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The sensitivity of atomic scattering factors to valence charge distributions has

been compared quantitatively for X-ray and electron diffraction. It is found that

below a critical scattering vector, s (|s| = sin�/�), ranging typically from 0.2 to

0.6 Å�1 depending on the atomic number, electron diffraction is more sensitive

to valence charge densities than X-ray diffraction. Thus, electron diffraction

provides crucial electronic structure information via the low-order structure

factors, which are relatively insensitive to thermal vibrations, but sensitive to the

charge distribution that characterizes the chemical bonding properties of the

materials. On the other hand, the high-order structure factors, which are mainly

influenced by atomic position and core charge, in many cases can be replaced by

structure factors of a procrystal (superposition of neutral atoms), or by

calculated structure factors from modern density functional theory (DFT),

without losing significant accuracy. This is demonstrated by detailed analyses of

an MgB2 superconductor. The work reveals the importance of accurate

determination of a very few low-order structure factors in valence electron

density studies, and suggests the merit of the combined use of electron

diffraction and DFT calculations for solids, especially those with large unit cells

and nanocrystalline grains, unsuitable for X-ray studies.

1. Introduction

The experimental charge density in materials can be measured

using two complementary techniques: X-ray and electron

diffraction. X-ray diffraction (XRD) measures the total

density of electrons in solids from the X-ray structure factors,

which are the Fourier components of the electron density,

while electron diffraction (ED) measures electron structure

factors, the Fourier components of the electrostatic potential.

Electron structure factors can be converted to X-ray structure

factors using the Mott formula (Mott & Massey, 1965).

Structure factors at small scattering vector s (|s| = s = sin�/�,

where � is the scattering angle and � is the wavelength of

incident electrons or X-rays) are difficult to measure accu-

rately with X-ray diffraction in single-crystal experiments

because of extinction, or by powder diffraction experiments

(polycrystals with small grains). On the other hand, in a

transmission electron microscope (TEM), a very small elec-

tron probe can be used to study a defect-free nanometre

region in the sample owing to the strong interaction between

the incident electrons and the sample, although quantitative

analysis has been a challenge. The recent development of

quantitative electron diffraction using a convergent electron

beam, such as convergent beam electron diffraction (CBED)

(Zuo, 1993, 1999; Zuo, O’Keeffe et al., 1997; Zuo, Blaha &

Schwarz, 1997) and parallel recording of dark-field images

(PARODI) (Taftø et al., 1998; Zhu & Taftø, 1997; Zhu et al.,

2003; Wu et al., 2004) has opened the door to mapping valence

electron distributions by accurately determining the structure

factors of the innermost reflections. With CBED, we record

electron diffraction from a sample with a consistent thickness,

which is relatively straightforward and suitable for small unit

cells. With PARODI, we analyze intensity oscillations of

image-coupled diffraction patterns from a sample with varying

thickness. The latter technique is more complex due to the

thickness involved; nevertheless, it does not require a larger

convergent-beam angle, and can be used for crystals with large

unit cells. The disadvantage of electron diffraction is that the

analysis is often time consuming, largely due to the dynamic

scattering effects, and thus, in contrast to X-rays, it is not

suitable for the measurement of a large number of reflections,

especially the high-order reflections, due to the poor signal/

noise ratio. Because of their complementarity, it seems

important to compare the advantages and drawbacks of the

electron and X-ray diffraction techniques in the study of

charge distributions.

Charge densities may also be obtained theoretically using

first-principles calculations based on density functional theory

(DFT) (Hohenberg & Kohn, 1964; Kohn & Sham, 1965; Parr

& Yang, 1989). These are usually carried out with full potential

(all electron) methods that fully take into account the

contributions from both valence and core electrons (see, for

example, Wu et al., 2004; Lu et al., 1993, 1995). In principle,

there is no limitation of access to materials by DFT methods.

The accuracy of structure factors calculated by DFT does rely

on the approximations to exchange and correlation potentials,
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as well as the convergence control in the program. However,

recent results have been quite accurate, so that, basically, DFT

calculations can be regarded as an independent, complemen-

tary probe for charge density and structure factors, compar-

able with ED and XRD.

