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ABSTRACT 
The principle of herringbone-grooved journal bearings has been 
applied to the case of a seal disc running under a finger seal 
pad. The inward pumping action of herringbone grooves on the 
disc generates load capacity and stiffness to maintain a fluid 
film and prevent contact of the pad and disc. This mechanism 
does not depend on a converging film under the pad, such as 
analyzed in previous works.  Analysis shows that significant 
stiffness and load capacity can be supplied by herringbone 
grooves. In order for the grooves to be effective, the seal 
pressure drop must be taken outside of the grooved portion of 
the rotor, but this may be acceptable in order to gain freedom 
from maintaining a precise film convergence. 

 
NOMENCLATURE 
B Pad dimension in direction of rotation, m 

c Film thickness over land and in ungrooved  region, m 

D Seal diameter (fig. 3b) 

hg Film thickness over groove, m 

H Film thickness ratio, hg/c = 1 + δ/c 

Hc Clearance ratio from leading to trailing pad edge 

k Film stiffness, N/m 

K Nondimensional stiffness, kc/ poLB 

L Pad dimension normal to rotation direction, m 

L1 Total length of pad covered by grooves 

po Ambient pressure, N/m2 abs. 

Ps Pressure ratio across pad normal to direction of 
 rotation 

R Seal radius (fig. 3b) 

V Runner speed, m/s 

w Pad load, N 

W Nondimensional load, w/ poLB 

α Groove width ratio  

β Groove angle measured from circumferential line 

δ Groove depth, m 

θ Angular coordinate 

Λb Compressibility number, 6µVB/( poc2) 

µ Dynamic viscosity, N sec/ m2 

 
INTRODUCTION 

Fluid film slider bearings have been studied for many years, 
both as self-acting bearings and with external pressurization, 
where the pressurized lubricant is usually supplied through 
restrictors in the pad. Recently, Fleming [1, 2] studied the case 
of a rectangular slider bearing with a pressure flow transverse 
to the direction of motion. The impetus for this work was a new 
type of seal, the padded finger seal [3]. In this configuration, a 
seal ring is divided circumferentially into a multitude of 
segments; each segment, or pad, is supported by a thin sheet 
metal finger. The concept is illustrated in figure 1 which shows 
the seal from the downstream side; figure 2 shows a single 
finger and pad from a different angle. A complete seal has 
another   row  of   fingers  without  pads,  upstream  of  the  row  

Gas Seal Pad With Herringbone-Grooved Rotor— 
Stiffness and Load Capacity 

 
David P. Fleming 

National Aeronautics and Space Administration 
Glenn Research Center 
Cleveland, Ohio 44135 

NASA/TM—2006-214333 1



  

shown, arranged to block the leakage flow between the 
downstream fingers. The intent of the finger seal concept is that 
the pad will ride on a thin film of fluid while the flexible finger 
will allow adaptation to shaft vibration or thermal growth. The 
thin film results in low leakage and also long life, as there is no 
material contact to cause wear. In operation, the clearance 
under the individual pad is determined by a force balance 
between the elastic finger and the fluid film under the pad. 
Thus one desires a film profile that will allow adequate fluid 
force to be developed by the pad, such that contact does not 
occur between the pad and the rotating shaft. Fleming [1] found 
that load and stiffness can be developed in the fluid film by 
providing a film profile that converges in the direction of 
motion; moreover, the film stiffness increases with an increase 
in the sealed pressure. However, ensuring proper film 
convergence can be problematic, and it was desired to devise a 
seal design that did not depend on film convergence. 
 
In the field of journal bearings, a bearing capable of carrying 
high loads is the herringbone grooved bearing [4, 5]. The 

question arose as to whether a herringbone grooved rotor 
running against a finger seal pad could generate adequate fluid 
film load and stiffness to maintain a fluid film. In the present 
paper, that configuration is analyzed. A herringbone grooved 
rotor is shown as figure 3. The grooves are angled such that 
fluid is pumped from the axial edges of the pad to the center.  

