TMS 2005 Meeting

San Francisco, California, February 13-17, 2005

Prediction and Characterization of Diffusion Paths with "Horns" in Two-Phase Ternary Diffusion Couples

Hongwei Yang

Department of Materials Science and Engineering Institute of Materials Science

University of Connecticut
John E. Morral
Department of Materials Science and Engineering The Ohio State University

Outline

- Linear "zigzag" diffusion paths
- Non-linear diffusion paths with "horns"
- Characterization of "horns"
- Prediction of the type of "horns"
- Variation of "horns" with composition
- Summary

Zigzag Diffusion Paths

Diffusion Paths from DICTRA Simulation

Single-horns in $\alpha+\alpha$ ' two-phase A-B-C diffusion couples

Diffusion Paths from DICTRA Simulation

Double-horn in $\gamma+\beta$ two-phase Ni-Cr-Al diffusion couples

Characterization of "Horns"

Transformation of coordinates

$$
[\Delta \widetilde{C})=[\alpha][\Delta C)
$$

Characterization of "Horns"

Correlation of the type of horns with the horn length

Double-horn: $l^{\text {Right }}$ and $l^{\text {Left }}$ have the same sign

Single-horn: $l^{\text {Right }}$ and $l^{\text {Left }}$ have the opposite sign

Prediction of the Type of Horns

The relative position of two major eigenvectors

Prediction of the Type of Horns

The relative position of two major eigenvectors

Variation of "Horns" with Composition

Variation of "Horns" with Composition

Variation of "Horns" with Composition

Transition between inward and outward "horns"

Variation of "Horns" with Composition

Summary

- DICTRA simulations of two-phase ternary diffusion couples show sharp deviations from the linear zigzag paths, appearing as double or single horns.
- The double-horn has the same signs of the horn length for both left and right sides while the single-horn has the opposite signs.
- The type of horns may be predicted based on the relative position of two major eigenvectors and the position of the composition vector.
- The horn length varies linearly with the component of the composition vector along the major eigenvector direction of the diffusivity matrix.

Acknowledgements

The authors are grateful to the National Science Foundation for financial support under grant No. DMR-0139705.

Diffusion Paths from Perturbation Model

* M. Schwind, T. Helander and J. Ågren, Scripta. Mater. 44(2001) 415-421

Variation of "Horns" with Composition

Relation between the horn length and the horn tip distance

I: Horn Length
d: Horn Tip Distance

$$
d=\Delta \tilde{C}_{2}-2 l
$$

Variation of "Horns" with Composition

Transition between inward and outward "horns"

e_{2}

Outward Horn

$$
d=0
$$

Diffusion Paths from DICTRA Simulation

Two-phase Ternary Diffusion Path

Linear

Non-linear