Electron diffraction is very sensitive to valence electron

distribution compared with X-ray diffraction, as suggested by

the Mott formula (Mott & Massey, 1965): fel(s) / (1/s2)/[Z �
fx(s)] where fel(s) and fx(s) are the atomic scattering ampli-

tudes for electron diffraction and X-ray diffraction, respec-

tively, s is the scattering vector (magnitude s), and Z is the

charge of the nucleus.

The basic reason for the sensitivity is the near cancellation

of the scattering from the positively charged nucleus and the

negatively charged electrons. Thus small changes in electron

density lead to large changes in the scattering. The well known

divergence at small s for Coulomb scattering helps to over-

come the near cancellation and leads to strong measurable

scattered intensities. However, the quantitative evaluation of

the contribution of electron and X-ray scattering factors to

charge distributions as a function of scattering angle is not well

established. In this paper, we describe the sensitivity of elec-

tron and X-ray scattering factors to charge distributions, and

the sensitivity of charge rearrangement, thermal vibrations

and orbital electrons as a function of scattering vector. A

possible approach to the analysis of charge density is

proposed, and the merits of the combined use of electron

diffraction measurements and DFT calculations are also

discussed.

2. The sensitivity of scattering factors to charge
distributions: X-rays versus electrons

2.1. Atomic case: form factor

The X-ray form factors can be expressed as a Fourier

transform of charge density (Rez et al., 1994; Hahn, 2002):

fxðsÞ ¼ 4�

Z1

0

r2�ðrÞ½sinð4�srÞ=ð4�srÞ� dr; ð1Þ

where s = sin�/�. The X-ray scattering factors are often

parameterized as a sum of some Gaussians (Rez et al., 1994),

fxðsÞ ¼
X

j

aj expð�bjs
2Þ; ð2Þ

where aj and bj are fitting parameters. The electron form

factors can be obtained from the Mott formula (Mott &

Massey, 1965; Spence & Zuo, 1992; Peng, 1997),

felðsÞ ¼
jej

16�2"0s2
½Z � fxðsÞ�: ð3Þ

We can express the comparison of sensitivity between X-ray

and electron form factors in the following way:

�elðsÞ
�xðsÞ
¼ � fxðsÞ
½Z � fxðsÞ�

; ð4Þ

where �x(s) = dfx(s)/fx(s) and �el(s) = dfel(s)/fel(s) = [1/fel(s)]

[@fel(s)/@fx(s)]dfx(s) are the sensitivity of the X-ray and elec-

tron form factors as a function of the scattering vectors,

respectively; and dfx(s) and dfel(s) are the variation of the

X-ray and electron form factors. Fig. 1 shows the behavior of

equation (4) as a function of s, taking Cu as the example.

It is interesting to see in what region of the scattering

vectors the sensitivity of electron scattering factors is superior

to that of X-ray scattering factors. This can be obtained from

equation (4) together with a critical condition:

�elðsÞ=�xðsÞ
�� ��> 1: ð5Þ

Thus

fxðsÞ>Z=2: ð6Þ
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Figure 1
(a) X-ray form factors fx(s) and (b) the ratio of ��el(s)/�x(s) as a function of scattering vector, s (Å�1). The parameterized fx(s) data are from Su &
Coppens (1997). The dotted line in (b) indicates where the sensitivities of ED and XRD are identical, and the dashed line shows the position of the
critical scattering vector (sc = 0.47 Å�1). The shaded area marks the range of scattering vectors where ED is more sensitive than XRD to the valence
charge distribution.
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The physical meaning of equation (6) is that in the scattering

angle regime where X-ray scattering factors fulfill the condi-

tion of equation (6), electrons are more sensitive to the re-

arrangement of charge than X-rays. This mainly applies to

low-order scattering factors. Therefore, the critical scattering

vectors, sc, can be determined from

fxðscÞ ¼ Z=2 ð7aÞ
or

felðscÞ ¼
jej

16�2"0s2
c

Z

2
: ð7bÞ

If the X-ray scattering factors are parameterized as a sum of

some Gaussians as expressed in equation (2), the critical

scattering vectors (sc) can be determined from

X
j

aj expð�bjs
2
cÞ ¼

Z

2
: ð8Þ

In practice, the critical scattering vectors (sc) can be obtained

from standard tables of X-ray scattering factors for atoms (or

ions) (Rez et al., 1994), or from the numerical solution of

equation (8).