 

PROCEDURE 

The starting point was the computer code SPIRALG [6], which 
was written to analyze load, stiffness, and leakage in spiral and 
herringbone grooved face seals and cylindrical seals. SPIRALG 
solves the Reynolds equation in the seal using a formulation 
similar to that set down by Vohr and Chow [4]. The code was 
modified for this work to analyze a partial arc seal instead of a 
full circular seal.  

 

 
 
 
 

 
(a) grooves on seal disc         (b) nomenclature 

 
Figure 3. Herringbone grooved rotor. 

 

V

RunnerPad

Finger

Figure 1. Finger seal concept
Figure 2. Single pad and finger
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The first finding was that grooves were not beneficial if the 
pressure drop was taken across the pad. Thus it was assumed 
for the rest of this work that the pressure drop was taken across 
a seal dam upstream of the pad being analyzed, and that all 
edges of the pad were at ambient pressure. With this 
arrangement, herringbone grooves on the rotor showed promise 
for a successful finger seal design. SPIRALG was then 
combined with the optimization code used by Hamrock and 
Fleming [5] to determine optimum groove parameters. 

As in [1], it is convenient to carry out the optimization and 
present the results in nondimensional form. There are four 
parameters to be optimized: (1) the film thickness ratio H, i.e., 
the film thickness under the groove divided by the film 
thickness under the land; (2) the groove width ratio α, i.e., the 
width of the groove divided by the width of the groove-ridge 
pair; (3) the groove angle β (see fig. 3(b)); (4) the groove length 
ratio L1/L, i.e., the total axial length of the grooves under the 
pad divided by the axial dimension of the pad. The 
optimization was carried out two ways: first to maximize pad 
fluid film load capacity, and second to maximize pad film 
stiffness; the latter is more important for the finger seal in that 
it determines whether load capacity can be maintained as the 
film thickness varies in operation. Three pad aspect ratios were 
considered: L/B = 0.5, 1, and 2. Results are presented as a 
function of the nondimensional compressibility number Λb. 
 

RESULTS 

Figure 4 shows the pad film stiffness achieved for the various 
cases. The letters K and W on the curve identifiers in this and 
subsequent figures indicate whether stiffness or load was 
maximized for the particular curve. As expected, higher 
stiffness is produced when that is the parameter being 
maximized; when pad load is maximized, stiffness is somewhat 
lower. The differences between the two cases become more 
pronounced as compressibility number Λb increases. Stiffness 
seems to be approaching an asymptotic limit at high 
compressibility numbers. Additionally, for some cases at 
intermediate values of Λb, stiffness reaches a peak followed by 
a decrease at higher Λb. There are substantial differences in 
stiffness for different pad aspect ratios; lower aspect ratios 
(relatively greater circumferential dimension) produce greater 
stiffness. 

Figure 5 shows the corresponding loads produced; the loads are 
naturally higher when load is maximized than when stiffness is 
maximized. The same trends are seen as for stiffness in that 
lower aspect ratio pads will carry larger loads. Loads also 
appear to approach an asymptotic limit at high Λb; this behavior 
is typical of ungrooved gas bearings, but not of herringbone 
groove journal bearings [5]. The spread in the curves does not 
appear as great as in the stiffness plot of figure 4. 

Compressibility number Λb

Figure 4. Maximum pad stiffness as a function of 
compressibility number Λb for three aspect ratios L/B
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Figures 6-9 show values for the optimum groove parameters of 
film thickness ratio H, groove width ratio α, groove angle β, 
and groove length ratio L1/L, respectively. 
 
 Considerably deeper grooves (fig. 6) are required to maximize 
load than to maximize stiffness. When maximizing load, deeper 
grooves are needed for larger aspect ratios (smaller 
circumferential extent of pad) and higher compressibility 
numbers. For maximum stiffness pads, optimum groove depth 
does not change much with aspect ratio or Λb. 
 
