distance from the vesicle center to the bilayer midplane.

When the membrane thickness, t, is much less than R, we have

that R � t/2 and R + x ’ R. For symmetric bilayers, the

scattering amplitude can then be approximated by (Kiselev et

al., 2002)

Fðq;RÞ ’ FSFFðq;RÞ

¼ 4�R2 sinðqRÞ
qR

Zt=2

�t=2

�ðxÞ � �m

� �
cosðqxÞ dx: ð6Þ

The error, or difference between the approximate and exact

scattering functions, introduced by the SFF approximation to

the exact form factor is not discussed here, as it has been dealt

with, in detail, by Kiselev et al. (2002). Comparison of FSFF

with the form factors for planar membranes (e.g. Pencer &

Hallett, 2000) and infinitely thin shells (e.g. Pencer & Hallett,

2003) shows that FSFF can be written as (Kiselev et al., 2002)

FSFFðq;RÞ ¼ FTSðq;RÞFMðqÞ; ð7Þ
where the thin-shell scattering amplitude, FTS is given by
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FTSðq;RÞ ¼ 4�R2 sinðqRÞ
qR

; ð8Þ

and the scattering amplitude from the membrane, FM, is given

by

FMðqÞ ¼
Zt=2

�t=2

�ðxÞ � �m

� �
cosðqxÞ dx: ð9Þ

Note that the membrane form factor for randomly oriented

flat sheets, which can be used to approximate the scattering

from large vesicles with high polydispersity, given by e.g.

Pencer & Hallett (2000), is similar to the expression given in

equation (9), except that it also includes a Lorentz correction,

1/q, resulting in

FKPðqÞ ¼
1

q

Zt=2

�t=2

�ðxÞ � �m

� �
cosðqxÞ dx: ð10Þ

This expression is often referred to as the Kratky–Porod

approximation (e.g. Pencer & Hallett, 2000, and references

therein).

2.3. The Laplace method

The Schulz distribution has been used successfully to

describe the size distribution of a variety of colloidal aggre-

gates (Aragòn & Pecora, 1976; Hayter, 1983; Kotlarchyk &

Chen, 1983; Bartlett & Ottewill, 1992; Wagner, 2004). As

demonstrated by electron microscopy (Hallett, Nickel et al.,

1991), light scattering (Hallett, Watton & Krygsman, 1991)

and SANS (Pencer, Mills et al., 2005), the size distribution of

extruded phospholipid vesicles is well described by a Schulz

distribution. Despite the successful use of the Schulz and other

similar continuous functions to describe vesicle size distribu-

tions, some caution should be exercised to avoid the use of

non-physical parameters (e.g. excessively large polydispersity)

which lead to distributions where vesicles can have radii

smaller than their thickness, i.e. R < t.

For polydisperse particles whose sizes follow a Schultz

distribution, it has been recognized elsewhere that the poly-

disperse form factor can be expressed in terms of a Laplace

transform of the monodisperse form factor (Aragòn & Pecora,

1976; Hayter, 1983; Kotlarchyk & Chen, 1983; Bartlett &

Ottewill, 1992; Wagner, 2004). Below, we show the application

of the Laplace transform method to the SFF approximation

for Schulz-distributed vesicles.

The polydisperse form factor is determined by integrating

the monodisperse form factor, P(q), over the Schulz distri-

bution, resulting in

PzðqÞ ¼
Z1
0

Fðq;RÞ½ �2GðRÞ dR; ð11Þ

and polydisperse scattering amplitude

FzðqÞ ¼
Z1
0

Fðq;RÞGðRÞ dR; ð12Þ

where the Schulz distribution, G(R), is given by

GðRÞ ¼ zþ 1

Ra

� �zþ1
Rz

�ðzþ 1Þ exp
�Rðzþ 1Þ

Ra

� �
; ð13Þ

the mean radius is Ra, the variance is �2 = R2
a/(z + 1) and the

polydispersity (or relative variance) is 1/(z + 1).

A potential problem in the use of the SFF approximation

with a polydisperse population of vesicles relates to the

possible breakdown of the validity of the SFF, since, even

though t < Ra, R could span a range of values where t � R.

Thus, in order for the SFF to remain valid, we have the

additional requirement that t < Ra � 2�. Values of R less than

Ra � 2� are not important, since the value of G(R) in this

range is negligible (see e.g. Aragòn & Pecora, 1976).

