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Abstract— Several authors have shown recently that is possible
to reconstruct exactly a sparse signal from fewer linear measure-
ments than would be expected from traditional sampling theory.
The methods used involve computing the signal of minimum
`1 norm among those having the given measurements. We
show that by replacing the `1 norm with the `p norm with
p < 1, exact reconstruction is possible with substantially fewer
measurements. We give a theorem in this direction, and many
numerical examples, both in one complex dimension, and larger-
scale examples in two real dimensions.

I. INTRODUCTION

There has been much recent research (e.g., [1], [2], [3]) on
the subject of reconstruction of sparse signals from a limited
number of linear measurements. This topic is known in the
literature as compressed sensing or compressive sampling, and
has some overlap with basis pursuit [4]. There are many
relevant results, but we focus here on those typified by the
following example, from [1].

We consider an M×N measurement matrix Φ such that for
x ∈ CN , y = Φx is the vector of Fourier coefficients of x at
M randomly chosen frequencies. Suppose that the sparsity of
x is K; that is, x has K nonzero elements. This can be stated
in terms of the `0 norm of x: ‖x‖0 = K. (This is a standard
abuse of terminology: ‖ · ‖0 is not positive homogeneous, yet
is referred to as a norm.) Then there is a constant C, not
depending on K or N , such that whenever M > CK log N ,
one can reconstruct x exactly, with very high probability, as
the solution of the following optimization problem:

min
u
‖u‖0, subject to Φu = y. (1)

(The constant C can depend on how small the probability of
failure is to be guaranteed to be; it scales as N−m where m
depends on C.) Importantly, this result continues to hold if
the `0 norm is replaced by the `1 norm, resulting in a convex
problem:

min
u
‖u‖1, subject to Φu = y. (2)

The problem (1) is NP-hard [5], while the convex problem (2)
can be solved efficiently. That the former can be replaced by
the latter is the reason for the surge in recent interest.

It should be pointed out that the above is not special to
Fourier measurements. Similar results hold [3] if the elements
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of Φ consist of random samples from the standard normal dis-
tribution, or if each element is 1 or −1 with equal probability.
The key is that with high probability, Φ will be a sampling
from a basis that is incoherent with the standard basis in CN .
Just as a signal cannot be localized in both time and frequency,
there is a lower bound on the combined support size of x and
Φx.

It is natural to ask what happens if the `1 norm is re-
placed by the `p norm for some p ∈ (0, 1). (Recall that for
0 < p < ∞, ‖u‖p

p =
∑N

j=1 |uj |p. As with ‖ · ‖0, ‖ · ‖p

is not a norm when 0 < p < 1, though ‖ · ‖p
p satisfies

the triangle inequality and induces a metric.) The resulting
optimization problem will not be convex, and is described in
the literature as intractable. Be that as it may, in this note
we demonstrate that the much simpler task of finding a local
minimizer can produce exact reconstruction of sparse signals
with many fewer measurements than when p = 1. We begin
with theoretical results concerning when a global minimizer
is guaranteed to be an exact reconstruction. We follow with
numerical evidence, a suite of one-dimensional examples and
some larger-scale, two-dimensional examples. The examples
are designed for direct comparison with results in [1].

II. RESTRICTED ISOMETRY CONSTANTS

We begin with a theoretical result concerning the circum-
stances under which the solution to the problem described in
the introduction,

min
u
‖u‖p, subject to Φu = Φx, (3)

equals exactly x. For this we need the concept of an ap-
proximate S-restricted isometry, as introduced in [6]. For
T ⊂ {1, . . . , N}, let ΦT be the matrix consisting of the
columns ϕj of Φ for j ∈ T . For each number S, define the
S-restricted isometry constant of Φ to be the smallest δS ≥ 0
such that for all subsets T with |T | ≤ S and all c ∈ C|T |,

(1− δS)‖c‖2
2 ≤ ‖ΦT c‖2

2 ≤ (1 + δS)‖c‖2
2. (4)

Then we have the following sufficient condition for exact
reconstruction.

