## SUBJECT: Power Requirements for Digital Central Office Equipment

To: All Telephone Borrowers REA Telephone Staff

EFFECTIVE DATE: Date of Approval
EXPIRATION DATE: Three years from effective date

OFFICE OF PRIMARY INTEREST: Central Office Equipment Branch, Telecommunications Standards Division

PREVIOUS INSTRUCTIONS: This bulletin replaces REA Telecommunications Engineering \& Construction Manual (TE\&CM) Section 302, Power Requirements for Community Central Office Equipment, Issue No. 6, dated April 1989.

FILING INSTRUCTIONS: Discard REA Telecommunications Engineering \& Constructions Manual (TE\&CM) 302, Power Requirements for Digital Central Office Equipment, Issue 6, dated April 1989, and replace it with this bulletin. File with 7 CFR 1751 and on REANET.

PURPOSE: This bulletin provides REA borrowers, and other interested parties with information concerning power requirements for digital central office equipment.

James B. Huff Sr.
10/15/93

## TABLE OF CONTENTS

1. GENERAL ..... 4
2. BASIS FOR CALCULATIONS ..... 4
3. CALCULATIONS ..... 6
FIGURE 1 - NORTHERN TELECOM, DMS-100 ..... 8
FIGURE 1.1 - NORTHERN TELECOM DMS-100 (EXAMPLE) ..... 9
FIGURE 1.2 - NORTHERN TELECOM DMS-100 ..... 10
FIGURE 1.3 - NORTHERN TELECOM DMS-100 (EXAMPLE) ..... 11
FIGURE 1.4 - NORTHERN TELECOM DMS-10 400 SERIES ..... 12
FIGURE 1.5 - NORTHERN TELECOM DMS-10 400 SERIES (EXAMPLE). ..... 13
FIGURE 1.6 - NORTHERN TELECOM DMS-10 400 SERIES........... ..... 14
FIGURE ..... 16
2.1 - SIEMENS STROMBERG-CARLSON DCO DCO-E/DCO-SE.... 19 FIGURE ..... 19
FIGURE 3 - REDCOM MDX ..... 22
FIGURE 4 - AT\&T 5ESS SWITCH ..... 23
FIGURE 4.1 - AT\&T 5ESS SWITCH (EXAMPLE) ..... 25
FIGURE 5 - MITEL GX5000 ..... 27
FIGURE 5.1 - MITEL GX5000 (EXAMPLE) ..... 28
FIGURE 6 - TRANSMISSION ELECTRONICS CURRENT DRAIN ..... 29
FIGURE 7 - ESTIMATING TELEPHONE BATTERY SIZES ..... 30
FIGURE 8 - CHARGER CAPACITY
INDEX:
Power Requirements For Digital Central Office Equipment

## ABBREVIATIONS

| AC | Alternating Current |
| :--- | :--- |
| AH | Ampere Hour |
| AM | Administrative Module |
| AMAF | Automated Message Accounting Frame |
| BHA | Busy Hour Attempts |
| BMC | Billing Media Converter |
| BTU | British Thermal Unit |
| CC | Common Control |
| CCS | Hundred Call Seconds |
| CM | Communication Module |
| CMF | Control and Maintenance Frame |
| COE | Central Office Equipment |
| CPU | Central Processing Unit |
| CUA | Circuit Unit Assembly |
| DAT | Digital Analog Trunk |
| DC | Direct Current |
| dC-ac | direct current - alternating current |
| dC-dC | direct current - direct current |
| DCI | Digital Carrier Interface |
| DCM | Digital Carrier Module |
| DCO-E | Digital Central Office Exchange |
| DCS-SE | Digital Central Office Small Exchange |
| DCTU | Digital Carrier Trunk Unit |
| DLTU | Digital Line \& Trunk Unit |
| DTC | Digital Trunk Controller |
| DTMF | Dual - Tone Mutlifunction |
| GDSU | Global Digital Service Unit |
| GPIO | General Purpose Input Output |
| LCE | Line Concentrating Equipment |
| LCE | Line Concentrator Equipment |
| LGC | Line Group Controller |
| LLS | Local Line Switch |
| LTF | Line Trunk Frame |
| LU | Line Unit |
| MDX | Modular Digital Exchange |
| MMSU | Modular Metallic Service Unit |
| MSU | Modular Shelf Unit |
| MTM | Maintenance Trunk Module |
| OPM | Outside Plant Module |
| OPSM | Outside Plant Subscriber Module |
| P.E. | Peripheral Equipment |
| PCCM | Power Cooling Control Module |
| PDC | Power Distribution Center |
| PWBA | Printed Wire BoardAssembly |
| RLCM | Remote Line Concentrator Module |
| RLG | Remote Line Group |
| RSLE | Remote Line Subscriber Equipment |
| RSLM | Remote Subscriber Line Module |
| SCM | Subscriber Carrier Module |
| SLC | Subscriber Loop Carrier |
| T\&M | Trunk and Maintenance |
| TM | Trunk Module |
| TMF | Toll Multifunction |
| v | Trunk Unit |
|  | volts |