Letting u = R and s = (z + 1)/Ra, we find

PzðqÞ ¼ g1

Z1
0

usRa�1 Fðq; uÞ½ �2expð�suÞ du

¼ g1L usRa�1 Fðq; uÞ½ �2� �
; ð14Þ

where L is the Laplace transform operator and g1 = [(z + 1)/

Ra]z+1[�(z + 1)]�1. Similarly, the size distribution average of

the scattered amplitude, F(q), can be calculated:

FzðqÞ ¼ g1L usRa�1Fðq; uÞ� �
: ð15Þ

In principle, it is possible to use equations (14) and (15) to

determine analytic forms for both hP(q)i and �(q) for a variety

of membrane SLD profiles in spherical vesicles. However,

even for relatively simple profiles (such as the three-layer

rectangular profile discussed below) the complexity of such

expressions precludes their utility. The SFF approximation

greatly simplifies matters, since, in the SFF expression, the

membrane SLD no longer depends on the vesicle radius. Since

FM is independent of R, substitution of equation (7) into

equation (14) results in

PzðqÞ ¼ g1 FMðqÞ
� �2L usRa�1 FTSðq; uÞ� �2

n o
: ð16Þ

Similarly, substitution of equation (7) into equation (15) gives

FzðqÞ ¼ g1FMðqÞL usRa�1FTSðq; uÞ� �
: ð17Þ

Evaluation of the Laplace transform in equation (16) results in

PzðqÞ ¼ hPðqÞi

¼ 8�2ðzþ 2Þðzþ 3Þ
s2q2

FMðqÞ
� �2

�
(

1� ð1þ 4q2=s2Þ�ðzþ1Þ=2s2 cos½ð3þ zÞ arctanð2q=sÞ�
4q2 þ s2

)
:

ð18Þ
The evaluation of Fz follows similarly to give
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FzðqÞ ¼
4�ðzþ 1Þðzþ 2Þðzþ 3Þ

q
FMðqÞ

� ð1þ q2=s2Þ�z=2
s sin ð4þ zÞ arctanðq=sÞ½ �
q2 þ s2ð Þ2 : ð19Þ

In the following section, we derive expressions for FM for a

number of commonly used model membrane SLD profiles.

2.4. Membrane form factors

Models for or approximations to membrane SLD profiles,

typically consist of one or several ‘rectangular’ or ‘top-hat’

functions (e.g. King et al., 1985; Pencer & Hallett, 2000;

Schmiedel et al., 2001; Riske et al., 2001), or one or several

Gaussians (Wiener & White, 1992; Nagle & Tristram-Nagle,

2000; Pabst et al., 2003; Brzustowicz & Brunger, 2005). Below,

we first derive expressions for the scattering amplitudes for

profiles based on the ‘top-hat’ representation as well as some

recent extensions to this model, followed by those for the sum

of Gaussians representation. These model SLD profiles are

shown schematically in Fig. 2 for conditions corresponding to

neutron scattering contrast of hydrogenous lipid in pure D2O.

It should be noted that the SLD profiles appropriate for

SAXS are quite different from those shown for lipid in D2O. In

general, there exists the opportunity to accentuate or reduce

the scattering contribution from the various lipid components

by the appropriate choice of probe (either X-ray or neutron)

or, in the case of neutron scattering, the isotopic composition

of either the lipid or medium. For example, the high electron

density of the phosphate portions of the lipid headgroups

make these the primary contributor to the X-ray scattering

signal from the lipid, as opposed to the negative SLD of the

acyl chains which gives the largest contribution to the neutron

scattering signal from lipid in D2O in Fig. 2. In Table 1,

neutron and X-ray scattering lengths and densities are shown

for DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine).

Scattering lengths are determined from the atomic scattering

lengths (Sears, 1992), and corresponding scattering length

densities are calculated from the scattering lengths and known

molecular or component volumes (Nagle & Tristram-Nagle,

2000; Pencer, Mills et al., 2005). As can be seen from the SLD

values summarized in Table 1, SANS measurements of

hydrogeneous lipid in D2O are most sensitive to the contri-

bution of the acyl-chain region, while SANS or SAXS

measurements of hydrogeneous lipid in H2O will be more

sensitive to the scattering contribution from the headgroup

regions, and therefore also be sensitive to the spacing

between them.

The ‘top-hat’ is the simplest of the models (Fig. 2A) for

vesicle membranes, which assumes a uniform SLD, i.e. �ðxÞ =

�c when �DC < x < DC, and �ðxÞ = �m when x < �DC or DC <

x, where 2DC is the membrane hydrophobic thickness, �c is the

SLD of the membrane hydrophobic region and �m is the SLD

of the medium or solvent. The membrane scattering ampli-

tude, FM, for this profile is

FMðqÞ ¼
2ð�c � �mÞ

q
sin qDC

	 

: ð20Þ

As has been observed in a number of studies (e.g. Kučerka et

al., 2004; Kiselev, Zemlyanaya & Aswal, 2004), the uniform-

shell model, while adequately describing scattering from

vesicles when 2qDC < 1, fails to reproduce the observed

scattering behavior at higher q, due to the inhomogeneous

SLD normal to the membrane surface. One way to account for

such inhomogeneities is to represent the SLD profile by a

multishell model (Fig. 2B), where scattering from the lipid

acyl-chain and headgroup regions are treated separately (see

Fig. 1). The membrane SLD, �ðxÞ is then defined as

�ðxÞ ¼
�h when �DC �DH < x< �DC;
�c when �DC < x<DC;
�h when DC < x<DC þDH;
�m when jxj>DH þDC:

8>><
>>:

In this case, the scattering amplitude is given by
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Figure 2
Schematic representation of various model SLD profiles for the lipid
bilayer membrane. (A) A membrane with uniform SLD. (B) Three shells
with uniform SLD. (C) Three shells with linearly varying SLD. (D) A
single Gaussian SLD profile. (E) A profile equal to a sum of three
Gaussians. (F) Schematic representation of a lipid bilayer, showing the
orientation and position of lipids relative to the SLD plots.