Theorem 1: Let Φ be an M ×N matrix. Let x ∈ CN and
let K = ‖x‖0 be the size of the support of x. Let p ∈ (0, 1],
b > 1, and a = bp/(2−p). Suppose that Φ satisfies

δaK + bδ(a+1)K < b− 1. (5)

Then the unique minimizer of (3) is exactly x.
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This was stated by the author in [7] in the particular case of
b = 3 and for real-valued matrices, but the same proof works
mutatis mutandis. The theorem generalizes the corresponding
result of Candes et al. for p = 1 and b = 3 in [8]. For a given
Φ, the restricted isometry condition (5) will hold for larger
values of K when p < 1. It is argued in [9] that the condition
of the theorem holds when M > CK log N for a constant C,
and in [1] that this relation is the best possible. The theorem
suggests, however, that `p minimization with p < 1 can reduce
the value of the constant.

The weakest possible restricted isometry condition that is
sufficient to guarantee exact reconstruction is given by Candes
and Tao [6], namely that the NP-hard problem (1) gives exact
reconstruction if δ2K < 1. We point out that this is the limiting
case of the previous theorem.

Corollary 2: Given Φ and x as in the Theorem, suppose
δ2K+1 < 1. Then there is p > 0 such that the unique
minimizer of (3) is exactly x.

Proof: Choose b large enough that δ2K+1 < (b−1)/(b+
1). Then choose p > 0 small enough that a = bp/(2−p) <
1 + 1/K. Then

δaK + bδ(a+1)K ≤ (1 + b)δ(a+1)K ≤ (1 + b)δ2K+1 < (b− 1).
(6)

The result now follows from the Theorem.
On the one hand, the value of these results depends on

the ability to compute a global minimizer of a nonconvex
functional. On the other hand, any local optimization method
can do so if initialized by a point sufficiently close to the global
optimum. While we provide no guarantees, the numerical
results below strongly suggest that the least-squares solution
is often or even always sufficiently close, if there are enough
measurements.

III. NUMERICAL EXAMPLES

We proceed with a numerical investigation of the circum-
stances under which computing a local minimizer of (3) gives
exactly x. As in the introduction, Φ will be a matrix having
the action of evaluation of the Fourier transform at a randomly
chosen collection of frequencies.

For our experiments, we fixed a signal length of N = 512.
As in [1], the numbers of measurements M were 8, 16, . . . ,
128. For each value of K, the sparsities K are each multiple of
M/16 up to M , rounded to the nearest integer. The values of p
were 1, 0.95, 0.75, and 0.5. (Smaller values of p can be used,
but only with more careful supervision of parameters than that
afforded by the automated approach described below.) The
experiment was repeated 10 times for each value of M and K.
For each repetition, a spike-train signal x =

∑K
k=1 zkek was

constructed by randomly choosing K elements of the standard
basis {e1, e2, . . . , eN} of CN , then randomly choosing the
real and imaginary parts of each zk from the standard normal
distribution. Conceptually, the matrix Φ consisted of a random
selection of M rows from the discrete Fourier transform (DFT)
matrix. In actual fact, instead of multiplication by a matrix
Φ, the fast Fourier transform would be computed and the
corresponding M elements selected.

We adopt a simple computational approach for computing
local minimizers of problem (3), namely gradient descent with
projection. More sophisticated algorithms are possible; for ex-
ample, the FOCUSS approach of Rao and Kreutz-Delgado [10]
(though this would not be feasible for the examples of the next
section, where a gradient operator needs to be incorporated).
We are not presenting a new algorithm, merely examining the
potential for `p minimization to improve signal reconstruction
in the compressed sensing framework. Similarly, we always
begin our iteration with the easily-computed minimum-`2

norm fit to the data, as this is the most sensible from the
perpective of signal reconstruction. Changing the initial iterate
would be expected to change the computed local minimizer.