## 1. GENERAL

1.1 This bulletin is intended to provide REA borrowers, consulting engineers, contractors and other interested parties with technical information for use in the design and construction of REA borrowers' telephone systems. It discusses, in particular, the methods used in calculating the power requirements for central offices. It provides means to calculate the required capacities of the storage batteries and charging equipment for particular applications.
1.2 This bulletin replaces REA TE\&CM 302, Power Requirements for Digital Central Office Equipment, Issue No. 6, dated April 1989. This bulletin provides power calculation methods for various digital, stored program controlled central office equipment.
1.3 General specifications governing storage battery and charging equipment for proposed Central Office Equipment (COE) are covered in Items 12.1 and 12.2, Part III, of Bulletin 1753E001 (Form 522), "REA General Specification for Digital, Stored Program Controlled Central Office Equipment." Based on these general specifications, determination of the required capacities of battery and charger is made by the manufacturer.

## 2. BASIS FOR CALCULATIONS

2.1 Charging equipment furnished with a central office should have sufficient capacity to supply the dc power necessary for the satisfactory operation of the office during the busy hour. This includes the dc requirements for carrier, loop extenders, voice frequency repeaters, and dc-dc converters or dc-ac inverters to operate input/output devices.
2.1.1 Determination of the requirements for emergency generating and charging equipment is covered in Bulletin 1751E-320, "Emergency Generating and Charging Equipment." A suggested method of charger size computation is provided in Figure 8.
2.2 Charging equipment for digital central offices should be provided on one of the following bases:
(a) Two chargers either of which is capable of carrying the full office load; or
(b) Three chargers each of which is capable of carrying half the office load.

Arrangement (a) may be used in any central office power system. Arrangement (b) may offer potential cost savings when applied to power requirements in relatively large digital, stored program controlled offices.

### 2.3 Storage Battery

2.3.1 The storage battery furnished with a central office should have sufficient capacity to supply the dc power necessary to sustain satisfactory operation of the exchange for the period specified.

Specific REA minimum requirements are in 7 CFR 1755.522, which is also contained in Part III of REA Bulletin 1753E-001 (Form 522). Appropriate allowances should be included for any equipment which is normally ac operated but arranged for dc operation in case of an ac failure. See paragraph 1.3 of this bulletin for location of specific requirements in central office equipment specifications.
2.3.2 The minimum usable voltage to be delivered to the central office equipment during battery discharge should be determined using COE manufacturer's design criteria. When power flows from the battery through the power board to the equipment, a voltage drop (IR loss) is experienced as a result of the resistance of the current carrying conductors. In many cases equipment design is based on 44 volts being available at the power entry to the bay. Performance of the digital COE at voltages less than 44 volts becomes unpredictable. For effective design, voltage drop from the source to the equipment bay is considered by allocation as follows:

| Battery to Power Board | 0.5 |
| :--- | ---: |
| Power Board to Equipment Bay | 0.5 |
| Minimum Equipment Voltage | $\underline{44.0}$ |
| Total | 45 V dc -45.0 Vdc |

In the case of a 24 -cell battery (45/24) $=1.88$ volts per cell becomes the minimum operating voltage.
2.3.3 The computation of battery size to meet the site power requirement is described in Figure 7 - Estimating Telephone Battery Sizes. This method permits computation with differing numbers of hours of reserve and numbers of cells in the battery string. The computation is applicable to lead-acid batteries, lead antimony, or lead-calcium batteries (see manufacturer's data for capacity, dimensions, etc.).
2.3.4 REA recommends that the battery provided should have the capacity to maintain the central office load for a period of 8 hours. Systems that are equipped with emergency generators are allowed to reduce the 8 hours to a 3 -hour reserve time.
2.3.5 Determination of battery capacity to be supplied should be based on power outages experienced at the site and on the evaluation of the future performance of the ac power system. Another consideration is the size of the dc load to be supplied. Small electromechanical switching systems have a limited amount of fixed power consuming devices, while a large part of system devices only require power when in use. As a result battery capacity determinations were made assuming busy hour switching activity. The telecommunications industry considers 8 busy hour battery capacity appropriate for most small installations. The expectation of 8 consecutive busy hours of usage following a power interruption was negligible, resulting in battery power being usable for longer than the 8 -hour period. Power consumption in digital switching equipment is almost constant, whether or not calls are being processed. In addition, the total power consumed by digital switches is greater than the electromechanical systems. The concept of "busy hour drain" has lost its impact in digital offices where the operating drain represents the constant load. The solution most often used is to provide an emergency generator to supply power on a long-term basis and to install a battery with 3 hours capacity.

