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Thermal Barrier Coatings

TBCs are needed as the gap between the turbine firing 
temperature and substrate alloy capability increases

TBCs are needed as the gap between the turbine firing 
temperature and substrate alloy capability increases
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Benefits of TBCs:
Higher firing temperature
Reduced cooling air required
Longer component life.
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Motivation for predicting thermal 
conductivity, k, from microstructure

Benefits of inexpensive, widely available, rapid predictor
More accurate cooling and lifing of gas turbine parts
Optimization of k during TBC material development
Design of lower k TBC materials on computer
Spray vendors qualify TBCs for thermal conductivity

Laser flash measurements are time consuming, expensive, 
and require special expertise. Accordingly, such 
measurements are:

rarely made during materials development
used sparingly by turbine part designers
typically not included in production qualification & QC
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EB-DVD TBC Microstructures
Microstructural Simulation Approach (OOF)
Thermal Conductivity Simulations 

Model Zig-Zag Geometries
Monte Carlo Generated Microstructures

Computational Design of Low Thermal 
Conductivity TBC Microstructures

TECHNICAL APPROACH: Develop computational tools 
for simulating properties and elucidating influences 
of stochastic, anisotropic microstructural features 
(e.g., porosity) on physical properties
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Types of Thermal Barrier Coatings
and Deposition Processes
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Selected Deposition Processes for the yttria stabilized 
zirconia (YSZ) ceramic top coat

electron-beam physical vapor deposition (EB-PVD)
electron-beam directed vapor deposition (EB-DVD)

EB-PVD TBCs

10 µm

EB-DVD TBCs
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EB-DVD Zig-Zag Microstructures

D. D. Hass, A. J. Slifka & 
H. N. G. Wadley, “Low 
Thermal Conductivity 

Vapor Deposited Zirconia
Micro-structures,” Acta 

mater. 49, 973–983 (2001)
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Types of Porosity in EB-DVD’s

Type II 
pores

Type I 
pores

1.0 µm



EB-DVD Zig-Zag Microstructures

D. D. Hass, A. J. Slifka & H. N. G. Wadley, “Low Thermal Conductivity Vapor 
Deposited Zirconia Micro-structures,” Acta mater. 49, 973–983 (2001)

Ceramics Division



Ceramics Division

Thermal Conductivities of
EB-DVD Zig-Zag Microstructures

D. D. Hass, A. J. Slifka & H. N. G. Wadley, “Low Thermal Conductivity Vapor 
Deposited Zirconia Micro-structures,” Acta mater. 49, 973–983 (2001)
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Building a Microstructural Model
SimulationsExperiments

Visualization of 
Microstructural Physics

Virtual Parametric
Experiments

Effective Macroscopic
Physical Properties

Fundamental
Materials Data

Materials
Physics

Microstructure Data
(micrographs)

easy-to-use Graphical User Interface (GUI) – ppm2oof

Object Structure
Isomorphic to the Material

Finite Element Solver

easy-to-use Graphical User Interface (GUI) – oof
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Adaptive Meshing by Components

pixel image
with mesh

mesh

pixel
image

Generate a finite-element mesh
following the material boundaries
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OOF Tool

Perform virtual experiments on finite-element mesh:
To determine effective macroscopic properties
To elucidate parametric influences
To visualize microstructural physics

Visualize & Quantify:
Heat Flux Distribution

Virtual Experiments:
Temperature Gradient

To - δT

To + δT
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EB-DVD Zig-Zag Microstructures
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EB-DVD Zig-Zag Microstructures
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Thermal Conductivities of
Model Zig-Zag Microstructures
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Thermal Conductivities of
EB-DVD Zig-Zag Microstructures

D. D. Hass, A. J. Slifka & H. N. G. Wadley, “Low Thermal Conductivity Vapor 
Deposited Zirconia Micro-structures,” Acta mater. 49, 973–983 (2001)
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Effect of Boundary Conditions



Optimization of Low Conductivity
EB-DVD Microstructures

Yougen Yang, Derek D. Hass, & Haydn N. G. Wadley, Univ. of Virginia

Electron-Beam Directed 
Vapor Deposition coating 
microstructure via kinetic 
Monte Carlo simulation

substrate was periodically 
inclined to the vapor flux

Deposition at
T/Tm = 0.23

Annealed at
T/Tm = 0.43
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Kinetic Monte Carlo Simulation
of Atomic Condensation

Physical
Vapor

Deposition

Incident atoms (kT ~ 200 meV)

vacancy

Assembly Process:
Condensation
Thermal diffusion (surface, bulk)
Incident atom-growing surface interactions,

including reflection, resputtering, etc.

kinetic Monte Carlo (kMC) for diffusion
Molecular Dynamics (MD) for effects of energy



Effective Thermal Conductivity
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Thermal Conductivity Simulations
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Thermal Conductivity Simulations



Thermal Conductivity Simulations
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SUMMARY:
Microstructure-based, finite-element 
simulations are used to elucidate the thermal 
conductivity of complex TBC microstructures.
Microstructures include actual EB-DVD 
microstructures, model microstructures, and 
kinetic Monte Carlo generated microstructures.
Effective thermal conductivity is a simple 
function of gas conductivity with 
microstructure-dependent properties.
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Computational Design of Low Thermal 
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Abstract
Computational Design of Low Thermal Conductivity TBC Microstructures

Edwin R. Fuller, Jr.*
National Institute of Standards and Technology, Gaithersburg, MD 20899

Yougen Yang, Derek D. Hass, and Haydn N. G. Wadley, University of Virginia, 
Charlottesville, VA

Lowering the thermal conductivity of thermal barrier coatings (TBCs) is an important 
design aspect in the improvement of advanced turbine airfoils. While much research is 
ongoing in development of alternative materials to yttria-stabilized zirconia with lower 
intrinsic thermal conductivity, many advantages can be made through microstructural 
design of pore morphology and pore distribution [e.g., see T. J. Lu et al., J. Am. Ceram. 
Soc., 84 [12]: 2937-2946 (2001)]. Electron-Beam Directed Vapor Deposition (EB-DVD) 
provides a fabrication process by which the pore morphology and distribution can be 
tailored through the development of zigzag columnar TBC microstructures. However, 
optimization of these zigzag microstructures entails depositing and testing many 
coatings via myriad processing variables. Computational simulations are used to 
accelerate this process. EB-DVD zigzag microstructures are generated via kinetic 
Monte Carlo and molecular dynamics (MD) simulations, in which the substrate is 
periodically inclined to the vapor flux. The generated microstructures are annealed via 
similar computational processes. Effective thermal conductivity of real and simulated 
microstructures is computed via microstructure-based finite-element simulations. 
Effects of coating design and annealing temperature are systematically explored.
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