Our iteration is of the form

dn = −|un|p−2un, un+1 = PΦu=Φx(un + tndn), (7)

where the absolute value and arithmetic operations involving
un are componentwise. We thus compute the steepest descent
direction dn at un of the `p norm, or, more precisely, of
‖ · ‖p

p/p. We then take a step in the direction dn with a
stepsize factor tn, then project orthogonally onto the affine
constraint space Φu = Φx. The projection onto Φu = Φx
was performed every iteration, by computing the DFT of
u, setting the previously-chosen M frequency coefficients to
those of x, then computing the inverse DFT. The stepsize
tn was chosen every 100 iterations by an exact line search;
in other words, it is chosen to give the minimum value of
‖PΦu=Φx(un + tndn)‖p. The same tn was then used until
the next 100 iterations had been computed. To avoid division
by zero, |un| was replaced by

√
|un|2 + ε2, where ε was

decremented by 5% every 100 iterations, beginning with
0.01. As mentioned above, the iteration was begun with the
minimum-energy solution, in other words the solution u0 to
(3) with p = 2. This is simply the projection under PΦu=Φx of
the zero vector. The iteration was run was for 40000 iterations,
by which point the `p norm had generally ceased to decrease
significantly. The final value of ε was thusly 1.23 × 10−11.
The elapsed time was approximately 30 seconds on a 1.3-
MHz laptop, running in MATLAB.

For each repetition, the reconstruction was deemed exact
if the obtained minimizer u∗ satisfied ‖u∗ − x‖∞ < 10−6.
In each of several checked instances when this condition was
satisfied, further iteration would produce a solution within less
than 10−13 of x, an exact reconstruction by any reasonable
numerical measure. The percentage of exact reconstructions
was recorded for each K and M . It should be noted that in
the case of exact reconstruction, there is no way to determine
whether the minimizer is global. However, Theorem 1 suggests
that it may be, especially for values of K and M for which
exact reconstruction was always observed. (Directly checking
the condition of the theorem is not feasible.)

A pair of examples are in Figures 1 and 2. The sparsity
is K = 16, and M = 48 measurements were made. The
signal and measurement frequencies are the same for both
examples. What differs is that p = 1 in the first case and
p = 0.5 in the second case. When p = 1, the minimizer u∗

differs substantially from the original signal x. The maximum
discrepancy is ‖u∗ − x‖∞ = 1.08, and the relative error is
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‖u∗ − x‖2/‖x‖2 = 0.407. The `1 norm of the minimizer is
indeed lower than that of the signal, ‖u∗‖1 = 22.7 versus
‖x‖1 = 23.4. In the p = 0.5 case, the reconstruction is exact:
‖u∗ − x‖∞ = 7.61 × 10−7 after 40000 iterations. Another
50000 iterations gave ‖u∗ − x‖∞ = 3.33× 10−14.

Fig. 1. The real and imaginary parts of a signal x (open markers) and the
solution u∗ (filled markers) to problem (2). The reconstruction is not even
approximately x.

Fig. 2. Same as the previous figure, except u∗ is the solution to problem (3)
with p = 0.5. The reconstruction is exactly x.

Figure 3 shows the results of the experiments, in the format
of [1]. The number of measurements M is on the vertical axis
and the ratio K/M of sparsity to number of measurements is
on the horizontal axis. (Only values of K/M up to 3/4 are
displayed.) The intensity gives the observed frequency of exact
reconstruction, with white being 100% and black being 0%.
Improvement over the p = 1 case is clear even for p = 0.95.
For p = 0.5, exact reconstruction is obtained with a sparsity-
to-measurement ratio nearly double that required when p = 1.

An additional experiment was conducted to provide an
example of the result of varying the number of measurements
with a fixed sparsity. We used K = 16 and values of M
ranging from 24 to 80, for the same values of p used above.
The results are in Figure 4. It is remarkable that even a
value of p only slightly less than 1 gives exact reconstruction
for significantly fewer measurements (12% fewer, in this
example). Decreasing p further decreases the required number
of measurements, but it appears that the smaller the value of
p, the less improvement is seen for a given decrease in p.