Table 1
Molecular volumes, V, X-ray and neutron scattering lengths, b, and
scattering length densities, �, for DPPC at 323 K.

The X-ray SLD of H2O (and D2O) is 0.95 fm Å�3 and neutron SLDs are
�0.056 and 0.64 fm Å�3 for H2O and D2O, respectively.

DPPC Headgroup
Acyl
chains

Deuterated
chains

Chemical formula C40H80NO8P C10H18NO8P C30H62 C30D62

V (Å3) 1232 319 913 913
B (fm, X-ray) 1146 465.7 682.9 682.9
B (fm, neutron) 27.6 60.1 �32.4 613
� (fm Å�3, X-ray) 0.93 1.46 0.748 0.748
� (fm Å�3, neutron) 0.023 0.188 �0.036 0.671
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FMðqÞ ¼ 2 �c � �hð Þ sinðqDCÞ
q

þ 2 �h � �mð Þ sin qðDH þDCÞ
� �

q
; ð21Þ

where �h, �c and �m are the SLD of the headgroups, hydro-

carbon tails, and medium, respectively, DH is the thickness of

the headgroup region, and 2DC is the thickness of the tail

region.

The representation of the membrane–water interface in the

previous model is a simplification in that it does not account

for variation of the SLD due to penetration of water into the

membrane. An improvement on the three-shell model is

shown in Fig. 2(C), where the innermost and outermost layers

are now represented by linearly varying SLD profiles. For this

model,

�ðxÞ ¼

ð�h1 � �h2Þx=DH þ ð�h1 � �h2ÞðDH þDCÞ=DH þ �h2

when �DC �DH < x< �DC;
�c when �DC < x<DC;
ð�h2 � �h1Þx=DH þ ð�h1 � �h2ÞðDH þDCÞ=DH þ �h2

when DC < x<DC þDH;
�m when jxj>DH þDC:

8>>>>>><
>>>>>>:

Substitution of this profile into equation (9) results in

FMðqÞ ¼
2

q2DH

�
ð�h1 � �h2Þ

�
cosðqDCÞ � cos½qðDH þDCÞ�

�
þ qDH

�ð�c � �h1Þ sinðqDCÞ

þ ð�h2 � �mÞ sin½qðDH þDCÞ�
��
; ð22Þ

where �h1 is the SLD at the headgroup–water interface, �h2 is

the SLD and the acyl-chain–headgroup interface, and all other

variables are as before.

As an alternative to step functions, the membrane SLD

profile can be represented by one or several Gaussians

(Fig. 2D). For a single Gaussian, the SLD profile is given by

(see e.g. Pabst et al., 2003)

�ðxÞ ¼ ð�� �mÞ exp �x2=2D2
C

	 

; ð23Þ

which has a corresponding scattering amplitude given by

FMðqÞ ¼ ð2�Þ1=2ð�� �mÞDC exp �q2D2
C=2

	 

; ð24Þ

where � is the membrane SLD, �m is the solvent SLD, and DC

is the 1/e half-width of the membrane.

As in the case of the step-function representation, addi-

tional layers in the SLD profile can be constructed using series

of Gaussians. Here, we restrict our consideration to the sum of

three Gaussians (Fig. 2E), representing the outer headgroup

layer, the acyl-chain region, and the inner headgroup layer.

This profile is given by

�ðxÞ ¼ ð�h � �mÞ exp � ðx� XHÞ2
2D2

H

� �
þ ð�c � �mÞ exp � x2

2D2
C

� �

þ ð�h � �mÞ exp � ðxþ XHÞ2
2D2

H

� �
; ð25Þ

where �h, �c and �m are the SLD of the headgroup, tail and

solvent, DH and DC are the 1/e half-widths of the head and tail

regions, and XH corresponds to the center of the headgroup

region with respect to the center of the bilayer. The corre-

sponding scattering function is given by

FMðqÞ ¼ ð2�Þ1=2

�
2ð�h � �mÞDH exp

�q2D2
H

2

� �
cosðqXHÞ

þ ð�c � �mÞDC exp
�q2D2

C

2

� ��
: ð26Þ

Substitution of the various membrane scattering amplitudes,

FM, into equations (18) and (19) can then be used to calculate

the vesicle form factor, P(q), for ULVs having the membrane

SLD profiles discussed above. If the monodisperse structure

factor, S(q), is known, then FM [equations (18) and (19)] can

also be used to determine the polydisperse structure factor,

S0(q). The membrane SLD profiles above can also be substi-

tuted into equation (4) to obtain analytic form factors for

monodisperse vesicles. These equations are given in

Appendix A.

