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Abstract 
 
An automated technique to segment solar coronal loops 
from intensity images of the Sun’s corona is introduced. It 
exploits physical characteristics of the solar magnetic 
field to enable robust extraction from noisy images. The 
technique is a constructive curve detection approach, 
constrained by collections of estimates of the magnetic 
field’s orientation. Its effectiveness is evaluated through 
experiments on synthetic and real coronal images. 
 
 
1. Introduction 
 

The Sun is a dynamic force that greatly impacts the so-
lar system. In particular, solar activity can impact terres-
trial communication and weather. Solar physicists are 
currently attempting to gain a stronger understanding of 
solar dynamism, partially via study of solar magnetism. 

One key means to study solar dynamism is by observa-
tion and analysis of the solar magnetic field from solar 
satellite images. In particular, solar physicists are inter-
ested in examining images of the solar corona. NASA’s 
ongoing TRACE satellite mission, which collects high-
resolution (512× 512) intensity images of the Sun’s co-
rona several times per hour, is a preferred source of such 
images. (A sample TRACE image is shown in Fig. 1(a).) 
The primary examination task is to detect and identify the 
solar coronal loop structures in these images. Previously, 
automatic means to detect and identify such structures 
haven’t been successful; current scientific study of solar 
coronal loops requires manual extraction of the loop 
structures from images. Detection of coronal loops is 
challenging, even using TRACE images, because the loop 
structures tend to have blurry boundaries and overlap in 
the imagery. Many loops also have low contrast sub-
segments. (The intensity of such sub-segments is rela-
tively lower than that of other sub-segments.) In addition, 
there is impulse noise in the images. 

In this paper, a new technique, the Oriented Connec-
tivity Method, for automated segmentation of coronal 
loops from images of the Sun’s corona is introduced. The 
technique exploits constraints based on physical proper-
ties to guide the curve detection process. 

 
 

2. Related Work 
 

A number of methods for representing, following, and 
linking edge structures in intensity images have been pre-
sented in the literature. For example, since the early 60’s, 
starting with Freeman’s [2] well-known chain coding, a 
number of structure boundary representation mechanisms 
have been presented. Many edge linkage approaches have 
also been described. For example, Makhervaks et al. [7] 
have recently presented an edge linkage process that joins 
edge structures using an edge-explorer operator that acts 
on a gradient vector field. 

Curve feature detection techniques have also been de-
scribed. For instance, Canning et al. [1] have detected 
thin curve features by examining pixel neighborhoods to 
identify local gray level patterns that are consistent with 
the presence of an edge. Adjacent, compatible edge pixels 
are then linked. Jang and Hong [4] have detected curvi-
linear structures (e.g., a line or a curve of a given width) 
using skeleton extraction. They use Canny edge detection 
to define the boundary points of the regions in which the 
skeleton extraction will be performed. 

Hough-based techniques [3] have also been utilized in 
curve detection. Their large parameter space for large 
images and for complex shapes, such as in our problem 
domain, is a difficulty, however. Active contour models 
(i.e., snakes [5]), which are typically defined as energy-
minimizing splines, have also been widely used for de-
tecting curved structure boundaries. A difficulty with 
using snakes for coronal loop detection is that there are 
many nearby loops and the loops cross each other, so it is 
easy for a single snake to lock onto components of multi-
ple loops. Coronal loop crossings also complicate use of 
many other curve detection schemes. 

Strous [9] has described a pixel labeling algorithm for 
coronal images. The algorithm labels a pixel as a member 
of a loop structure if the pixel’s intensity is higher than 
those of more than two of the four cross-pairs in its 3× 3 
neighborhood (and as a non-member otherwise). Since 
the pixels on the central axis of the coronal loop struc-
tures are usually brighter than the neighboring pixels, 
Strous’s algorithm detects most of the coronal loop pixels. 
It does not detect loops per se, however, as it has no proc-
ess to link pixels into loop structures. In addition, the al-
gorithm falsely labels as loop pixels many noisy 
background pixels and many bright pixels not actually on 
coronal loops. 
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3. Coronal Loop Detection Methodology 
 

Next, we describe our new Oriented Connectivity 
Method (OCM), which is based partly on Strous’s loop 
pixel labeling [9]. The Oriented Connectivity Method 
constructively segments the coronal loops while simulta-
neously eliminating false loop pixels. The approach’s 
processing includes steps that achieve joining of discon-
nected loop sub-segments, thus forming descriptions of 
complete loops. The Oriented Connectivity performs its 
loop segmentation by exploiting a physical constraint, 
namely the local orientation of the solar magnetic field. 
Since coronal loops align with the solar magnetic field, 
we exploit knowledge of the field to aid the linkage proc-
ess. 