When selecting groove widths to maximize stiffness, the 
optimization code sometimes called for quite wide grooves (α 

as much as 0.9). An arbitrary decision was made to limit the 
groove width ratio to 0.8 to enable practical manufacturing; 
thus 0.8 is the maximum width shown in figure 7. Computer 
runs made with unrestricted groove widths showed virtually no 
change in maximum achievable stiffness, thus there is no 
practical loss with the restriction.  

 
As figure 8 shows, optimum groove angles, β, all fall within a 
20 degree range. In general, β rises with aspect ratio. The 
exception to this trend is for an aspect ratio of 2 for maximum 
stiffness, when the optimum groove angle is sometimes lower 
than for a unity aspect ratio. For the case of L / B = 2, there 
appeared to be two local optima for higher compressibility 

Figure 6. Optimum groove depth ratio H
        for three pad aspect ratios L / B
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Figure 5. Maximum pad load as function of compressibility 
number Λb for three aspect ratios L / B
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Figure 7.  Optimum groove width ratio α
        for three pad aspect ratios L / B
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numbers. The one reported herein is that which yielded the 
higher stiffness. 
 
Figure 9 shows optimum groove length ratios. Again, the data 
for maximizing stiffness at an aspect ratio of 2 are anomalous. 
The second local optimum, not shown, has groove length ratios 
in the 0.7 range, yielding a maximum stiffness about 10 percent 
less than given in figure 4. 
 
It is appropriate at this point to make a comparison with the 
previous work on ungrooved, convergent-film pads, reported in 
[1]. Stiffness and load capacity are shown in figures 10 and 11, 
respectively, for a square pad (aspect ratio L / B = 1) with 
various degrees of convergence (Hc) and various pressure ratios 
(Ps) across the pad.  
 

The pressure ratio corresponding to that assumed in the present 
work is one. Convergence Hc is the ratio of leading edge to 
trailing edge clearance; the convergence of the pads in the 
present work is 1. Pads are compared for the same minimum 
clearance (i.e., trailing edge clearance for a convergent-film 
pad. 
 
Maximum stiffness data from figure 4 for a square pad (L/B = 
1) have been added to figure 10 as a dash-double dot curve. 
One sees that, for a pressure ratio of 1, a herringbone grooved 
rotor with a nonconvergent pad generates lower stiffness than a 
plain rotor - convergent pad combination with either of the 
convergence ratios presented. For a pressure ratio of 5 and a 
convergence of 4, the convergent pad stiffness is more than 
double that of the herringbone pad at high compressibility 
numbers. 

Figure 10. Stiffness for square convergent-film
pad on smooth rotor (from [1]) and herringbone

 rotor with nonconvergent film.
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Figure 8.  Optimum groove angle β for
         three pad aspect ratios L / B
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As for load, maximum load data from figures 5 have been 
placed in figure 11 as a dash-double dot curve. Similar to the 
results for stiffness, loads generated by the herringbone 
arrangement are somewhat less than those generated by the 
plain rotor – convergent pad combination for a pressure ratio of 
1 and convergence of 2. For greater convergence or pressure 
ratios above 1, the load carried by the convergent pad is much 
larger than for the herringbone configuration. As was stated, 
however, for the intended finger seal application, stiffness is a 
more important property than load. Depending on the particular 
seal design, the herringbone configuration may provide 
adequate performance. Although not shown, limited studies 
indicated that tilting a pad (to make a convergent film) facing a 
herringbone-grooved rotor increased the load and stiffness over 
the case with grooves alone; however, the tilted pad without 
grooves produced still greater load and stiffness. 

 
CONCLUDING REMARKS 
Analysis shows that significant film stiffness and load capacity 
can be supplied by herringbone grooves under a finger seal pad 
even when the pad is untilted. Groove parameters were 
optimized to obtain either maximum load capacity or maximum 
stiffness. Although effective, load and stiffness for the grooved 
case were somewhat less than for pad tilt alone.  Also, in order 
for the grooves to be effective, the seal pressure drop must be 
taken outside of the grooved portion of the rotor, but this may 
be acceptable in order to gain freedom from precise pad tilt. 
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Figure 11. Load for square convergent-film
pad (from [1]) and herringbone rotor

with nonconvergent film.
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