## 3. CALCULATIONS

3.1 The following sample calculations describe the suggested procedure to determine the power requirements for digital, stored program controlled central office equipment. Sample calculations are included for the following switching equipment types:

## Manufacturer

Figure 1 - Northern Telecom
Figure 2 - Siemens Stromberg-Carlson
Figure 3 - Redcom
Figure 4 - AT\&T
Figure 5 - Mitel

> System
> Designation
DMS-100, DMS-10

DCO
MDX
5 ESS
GX5000
3.2 Figure 6 lists various power requirements for loop extenders, voice frequency repeaters, carrier equipment and other equipment.
3.3 Figure 7 illustrates the method used in determining the capacity of a storage battery required for a particular application. This figure also illustrates, in Example 2, a method for calculating the ampere-hour reserve of existing batteries when the current requirement of the central office equipment is changed as a result of equipment additions or higher than anticipated calling rates, etc.
3.4 Figure 8 illustrates the suggested method used in determining charger capacity required for a particular application. If 110 percent of the rated output of the charger is equal to or greater than the calculated charger dc current requirement, the charger is considered as satisfactorily meeting the specification requirements. Three suggested solutions in terms of the number of chargers and their capacity are included.
3.5 In some cases specialized equipment requires power at a voltage different from the -48 V dc central office battery. Dc-dc converters can be supplied at +24 V dc, +48 V dc, +130 V dc and other values. These other voltages are used to supply radio and carrier equipment operated at -24 volts, coin collect circuits at +130 volts and other equipment. The power required by the dc-dc converters has to be included in the total load to be carried by the central office dc power system.
3.6 It should be kept in mind that the calculation methods shown in this section are to provide estimates only. Engineering judgment has to be used for each individual application. It is, therefore, recommended that the manufacturer of the system be consulted for specific applications.

```
DC DRAIN
1. Basic (CPU)
    78.5
    CC Frame E/W 4 Memory Shelves
    I/O Frame E/W 2 Disk + 1 Mag Tape
2. PDC Bays
``` \(\qquad\)
``` x 6.5 Amps
3. LAMA or CAMA (10 Amps)
4. Combined Network Frame
``` \(\qquad\)
``` x 24 Amps
5. Double Shelf Network
``` \(\qquad\)
``` x 14 Amps
6. DTC
``` \(\qquad\)
``` x 8.5 Amps
7. MTM
``` \(\qquad\)
``` x 3.3 Amps
8. TM
``` \(\qquad\)
``` x 2.2 Amps
9. LGC
``` \(\qquad\)
``` x 8.5 Amps
10. Line Circuits LCE
``` \(\qquad\)
``` x \(8.2+4 W\) (Note 1)
Subtotal
``` \(\qquad\)
```

Customer Drain

``` \(\qquad\)
```

DMS Current Total

``` \(\qquad\)

Note 1: \(W=2\) way \(C C S\) per line in unit drain formula
```

    E X A M P L E
    1000 Lines, 50 Digital Trunks, 50 Analog Trunks, 3.2 CCS/Line

```
DC DRAIN
1. Basic (CPU)
78.5

CC Frame E/W 4 Memory Shelves I/O Frame E/W 2 disk +1 Mag Tape Drive
2. PDC Bays \(1 \times 6.5\) Amps
3. LAMA or CAMA, 10 Amps
4. Combined Network Frame 1 x 24 Amps
24.0
5. Double Shelf Network \(\qquad\) x 14 Amps
6. DTC \(1 \times 8.5 \mathrm{Amps}\)
7. MTM \(4 \times 3.3\) Amps
13.2
8. TM \(1 \times 2.2 \mathrm{Amps}\)
2.2
9. LGC \(1 \times 8.5 \mathrm{Amps}\) 8.5
10. Line Circuits LCE \(\quad 1 \quad\) x \(8.2+4 W\) (Note 1)
\(\underline{21.0}\)
(Sample \(=1 \times 8.2+4 \times 3.2=21\) )

Subtotal
162.4

Customer Drain 20
20.0

DMS Current Total
182.4

NOTE 1: \(W=2\) way CCS per line in unit drain formula

\section*{HEAT DISSIPATION}
\begin{tabular}{|c|c|c|c|}
\hline Type of Frame & Quantity & \begin{tabular}{l}
Heat \\
Dissipation \\
Per Frame (Watts/Hr)
\end{tabular} & Total Heat Dissipation \\
\hline Central Control Complex & & 1720 & \\
\hline Input/Output Frame & & 850 & \\
\hline Miscellaneous Equipment & & 220 & \\
\hline Network Combined & & 1000 & \\
\hline Digital Trunk Equipment & & 1120 & \\
\hline Trunk Module Equipment Frame & & 480 & \\
\hline Line Concentrating Equipment & & 1050 & \\
\hline Line Group Equipment & & 980 & \\
\hline Power Distribution Center & & 200 & \\
\hline
\end{tabular}

E X A M P L E
1400 Lines, 50 Digital Trunks, 50 Analog Trunks, 3.2 CCS/L
HEAT DISSIPATION
\begin{tabular}{ccc} 
& \begin{tabular}{c} 
Heat \\
Dissipation \\
Per Frame
\end{tabular} & Total Heat \\
Type of Frame & \(\underline{\text { Quantity }}\) & \(\underline{\text { (Watts/Hr) }}\)
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Central Control Complex & 1 & 1720 & 1720 \\
\hline Input/Output Frame & 1 & 850 & 850 \\
\hline Miscellaneous Equipment & 1 & 220 & 220 \\
\hline Network Combined & 1 & 1000 & 1000 \\
\hline Digital Trunk Equipment & 1 & 1120 & 1120 \\
\hline Trunk Module Equipment & & & \\
\hline Frame & 2 & 480 & 960 \\
\hline Line Concentrating & & & \\
\hline Equipment & 1 & 1050 & 1050 \\
\hline Line Group Equipment & 1 & 980 & 980 \\
\hline Power Distribution Center & 1 & 200 & 200 \\
\hline
\end{tabular}
```

Basic System
$\underline{\text { Heat Dissipation }}$
D.C. Drain
Northern Telecom DMS-10 400 Generic (3 Bay)