2.5. Assessment of the SFF approximation

As mentioned above, Bartlett & Ottewill (1992) have

derived an analytic expression for polydisperse core–shell

spherical particles that can be easily adapted to the case of

hollow shells or vesicles with a uniform membrane SLD.

Comparison of scattering curves generated from the SFF and

the analytic function given in Appendix B allows us to assess

the relative accuracy of the SFF. Fig. 3 shows such a compar-

ison for various values of the ratio t/R. Since the SFF
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Figure 3
Comparison between analytic and SFF calculations of the polydisperse
form factor for vesicles having membranes with uniform SLD. The
scattering curves are plotted against the dimensionless quantity qR. For
300 Å vesicles, the q range would correspond to 0.003 < q < 0.3 Å�1. The
relative variance or polydispersity used for each curve is the same:
1/(z + 1) = 1/16. The analytic functions and SFF approximations are
shown as solid and dashed lines, respectively. Scattering curves are
plotted for several values of the ratio t/R and are shifted on the vertical
scale, with t/R decreasing from bottom to top.
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approximation depends on t � R, we expect that agreement

between the SFF and the exact function will deteriorate as t/R

increases. We find, in fact, that the SFF follows most of the

exact function up to values t/R ’ 0.5. The largest deviations

between the SFF and exact scattering function occur at the

minima of the scattering function corresponding to the

membrane thickness. The sharpness of the minima in the case

of the SFF function are due to the sharp minima in the

membrane form factor. As discussed by Pencer & Hallett

(2000), the curvature of the membrane surface has the effect

of smearing these minima, as can be seen in the plots of the

exact form factor. In practice, the deviations between the SFF

and exact form factor that occur at these scattering minima

will not be seen, due to additional smearing of the scattering

function as a result of the instrumental resolution (see e.g.

Glinka et al., 1998).

In Fig. 4, we plot calculated scattering curves using the SFF

for various model membrane SLD profiles as well as those for

the exact form factors (given in Appendix A) that have been

numerically integrated over the Schulz distribution. In each

case, the parameters used for the calculations (summarized in

Table 2) correspond to those typical for phospholipid vesicles

made up of chain perdeuterated phospholipids. We choose to

use chain perdeuterated rather than hydrogeneous phospho-

lipids for the modeling, since this provides a better illustration

of the contribution to the scattering function from the internal

bilayer structure. Such conditions are similar to the contrast

conditions one would obtain from hydrogenous phospholipid

in H2O probed by X-ray scattering. In each case, we find good

agreement between the SFF and numerically integrated exact

form factors, except in the vicinity of the scattering minima

related to the membrane thickness.

3. Experimental procedures

3.1. Materials

1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-

dimyristoyl-D54-sn-glycero-3-phosphocholine (dDMPC), and

1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), solubi-

lized in chloroform, were purchased from Avanti Polar Lipids,

Inc. (Birmingham, AL) and used without further purification.

Upon arrival, the ampules containing the various lipids were

stored at 233 K. 99% purity D2O was purchased from

Cambridge Scientific (Andover, MA), while all other chemi-

cals were reagent grade.1

3.2. Vesicle preparation

ULVs were prepared by extrusion using the method of

Nayar et al. (1989). Lipids solubilized in chloroform were

transferred to round-bottom flasks and the chloroform was

removed under a stream of N2 followed by vacuum pumping.

Lipid films were then dispersed, by agitation, into pure D2O.

The lipid dispersions were then extruded using a hand-held

extruder purchased from Avanti Lipids, Inc. (Birmingham,

AL). Total lipid concentrations were 10 mg ml�1 prior to

extrusion. ULVs were formed by successive extrusions using

three polycarbonate filters of different pore diameters and a

total of 27 passes [e.g. 200 nm (9 times), 100 nm (9 times) and

50 nm (19 times)].

3.3. Small-angle neutron scattering

SANS measurements were performed using the 30 m NG7

instrument (Glinka et al., 1998) located at NIST (Gaithers-

burg, MD). 1.5 and 12 m sample-to-detector distances (SDD)

were used along with a neutron wavelength, �, of 8 Å (��=� =

10%), resulting in a total range in scattering vector, q =

4� sinð�=2Þ=�, of 0.004 < q < 0.3 Å�1. SANS data were reduced

and corrected for sample transmission and background using

IgorPro (WaveMetrics, Lake Oswego, OR) with routines

provided by the NIST Center for Neutron Research (NCNR).