A. Two-dimensional example

We present a larger-scale, two-dimensional example, de-
signed as in [1], where the signal x is the 256× 256 Shepp-
Logan phantom (Figure 5(a)). Here, it is the gradient of the
signal that is sparse, with ‖∇x‖0 = 3627 (out of 65536

Fig. 4. Observed probabilities of exact reconstruction for a signal of sparsity
K = 16, for different numbers of measurements M and four values of p.
Compared with p = 1, substantially fewer measurements are required for
exact reconstruction when p = 0.95. Decreasing p further decreases the
required value of M , but by less and less as p gets smaller.

pixels). The compressed-sensing theory applies in this setting
as well, as is well known [1]. The problem (3) becomes:

min
u
‖∇u‖p, subject to Φu = Φx. (8)

As in [1], the Fourier coefficients measured by Φ were not at
random frequencies, but instead along radial lines in frequency
space (as in Figure 5(b)). By the Fourier slice theorem,
sampling along a radial line in frequency space is equivalent
to sampling (the Fourier transform of) the Radon transform
along the angle determined by the line. The experiment is
equivalent to attempting to reconstruct the phantom from a
limited number of radiographic projections (or views).

We used gradient descent with projection as in (7), though
now the descent direction is

dn = ∇ ·
((√

|∇un|2 + ε2
)p−2∇un

)
, (9)

obtained from the Euler-Lagrange equation for minu ‖u‖p.
Gradients were computed with simple forward differencing,
with backward differencing used for divergences, and Neu-
mann boundary conditions. The value of ε was initialized to
10, fixed until the `p norm had ceased to decrease significantly,
then decreased by a factor of 10. This process was continued
until no further decrease was observed, or until the `p norm
was less than that of the phantom. Reconstruction was deemed
exact if the computed minimizer was within 10−13 of the
phantom at every pixel. The number of iterations required
for exact reconstruction varied widely, generally fewer for
smaller p, and more when the number of measurements was
near minimal. For example, with p = 0.5, 85000 iterations
were needed with 10 views, 10000 with 18 views, while
452000 were needed for 18 views with p = 1. Iterations were
computed at a rate of about 1000 per minute.

In [1], exact reconstruction is claimed for 22 views in the
p = 1 case, for which there are 5481 Fourier coefficients
measured, for M = 10962 total measurements (counting both
the real and imagainary parts). In fact, we find that 18 views
suffice (or M = 9010; see Figure 5(d)), while 17 views do not
(M = 8514). For p = 0.5, however, 10 views (M = 5042)
are sufficient for exact reconstruction. Decreasing p further
was not found to decrease the number of views required.

IV. CONCLUSIONS

The ability to reconstruct signals from very few measure-
ments is an important development in signal processing. In
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Fig. 3. Observed probabilities of exact reconstruction for different numbers of measurements (M ) and sparsity-to-measurements ratio (K/M ), for four
values of p: p = 1 (left), p = 0.95 (second from left), p = 0.75 (second from right), and p = 0.5 (right). Compared with p = 1, exact reconstruction is
obtained with larger values of K/M even for p = 0.95, and almost double the value of K/M for p = 0.5.

(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 5. (a) The 256×256 Shepp-Logan phantom. (b) The white pixels show
where the Fourier transform is sampled with 18 views. (c) The minimum-
energy or backprojection reconstruction with 18 views is very poor. (d) The
reconstruction from 18 views with p = 1 is exact. (e) The Fourier transform
sample pattern for 10 views. (f) The reconstruction from 10 views with p = 1
is poor. (g) The reconstruction from 10 views with p = 0.5 is exact.

applications where data acquisition is expensive or difficult,
compressed sensing can allow good results to be obtained
in a manner that would once have been infeasible. In this
note, we have seen that by computing local `p minimizers
with p < 1, fewer measurements are required than previously
observed. The required reconstruction time is generally longer
than with p = 1, but much less than with p = 0. Moreover,
the algorithmic approach in this note is relatively naive;
more sophisticated `p optimization methods should reduce the
reconstruction time further. This will increase the number of
applications for which the `p approach is worthwhile.
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