```
25.0 Amps
\(\qquad\) Amps
\(\qquad\) Amps
\(\qquad\) Amps
_ Amps
_ Amps
\(\qquad\) Amps
\(\qquad\) Amps
\(\qquad\) Amps

Basic System
30.0 Amps
_ Amps
_ Amps
_ Amps

Total = \(\qquad\) Amps

Heat Dissipation
D.C. Drain \(\qquad\) x 52 \(\qquad\) Watts

Figure 1.5 NORTHERN TELECOM STANDARD DMS-10 400 SERIES

Example \#1

5000 Lines, 576 Trunks, 1 RLCM, 1 SLC-96, 1 RSLE, 1 RSLM @ 3.2 CCS/line

DC Drain
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Basic System & & & & & 25.0 & Amps \\
\hline DCM Shelves & 4 & x & 4.0 & \(=\) & 16.0 & Amps \\
\hline DCI Shelf & 1 & x & 3.0 & \(=\) & 3.0 & Amps \\
\hline SCM-10S & 1 & x & 10.0 & \(=\) & 10.0 & Amps \\
\hline P.E. Shelf & 2 & X & 0.75 & \(=\) & 1.5 & Amps \\
\hline LCE Lines & 5000 & X & 0.015 & \(=\) & 75.0 & Amps \\
\hline BMC & 2 & X & 5.0 & \(=\) & 10.0 & Amps \\
\hline D.C./A.C. Inverter & (0.5 KW) & & 1 & \(\times 15.0=\) & 15.0 & Amps \\
\hline & Tot & al & & & 155.5 & Amps \\
\hline Heat Dissipation & & & & & & \\
\hline DC Drain & 155.5 & X & 52 & \(=\) & 8086 & Watts \\
\hline
\end{tabular}

\section*{Example \#2}

Northern Telecom DMS-10 400 Generic (3 Bay)

1280 Lines, 144 Trunks, @ 3.2 CCS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Basic System & & & & & 30.0 & Amps \\
\hline P.E. Shelf & 2 & X & 0.75 & \(=\) & 1.5 & Amps \\
\hline DCM Shelf & 1 & X & 4.0 & \(=\) & 4.0 & Amps \\
\hline LCE Lines & 1280 & X & 0.015 & \(=\) & 19.2 & Amps \\
\hline & & & al = & & 54.7 & Amps \\
\hline
\end{tabular}

Heat Dissipation
D.C. Drain \(\quad=\quad 4.7 \times \underline{2844}\) Watts

Figure 1.6 NORTHERN TELECOM STANDARD DMS-10 400 SERIES (Page 1 of 2 )
```

1 - Standard 400 Series AMPS
Basic System Current Drain 25.0
Network Module (Max. = 2 Modules) 12.0
DCM Shelf 4.0
DCI Shelf
SCM-10 (DMS-1) Shelf
SCM-10S (SLC-96) Module
Mag Tape Bay
BMC (each)
DC/AC Inverter 0.5 KW
DC/AC Inverter 1.0 KW
P.E. Lines
P.E. Shelf (with service circuits) 0.75
LCM Lines (per line) 0.015
2 - DMS-10 400 Series (3 bay)
Basic System Current Drain
30.0
(includes combination CPU/Network
shelf and GPIO shelf)
3 - DMS-10 400 series (2 bay)
AMPS

```
    CONTROL AND TRUNK BAY
    \(\begin{array}{ll}\text { CPU/Network Shelf (5.8 amps ea. two required) } & 11.6\end{array}\)
    GPIO Shelf 4.8
    T \& M Shelf 2.9
    PCCM Shelf 1.5
    DAT Shelf 2.9
    LINE AND TRUNK BAY
    Two Shelf LCM (E/W 640 Lines) 9.6
    Bay Supervisory Panel 0.2
    DAT Shelf each (max. \(=2\) shelves) 2.9
4 - DMS-10 400 Series (1 bay) AMPS
    \(\begin{array}{ll}C P U / N e t w o r k ~ S h e l f ~(5.8 ~ a m p s ~ e a . ~ t w o ~ r e q u i r e d) ~ & 11.6\end{array}\)
    \(T \&\) M Shelf 2.9
    PCCM Shelf 1.5
    DAT Shelf 2.9
    FSP (Frame Supervisory Panel) and
    LCM Shelf (E/W 256 lines)
    4.8