Data were fit using similar routines provided by the NCNR,

which have been modified to include the models described

above.
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Figure 4
Comparison between analytic (solid lines) and SFF (dashed lines)
calculations of the polydisperse form factor for vesicles with non-uniform
membrane SLD. Calculations were performed for vesicles with a mean
radius of 300 Å for the various SLD models discussed in the text. Curves
are shifted on the vertical scale to facilitate viewing.

Table 2
Parameters used for assessment of the SFF approximation for the various
SLD profiles.

SLDs have been calculated from known scattering lengths (Sears, 1992) and
component volumes (Nagle & Tristram-Nagle, 2000), using the procedures
described by Pencer, Mills et al. (2005). (n/a = not applicable.)

Model
DH

(Å)
Xh

(Å)
2DC

(Å)
�h1

(fm Å�3)
�h2

(fm Å�3)
�c

(fm Å�3)

B 10 n/a 40 2.8 � 10�7 2.8 � 10�7 6.9 � 10�7

C 10 n/a 40 2.8 � 10�7 6.4 � 10�7 6.9 � 10�7

D n/a n/a 20 n/a n/a 6.9 � 10�7

E 10 20 20 2.8 � 10�7 n/a 6.9 � 10�7

1 Reference to commercial sources and products used in this study does not
constitute endorsement by the National Institute of Standards and Technology
(NIST), nor should it be inferred that the products mentioned are necessarily
the best available for the purpose used.
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4. Experimental results

Above, we have verified, via comparison with exact models

and numerically integrated results, that the SFF for various

SLD model profiles reproduces vesicle form factors with

reasonable accuracy. Below, we demonstrate the application of

the SFF approximation in fits to experimental data. Firstly, fits

using the SFF and analytic forms of the scattering function for

uniform shells (model A) are compared. Then the multishell

SLD, model B, is used to extract membrane physical para-

meters for DPPC, DMPC and dDMPC, which are compared

with literature values.

4.1. Validation of the SFF approximation

In Fig. 5, we show SANS data obtained from extruded

DPPC ULVs in 100% D2O at 323 K. The inset shows both the

exact and the SFF fits to the data over the full q range, while

the main plot shows an expanded view of the data over the

high-q range. A comparison of the fit results, given in Table 3,

shows close agreement between the two fits.

The close agreement between the fit results for the SFF and

exact form factor is somewhat surprising, given the observa-

tion by Kiselev et al. (2002) of a 10% difference in vesicle

radius obtained via fits using the two models. Considering that

the difference in the fitting results given by Kiselev et al.

(2002) corresponds to half the value of the membrane thick-

ness, we speculate that the difference they observe between

fitting results of the SFF and exact form factors could be

merely an error resulting from the difference in the definition

of the vesicle radius in the two models (as we have noted in

Appendix B, while the radius in the SFF model corresponds to

the distance between the vesicle center and bilayer midplane,

the vesicle radius in the exact equation given in Appendix B

corresponds to distance from the vesicle center to the

membrane inner surface).

Although good agreement is obtained between the SFF and

exact fits for uniform ULVs, the hydrophobic thickness

obtained from the fits (see Table 3) is significantly higher than

that expected from complementary measurements (Nagle &

Tristram-Nagle, 2000). While, on the one hand, the high

contrast between the lipid acyl chains and D2O should make

the hydrophobic thickness the main contribution to the scat-

tering function, the lipid–water interface may also make a

non-negligible contribution. As can be seen in Fig. 5, both

functions deviate from the experimental data at high q (q >

�0.12 Å�1). In fact, the contribution of the lipid–water

interface produces both the discrepancy between the models

and experimental data and the overestimate in the hydro-

phobic thickness (see e.g. Kučerka et al., 2004). As will be

shown below, approximation of the SLD by a multishell

model, rather than single-shell model, improves the agreement

between the model scattering curves and experimental data at

high q and results in better estimates of hydrophobic thick-

nesses.

4.2. Determination of membrane structural parameters

The merits of various SLD model profiles have been

discussed in detail by e.g. Wiener & White (1992), Nagle &

Tristram-Nagle (2000), Kučerka et al. (2004) and Kiselev,

Zemlyanaya & Aswal, 2004). Furthermore, Kučerka et al.

(2004) have shown that the quality of fits using the SLD model

B and variations of model C are essentially equivalent. Here,

we use model B to represent the membrane SLD, since it

requires the least number of parameters while still incorpor-

ating distinct regions to represent the lipid headgroups and

acyl chains.

Fig. 6 shows SANS data obtained from ULVs composed of

DPPC, DMPC and dDMPC in 100% D2O. Measurements of

SANS from DPPC ULVs were obtained at 323 K, while those

from DMPC and dDMPC were obtained at 303 K. Initially, fits

to the data were attempted where the headgroup and acyl-

chain thicknesses and SLDs were unconstrained. We found

that it was not possible to obtain unique solutions to fits with

this number of parameters unconstrained. In order to obtain

reproducible fits to the experimental data, we followed the

procedure and constraints described by Kučerka et al. (2004).
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Figure 5
Fits to experimental data for DPPC ULVs at 323 K (open symbols) using
the SFF approximation (dashed line) and exact form factor (solid line) for
uniform shells. The inset shows the full scattering curve and both the SFF
and exact fits, both including the incoherent background. The main plot
shows an expanded view of the high-q data and both the SFF and exact
fits, after subtraction of incoherent background.