Fig. 2 gives the calculated critical scattering vectors for

atoms from H to Xe. For light elements, these vectors range

from 0.2 to 0.4 Å�1, while, for heavy elements, they are around

0.5 to 0.6 Å�1.

2.2. Crystal case: structure factor

The electron structure factor is given by the Mott–Bethe

expression (Coppens, 1997):

FelðsÞ ¼
ej j

16�2"0Vunit cell

�
X

i

½Zi � fxi
ðsÞ�

s2
expð�Bis

2Þ expð4�is � riÞ; ð9Þ

and the X-ray structure factor can be written as

FxðsÞ ¼
X

i

fxi
ðsÞ expð�Bis

2Þ expð4�is � riÞ ð10Þ

where fxi
ðsÞ is the ith atomic X-ray form factor, and Bi is the

Debye–Waller factor that characterizes the temperature

factor. Similar to the form-factor case, the critical scattering

vector (sc) of the structure factor can be determined by

X
i

½ fxi
ðscÞ � Zi=2� expð�Bis

2
cÞ expð4�isc � riÞ

�����
�����! 0; ð11aÞ

or in terms of structure factors Fx,

FxðscÞ �
X

i

ðZi=2Þ expð�Bis
2
cÞ expð4�isc � riÞ

�����
�����! 0: ð11bÞ

Here, we use ! instead of = in equations (11) because the

scattering vector is discrete in the case of the crystal structure

factor. Equation (11) suggests that the critical scattering

vector sc is structure and temperature dependent. For Bi =

constant, the Debye–Waller factors are the same for all atoms

in the unit cell and equation (11a) can be simplified as

X
i

½ fxi
ðscÞ � Zi=2� expð4�isc � riÞ

�����
�����! 0: ð12Þ

For the monatomic case, fxi
ðscÞ = fx(sc), and Zi = Z, equation

(12) becomes

fxðscÞ ! Z=2: ð13Þ
The critical scattering vector sc of the structure factor deter-

mined by equation (13) is similar to the critical scattering

vector of the form factor. For example, the critical scattering

vector of the structure factor for Si is sc ’ 0.4 Å�1, similar to

that of its form factor. For polyatomic crystals, the critical

scattering vector of the structure factor is related to the

detailed arrangement of the unit cell (atomic coordinates).

Here, we use MgB2 as an example to examine the critical

scattering vector.

In the independent-atom model (considering free atoms

before interatomic bonding, hereafter denoted as IAM), the

structure factor of MgB2 can be expressed as

F hkl ¼
X

i

fiðsÞ expð4�is � riÞ

¼ f hkl
Mg þ f hkl

B exp i2� 1
3hþ 2

3kþ 1
2l

� �� ��
þ exp i2� 2

3hþ 1
3kþ 1

2l
� �� ��

; ð14Þ
where f hkl

Mg and f hkl
B are the form factors of Mg and B,

respectively. The formula related to the Zi/2 term isX
i

ðZi=2Þ expð4�isc � riÞ ¼ 1
2ZMg þ 1

2ZB exp i2� 1
3hþ 2

3kþ 1
2l

� �� ��

þ exp i2� 2
3hþ 1

3kþ 1
2l

� �� ��
¼ 6þ 2:5 exp i2� 1

3hþ 2
3kþ 1

2l
� �� ��

þ exp i2� 2
3hþ 1

3kþ 1
2l

� �� ��
: ð15Þ

Fig. 3 plots the X-ray structure factors of MgB2 calculated

from the DFT and IAM models, and with the above Zi/2 term.

