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The tendency to combine the three metrics into one will only obscure
information and should be avoided. The recommendation that each of the

three be tracked separately is yet another reason to restricting ourselves to
three metrics.

It is fully expected that each IPT will avail themselves of sophisticated
methods to establish the value of the parameters. It may well even be true that
each IPT uses a different method. However, over time and with experience, it
is reasonable to suppose that some methods will prevail and become
common. Here, the intent is to let use determine the method as opposed to
method determining the use.
_;teD 4: Reconciliation

The top'ten plus one list should be compared to the three metrics
generated to see if the information plays well together. Logic and consistency
are important. In essence, the IPT has verified their feelings on risk by working
the problem two different ways, one in paragraph form and the other with the
metrics. This part of the report should be in paragraph form and discuss how
the two different parts support each other.
Steo 5: Transition

Risk management is dynamic. The RM plan requires a periodic review
to insure it is meeting its required objectives and to insure that the objectives
themselves have not changed. As the program becomes more operational in
nature, significant changes in the definition of success will occur forcing
changes in the IRM plan. Step 5 in the report is a paragraph discussing how
the office plans to deal with the change from a risk perspective.

CONCLUSIONS

As was stated earlier in the paper, this is a tentative beginning of the
development of the foundations of risk management. Surely significant
changes and modifications will occur with time. The question now becomes
one of whether the implementation of such a program is worth the overhead
that it brings. Can a program afford to implement an IRM plan?

One of the problems with technical decision making is that non-technical
people understand neither the principles involved nor the process. Given this,
they have to trust the technocrat to do what is right and correct. One thing is
resoundingly clear, if the community as a whole loses their faith in the
technocrats to make the "good" decision, they can shut the whole process
down. If Congress loses its faith in NASA, they can stop the space station. If
the public loses its faith in a company, they can force financial ruin. If the
auditors and accountants lose their faith in the design team they can stop a

project.
Given this and given the high risk of many technical decisions, the

question more properly becomes one of can a company or program afford not
to institute a formal risk management plan?
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high-performance aircraft are purposely designed statically unstable,

increasing their maneuverability. Instabilities are easily controlled using

feedback: pilot-in-the-loop, automatic flight control systems, or both.

Dynamic stability is the time-response of an aircraft to a perturbation.

Dynamic instability is also acceptable in an aircraft, presuming the divergence

from an equilibrium condition is slow enough. These instabilities are also

dealt with using human or automatic feedback.

Moment Trim

Separate from, yet related to, stability is moment trim. For an aircraft

to achieve an equilibrium flight condition, moments about the center of

gravity, both longitudinally and laterally, must balance. This balance is

dependent on static stability derivatives and control effectiveness, measured

in terms of control derivatives, useful aerodynamic angles of attack, and

maximum allowed deflections. An altitude and airspeed where moment trim

is not achievable is an infeasible flight condition, regardless of the level of

static or dynamic stability.
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DISCUSSION

Static Stability

Rather than look at every force and moment response to every input

motion variable, an arbitrary set of static stability criterion is established:

• Velocity disturbances are initially opposed only by forces.

• Rotational velocity disturbances are initially opposed only by moments.

• Angle of attack and sideslip disturbances obtained by interpreting the

velocity disturbances v and w as 13 = v/U: and a = wAI 1 are initially

opposed only by moments.

Smile stability is indicated when the initial response of the vehicle is a return

toward the equilibrium point.

The change in side-force coefficient, Cy, with change in sideslip angle,

1_, serves to illustrate the shorthand notation used with stability derivatives:

=c,,
(1)

The criteria for static stability are outlined in Table 1.

TABLE 1.- AIRPLANE STATIC STABILITY CRITERIA

Forces and

Moments

Drag
+ X-Thrust

Sideforce
+ Y-Thrust

Lift

+ Z-Thrust
Roll Moment

+ Roll-Thrust

Pitch Moment

+ Pitch-Thrust

Yaw Moment
+ Yaw-Thrust

Perturbed Variable

[ ivlwl. 7, l..? :lp/qllu v w 13= a= p q r
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As current work concentrates on the descent-to-land mission phase (the

aircraft is in unpowered, gliding flight), thrust forces of Table 1 are not

considered. The only derivative contrary to our rules is the pitching moment

response to a linear velocity, Cmu. Inclusion is a function of its physical

significance.

Static Stability Results

Where possible, stability derivatives were determined directly from the

LaRC aerodynamic database by applying a forward differencing method

between available data points. Curve-fits were applied to data which was

highly non-linear with the perturbed variable of interest (drag with angle of

attack and longitudinal forces and moments with u-velocity (Mach number)).
Results of this analysis are presented in Table 2.