Table 3
Fit results for DPPC ULVs measured at 273 K using the SFF
approximation and exact form factors for uniform shells.

hRi and �/R correspond to the mean radius (Å) and the relative width of the
size distribution, respectively. For all fits, the SLD, �c, is assumed to be�3.6�
10�8 fm Å�3.

Model hRi (Å) Polydispersity (�/hRi) 2DC (Å)

A (exact) 249.2 	 0.2 0.220 	 0.001 40.73 	 0.03
A (SFF) 249.2 	 0.2 0.202 	 0.001 40.66 	 0.03

28.5†

† Hydrophobic thickness obtained by X-ray diffraction (Nagle & Tristram-Nagle,
2000).
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As in the work of Kučerka et al. (2004), we parse the lipid

membrane into three layers: an inner headgroup layer,

consisting of the carbonyl groups, glycerol backbone, phos-

phate and choline; a lipid acyl-chain region, consisting of the

terminal methyl and methylene groups of the hydrocarbon

chains; and an outer headgroup, which is chemically identical

to the inner headgroup. For the hydrocarbon region, we

constrain the SLD, �C = BC/VC, based on literature values for

the scattering lengths, B (Sears, 1992), and acyl-chain mole-

cular volumes, V (Nagle & Tristram-Nagle, 2000). The SLD of

the lipid headgroup region, �H, is calculated assuming that the

headgroup region contains both the lipid headgroups them-

selves and water that has penetrated into the membrane. If n0W
waters are associated with a single headgroup, then the SLD of

the headgroup region is �H = (BH + n0WBW)/(Vh + n0WVW).

Finally, the lengths of the acyl-chain and headgroup regions

can be related via the lipid cross-sectional area, AL, to give

(Kučerka et al., 2004)

AL ¼
VH þ n0WVW

DP

¼ VC

DC

: ð27Þ

Use of the constraints above reduces the number of fitting

parameters of the multishell model from 4, namely the

headgroup and acyl-chain thicknesses and SLDs, to 2, namely

the number of waters located within the headgroup region,

n0W, and thickness of the headgroup region, DH. The compo-

nent volumes and scattering lengths used below are summar-

ized in Table 4. The total lipid volumes are 1232 and 1101 Å3

for DPPC at 323 K and DMPC at 303 K, respectively.

The full SANS curves for DPPC ULV (taken at 323 K),

DMPC and dDMPC ULV (both taken at 303 K) are shown in

Fig. 6 and expanded plots of the high-q data after background

subtraction are shown in Fig. 7. Also shown in both figures are

fits to the data using model B, as described above. The various

structural parameters extracted from the fits are summarized

in Table 5, along with values obtained by complementary

techniques (see e.g. Nagle & Tristram-Nagle, 2000).

Comparison of the fits in Fig. 7 with those of Fig. 5 shows

that the multishell model, B, gives a better fit to the data at

high q than the single-shell model, A. However, the fits still

deviate from the experimental data beyond q > �0.17 Å�1,

suggesting that some improvements could still be made in the
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Table 4
Constrained parameters used in fits to SANS data from DPPC (at 323 K),
DMPC and dDMPC ULVs (both at 303 K).

The lipid headgroup volume is assumed to be the same for all three lipids.

Component Chemical formula V (Å3) B (fm)

Water H2O 30 �1.68
Heavy water D2O 29.9 19.15
PC headgroup C10H18NO8P 319 60.1
DPPC chains C30H62 913 �32.4
DMPC chains C26H54 782 �29.1
dDMPC chains C26D54 782 533

Figure 7
Expanded view of fits shown in Fig. 6. Fits to experimental data using
SLD model Cii with the SFF approximation. Open squares correspond to
DPPC SANS data (taken at 323 K), open circles to DMPC and solid
circles to dDMPC (both taken at 303 K). Solid lines correspond to fits to
the data. Data are shown after subtraction of incoherent background.
Fitting parameters are given in Table 5. Note that the gap in the data from
dDMPC is a result of an overestimate of the fit to the incoherent
background in this q range.

Table 5
Results of fits to SANS data from DPPC ULVs (at 323 K), DMPC and
dDMPC ULVs (both at 303 K), using multishell model B.

