Auroral Phenomenon Localization, Classification, and Temporal Evolution Tracking

> G. Germany * T. Newman * C. Cao * C.C. Hung † J. Spann ‡

> > * Univ. of Alabama in Huntsville
> > † S. Polytechnic State Univ.
> > ‡ MSFC
> > AISR Meeting, Oct. 3-5, 2006

General Goal: Support Study of Aurora

- UVI Polar Datasets
 - 9M+ images!
 - Exploitation Challenge
 - OST (Germany Talk @ AISR05)
 - Queries based on:
 - Sensor Location
 - Some Image Features:
 - Integrated Intensity
 - Boundary Position
 - Image Quality
 - Popular:
 - 1000/100

• UVI OST Link

A Problem: Finding Auroral Oval

UVI image

HKM

AMET

UVI image

PCNN

HKM

AMET

A Problem: Finding Auroral Oval

Visual Perception I

• What do you see?

from Torrans 99 (GMU)

from Schiffman's *Sensation and Perception*, 2000, as presented by Loken et al., Macalester Coll.

Visual Perception I

• What do you see?

from Torrans 99 (GMU)

from Schiffman's *Sensation and Perception*, 2000, as presented by Loken et al., Macalester Coll.

Gestalt = Form, a unit of perception Note: Avoid strict Gestaltism!

Visual Perception II: Some Gestalt

- Continuity
- Closure

- H ppy Birthday
- Proximity EEEEEEEEEEEEEEEEE
- Similarity

Toward a Better Solution?

- Exploit:
 - Continuity
 - Closure
 - Proximity
 - Similarity

Toward a Better Solution?

- Exploit:
 - Continuity
 - Closure
 - Proximity
 - Similarity

Specific Goal: Effective Retrieval

- UVI OST: Mining Pre-Processing
 - Removes Non-Auroral Features
 - Extracts Auroral Oval
 - Inefficient
 - Often fails
- Support Auroral Feature Search
 - Shape-Based Processing to Localize Oval
 - Better-support Auroral Feature Retrieval

Shape Recovery

- Our prior work:
 - Spheres
 - Cylinders
 - Cones
 - Ellipsoids
 - Paraboloids
 - Hyperboloids
 - Compound Structures

Exploiting Shape I

- Exploiting Shape: Preliminaries
 - What Shape?
 - Shape Invariant Descriptors

$$Ax^2 + By^2 + Cxy + Dx + Ey = 1$$

 $\Delta = \begin{vmatrix} A & C/2 & D/2 \\ C/2 & B & E/2 \\ D/2 & E/2 & F \end{vmatrix} \qquad J = \begin{vmatrix} A & C/2 \\ C/2 & B \end{vmatrix} \qquad I = A + B$

$$\Delta \neq 0, J > 0, \frac{\Delta}{I} < 0$$
: ellipse

Exploiting Shape II: Experiments

- Shape Testing
 - Manual Tracing
 - Linear Least Squares Fitting
 - Shape Invariant Extraction

Some Fitting Results

Initial Work: Localization

- Hough-Based Processing
 - Democratic:
 - Pixels Vote
 - Example
 - y = mx + b

Shape-based Detection

- Mod. Randomized Hough Transf. (MRHT) for ellipse:
 - Randomly Select Edgels
 - Fit General Quadratic
 - Determine Shape
 - Ellipse Parameter Recovery (next page)
 - Parameter Space Decomposition
 - 2D accumulate array for center
 - 2D accumulate array for axes
 - 1D accumulate array for orientation

Shape-based Detection (cont.)

- MRHT for ellipse
 - Recover: $Ax^2 + By^2 + Cxy + Dx + Ey = 1$

center
$$(x_0, y_0) = \left(\frac{2BD - CE}{C^2 - 4AB}, \frac{2AE - CD}{C^2 - 4AB}\right)$$

orientation $\theta = \arctan\left(\sqrt{\left(\frac{B-A}{C}\right)^2 + 1} + \frac{B-A}{C}\right)$
axes $(a, b) = \left(\sqrt{\frac{|\Delta|}{|Jr_1|}}, \sqrt{\frac{|\Delta|}{|Jr_2|}}\right)$
where $r_1 = \frac{1}{2}(A + B + \sqrt{(B-A)^2 + C^2}),$
 $r_2 = \frac{1}{2}(A + B - \sqrt{(B-A)^2 + C^2}).$

Spin-Off : MRHT for Ellipsoids

Two Stages:

- Center detection
- Axes and orientation detection
 - Linear least-squares
 - Eigen analysis
- Multiple ellipsoids OK
 - * ICPR 06 paper

Shape-based Detection Illustrated

Ongoing Work I: Improvements

- Improve Auroral Oval Detection
 - Deformable Contour

Ongoing Work II: Auroral Classification A

- θ -aurora
 - Exploit θ Characteristics
- Steps:
 - 1. Transpolar activities exist? If none, stop; no θ -aurora
 - 2. Apply PCNN-based method for aurora oval detection
 - 3. Extract transpolar arcs and thin them
 - 4. Detect a line using Hough transformation (HT)
 - 5. Determine whether the transpolar arc belongs to a θ -aurora
 - 6. Determine if there exists more than one transpolar arc
 - 7. Determine if the aurora a candidate θ -aurora
 - 8. After examining all the images, determine whether the candidate θ -aurorae are real θ -aurorae

Ongoing Work II: Auroral Classification B

Ongoing Work II: Auroral Classification Results

Experiment data set:

- 6 days in years 1997 and 1999
- 1206 images: 507 transpolar arc, 699 no transpolar arc
 - θ -aurorae: 79, Standard aurorae: 799, Dayglow: 267

	Relevant Images	False Alarms	Missed Images	Precision	Recall
<i>θ</i> –aurorae	65	8	14	89%	82.3%
Standard Aurorae	761	70	38	91.6%	95.2%

Work Goals

- Better-Localized Auroral Oval
- Upcoming:
 - Additional Classification
 - Temporal Evolution Tracking
 - Substorms
 - Extend to FUV

Horse Collar

Bent Transpolar Arc

Conclusion

- Exploited Shape for:
 - More Robust Auroral Oval Detection
 - Comparative Study of Performance (Pub. Upcoming)
 - $-\theta$ -Aurora Detection (Data Mining / Apps. pub.)
- Better OST
- Spin-off: Ellipsoids (ICPR pub.)

Approx. Auroral Oval Boundary

- Thresholding with density examination

 Thresholding value: μ (mean of the pixel intensities)
- LoG edge detection

Shape-based Detection (cont.)

- Separation of inner and outer boundary
 - Based on distance to center of detected ellipse from boundary pixels

99/006/093006

Green = detected ellipse from boundary pixels. Red = inner boundary. Blue = outer boundary

Shape-based Detection (cont.) Shape detection of inner and outer boundary.

99/006/070027

Green = RHT ellipses. Red = Inner. Blue= outer boundaries of the aurora arc.

Experimental Configuration

- Machine:
 - CPU: 2.3 GHz
 - Memory: 512 MB
 - OS: Windows XP
- Run time (wall clock)
 - -3 MRHT runs each with 100,000 fittings
 - One run for center estimation, two runs for inner and outer boundary detection
 - $-\approx 45$ seconds for each image