\section*{Figure 1.6 NORTHERN TELECOM STANDARD DMS-10 400 SERIES (Page 2 of 2 )}
\begin{tabular}{|c|c|}
\hline 5-OPM & AMPS \\
\hline One Cabinet & 15.0 \\
\hline Line Current & 0.015/L \\
\hline 6 - OPSM & AMPS \\
\hline One Cabinet & 9.0 \\
\hline Line Current & \(0.015 / \mathrm{L}\) \\
\hline 7 - RSLM & AMPS \\
\hline RSLM Bay & 6.0 \\
\hline Line Current & 0.015/L \\
\hline 8 - RSLE & AMPS \\
\hline RSLE Bay (up to 512 lines) & 10.5 \\
\hline RSLE Bay (from 512 to 1024 lines) & 21.0 \\
\hline Line Current & 0.015/L \\
\hline 9-RLCM & AMPS \\
\hline RLCM Bay & 10.0 \\
\hline LCE Bay & 0.015/L \\
\hline
\end{tabular}
```

Figure 2 SIEMENS STROMBERG - CARLSON DCO-E/DCO-SE
(Page 1 of 3)

```
DC DRAIN
1. CONTROL \& MAINTENACE FRAME (CMF)

WATTS
\(\qquad\)
\(=\)
\(=\)
\(=\)
\(=\)
\(\qquad\)
\(=\)
\(=\)
\(=\)
\(=\) \(\qquad\)

WATTS
\(\qquad\)
\(\qquad\)

WATTS
\(\qquad\)
\(\qquad\)
\(=\)
\(\qquad\)

WATTS
\(=\underline{92.0}\)
\(=92.0\)
```

Figure 2 SIEMENS STROMBERG-CARLSON DCO-E/DCO-SE
(Page 2 of 3)

```
DC DRAIN
6. DATA COLLECTION FRAME POWER (AMAF)/(DCF) (DCO-E \& DCO-SE)
\begin{tabular}{ll} 
AMA Frame (E/W Tape Drives) \\
CODC Data Collection Frame & x 495.0 \\
X 523.0
\end{tabular}

TOTAL AMAF/DCF POWER REQUIREMENTS
WATTS
\(=\)
\(=\)
\(\qquad\)

WATTS

Variable (Dependent on OEM Equipment Installed)

TOTAL CEF POWER REQUIREMENTS
8. UNIVERSAL POWER FRAME (DCO-SE ONLY)

Universal Power Frame (UPF)

9. REMOTE LINE SWITCH POWER (RLS)


WATTS
\(=\underline{906.0}\)
\(=\)
\(=\)
\(=\)
\(=\)
\(=\)

TOTAL RLS FRAME POWER REQUIREMENTS
\(=\) \(\qquad\)
*ONLY 3 CUAs TOTAL CAN BE EQUIPPED

\section*{Figure 2 STROMBERG-CARLSON DCO-E/DCO-SE}
(Page 3 of 3)

DC DRAIN
```

10. REMOTE LINE SWITCH - 450 POWER (DC)
WATTS
Basic DC Power (Maximum) = 1200
Maximum Allowed Customer Power = 250
RLS-450 DC POWER TOTAL WATTS (Maximum)
```
SYSTEM DC POWER SUMMARY
11. DCO-E SYSTEM POWER WATTS
Total Control \& Maintenance Frame Power
\(=2400\)
Total Local Line Switch Power
Total Line/Trunk Frame Power
Total Digital Trunk Frame Power
Total Power Ringing \& Test Frame Power
Total AMA/Data Collection Frame Power
Total Common Equipment Frame Power
TOTAL DCO-E SYSTEM DC POWER REQUIREMENTS
\(=\quad\) AMPS
TOTAL DCO-E DC BUSY HOUR LOAD (Total DC Power divided by
    52.1 Volts)
12. DCO-SE SYSTEM POWER
Total Control \& Maintenance Frame Power
Total Local Line Switch Frame Power
Total AMA/Data Collection Frame Power
Total Universal Power Frame Power
Total Common Equipment Frame Power
TOTAL DCO-SE SYSTEM DC POWER REQUIREMENTS
TOTAL DCO-SE DC BUSY HOUR LOAD
WATTS
\(=2000\)
\(=\)
\(=\)
\(=\)
\(=\)
\(=\)
\(=\)
\(\qquad\)
\(=\) \(\qquad\) AMPS

\title{
Figure 2.1 SIEMENS STROMBERG-CARLSON DCO-E/DCO-SE \\ (Page 1 of 3 )
}

Example

1000 LINES AT 3.2 CCS
1. CONTROL \& MAINTENANCE FRAME POWER (CMF)
\begin{tabular}{lll} 
DCO-E & -1 X 2400 & \(=\underline{2400}\) \\
DCO-SE & -1 X 2000 & \(=\underline{2000}\)
\end{tabular}
2. LOCAL LINE SWITCH FRAME (LLS) (DCO-E \& DCO-SE)