It shows that DFT and IAM values are larger than the Zi/2
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Figure 2
The critical scattering vector sc for the atoms H to Xe.
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values in the range of s < 0.3 Å�1 (indicated by the arrow I),

and smaller in the range of s > 0.6 Å�1 (indicated by the arrow

II). Over 0.3 Å�1 < s < 0.6 Å�1, some calculated structure

factors are larger and others are smaller than the Zi/2 term.

We note that the critical scattering vector for the B form factor

is 0.22 Å�1 and the value for Mg is 0.42 Å�1. For a polyatomic

crystal with various sc for different atomic species, say ranging

from smin
c to smax

c , an estimate can be made, although strictly

speaking they are very much crystal symmetry dependent. In

general, for s < smin
c , ED is more sensitive, and for s > smax

c ,

XRD is more sensitive. Over smin
c < s < smax

c , the sensitivity

depends on the particular reflection.

3. The sensitivity of scattering factors to charge
distributions: low-order versus high-order reflections

3.1. Atomic case: form factor

Since the core electrons are close to the nuclei while the

valence electrons are outer electrons, scattering by the core

electrons could extend to large s, while that by the valence

electrons will mostly be concentrated at small s. Fig. 4 clearly

shows the difference in scattering amplitude for core and

valence electrons of oxygen and copper. In general, the fx for

core electrons decreases smoothly with increasing s. By

contrast, the fx for valence electrons drops fast with s, and

closes to zero at s > 1. When atoms form a crystal, the

arrangement of their valence electrons generally changes,

while the core electrons do not. Therefore, there may be a

significant difference between the low-order reflections in a

real crystal and in a procrystal (a hypothetical crystal with

atoms having the electron distribution of free atoms), but a

negligible difference in the high-order reflections.

3.2. Crystal case: structure-factor difference between the

crystal and procrystal

To verify the effects of low-order structure factors on

analyses of charge density, the following two factors can be

assessed: (a) structure-factor difference between the crystal

and procrystal as a function of the scattering vector; and (b)

the response of charge density and bonding properties to

variations in low-order and high-order structure factors: i.e.

charge density, the gradient, Laplacian of charge density, and

electric field gradient (EFG). Factor (a) basically provides

information on the impact factor (or percentage of contribu-

tions) from low-order structure factors compared with high-

order structure factors. Factor (b) is related to the sensitivity

of variation in low-order structure factors to total charge

distribution and bonding properties. We describe these two

factors next.

In a hypothetical crystal, either a procrystal or IAM, the

spherical electron densities of atoms overlap. The difference in

charge densities between the real crystal �c(r) and the

procrystal �p(r) is the so-called deformation density, also

referred to as the difference charge density, and defined as

��ðrÞ ¼ �cðrÞ � �pðrÞ: ð16Þ

This deformation density characterizes the rearrangement of

charge distribution, especially the valence charge density, as

well as the bonding properties. Deformation density is a key

feature in describing charge distribution in crystals in

diffraction studies. The Fourier components of deformation

density are difference structure factors, i.e. the difference
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Figure 3
The structure factors of MgB2 calculated from DFT and IAM models, as
well as those from the Zi/2 term [using equation (15)] as a function of
scattering vector, s.

Figure 4
X-ray scattering amplitude fx(s) of core and valence electrons for (a) O
and (b) Cu (data from Su & Coppens, 1997) normalized to one electron.
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between real crystal structure factors Fc(s) and structure

factors from the procrystal Fp(s). Therefore, the difference

structure factors �F(s) = Fc(s) � Fp(s) as a function of s will

provide information on valence charge distribution and charge

transfer:

��ðrÞ ¼ 1

V

X
s

�FxðsÞ expð�4�is � rÞ; ð17Þ

where V is the volume of the unit cell.