Magnetic fields, including local fields in regions about 
the Sun, can be reasonably approximated in 3D space by 
a dipole field model [6]. One complication in using this 
3D spatial model to guide loop detection in the coronal 
intensity images is that the intensity images record the 
projection of 3D structures onto 2D image space. The 
Sun’s field is also a collection of many dipoles, and the 
position of each needs to be estimated. Thus, many points 
in 3D space, each with a different local magnetic field 
orientation, could project to each pixel. The 3D-to-2D-
projected loops could also cross each other. 

In our approach, we exploit the dipole field model by, 
at each pixel labeled as a loop pixel after application of 
Strous’s algorithm, considering a set of estimates of the 
3D-to-2D-projected magnetic fields’ orientations. We use 
these estimates to progressively link pixels with consis-
tent magnetic field orientation. The set of estimates are 
taken from a set of azimuth maps (of the magnetic field) 
from a solar magnetogram. Each azimuth map records an 
estimate of the angular direction of the magnetic field and 
is defined for one height above the solar surface, so for 
small regions of the solar surface each azimuth map is a 
map of the magnetic field’s orientations at a given height 
(i.e., in z). The azimuth can be derived from the vector 
sum of the x and y components (i.e.,  and ) of the 

magnetic dipole flux density equation [8]: 
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where x, y, and z are the Cartesian components of the 
magnetic field position vector, r is the magnitude of the 
position vector, and  is the magnetic force constant. oB
 
3.1. Preprocessing 
 

The Strous’s algorithm [9] (that our approach is based 
upon) produces a poor labeling when applied to a raw 
TRACE image, partially due to the known imaging ef-
fects described earlier. Thus, to remove impulse noise and 

to improve the contrast between the loops and the back-
ground, prior to applying the Strous algorithm, we have 
applied median filtering followed by unsharp masking as 
preprocessing steps. We empirically determined that 7× 7 
median filtering could eliminate much of the impulse 
noise. The unsharp masking used a blurred image ob-
tained from 11× 11 linear smoothing. 

Fig. 1(a) shows a sample coronal image. The result 
from median filtering that image is shown in Fig. 1(b). 
The contrast-enhanced result of the unsharp masking on 
the same underlying image is shown in Fig. 1(c). As 
shown in these figures, the impulse noises are removed 
and the loop structures are sharpened by the preprocess-
ing. 

The Strous’s loop pixel labeling [9], even when ap-
plied to an image “cleaned” by median filtering and un-
sharp masking, still wrongly classifies many noise pixels 
and bright pixels that are not on the coronal loop struc-
tures. The low contrast and the blurriness of the coronal 
loop structures are largely responsible for these falsely-
labeled pixels. We have found that these falsely-labeled 
pixels can be largely removed by a combination of global 
and adaptive thresholdings applied to the image “cleaned” 
by median filtering and unsharp masking. 

We first apply a global thresholding. Its threshold is 
the median intensity T of the filtered images; all pixels 
whose intensity is less than T are considered to be non-
loop pixels. Next, additional falsely-labeled pixels are 
removed by an adaptive thresholding step. The adaptive 
thresholding performs thresholding in each sub-region of 
the image. We have found empirically that dividing the 
image into 31× 31 pixel tiles with 50% overlap (e.g., the 
top-half of a sub-region  overlaps the bottom-half of a 
region  that is above sub-region ) produces reason-
able results. The threshold used in each sub-region is the 
sub-region’s median intensity value. In fact, wherever 
sub-regions overlap, the threshold for the overlapped area 
is the mean of the thresholds of the overlapping sub-
regions. Fig. 1(d) shows the result after applying the two 
thresholdings to a “cleaned” image (i.e., of Fig. 1(c)). 
Many, but not all, falsely-labeled pixels in this figure 
have been removed by the thresholdings. 
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3.2. Oriented Connectivity Method  
 