TOTAL LLS FRAME (S) POWER (WATTS)
\(=\underline{1044.8}\)
3. LINE/TRUNK FRAME POWER (LTF) (DCO-E ONLY)
\begin{tabular}{|c|c|c|c|}
\hline Quantity of DTMF Receiver PWBAs & 2 & X 19.3 & \(=38.6\) \\
\hline Quantity of DTMF Sender PWBAs & 2 & X 5.0 & 10.0 \\
\hline Quantity of TMF Receiver PWBAs & 2 & X 8.5 & 17.0 \\
\hline Quantity of TMF Sender PWBAs & 2 & X 3.9 & 7.8 \\
\hline Quantity of Busy Verification PWBAs & 2 & X 2.3 & 4.6 \\
\hline Quantity of Analog Trunk PWBAs & 0 & X 8.2 & \(=0\) \\
\hline Quantity of LTF CUAs & 2 & X 19.3 & 38.6 \\
\hline TOTAL LTF POWER (WATTS) & & & \(=116.6\) \\
\hline
\end{tabular}
4. DIGITAL TRUNK FRAME POWER (DTF) (DCO-E ONLY)

5. POWER RINGING \& TEST FRAME POWER (PRTF) (DCO-E ONLY)

Power Ringing \& Test Frame \(\quad 1\) X \(92.0 \quad 92.0\)

TOTAL PRTF POWER (WATTS)
\(=92.0\)

\title{
Figure 2.1 SIEMENS STROMBERG-CARLSON DCO-E/DCO-SE \\ (Page 2 of 3 )
}

\section*{Example}
6. AMAF/DATA COLLECTION FRAME (AMAF/CODC) (DCO-E \& DCO-SE)

WATTS
\(\qquad\)
\(=\)
\(\qquad\)
\(=0\)

WATTS

Universal Power Frame (UPF)
Expanded Ringing CUA
*Universal Service CUA
*Universal Trunk/Service CUA
*Universal Trunk CUA
* Customber Trunk Group CUA Quantity of DTMF Receiver PWBAs Quantity of DTMF Sender PWBAs Quantity of TMF Receiver PWBAs Quantity of TMF Sender PWBAs Quantity of Busy/Verification PWBAs Quantity of Analog Trunk PWBAs

TOTAL UPF POWER (WATTS)
\begin{tabular}{|c|c|c|}
\hline 1 & X & 92.0 \\
\hline & X & 70.0 \\
\hline & X & 155.0 \\
\hline 1 & X & 155.0 \\
\hline 1 & X & 132.0 \\
\hline 1 & X & 107.0 \\
\hline 2 & X & 19.3 \\
\hline 2 & X & 5.0 \\
\hline 2 & X & 8.5 \\
\hline 2 & X & 3.9 \\
\hline 2 & X & 2.3 \\
\hline 0 & X & 8.2 \\
\hline
\end{tabular}
\[
\begin{aligned}
& = \\
& = \\
& = \\
& = \\
& =152.0 \\
& =132.0 \\
& =\frac{107.0}{38.6} \\
& =-10.0 \\
& = \\
& =\frac{17.0}{7.8} \\
& =
\end{aligned}
\]
\(=564.0\)
9. REMOTE LINE SWITCH POWER (RLS)
```

RLS Frame (1080 Lines Maximum) _ 1 X 906.0
Quantity of Lines 1000 x 3.2 CCS/L X 0.069
Quantity of Lines 1000 X 0.158
Quantity of Line CUAs 12 X 30.0
Quantity of RLG CUAs __ X 31.0
Quantity of SLC CUAs _ X 158.0
TOTAL RLS FRAME POWER (WATTS)
$=906.0$
$=220.8$
$=158.0$
$=360.0$
$=$
$=$
$=1644.8$

```
```

Figure 2.1 SIEMENS STROMBERG-CARLSON DCO-E/DCO-SE
(Page 3 of 3)

```
    Example
```

10. REMOTE LINE SWITCH - 450 POWER (DC)
TYPICAL Basic RLS-450 (Maximum)
CUSTUMBER POWER (250W Maximum)
TOTAL RLS-450 DC POWER TOTAL WATTS (Maximum)
RLS-450 Rated Ac Power Input (Typical)
(Based on typical cold weather heating plus maximum short term
WATTS

$$
\begin{aligned}
& =1200 \\
& =
\end{aligned}
$$

$=\underline{1200}$
$=6000$
(Based on typical cold weather heating plus maximum short term

```
11. SYSTEM DC POWER SUMMARY
    1. DCO-E SYSTEM POWER
    Total Common Control Frame Power
    \(=2400.0\)
    Total Local Line Switch Power
    \(=1044.8\)
    Total Line/Trunk Frame Power
    \(=116.6\)
    Total Digital Trunk Frame Power
    \(=123.4\)
    Total Power Ringing \& Test Frame Power
    \(=92.0\)
    Total AMA/Data Collection Frame Power
    \(=0\)
    Total Common Equipment Frame Power
    \(=0\)
TOTAL DCO-E SYSTEM DC POWER REQUIREMENTS
\(=3776.8\)
TOTAL DCO-E DC BUSY HOUR LOAD (TOTAL WATTS/52.1 VOLTS)
\(=72.5 \mathrm{AMPS}\)
12. DCO-SE SYSTEM POWER

Total Control \& Maintenance Frame Power
Total Local Line Switch Frame Power
Total AMA/Data Collection Frame Power
Total Universal Power Frame Power
Total Common Equipment Frame Power