Sample n0W AL (Å2) DH (Å) 2DC (Å) DL (Å)

DPPC 16.5 	 0.4 58.0 	 2.2 14.0 	 0.2 31.5 	 1.2 59.5 	 1.6
DPPC† 8.6 64 9 28.5 46.5
DMPC 24.3 	 0.3 56.5 	 1.0 18.5 	 0.1 27.6 	 0.5 64.6 	 0.7
dDMPC 20.1 	 6.8 50 	 21 18.5 	 1.7 32 	 14 69 	 17
DMPC† 7.2 59.6 9 26.2 44.2

† Literature values for lipid structural parameters (Nagle & Tristram-Nagle, 2000).

Figure 6
Fits to experimental data using SLD model B with the SFF approxima-
tion. Open squares correspond to DPPC SANS data (taken at 323 K),
open circles to DMPC and solid circles to dDMPC (both taken at 303 K).
Solid lines correspond to fits to the data. The fitting results are
summarized in Table 5.
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model SLD profile. In comparing fit results with literature

values, we find that, while we obtain reasonable values for the

lipid hydrophobic thickness for all three lipids, the fits signif-

icantly overestimate the lipid headgroup thickness and

number of hydrating waters. These overestimates lead to both

an exaggerated total lipid thickness and an underestimated

area per lipid. Consequently, while the multishell model is

useful for determination of the membrane hydrophobic

thickness from small-angle scattering measurements, addi-

tional improvements should be made to the SLD model used

in order to obtain more reasonable values for the other

membrane parameters, such as the lipid headgroup thickness

and degree of hydration. Detailed examination of possible

improvements to model SLD profiles is beyond the scope of

this work; nevertheless, the use of the polydisperse SFF should

facilitate this exercise.

5. Conclusions

We have extended the previously derived SFF approximation

to include an analytic form for Schultz- or Gamma-distributed

ULVs using a straightforward Laplace transform. In assessing

this extended SFF approximation, we have found the SFF to

be robust, closely following the exact expression for poly-

disperse ULVs with uniform shells up to values of t/R = 0.5.

For various SLD profiles using typical parameters for phos-

pholipid ULVs, the SFF closely follows the exact form factors

(numerically integrated over the Schulz distribution).

As expected from comparisons with numerical calculations,

for ULVs with uniform membrane SLD, we find that the

polydisperse SFF is reasonably robust in fitting the experi-

mental data, giving essentially the same results as fits to the

analytic function. We have also confirmed results from

previous studies (e.g. Kučerka et al., 2004; Kiselev, Zbytovská

et al., 2004) that the representation of the ULV membrane

SLD as a homogeneous layer (i.e. single-shell model) does

not adequately describe the experimental scattering data.

Through the use of a multishell model, we are able to improve

the fits to experimental data and obtain reasonable values for

membrane hydrophobic thicknesses. However, further

improvements to the model SLD profile are necessary in order

to improve on the values of the other membrane parameters

(e.g. headgroup thickness, number of hydrating waters, etc.).

The utility of the polydisperse SFF should stimulate further

improvements in modeling SLD profiles as well as continued

investigations of ULV structural parameters (e.g. Kiselev,

Zbytovská et al., 2004; Kiselev, Zemlyanaya & Aswal, 2004;

Kučerka et al., 2004; Pencer, Nieh et al., 2005).

APPENDIX A
Exact form factors for monodisperse vesicles

Above, we have used the various model membrane SLD

profiles to derive membrane form factors, for use in the SFF

approximation. It is also possible, however, to derive exact

expressions for the form factors for monodisperse vesicles by

substituting the various SLD profiles into equation (4). These

expressions are provided below.

A1. The uniform shell

PðqÞ ¼ �� �mð Þ2 R3
0

j1ðqR0Þ
qR0

� R3
i

j1ðqRiÞ
qRi

� �2

; ð28Þ

where � is the membrane SLD, �m is the SLD of the medium,

R is the average vesicle radius, t is the thickness, R0 ¼ Rþ t=2,

Ri ¼ R� t=2, and j1ðxÞ is the first-order spherical Bessel

function, expressed as

j1ðxÞ ¼
sinðxÞ

x2
� cosðxÞ

x
: ð29Þ

A2. The three-layer shell – uniform layers

PðqÞ ¼
X3

i¼1

�i

�
R3

i

j1ðqRiÞ
qRi

� R3
i�1

j1ðqRi�1Þ
qRi�1

�( )2

; ð30Þ

where R is the average ULV radius. 2DC and DH are the

thicknesses of the acyl-chain and headgroup layers, respec-

tively,

R3 ¼ RþDH þDC; �3 ¼ �h � �m;
R2 ¼ RþDC; �2 ¼ �c � �m;
R1 ¼ R�DC; �1 ¼ �3;
R0 ¼ R�DH �DC;

�h is the headgroup region SLD, �c is the acyl-chain region

SLD, and �m is the SLD of the medium.