Fig. 5 plots the difference of X-ray structure factors

(between crystal and procrystal) for Si (covalent bonding) and

MgB2 (mixture of ionic and covalent). It shows that only very

few low-order structure factors (with s < 0.5 Å�1, indicated by

the dotted line in Fig. 5) are significantly different from those

of the procrystal, and they provide the main contributions to

the valence charge distribution. Especially, the fact that the

first two structure factors in MgB2 have large differences from

procrystal suggest that small changes in these structure factors

will lead to marked modifications in the difference charge

density and, thus, the bonding properties.

3.3. Case studies

The sensitivity of charge density and bonding properties to

variations in different-order structure factors can be judged

from equation (17). As Fig. 5 shows, �F decreases with

increases in s and approaches zero at large s. We note that this

behavior of �F is found in many solid crystals and is not

limited to Si and MgB2. We also find that �F often exhibits a

trend that can be expressed approximately as a function of

�as�b, where a and b are positive material-dependent para-

meters (Fig. 5). Therefore, the contributions from different

structure factors will have a similar factor of as�b. In other

words, the main contributions to the valence electron distri-

bution (related to chemical bonding) are dominant in low-

order structure factors.

To justify further the importance of low-order structure

factors in charge density analysis, we examined the sensitivity

of charge density to a wide range of structure factors in MgB2.

We verified the findings by checking the changes of charge

density �, the gradient r� and Laplacian �r2� of charge

density, and EFG as a function of the variation of ten structure

factors with s ranging from 0.1 to 2.6 Å�1. All the structure

factors in this examination are from DFT calculations using

the generalized gradient approximation (GGA) function

parameterized by Engel & Vosko (1993). The structure factor

of each low-order reflection was varied from �10% to 10%,

while the other 5777 structure factors remained at their

original values (i.e. from DFT calculations). Our calculations

revealed that a very small variation in a single low-order

structure factor always leads to large changes in charge

density, Laplacian and EFG, while for high-order structure

factors, such changes are very small and can be neglected, as

shown in detail in Fig. 6.

3.4. Temperature effects

The Debye–Waller factor B characterizes the effects of

temperature (lattice vibrational effects) in the calculations of

structure factors and the analysis of charge density. In this

section, we analyze the sensitivity of different-order (low and

high) structure factors to variations in the Debye–Waller

factor B. The structure factor at finite temperature can be

expressed as

FT ¼ F0 expð�Bs2Þ; ð18Þ
where F0 is the structure factor at 0 K and B is the Debye–

Waller factor at temperature T. If the temperature changes by

�T, the Debye–Waller factor will change accordingly, i.e. �B.
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Figure 5
Difference in the X-ray structure factors between the crystal and neutral atom (procrystal) of (a) Si and (b) MgB2 calculated by DFT using FPAPW
(GGA). The thin lines are plotted using �as�b, with a = 0.01 and b = 2.5 for Si, and a = 0.02, b = 2.0 for MgB2. The critical scattering vector for Si, sc ’
0.4 Å�1, is also indicated.
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The related change of the structure factor �FT can be

obtained as

�FT ¼ FT ½1� expð��Bs2Þ�: ð19Þ

In Fig. 7, �FT/FT is plotted as a function of s with �B = 0.05. It

demonstrates that the variation of low-order structure factors

is not as sensitive as that of high-order structure factors to the

variation in the Debye–Waller factor. This indicates that for

the study of valence charge distribution, it is not crucial to

determine the atomic positions accurately, especially due to

the small change of temperature. In contrast, the core charge

is very sensitive to thermal vibrations.

3.5. Combined use of electron diffraction measurements and

DFT calculations

Since the bonding properties are mainly determined by the

deformation of charge density, which can be analyzed by

topological features, they are encoded unambiguously in the

low-order structure factors. This is exciting to researchers
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Figure 7
�FT/FT as a function of scattering vector s with �B = 0.05.