TOTAL DCO-SE SYSTEM DC POWER REQUIREMENTS

TOTAL DCO-SE DC BUSY HOUR LOAD (TOTAL WATTS/52.1 Volts)
11. SYSTEM DC POWER SUMMARY
1. DCO-E SYSTEM POWER

Total Common Control Frame Power
\(=2400.0\)
Total Local Line Switch Power
\(=116.6\)
Total Digital Trunk Frame Power
\(=123.4\)
Total Power Ringing \& Test Frame Power
\(=\quad 0\)
\(=\quad 0\)

TOTAL DCO-E SYSTEM DC POWER REQUIREMENTS
\(=3776.8\)
\(=72.5 \mathrm{AMPS}\)
\[
\begin{aligned}
& =2000.0 \\
& =1044.8 \\
& =00 \\
& =0564.0 \\
& =-0
\end{aligned}
\]
\(=3608.8\)
\(=69.3 \mathrm{AMPS}\)

\section*{FIGURE 3 REDCOM MDX}

DC DRAIN


DC DRAIN
\begin{tabular}{cccc} 
& Quantity & Multiply By & Amps \\
MSU Shelves (One per 40 Lines) & 4 & 3.5 & 14
\end{tabular}

HEAT DISSIPATION

\title{
FIGURE 4 AT\&T 5ESS SWITCH \\ (Page 1 of 2)
}

DC DRAIN
1. Basic (AM and CM)
2. No. of Disk Drive Units \(\qquad\) x 1.30 Amps \(\qquad\)
3. No. of Switching Modules w 32Mb Memory \(\qquad\) x 9.94 Amps \(\qquad\)
4. No. of MMSUs \(\qquad\) x 0.20 Amps \(\qquad\)
5. No. of LUs \(\qquad\) x 5.60 Amps
6. No. of TUs \(\qquad\) x 0.18 Amps \(\qquad\)
7. No. of DCTUs \(\qquad\) x 2.00 Amps \(\qquad\)
8. No. of GDSUs \(\qquad\) x 0.61 Amps \(\qquad\)
9. No. of DLTUs \(\qquad\) x 0.02 Amps \(\qquad\)
10. No. of DLTU Packs \(\qquad\) x 0.12 Amps \(\qquad\) SUBTOTAL

Additional Drains

тотAL DC Drain

\title{
FIGURE 4 AT\&T 5ESS SWITCH \\ (Page 2 of 2)
}

HEAT DISSIPATION
\begin{tabular}{|c|c|c|c|}
\hline Type of Frame & Quantity & \begin{tabular}{l}
Heat \\
Dissipation \\
Per Frame (BTUs)
\end{tabular} & Total Heat Dissipation \\
\hline Basic (AM and CM) & & 9931.42 & \\
\hline No. of Disk Drives & & 231.54 & \\
\hline No. of Switching Modules & & 1770.41 & \\
\hline No. of MMSUs & & 36.27 & \\
\hline No. of LUs & & 997.42 & \\
\hline No. of TUs & & 32.95 & \\
\hline No. of DCTUs & & 356.22 & \\
\hline No of GDSUs & & 108.05 & \\
\hline No. of DLTUs & & 174.55 & \\
\hline TOTAL BTUs & & & \\
\hline
\end{tabular}

FIGURE 4.1 AT\&T 5 ESS SWITCH
(Page 1 of 2 )

EXAMPLE
1 SM Office with 1000 Analog Lines,
12 Analog Trunks, and 192 Digital Trunk Circuits.
1. Basic (AM and CM) 55.76
2. No. of Disk Drive Units
3. No. of Switching Modules w 32Mb Memory
4. No. of MMSUs
5. No. of LUs
6. No. of TUs
7. No. of DCTUs
8. No. of GDSUs
9. No. of DLTUs
10. No. of DLTU Packs SUBTOTAL Additional Drains TOTAL DC Drain
5.20
\(\qquad\)
1 x 9.94 Amps \(\quad 9.94\)
\(\qquad\) x 0.20 Amps 2.20
\(\qquad\) x 5.60 Amps 16.80
\(\qquad\)
4 x 0.18 Amps 0.72
\(\qquad\) 1 x 2.00 Amps 2.00
\(\qquad\) x 0.61 Amps 1.83
\(\qquad\)
1 x 0.02 Amps 0.02
\(\qquad\) 8 x 0.12 Amps \(\qquad\)

1 SM Office with 1000 Analog Lines, 12 Analog Trunks, and 192 Digital Trunk Circuits
\begin{tabular}{|c|c|c|c|}
\hline Type of Frame & Quantity & \begin{tabular}{l}
Heat \\
Dissipation \\
Per Frame \\
(BTUs)
\end{tabular} & Total Heat Dissipation \\
\hline Basic (AM and CM) & 1 & 9931.42 & 9931.42 \\
\hline No. of Disk Drives & 4 & 231.54 & 926.16 \\
\hline No. Of Switching Modules & 1 & 1770.41 & 1770.41 \\
\hline No. of MMSUs & 11 & 36.27 & 398.97 \\
\hline No. of LUs & 3 & 997.42 & 2992.26 \\
\hline No. of TUs & 4 & 32.95 & 131.80 \\
\hline No. of DCTUs & 1 & 356.22 & 356.22 \\
\hline No of GDSUs & 3 & 108.05 & 324.15 \\
\hline No. of DLTUs & 1 & 174.55 & 174.55 \\
\hline TOTAL BTUs & & & 17005.94 \\
\hline
\end{tabular}