TABLE 2.- WB001 STATIC STABILITY

Perturbed Variable

Forces and u v w 13= ot = p q
Moments

STABLE

Sideforce
Litt

Roll
Moment

Pitch

Moment

Yaw

Moment

Note 1" This SSTO variant exhibits a tendency to tuck its nose with

increasing velocity (Cmu < O) for angles of attack greater than 3.25 degrees

(Mach= 0.30) and at as greater than -8.04 ° at Mach -- 0.60.

Note 2: Dihedral effect (Cl_) is unstable (positive) at Mach 0.30 and angles
of attack less than 12.0 degrees. For Math = 0.60, the vehicle is statically

unstable at less than 10.0 degrees ct.

Note 3:WB001 is statically unstable for all flight conditions studied.
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Moment Trim

The six degrees of freedom available to an aircratt are represented by

six equations of motion (conservation of linear and angular momentum).

Modeling aerodynamic forces as a first-order Taylor Series expansion and

writing the equations for rectilinear flight yields:

mgsinr = -(Cz_o +C_ ot +Cz_. tbl +CD.6, +Co,_8¢)_S

-mg sin _cosy = (Cro+ Cr, fl + Cr,.,6,_l + Cr_6 ¢ )qS

,,,goos¢cosv=(c_.+c_a+c_.8¥ +c,.8.+c_)_s
0: c,,fi+c, 8o,+c,,8,
0=c.. +c. _+c.. _¥+c. 8.+c._,
o=c.,tJ+c., a.,+c., _¢

(2)

Further modification to these equations is possible by assuming zero

bank angle, _ = O. This substitution decouples the longitudinal set of

equations from the lateral and is representative of actual mission profiles

flown from 10,000 feet to the runway.

Longitudinal Equations of Motion

mgsinv =-(CD° + Cz_ ot +CD_6¥ +CD_ S. +CD_S¢ )qS

0=c.. +c. ,_+c.. a¥+c._a.+c.,,a_,
(3)

In these equations, flight path angle (y), angle of attack (a), body-flap

deflection (fibf), elevator deflection (/5¢), and tip-fin deflection (Stf) are

unknowns. Reducing the five unknowns to three is possible by first setting

the body-flap deflection to zero, typically done for shuffle in the final stages

of descent to ensure ground clearance at touchdown. Eliminating angle of

attack dependency is possible by solving the set with LaRC aerodynamic

characteristics for WB001 at each angle of attack from -10.0 to 20.0 degrees

(subsonic range of useful a). The solution set: ?, fie, and 8tf, represents a

longitudinal trim condition.
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Lateral-DirectionalEquations of Motion

-mgcosy = (Cr, fl + Cr,,6a,, + Cr_c6¢ )qS

(4)

In these equations, flight path angle (y), sideslip angle (13), aileron deflection

(fi"aft),and tip-fin deflection (fitf) are not known. Either the longitudinal flight

path angle solution, or another flight path angle of interest, is substituted here,

leaving three unknowns. It is important to differentiate tip-fin use in the

longitudinal and lateral-directional cases. Tip-fins are employed for speed

brake effect longitudinally and rudder effect laterally.

A trim solution does not guarantee feasibility. Maximum control

deflections possible with the vehicle must exceed the solution obtained from

these equation sets. Further, aerodynamic angles obtained must not exceed

stall values in either c_ or [3.

Longitudinal Trim Results

A note concerning trim solutions for elevator deflection is warranted.

WB001's control configuration is depicted in the schematic below (Figure 1).

For these calculations, it was assumed both inboard and outboard panels were

deflected to trim pitching moment. Obvious advantages in this are smaller

control deflections (more surface area moving to counter the moment),

resulting in decreased drag due to control movement and a greater percentage

of available deflection to address dynamic stability concerns. Control

derivatives for the elevator in equation sets 2 and 3 above are, therefore, the

addition of drag, lift, and pitching moment derivatives with respect to both

aileron and elevon movement. Longitudinal trim results are shown in Figure
2.

Solutions at Math 0.30 yield trim flight path angles on the order of 12 -

13 degrees (orbiter is ---20.0 °) and angles of attack varying from around 17.8

degrees at 10,000 feet to 12.6 degrees at sea-level. These calculations

presume a standard atmosphere. Trim angles of attack and elevator
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deflection trend smaller at higher Mach number, while flight path angle
increases to values in excess of 20 degrees at 10,000 feet. These data bound

possible trim solutions and this effort does not design a final descent
trajectory.

body flap

drawing not to scale

elevon

FIGURE 1.-WB001 CONTROL

ORGANIZATION SCHEMATIC

Lateral-Directional Trim Results

Lateral-directional trim was

attempted in a similar manner. Rather

than look at conditions throughout the

final descent, trim was attempted for a

design cross-wind condition at landing

of 25 knots. Assuming touchdown

velocities comparable to shuttle (--

200 knots), this results in a design

sideslip angle of approximately 7
degrees.

