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Abstract 
The Lorentzian model is an analytic expression that de-
scribes the time response of electronic nose sensors. We 
show how this model can be utilized to calculate a normal-
ized similarity index between any two measurements. The 
set of similarity indices is then used for two purposes: 
visualization of the data, and classification of new samples. 
The visualization is carried out using graph drawing tools, 
and the results are shown to bear some desired properties. 
The classification is done using a majority-decision type 
algorithm, and is demonstrated to have very low error rate. 
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INTRODUCTION 
Visualization and classification are among the most ad-
dressed issues in the data analysis of electronic noses 
(eNoses). Classification, which is the task of determining 
the identity of incoming samples, is by far the most popular 
form of analysis. It is realized by a variety of supervised 
learning algorithms, details of which can be found in, e.g., 
 [2] or  [3]. Visualization is the task of representing the 
eNose measurements as points in two-dimensional (and in 
some occasions three-dimensional) space, in a way that 
faithfully captures their inter-relationships. Undoubtedly, 
principal component analysis (PCA) is the most widely 
used visualization algorithm. 
Whatever algorithm is used, would it be for visualization or 
for classifications, it requires feature vectors as input. A 
feature set is a small set of parameters that somehow de-
scribe the entire time response of a certain sensor in a cer-
tain measurement. The feature vector is comprised of the 
collection of the feature sets of all the sensors in a particu-
lar measurement. Typically, the height of the signal is taken 
as a single feature per sensor (see, e.g.,  [3]), resulting in 
feature vectors, to be hereinafter called the height feature 
vectors, whose length is the number of sensors in the 
eNose. 
The feature vectors serve well for many applications, but 
might introduce unavoidable difficulties for others. One 
problem is that the eNose sensors might be scaled differ-
ently, even if they are made of the same technology. Con-
sequently, the various features must be preprocessed, so as 
to bring them onto common grounds. This is typically done 
by standardizing the features or by normalizing the feature 

vectors. Another problem is that many of the algorithms 
assume some metric for the feature space. For example, the 
popular K-nearest-neighbors (KNN) algorithm calculates 
the Euclidean distance between pairs of feature vectors, 
and PCA can be interpreted as a projection in an Euclidean 
space. Yet, there is no a priori reason to associate any spe-
cific metric with a particular feature space. 
We suggest a different approach, which enables visualiza-
tion and classification without having to use directly the 
feature vectors. Instead, we propose a simple method for 
measuring the amount of similarity between any two meas-
urements, in a way that allows for natural comparison be-
tween differently scaled signals. We further support this 
approach by introducing two algorithms, one for visualiza-
tion and one for classification, which take these similarities 
as their input. We show that the resulting visualization is of 
high quality and often contains information not present in 
standard approaches, and that the probability of classifica-
tion errors is very low. 

Experimental 
We have tested our algorithms against a large dataset that 
we have collected using the MOSESII eNose  [6] with two 
sensor modules: an eight-sensor quartz-microbalance 
(QMB) module, and an eight-sensor metal-oxide (MOX) 
module. (Reviews on these technologies can be found in, 
e.g.,  [2] or  [7].) The samples were put in 20-ml vials in 
HP7694 headspace sampler, which heated them to 40ºC 
and injected the headspace content into the eNose. There, 
the analyte was first introduced into the QMB chamber, 
whence it followed to the 300ºC heated MOS chamber. The 
injection lasts for 30 seconds, and is followed by a 15 min-
ute purging stage using synthetic air. 
The dataset includes 30 volatile odorous pure chemicals 
listed alphabetically in Table 1. These chemicals were in-
tentionally chosen from many different families, so that 
they would represent a broad range of possible stimuli. 
Each chemical was measured in batches, with a single 
batch containing at least seven successive measurements. 
Different batches of the same chemical were usually taken 
in totally different dates. In total, we have performed 300 
measurements, with an average of ten per chemical. 

The Similarity Matrix 
For n measurements, the similarity matrix S is an nn×  
matrix, with Sij measuring the similarity between measure-
ments i and j. Preferably, the similarity values should be 



normalized, i.e., scaled between 0 and 1, with a 1 denoting 
identical measurements. 
 