Figure 6
Sensitivities as a function of scattering vector s by examining�10% changes of the structure factors �F of the ten reflections (001, 100, 101, 002, 300, 004,
500, 800, 900, 0014 and 0018) in MgB2. Sensitivity to: (a) the charge density, �, (b) the Laplacian of the charge density,�r2�, at the critical point (r� = 0)
[the middle point of the B–B bond in the (001) boron plane], (c,d) the change of electric field gradient, �EFG, at Mg (c) and B (d) sites, and (e) the
corresponding difference of R factors: �R = R(�F)� R(F0), where R(�F) is the goodness of fit after the change of structure factors, and R(F0) is before
the change of structure factors.
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because, although normally only a few innermost reflections

are measurable with high accuracy using electron diffraction,

nevertheless their structure factors are most sensitive to

capture the information on valence charge distribution

(namely, deformation density) and chemical bonding. On the

other hand, the values of high-order structure factors are very

close to those of the procrystal, which reflect mainly the

charge density of independent (or free) atoms prior to forming

chemical bonds. Therefore, it should be possible to obtain

valuable data on charge density by analyzing a combination of

accurate low-order structure factors measured with electron

diffraction and high-order structure factors, which can be

obtained from X-ray diffraction or DFT calculation, or even

procrystal structure factors. It has been demonstrated (Zuo,

O’Keeffe et al., 1997) that the combination of some low-order

structure factors assessed by electron diffraction with high-

order structure factors from X-ray diffraction can yield accu-

rate measurement of charge distributions in MgO. Based on

our arguments above, it seems that it is not only possible but

also valuable to combine electron diffraction and DFT

calculations in charge density analysis in the cases where

X-ray data are not available, for instance, in the case of high-

temperature superconductors.

The deformation density ��mix(r) from the combination of

structure factors obtained from different methods (labeled as

subscript I and II) can be expressed as

��mixðrÞ ¼
1

V

X
sI

�FxðsÞ expð�4�is � rÞ

þ 1

V

X
sII

�FxðsÞ expð�4�is � rÞ: ð20Þ

This can be applied to X-ray, neutron and electron diffraction,

and DFT calculations. For the combined use of electron

diffraction (ED) and DFT calculations, we have

�mixðrÞ ¼ �DFTðrÞ þ
1

V

X
s

½FEDðsÞ � FDFTðsÞ� expð�4�is � rÞ:

ð21Þ
The deformation charge density can be obtained from the

Fourier transformation of difference structure factors or can

be reconstructed after multipole refinement (MR) (Coppens,

1997). The accuracy of this method is determined by the

accuracy of the electron diffraction measurements, the DFT

calculation and the multipole refinement. Quantitative elec-

tron diffraction, such as CBED (Zuo, O’Keeffe et al., 1997;

Zuo et al., 1999) and PARODI (Taftø et al., 1998; Zhu & Taftø,

1997; Zhu et al., 2003), has demonstrated the possibility to

measure the low-order structure factors with sufficient accu-

racy for charge density study. The accuracy of structure factors

from DFT calculations can be controlled by employing self-

consistent full-potential calculations (Blaha et al., 2001) with

advanced exchange-correlation potentials and treatment of

strongly correlated interactions [such as local density

approximation (LDA) with on-site Coulomb interaction

(LDA + U), self-interaction corrections or dynamical mean

field theory]. The charge density analysis of this ED + DFT

method can be performed by direct Fourier summation (DF)

or MR.

As an example, here we discuss the study of the charge

density of MgB2 by combining electron diffraction and DFT.

Table 1 lists the four innermost low-order structure factors

obtained from ED as well as those calculated from DFT with

different approximations of the exchange-correlation poten-

tials (Engel & Vosko, 1993; Perdew et al., 1996; Perdew &

Wang, 1992). As Table 1 shows, GGAs generally give closer

values to ED than does the LDA. For the structure factors

with the shortest reciprocal vectors (i.e. reflections 001 and

100), GGAs give smaller values compared with the LDA and

agree better with the experimental data. Among the GGAs,

the EV functional generates the most accurate values

compared with the experimental data, as evidenced by the

smallest R factors (R1 and R2, as defined in Table 1). This is

very similar to the cases of Mg (Friis et al., 2003) and Si (Zuo,

Blaha & Schwarz, 1997) where the EV functional produced

structure factors in close agreement with experimental values,

due to its better description of core electrons.