FIGURE 5 MITEL GX5000
D.C. DRAIN
EQUIPMENT QUANTITY MULTIPLY BY WATTS
\begin{tabular}{|c|c|c|c|}
\hline First peripheral pair and Main control (includes all features, AMA, matrix and first cabinet) & 1 & 460 & \(\underline{460}\) \\
\hline Additional peripheral pair & & 96 & \\
\hline Additional cabinet & & 105 & \\
\hline Single Party line card (16 ckts) & & 10 & \\
\hline DS1 trunk card (2 spans) & & 29 & \\
\hline Universal line card (6 ckts) & & 9 & \\
\hline
\end{tabular}

Total D.C. Drain \(\qquad\) Watts
```

Converted to AMPS (Watts/Battery Voltage) = Watts/52 =

```
\(\qquad\)
``` Amps
Heat dissipation \(=\)
``` \(\qquad\)
``` Watts or (3.41 X_Watts) =
``` \(\qquad\)
``` BTU
```


## FIGURE 5.1 MITEL GX5000

Example System: 1008 lines, 96 Digital Trunks
D.C. DRAIN
EQUIPMENT QUANTITY MULTIPLY BY WATTS


Total D.C. Drain

Converted to AMPS (Watts/Battery Voltage) $=1,445$ Watts $/ 52=27.7 \mathrm{Amps}$

Heat dissipation $=1,445$ Watts or (3.41 X 1,445 Watts) $=4927$ BTU


| Number of Hours | 8-Hour Ampere Hour Capacity Required$\qquad$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Final Cell Voltages |  |  |  |  |  |
| Reserve | 1.75 | 1.80 | 1.85 | 1.88 | 1.90 | 1.95 |
| 1 | 2.2 | 2.5 | 2.8 | 3.2 | 3.5 | 5.0 |
| 2 | 3.2 | 3.4 | 3.7 | 4.3 | 4.7 | 6.2 |
| 3 | 4.0 | 4.3 | 4.7 | 5.2 | 5.6 | 7.5 |
| 4 | 4.9 | 5.1 | 5.6 | 6.1 | 6.5 | 8.6 |
| 5 | 5.7 | 6.0 | 6.5 | 7.0 | 7.4 | 9.6 |
| 6 | 6.5 | 6.8 | 7.3 | 7.8 | 8.2 | 10.6 |
| 7 | 7.2 | 7.6 | 8.1 | 8.7 | 9.1 | 11.6 |
| 8 | 8.0 | 8.3 | 8.9 | 9.6 | 10.0 | 12.6 |
| 9 | 8.8 | 9.1 | 9.6 | 10.4 | 10.9 | 13.7 |
| 10 | 9.5 | 9.9 | 10.4 | 11.4 | 12.0 | 15.0 |
| Voltage (24 Cells) | 42 | 43.2 | 44.4 | 45.1 | 45.6 | 46.8 |
| EXAMPLES: |  |  |  |  |  |  |

1. Required: The capacity of a 24 -cell battery to handle a 3 -hour load of 34.0 amperes to a limited voltage of 45 volts.

$$
45 / 24=1.88
$$

From the above chart, each ampere of load requires 5.2 ampere hours of capacity.

Total capacity required $=5.2 \times 34.0=177$ ampere hours. Select next larger catalog size.
2. Calculate the ampere hour reserve of an existing 24 -cell, 480-ampere hour battery with the load increased to 69 amperes to a final voltage of 1.88 volts.

$$
\begin{aligned}
& \text { Formula: } K=B / C \\
& \text { Where }
\end{aligned}
$$

K = 8-hour ampere hour capacity required for each ampere of load.
$B=$ Ampere hour capacity of existing battery.
C = Actual current drain of all equipment.
$K=480 / 69=7.0$

On the chart, locate 7.0 in the 1.88 -volt column and to the left read 5 hours of reserve.

The battery charger has to supply power for operation of the COE. Its capacity should be great enough to carry the entire load, including peak power requirements, to avoid taking power from the battery. Additional capacity is required to recharge the battery after a power service interruption.

## EXAMPLE:

| Drain | 66 Amps |
| :--- | ---: |
| Battery Discharged for 3 Hours and Recharged |  |
| in 12 Hours: $3 \times 66 / 12=$ |  |
| Calculated Charger DC Current Requirement | 16.5 Amps |
| Rated Charger Capacity (as indicated in |  |
| Paragraph 3.4) |  |

The charger capacity sizes commercially available include:

2 @ 75 Amps
@ 50 Amps

- Traditional arrangement with load sharing between the two chargers.
- Potential cost saving over buying two larger units. Potential operating cost saving by operating only two units.