Our Oriented Connectivity Method’s constructive 
curve detection starts from any pixel labeled as a coronal 
loop pixel and then forms a clustering of all the other 
pixels that define the same loop structure. This process is 
applied repeatedly until all pixels labeled as loop pixels 
have been processed. Although any scanning process can 
be used to find the starting points on each loop, we have 
found that a process that searches for a starting point in a 
column-wise process followed by a row-wise process is 



typically sufficient to find the major loop structures. 
(We’ve also found it’s sufficient to perform the column- 
(row-) wise search only every twentieth column (row).)  

The forming of a clustering of pixels into a loop is a 
stepwise process which at each step adds one pixel to the 
current loop. The “best” pixel to be added is found by a 
search from the current loop’s end pixel. A small fan-
shaped region (the “searching region”) about that pixel is 
where the search occurs. The searching region’s fan 
shape is bounded by the magnetic field minimum and 
maximum angular directions (azimuths) for that pixel. 
The region’s extent d was empirically determined to be 5 
pixels.  An example of the searching region for a pixel S 
is shown in Fig. 3. In the figure, the arrows represent the 
azimuths at different heights. The thick arrows represent 
the extremal azimuths. The “best” pixel in the region is 
the one that best-preserves loop continuity in position and 
tangent direction and which is nearby and sufficiently 
bright. We have encoded the degree of goodness of each 
candidate pixel using a weighting scheme based on dis-
tance, intensity, angular, and tangent weighting factors. 
The highest weighted pixel is the one joined to the current 
loop. The constructive process is repeated until no other 
pixels can be joined to a loop segment end point. The 
steps of the Oriented Connectivity Method algorithm are 
as follows. 

 
Step 1. Apply Strous’s loop pixel labeling (to a “cleaned” 

image). 
Step 2. Start forming a (new) loop from an unassigned 

pixel  that’s labeled as a loop pixel. iP
Step 3. Define the searching region at . iP
Step 4. Find the unassigned loop-labeled pixels in the 

searching region of . iP
Step 5. If there are no loop-labeled pixels in the searching 

region, find a loop-labeled pixel in the 8-
neighborhood of . If one exists, apply Step 7. iP

Step 6. If there is no loop-labeled pixel in the neighbor-
hood, repeat Step 2. If so, set the loop-labeled 
neighborhood pixel as a new starting point and repeat 
Step 3. 

Step 7. Apply weighting scheme to find each pixel’s 
goodness. 

Step 8. Assign the highest-weighted pixel in the searching 
region as the next pixel, , of the loop. 1+iP

Step 9. Connect  and , save  as new . iP 1+iP 1+iP iP
Step 10. Repeat Steps 2 to 8 until no other points are se-

lected. 
Step 11. Calculate the mean width of the detected loop. 
Step 12. Remove the detected loop from the image and 

save its description. 
Step 13. Repeat Steps 1 to 11 until all image pixels have 

been considered. 

In Step 11, mean width is determined from the inten-
sity profiles at three points (the midpoint and points half-
way between the midpoint and endpoints) of the detected 
loop. At each point, loop width is defined to be the dis-
tance (measured perpendicularly to the loop’s local direc-
tion) between the maximum gradient points on each side 
of the loop.  
 
3.3. Post-processing 
 

The Oriented Connectivity Method can miss some 
loops and over-segment (i.e., disconnect) others. The 
pixel-by-pixel linking process may also produce aliased 
(i.e., jaggy) loop structures. To remove the aliasing and 
join the disconnected sub-segments of the loops, we post-
process the OCM’s output by applying B-spline fitting 
and edge linking. The first B-spline fitting is designed to 
produce smooth loop curves. In our usage of B-spline 
fitting, different number of equally-spaced loop points are 
used for the control points according to the length of each 
loop to be fit (i.e., more control points are used to repre-
sent a longer loop). Then a simple edge linking and the 
second B-spline fitting are applied to the result of the first 
B-spline fitting to merge disconnected loop segments 
smoothly: namely, if two loop segments terminate a short 
distance from each other, they are linked provided that 
they have similar tangent directions at their end points. 
 