Fourier summation and multipole refinements were

performed for combined ED and DFT structure factors (i.e.

the four low-order structure factors were replaced by experi-

mental measurements). The EFGs calculated using combined

ED and DFT structure factors are smaller than those using

pure DFT structure factors from DF or MR. The EFGs

calculated from combined ED and GGA-EV using MR are
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Table 1
Comparison of low-order structure factors obtained from electron diffraction (ED) at T = 0 K.

Data at 0 K were converted from those of Wu et al. (2004) at T = 298 K with Debye–Waller factor of B = 0.4. The calculations were based on DFT (GGA and LDA)
and procrystal theory. Different models for GGA were used: EV (Engel & Vosko, 1993), PBE (Perdew et al., 1996) and PW91 (Perdew & Wang, 1992). The R
factors were defined as: R1 =

P½FðDFTÞ � FðEDÞ�=
P

FðEDÞ and R2 =
Pf½FðDFTÞ � FðEDÞ�=FðEDÞg, where F(DFT) and F(ED) are structure factors from DFT and ED,

respectively.

DFT (GGA)

s (Å�1) Measurement (ED) EV PBE PW91 DFT (LDA) Procrystal

0 0 1 0.142 2.17 � 0.03 2.195 2.195 2.188 2.202 2.783
1 0 0 0.187 5.61 � 0.07 5.793 5.798 5.793 5.803 6.077
1 0 1 0.235 10.88 � 0.14 10.749 10.757 10.764 10.752 10.648
0 0 2 0.284 11.81 � 0.17 11.866 11.892 11.904 11.890 11.760

R1 (%) 0.48 0.61 0.63 0.62 3.23
R2 (%) 3.92 4.31 4.05 4.67 41.42
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1.23 (1021 V m�2) at B sites, and 0.20 (1021 V m�2) at Mg sites,

respectively, and are in good agreement with those estimated

from X-ray diffraction (Tsirelson et al., 2003): 1.25

(1021 V m�2) at B sites and 0.21 (1021 V m�2) at Mg sites,

respectively. Although there are very few experimental

structure factors (only four in this case), their effects on the

valence electron distribution and EFG are substantial. Fig. 8

compares the difference map of charge density in MgB2

obtained from all DFT-calculated structure factors (Fig. 8a)

and the one corrected with electron diffraction measurements

(Fig. 8b), i.e. combined ED-measured structure factors with

DFT calculations. We note that although the difference

between the ED measurements and the DFT is about a half

percent, the difference between the procrystal and the DFT is

only about 3% (see Table 1), suggesting that the minute

deviation in structure factors at small s is still significant and

cannot be overlooked. Clearly, with the four most sensitive

low-order structure factors replaced by ED measurements, the

maximum difference in charge density of a � bond between

the two boron atoms in the (001) B plane increases, indicating

the enhanced covalent bonding between B atoms, which is

considered to be responsible for the superconductivity of the

material.

4. Conclusions

In conclusion, we have demonstrated that electron diffraction

is more sensitive to valence electron distributions than X-ray

diffraction at small scattering vectors (s < sc for monatomic

cases and s < smin
c for crystals). The low-order form factors and

structure factors are extremely sensitive to small changes in

the arrangement of valence electrons. These factors can be

measured accurately using recently developed quantitative

electron diffraction techniques, and also can be used to test

DFT calculations, as demonstrated for the MgB2 super-

conductor. Having verified the calculations, the calculated

structure factors of high-order reflections may be combined

with electron diffraction measurements of low-order reflec-

tions to understand valence electron distributions in materials.

This approach is particularly useful when the X-ray diffraction

data for a particular material are not available, or the material

is not suitable for X-ray diffraction analysis.

The authors thank W. Ku for valuable discussions. This

work was supported by the US Department of Energy, Divi-

sion of Materials, Office of Basic Energy Science, under

Contract No. DE-AC02-98CH10886.

References

Blaha, P., Schwarz, K., Madsen, G., Kvasnicka, D. & Luitz, J. (2001).
Wien2k, An Augmented Plane Wave + Local Orbitals Program for
Calculating Crystal Properties (Karlheinz Schwarz, Techn. Univer-
sitat Wien, Austria), ISBN 3-9501031-1-2.

