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Recent results [1, 2] have shown that it is possi-
ble to obtain exact reconstruction of a large class
of signals from far less data than is suggested by
traditional sampling theory. Now we have shown
how to extend the method to decrease the neces-
sary amount of data still further. The underlying
phenomenon is very general, and applies to sig-
nals of all types. Decoding highly corrupted bit
streams, image or 3-D object reconstruction from
very few radiographs, and network tomography
are just a few of the many possible applications
in all aspects of LANL’s mission.

An old result in signal processing describes a
situation where one can reconstruct a continu-
ously varying signal exactly from only finitely
many samples. The Shannon sampling theorem
says that if the signal has a largest frequency com-
ponent, then it can be reconstructed exactly if it is
sampled at least as often as twice that frequency
(known as the Nyquist rate). For many discrete
signals, however, this would require one to sam-
ple the entire signal. Generally, the Nyquist rate
should be regarded as an upper bound of how
much data is necessary to reconstruct a signal; of-
ten, much less data is required.

In the new theory, known as “compressed sens-
ing” or “compressive sampling,” the notion of a
Nyquist frequency is replaced with the notion of
sparsity. The simplest example of a sparse signal
is one that is zero in all but a few places. A more
general example is an image that is well approxi-
mated by a wavelet expansion with not too many
nonzero wavelet coefficients. This includes any
image that is compressible, and thus almost any
image of the real world.

For an example from radiography, we consider
the Shepp-Logan phantom, a synthetic test im-
age shown in the first figure. It is sparse in the
sense of having piecewise-constant intensity, so
that the gradient of its intensity is zero except at

the boundaries of the objects in the image. In the
context of CT X-ray inversions, typically a radio-
graph would be taken at 180 or 360 different an-
gles in order to expect to get a good reconstruc-
tion of the object. The sparsity of this phantom
makes it possible to reconstruct it exactly from
only 10 radiographs.
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(a) The Shepp-Logan phantom. (b) Tradi-
tional (backprojection) reconstruction from ra-
diographic projections along 180 angles is good
but not perfect. (c) Traditional reconstruction
from 18 projections is terrible. (d) `1 minimiza-
tion gives an exact reconstruction with 18 pro-
jections. (e) `1 minimization gives a poor recon-
struction from 10 projections. (f) `p minimization
with p = 1/2 gives an exact reconstruction with
10 projections.

We explain how this is done in a general set-
ting. Suppose f is a signal that is sparse in some
sense. We can regard f as a vector with n com-
ponents; if f is not a one-dimensional signal (like
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an image or network), we just string out the com-
ponents of f into a vector. We formulate sparsity
“in some sense” as there being an n×n matrix V
such that V f is nonzero in not too many places,
say k of them. (V could be a change-of-basis ma-
trix, or a discrete approximation of a derivative
operator.) Let M be a measurement matrix of size
m× n, so that M f would be a vector containing
m measurements of the signal f . (What sort of
measurements will be described shortly.) We then
seek our reconstruction as the solution of the fol-
lowing optimization problem:

min
u
‖Vu‖p

p, subject to MVu = MV f . (1)

Here we use the `p norm, defined by ‖x‖p
p =

∑
n
i=1 |xi|p, and 0 < p≤ 1. In the compressed sens-

ing literature, p = 1. In this case, it is proven
[1] that the solution to (1) will be exactly u = f ,
provided the number of measurements satisfies
m ≥Ck logn, for some not-large constant C. The
key is that the required number of measurements
nearly depends only on the sparsity k, and can be
a small fraction of the signal size n.

There are many instances where surprisingly
few measurements are required to get exact re-
constructions when p = 1. Our contribution [3, 4]
is to show that using p < 1 allows even fewer
measurements, as little as half as many as when
p = 1.

Returning to the phantom example, the mea-
surements we use are samples of the Fourier
transform, taken along radial lines through the
origin in frequency space. By the Fourier-slice
theorem, this is equivalent to sampling radio-
graphic projections onto detectors perpendicular
to these lines. For p = 1, 18 projections are
enough for an exact reconstruction, in the sense
of every pixel value being with 10−13 of the cor-
rect value. If we use p = 1/2, 10 suffice. By
comparison, a traditional backprojection recon-
struction gives only an approximate reconstruc-
tion with 180 or even 360 projections, and a terri-
ble one with 18. Similarly, the p = 1 reconstruc-
tion with 10 views is poor.

Not all measurement matrices will exhibit this

phenomenon. What is required is an incoherence
property between the measurement basis and the
basis in which the signal is sparse. The result will
be a generalization of Heisenberg’s uncertainty
principle, in which a signal cannot be sparse in
both bases simultaneously. Then the sparsity of
the signal ensures that the measurements give as
much information as possible.

A universal way to (nearly) guarantee that the
measurements will have the incoherence property
is to make them random. For example, the ele-
ments of the measurement matrix M can be cho-
sen from a Gaussian distribution, or to have value
±1 with equal probability. Then, regardless of
the sparse representation V , M will have the nec-
essary incoherence property with overwhelming
probability (tending to 1 as n→∞). This is highly
counterintuitive: such random measurements will
appear to turn the signal into gibberish, yet will
maximize the likelihood of obtaining an exact re-
construction.

We are exploring applications to 3-D radiog-
raphy, correcting errors in encypted signals [4],
and network tomography. These and other appli-
cations considered in the literature only begin to
harness the potential of these methods.
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