4. Experimental Results 
 

We have evaluated the effectiveness of the Oriented 
Connectivity Method (OCM) using synthetic and real 
coronal images. 

To benchmark the OCM’s effectiveness, we applied 
(1) a manual method (which we will label MM) that in-
volved manually identifying as many coronal loop points 
as possible, and (2) a semi-manual method (which we will 
label SMM) that involved manually sampling several 
coronal loop points and using the points sampled on each 
loop as the control points of a B-spline fitting. These two 
manual methods and the OCM were applied on synthetic 
datasets of size 500× 500 which were created by project-
ing a collection of 3D field lines generated from three 
known dipoles onto a 2D image. 

The benchmarking considered the global positional er-
ror (GPE) and four metrics on this error (e.g., the maxi-
mum, the minimum, the mean, and the standard deviation 
of the positional error). This error measures the distance 
of traced/detected curves from the known loop centers. 
The GPE is measured over all loops. Fig. 2(a) shows a 
synthetic dataset and the blue curves in Fig. 2(b) repre-
sent the loops detected in this image by the OCM. As 
shown in Fig. 2(b), our technique detected most of the 
loops that are easily visible to human vision. The global 
error measures for the two manual methods and the OCM 



on the synthetic image shown in Fig. 2 are listed in Table 
1. The Oriented Connectivity Method produced smaller 
errors and had less variance in position on its loops. 
However, the number of traced/detected loops were 74, 
69, and 57 for the MM, SMM, and OCM, respectively. 

We have also applied the Oriented Connectivity 
Method to seven real coronal images. To analyze the ef-
fectiveness of the Oriented Connectivity Method, eight 
coronal loops were selected arbitrarily on each image and 
then the images were considered by the semi-manual 
method and by the OCM. Three classes of error were 
measured: the number of false positives, errors in length, 
and the positional errors. There were 4 global false posi-
tive errors (i.e., four loop structures were detected by the 
semi-manual method but not detected by the Oriented 
Connectivity Method) in the collection of tests. The OCM 
tended to over-segment loops; the average loop lengths 
from OCM were 44% shorter than the loop lengths from 
SMM. The average relative global position error for the 
Oriented Connectivity Method was 3.30 pixels. The result 
for the image shown in Fig. 1(a) is shown in Fig. 1(e). 
The blue curves in Fig. 1(e) represent the loops detected 
by the Oriented Connectivity Method; the technique rea-
sonably detected the well-defined loops. 
 
5. Conclusions 
 

We have presented a new method of detecting solar 
coronal loop structures. The Oriented Connectivity 
Method, the first automated coronal loop detection tech-
nique, uses physical constraints to guide the coronal curve 
detection process. Through evaluation of the technique 
we have shown that the technique can provide consistent 
and reasonable automated detections of loop structures in 
solar coronal images. 

For the future work, additional image processing tech-
niques to sharpen the coronal loops and other techniques 
to more strongly exploit the orientation of the magnetic 
field will be explored. 

Similarly-shaped structures in other scientifically-
interesting environments are influenced by other charac-
terizable physical properties, thus extending the Oriented 
Connectivity Method to other arenas may be possible. 
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                            (d)                          (e) 
Fig. 1. (a) Coronal image, (b) Median filtered im-
age, (c) Contrast enhanced version of unsharp 
masked image, (d) Curve features after thresh-
oldings (e) Detected loops. 
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Fig. 2. (a) Synthetic image,      Fig. 3. Search  
(b) Detected loops       Region about S 
Table 1. Errors (GPE) on synthetic image  (in pixels) 
 

Method Max Min Mean Std Dev 
MM 3.61 0.00 0.66 0.63 

SMM 3.51 0.00 0.58 0.40 
OCM 3.00 0.00 0.57 0.37 

 




