
Query-Driven Visualization

Kurt Stockinger, John Wu, John Shalf, and 
Wes Bethel
Computational Research Division
Lawrence Berkeley National Laboratory
October 2005



2

Motivation and Problem Statement

Too much data.
Visualization “meat grinders” not 
especially responsive to needs of 
scientific research community.
What scientific users want:
• Quantitative results
• Feature detection, tracking, 

characterization
• (lots of bullets here omitted)

See:
http://vis.lbl.gov/Publications/2002/VisGreenFindings-

LBNL-51699.pdf
http://www-user.slac.stanford.edu/rmount/dm-workshop-

04/Final-report.pdf 



3

Scalable Visualization Isn’t Always the Answer

Premise: rely on humans to 
interpret more data.
Decades of work on scalable vis 
and rendering algorithms.
Problems: 
• You can’t really “see” a Terabyte.

• Gestalt != Quantitative results
• Fundamental cognitive science 

problem: 1+1=3
• Adding more information to the 

display may produce a net loss in 
understanding.

• Throwing more data at the user 
doesn’t solve the “overwhelmed by 
firehose of data” problem.



4

Another Approach: Selective Save and Vis

Premise: only save “interesting” data, throw away the rest.
Appropriate when focusing vis/analysis to confirm expected
Opportunity cost: no discovery possible in stuff thrown away

Image source: ASCI TSB Project



5

What is Query-Driven Visualization?

Focus visualization processing on subsets of data deemed 
to be “interesting.”
• “Interesting” is something the user needs to define.

Challenges
• How to define “interesting.”

• Formulation of definition (domain-specific).
• Expression of definition (semantic).

• Find interesting data quickly (SDM).
• Effective visual presentation of “interesting data” (Vis).
• Architectures/deployment that complements existing visualization

algorithms and applications (CS).



6

Query-Driven Visualization

Our paper’s contribution:
• Find interesting data quickly.

• Leverage technology from SDM community for visualization.
• Performance analysis.

• Architecture: a general approach broadly applicable to most data
and visualization applications (plays nicely with others).

Topics for another day:
• Assisted query posing.
• Effective visualization techniques for query results.



7

Related Work

Query-Driven Visualization
• VisDB – Keim & Kriegel, 1994.

http://www.dbs.informatik.uni-muenchen.de/dbs/projekt/visdb/visdb.html

• Demand Driven Visualization. Moran & Henze, 1999.
• Scout – McCormick et. al., 2004.

Finding Data Quickly
• Traditional SDM: relational database systems; tree-based structures, bitmap 

indices.
• Visualization: isocontouring algorithms:

• Marching cubes
• Octrees – Wilhelms & Gelder, 1992.
• Span-space methods:

– NOISE – Livnat, et. al., 1996.
– ISSUE – Shen, et. al., 1996.
– Interval Tree – Cignoni et. al., 1996.



8

VisDB – Keim and Kriegel, 1994

Motivation: assist in specification of 
query formulation.
Approach: rank-ordered query results.
How: 
• For each data point [i], compute a 

“relevance factor” indicating how closely 
data point [i] matches the query (distance).

• Compute statistical moments.
• Sort all relevance factors, display in sorted 

relevance order or by colorizing relevance 
ranking.

For n data values, O(n) complexity.



9

Scout – McCormick et. al., 2004

Motivation: interactive, 
expression-based queries.
How: data-parallel language 
that executes on the GPU.
For n data points, O(n) 
complexity.
N will be small, though: limited 
GPU memory.
Other: floating point resolution 
on the GPU.



10

Query-Driven Visualization: Summary

VisDB:
• O(n) processing time for each query.
• Data presented in relevance order, reduced in part by quartile 

culling.
• Helpful for guiding queries.

Demand-Driven Visualization:
• Shown effective for subset selection based upon spatial 

characteristics rather than data characteristics.

Scout:
• High performance (GPU-based) subsetting, expressive data-parallel 

language.
• Limited memory, floating-point resolution.
• Output is imagery rather than data suitable for external use.



11

Finding Data Quickly

Isosurface algorithms:
• Nice summary in: Sutton et. al., A Case Study of Isosurface

Extraction Algorithm Performance 2nd Joint Eurographics-IEEE 
TCCG Symposium on Visualization, May. 2000 

• For n data values and k cells intersecting the surface:
• Marching Cubes: O(n)
• Octtree methods: O(k + k log (n/k)) 

– Acceleration: pruning; sensitive to noisy data.
• Span-space methods:

– NOISE: O(sqrt(n) + k)
– ISSUE: O(log (n/L) + sqrt(n)/L + k)

» L is a tunable parameter
– Interval Tree: O(log n + k)



12

Finding Data Quickly

These approaches work well for isocontouring, but users want 
more than isosurfaces.:

These queries are for a single variable.
• Want multi-valued queries. Current simulations produce 10s-100s of 

variables per cell.
These queries only find cells that contain the isovalue.
• May want interior cells for quantitative analysis.

What about combinatorial tree-based methods?
• Curse of dimensionality: adding more dimensions results in an 

exponential growth in storage and processing complexity.
Want to have general purpose implementation to feed data 
to multitude of processing pipelines, not just isosurfacing.



13

Overview of Our Implementation and Results

Bitmap indices: the indexing structure and query engine.
• See http://sdm.lbl.gov/fastbit 
• State-of-the-art from the scientific data management community.

Preprocessing query output.
Provide to visualization engine.
Experimental performance results.

Source
Data

Query

“Region
Growing”

Vis and
Rendering
Pipeline

Indices



14

What is a Bitmap Index?