20.0

10.0

._ -10.0

-20.0

-30.0

Longitudinal Trim Solutions
WBO01 @ xcg = O. 714
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Altitude [feet]

-I- angle of attack (M = 0.30) -e-- glide path angle (M = 0.30) _ elevator defleddon (M : 0.30) I

-B- angle of stick (M - 0.60) -e-- glide _ angle (M = 0.60) _ elew_r deflection (M - 0.60) I

FIGURE 2.- LONGITUDINAL TRIM SOLUTIONS (oc, y, and _ie)

FOR TWO MACH NUMBERS VS. ALTITUDE
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Further, orbiter design vertical velocities at touchdown are

approximately 2.0 feet/second. Using this and the assumed touchdown

velocity of around 200 knots results in a flight path angle of approximately

zero (0.34 °) for substitution into the lateral equation set.

Attempts to obtain a trim solution to the lateral equations of motion

proved impossible, indicating the vehicle incapable of landing in the design

cross-wind. This, coupled with C,_ static instabilities, suggested an analysis
to improve the SSTO's inherent lateral stability.

Tip-Fin Sizing

Early landing simulation of the SSTO indicated lateral divergence from

design trajectories in both roll and yaw with small 13 (Figure 3). Further

attempts to land the vehicle indicated increasing lateral force and moment

effects resulted in more favorable performance. Discussions with engineers

at LaRC indicated a pending effort to reevaluate tip-fin size.

Sizing lateral control surfaces to produce a desired Cni_ derivative value
is common practice in the preliminary design of aircraft. Considering vehicle

weathercock stability (Cn_) as a superposition of effects from the wing-body
and lateral control surfaces, in this case, the tip-fins, yields:

= +

where,

(5)

The tip-fin contribution is further expressed as:

ao
C'-_-" = Cz_-_-J" (1-_ )rIo S b

(6)

CLa_tip.fin = Tip-Fin Lift-Curve Slope

_/_13 = Change in Sidewash with Sideslip Angle

rltf = Ratio of Dynamic Pressure at the Tip-Fin to the Wing

Stf = Tip-Fin Surface Area [it 2]

S = Wing Area [t_2]

Xtf = Distance from Center-of-Gravity to Tip-Fin Aerodynamic

Center [ft]

b = Wing Span [ft]
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SSTO-NOMINAL-VS-STS64
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FIGURE 3.- SHUTTLE ENGINEERING SIMULATOR STRIP PLOTS COMPARING

KOLL RATE [DEG/SEC], PITCH RATE [DEG/SEC] AND SIDESLIP ANGLE [DEG]
VS. TIME [SECONDS] FOR THE SSTO TO ORBITER IN STS-64

CONFIGURATION

If we neglect sidewash dependence on 13 (_c/_13) and assume the

dynamic pressure ratio (fly) is 1, equation 6 reduces to:

C,,,,_,.= ,,.
- - S b

(7)

CLa_tip.fm was calculated as 2.174/radian using methods outlined in the
United States Air Force Stability and Control Data Compendium
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(DATCOM). Comparison of LaRC tip-fin yaw moment to tip-fin side force

at the same deflection resulted in a value for Xtf (moment ann of the tip-fin

control surface to vehicle center-of-gravity) of 56.112 feet. Substituting a

wing area of 4,211 ft2 and span equal to 95.72 ft, equation 7 shows how

increasing tip-fin surface area results in a linear increase in Cn__tip.fin.

A vehicle Cnl_ of 0.100/radian was selected and is representative of the

orbiter's subsonic lateral stability in this derivative. WB001's current tip-fin

surface area is 214.95 ft 2. Increasing area to obtain this degree of inherent

stability requires a growth factor of 6.78 (total lateral control surface area

required increases to 1,457 ft2.

This offers one method of improving vehicle lateral stability and cross-

wind landing capability. Enhancing basic wing-body weathercock stability or

employing alternative methods of improving tip-fin effectiveness without a

size increase are equally viable options.
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CONCLUSIONS

This study concludes the WB001's current level of lateral stability is

insufficient. In particular, lateral trim solutions for desired cross-wind

components in the landing environment were not possible. Instabilities in roll

and pitch 'tuck' also exist, but appear less significant than deficiencies in the

Cn_ derivative. Longitudinal trim solutions indicate steady-state glide path

angles on the order of 12 degrees at Maeh = 0.30, increasing to slightly

greater than 20 degrees at M = 0.60. One attempt at improving the vehicle's

lateral instabilities looked at sizing lateral control surfaces to a prescribed

degree of inherent stability. A value comparable to subsonic stability of the

orbiter (Cn_ = 0.100/radian) was selected and required increasing tip-fin

surface area 6.78 times (fi-om around 215 to 1,457 t_2). This carries a

commensurate increase in aircraft weight, highly undesirable in a SSTO

configuration. Other methods of enhancing the vehicle's lateral stability are

available and require further study.
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