A3. The three-layer shell – linearly varying SLDs

PðqÞ ¼
�X3

i¼1

�i R3
i

j1ðqRiÞ
qRi

� R3
i�1

j1ðqRi�1Þ
qRi�1

� �

þ �a F1ðqR1Þ � F1ðqR0Þ
� �þ �b F1ðqR3Þ � F1ðqR2Þ

� ��2

;

ð31Þ

where

F1ðqRÞ ¼ 2R sinðqRÞ
q3

� ðq
2R2 � 2Þ cosðqRÞ

q4
: ð32Þ

R is the average ULV radius. DC and DH are the thicknesses of

the acyl-chain and headgroup layers, respectively,
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R3 ¼ RþDH þ 2DC;

R2 ¼ RþDC;

R1 ¼ R�DC;

R0 ¼ R�DH �DC;

�3 ¼ �h2 � �m � ð�h1 � �h2ÞðR�DH �DCÞ=DH;

�2 ¼ �c � �m;

�1 ¼ �h2 � �m � ð�h2 � �h1ÞðRþDH þDCÞ=DH;

�a ¼ ð�h1 � �h2Þ=DH;

�b ¼ ð�h2 � �h1Þ=DH;

�h2 is the headgroup–water interface SLD, �h1 is the head-

group–acyl-chain region interface SLD, �c is the acyl-chain

region SLD and �m is the SLD of the medium.

A4. The single Gaussian profile

PðqÞ ¼ 2�D2
C

q2
�� �mð Þ2exp �D2

Cq2
	 
�

D2
Cq cosðqRÞ

þ R sinðqRÞ�2
; ð33Þ

where � is the membrane SLD, �m is the SLD of the medium,

and DC is the 1/e half-width of the membrane.

A5. The sum of Gaussians

PðqÞ ¼ 2�

q2

 X3

i¼1

�i � �mð Þdi exp �d2
i q2=2

	 


� �d2
i q cos½qðRþ XiÞ� þ ðRþ XiÞ sin½qðRþ XiÞ�

�!2

;

ð34Þ

where

d3 ¼ DH; �3 ¼ �h � �m;
d2 ¼ 2DC; �2 ¼ �c � �m;
d1 ¼ D3; �1 ¼ �3;
X3 ¼ XH;
X2 ¼ 0;
X1 ¼ �X3;

�h, �c and �m are the SLDs of the headgroup, tail and medium,

DH and 2DC are the 1/e half-widths of the head and tail

regions, and XH corresponds to the center of the headgroup

region with respect to the center of the bilayer.

APPENDIX B
Exact form factor for polydisperse core–shell spherical
particles

Below, we provide the analytic form factor for polydisperse

core–shell particles, as found in the work by Bartlett &

Ottewill (1992).

Pð�xxÞ ¼ 16�2

q6
�s � �cð Þ2

 
c1 þ c2 �xxþ c3 �xx2 zþ 2

zþ 1

� �

þBð�xxÞðzþ1Þ=2
�

c4 cos ðzþ 1ÞDð�xxÞ½ � þ c7 sin ðzþ 1ÞDð�xxÞ½ ��
þ �xxBð�xxÞðzþ2Þ=2

�
c5 cos ðzþ 2ÞDð�xxÞ½ � þ c8 sin½ðzþ 2ÞDð�xxÞ��

þ zþ 2

zþ 1

� �
�xx2Bð�xxÞðzþ3Þ=2

� �c6 cos ðzþ 3ÞDð�xxÞ½ � þ c9 sin ðzþ 3ÞDð�xxÞ½ ��
!
;

ð35Þ
where �xx ¼ qrc, rc is the average radius of the core (which is

related to the average radius ra given earlier in the text by

rc þDC ¼ ra), the functions Bð�xxÞ and Dð�xxÞ are defined as

Bð�xxÞ ¼ ðzþ 1Þ2
ðzþ 1Þ2 þ 4�xx2

; ð36Þ

and

Dð�xxÞ ¼ tan�1 2�xx

zþ 1

� �
; ð37Þ

and the coefficients ci are given by

c1 ¼
1

2
� �ðcos yþ y sin yÞ þ �

2
ð1þ y2Þ;

c2 ¼ �yð� � cos yÞ;

c3 ¼
�2 þ 1

2
� � cos y;

c4 ¼ �2ðy cos y� sin yÞ2 � c1;

c5 ¼ 2� sin y½1� �ðy sin yþ cos yÞ�;
c6 ¼ c3 � �2 sin2 y;

c7 ¼ � sin y� �
2

2
ð1þ y2Þ sin 2y� c5;

c8 ¼ c4 �
1

2
þ � cos y� �

2

2
ð1þ y2Þ cos 2y;

c9 ¼ � sin yð1� � cos yÞ;
ð38Þ

where y ¼ 2qDC, 2DC is the shell thickness, � =

ð�m � �sÞ=ð�c � �sÞ, �m is the SLD of the medium, �s is the

SLD of the shell, and �c is the SLD of the core. For the

situation considered here (hollow shells), �c ¼ �m and � ¼ 1.
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