Coppens, P. (1997). X-ray Charge Densities and Chemical Bonding.
IUCr/Oxford University Press.

Engel, E. & Vosko, S. H. (1993). Phys. Rev. B, 47, 13164–13174.
Friis, J., Madsen, G. K. H., Larsen, F. K., Jiang, B., Marthinsen, K. &

Holmestad, R. (2003). J. Chem. Phys. 119, 11359–11366.
Hahn, T. (2002). Editor. International Tables for Crystallography,

Vol. A. Dordrecht: Kluwer.
Hohenberg, P. & Kohn, W. (1964). Phys. Rev. 136, B864–B871.
Jiang, B., Zuo, J. M., Jiang, N., O’Keeffe, M. & Spence, J. C. H. (2003).

Acta Cryst. A59, 341–350.
Kohn, W. & Sham, L. J. (1965). Phys. Rev. 140, A1133–A1138.
Lu, Z. W., Zunger, A. & Deutsch, M. (1993). Phys Rev B, 47, 9385–

9410.
Lu, Z. W., Zunger, A. & Deutsch, M. (1995). Phys. Rev. B. 52, 11904–

11911.
Mott, N. F. & Massey, H. S. W. (1965). The Theory of Atomic

Collisions. Oxford: Clarendon.
Parr, R. G. & Yang, W. T. (1989). Density-Functional Theory of Atoms

and Molecules. Oxford University Press.
Peng, L. (1997). Acta Cryst. A53, 663–672.

research papers

J. Appl. Cryst. (2005). 38, 648–656 Jin-Cheng Zheng et al. � Electron and X-ray scattering factors 655

Figure 8
Difference charge density map of the (001) B plane in MgB2: (a) from calculated structure factors based on direct Fourier summation of DFT (GGA-
EV); and (b) modified difference map based on ED experiment and DFT. Note that the crucial low-order structure factors in (a) were replaced with the
ED measurements in (b).

electronic reprint



Perdew, J. P., Burke S. & Ernzerhof, M. (1996). Phys. Rev. Lett. 77,
3865–3868.

Perdew, J. P. & Wang, Y. (1992). Phys. Rev. B, 45, 13244–13249.
Rez, D., Rez, P. & Grant, I. (1994). Acta Cryst. A50, 481–497.
Spence, J. C. H. & Zuo, J. M. (1992). Electron Microdiffraction. New

York: Plenum Press.
Su, Z. & Coppens, P. (1997). Acta Cryst. A53, 749–762.
Taftø, J., Zhu, Y. & Wu, L. (1998). Acta Cryst. A54, 532–542.
Tsirelson, V., Stash, A., Kohout, M., Rosner, H., Mori, H., Sato, S.,

Lee, S., Yamamoto, A., Tajima, S. & Grin, Yu. (2003). Acta Cryst.
B59, 575–583.

Wu, L., Zhu, Y., Vogt, T., Su, H. & Davenport, J. W. (2004). Phys. Rev.
B, 69, 064501.

Zhu, Y. & Taftø, J. (1997). Philos. Mag. B, 75, 785–791.
Zhu, Y., Wu, L. & Taftø, J. (2003). Microsc. Microanal. 9, 442–456.
Zuo, J. M. (1993). Acta Cryst. A49, 429–435.
Zuo, J. M., Blaha, P. & Schwarz, K. (1997). J. Phys. Condens. Matter,

9, 7541–7561.
Zuo, J. M., Kim, M., O’Keeffe, M. & Spence, J. C. H. (1999). Nature

(London), 401, 49–52.
Zuo, J. M., O’Keeffe, M., Rez, P. & Spence, J. C. H. (1997). Phys. Rev.

Lett. 78, 4777–4780.

research papers

656 Jin-Cheng Zheng et al. � Electron and X-ray scattering factors J. Appl. Cryst. (2005). 38, 648–656

electronic reprint