Compact: one bit per distinct 
value per object.
Easy and fast to build: O(n) vs. 
O(n log n) for trees.
Efficient to query: use bitwise 
logical operations.
(0.0 < H2O < 0.1) AND (1000 < 

temp < 2000)
Efficient for multidimensional 
queries.
• No “curse of dimensionality”

What about floating-point data?
• Binning strategies.

Data
values

0
1
5
3
1
2
0
4
1

1
0
0
0
0
0
1
0
0

0
1
0
0
1
0
0
0
1

0
0
0
0
0
1
0
0
0

0
0
0
1
0
0
0
0
0

0
0
0
0
0
0
0
1
0

b0 b1 b2 b3 b4 b5

0
0
1
0
0
0
0
0
0



15

Bitmap Index Query Complexity and Space 
Requirements

How Fast are Queries Answered?
• Let N denote the number of objects and H denote the number of hits of 

a condition.
• Using uncompressed bitmap indices, search time is O(N)
• With a good compression scheme, the search time is O(H) – the 

theoretical optimum.

How Big are the Indices?
• In the worst case (completely random data), the bitmap index requires 

about 2x in data size.
• On the average, we’ve seen a cost of 1/10th the size of the original data.



16



17

Index Sizes for our Performance Study

Original data: 383^3 grid of 4-byte floats: ~215MB

Variable Index Size 
(MB)

Size Factor Time (sec)

Pressure 77.59 0.36 7.47

Density 128.70 0.60 8.56

Temperature 124.93 0.58 8.76

Velocityx 247.49 1.15 13.30

H2O 263.64 1.23 13.04

CH4 314.88 1.46 13.49



18

Bitmap Index Compression

uncompressedWAH

space

speed

better

gzip
BBC

ExpGol
PacBits



19

Bitmap Index Query Performance



20

Consolidating Query Results: Region Growing

Find and label cells that share an edge, face or vertex.
Not strictly necessary for “meat grinder” visualization.
Imperative for meaningful analysis operations.



21

Visual Results

CH4 > 0.3

Temp < T1

CH4 > 0.3 AND temp < T1

CH4 > 0.3 AND temp < T2
• T1 < T2



22

Performance Analysis Experiment

The performance experiment:
• Compare speed of answering queries: fastbit vs. an “industry 

standard implementation” of span-space isosurfacing.

Experimental methodology.
• Isosurface: find cells, construct geometry.
• DEX: find cells, construct geometry.
• For each implementation:

• Load dataset, disregard time required for one-time initialization.
• For several different isovalues, measure time required to find 

cells and generate geometry.



23

Experimental Methodology

Ideally, we want to measure and compare only the time 
required for finding cells (exclude geometry construction).
• Not possible due to implementation details.

Second best: want to measure and separately report time 
required for search and geometry construction.
• Again, not possible due to implementation details.

Is including geometry construction time valid?
• Yes. See Sutton et. al., A Case Study of Isosurface Extraction 

Algorithm Performance 2nd Joint Eurographics-IEEE TCCG 
Symposium on Visualization, May 2000. 



24

Experimental Methodology, ctd.

How does geometry construction phase differ between isocontouring
and DEX?
• Isosurfacing:

• Each cell containing the surface generates between 1-n triangles, 
where n varies between 4-10 depending upon the implementation.

• Experimental results show an average of about 2.5 triangles/cell.
• Some math required to produce triangles.

• DEX:
• Each cell satisfying search criteria is visually represented as a cube 

composed 12 triangles.
• No math required to produce triangles.
• In our experiments, DEX is returning the interior cells as well.
• We include time for region growing in our overall time.

Net result:
• DEX is doing a lot more work in the performance study.



25

Results: Density



26

Results: Density



27

Results: Other Variables



28

Future Directions

Include in mainstream visualization tools.
• Existing use in ROOT package from CERN.
• AVS/Express module under development.

Parallel implementation.
• SC05 HPC Analytics Challenge – Network Connection Data Analysis.

• Parallel queries reduce search time from ~2200 seconds using existing 
tools (grep) to ~22 seconds using FastBit.

Demonstrate and deploy integrated query-analysis-visualization.
Better visualization of query results.
Help users pose queries, iterative queries over derived variables.
Multiresolution queries, topology-preserving multires queries (AMR).
Constraints relaxation based upon proximity (space, data values, time).



29

Conclusion

DEX faster than industry standard implementation by 137% 
to 392%.
• DEX doing more work: more triangles/cell, more cells per query, and 

a region growing step to label connected cells.

DEX architecture amenable to use in a general way for 
visualization, analysis, …
This approach offers new traction on the task of helping 
meet the needs of the scientific research community.
• Focus vis processing and human interpretation on relevant data.
• Fast: multidimensional queries suitable for use with multi TB data.



30

Acknowledgement

This work was supported by the Director, Office of Science, 
Office of Advanced Scientific Computing, of the U.S. 
Department of Energy under Contract No. DE-AC03-
76SF00098.



31

The End



32

The End


	Query-Driven Visualization
	Motivation and Problem Statement
	Scalable Visualization Isn’t Always the Answer
	Another Approach: Selective Save and Vis
	What is Query-Driven Visualization?
	Query-Driven Visualization
	Related Work
	VisDB – Keim and Kriegel, 1994
	Scout – McCormick et. al., 2004
	Query-Driven Visualization: Summary
	Finding Data Quickly
	Finding Data Quickly
	Overview of Our Implementation and Results
	What is a Bitmap Index?
	Bitmap Index Query Complexity and Space Requirements
	
	Index Sizes for our Performance Study
	Bitmap Index Compression
	Bitmap Index Query Performance
	Consolidating Query Results: Region Growing
	Visual Results
	Performance Analysis Experiment
	Experimental Methodology
	Experimental Methodology, ctd.
	Results: Density
	Results: Density
	Results: Other Variables
	Future Directions
	Conclusion
	Acknowledgement
	The End
	The End