Table 1: The 30 pure chemicals in our dataset 

1. 1s-(-)-α-pinene 16. ethyl-2-methylbutyrate 
2. 1s-(-)-β-pinene 17. ethyl-3- 

      methylthiopropionate 
3.1-phenyl-1,2- 
    propanedione 

18. ethyl-n-valerate 

4. 2-acetylpyridine 19. ethyl acetoacetate 
5. 2,3-heptanedione 20. ethyl caproate 
6. 4-methylanisole 21. ethylpyrazine 
7. alpha-angelica lactone 22. phenylacetaldehyde 

      dimethyl acetal 
8. amyl butyrate 23. propylidene phthalide 
9. butyl butyrate 24. R-(-)-limonene 
10. butyl butyryl lactate 25. S-(-)-limonene 
11. butylidene phthalide 26. terpinotene 
12. cis-3-hexenyl acetate 27. trans-2-hexenal 
13. cis-6-nonenal 28. trans-2-hexenol 
14. citral 29. trans-2-methyl-2- 

      pentenoic 
15. ethyl-2-methyl-4- 
      pentenoate 

30. trans-2-octenal 

 
As we shall see next, we are able to obtain such normalized 
similarity values, exploiting a feature extraction technique 
developed by our group  [1]. The idea that underlies this 
technique is to model the time-dependency of the response 
by an analytic expression, which is completely character-
ized by a small set of parameters; these parameters are then 
taken as the feature set. For every measurement we find the 
corresponding values of the features by carrying a fast and 
robust curve-fitting procedure. The analytic expression, 
called the Lorentzian model, is derived from a very simple 
physical description of the measurement process. The Lor-
entzian model is explicitly written as 
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where r(t) stands for the time response of a certain sensor. 
The model employs four physically interpretable parame-
ters: β is a measure of the signal’s amplitude, τ represents 
its typical decay time, t0 is the time when the signal starts to 

rise, and T is the time is takes to achieve the maximum. We 
have demonstrated  [1], that any measured signal is de-
scribed with high precision by this model. An example is 
brought in Figure 1, where a measured signal is plotted 
together with its corresponding Lorentzian model. 
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Figure 1: A comparison between a typical signal (cis-3-

hexenyl acetate measured with a QMB sensor) and the best-fit 
Lorentzian model. The differences between the measured 
signal and the model are hardly distinguishable. Here, β = 

1435.8, τ = 8.29, t0 = 11.21, and T = 16.6. 

The correlation function between two time signals )(tf  
and )(tg  is given by: 

 τττ dgtfgf )()(),(corr += ∫
∞

∞−
. 

Although not explicitly symbolized, ),(corr gf  is a func-
tion of the time t. Let us denote by ),( gfc  the maximum 
of this function, )),(corrmax(),( gfgfc = . Intuitively, 

),( gfc  expresses the highest possible match between the 
two functions )(tf  and )(tg , and thus is strongly associ-
ated with their similarity. Actually, it can be shown that we 
can define a normalized similarity index between the func-
tions )(tf  and )(tg  as the ratio 
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A two-dimensional analog of this measure is oftentimes 
used in the field of image processing. 
We can use this index together with the Lorentzian model 
as follows: Let )(tr i

k  be the time response of the k’th sen-
sor on the i’th measurement. Then, the similarity index (for 
sensor k alone) between the two measurements i and j is: 
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We define the total similarity between these two measure-
ments as the average over all the m sensors, 

)(1 21 m
ijijijij SSS

m
S +++= K .  (2) 

Our definitions impose unit self-similarities, i.e, 1=iiS  for 
all i. However, for reasons to become clear in the next sec-
tion, we deliberately force all the self-similarities to be 
zero, 0=iiS . 

Visualization 
In order to use the similarity matrix for data visualization, 
we borrow tools from the field of graph drawing. A graph 
is usually written as ),( EVG , where },,1{ nV K=  is the 
set of n nodes, and E is the set of weighted edges, ijw  be-

ing the non-negative weight of the edge connecting nodes i 
and j. For drawing purposes, the weights are interpreted as 
measures of similarity, such that more similar nodes are 
connected with larger weights. Henceforth, we will assume 

0=ijw  for any non-adjacent (disconnected) pair of nodes. 

The weighted sum of edges connected to a particular node 
is defined as its degree, 
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A high degree node would probably be a “central” one, in 
the sense that it would probably be connected to many 
other nodes. The Laplacian of the graph is the symmetric 

nn×  matrix L, where 
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For some graphs, each node is also associated with a 
strictly positive number, im , known as its mass. The mass 
matrix M is the nn×  diagonal matrix that satis-
fies iii mM = . 

In  [5] we describe an algorithm for drawing such a graph, 
using a technique of energy minimization. Here, we outline 
the algorithm in much brevity, and the interested reader is 
referred to  [5] for more details. The idea is to draw the 
graph in one dimension, by assigning a coordinate ix  to 
each node i, via the minimization of the Hall energy func-
tion 

 ∑
=

−=
n

ji
jiij xxwxE

1,

2
2
1 )()( , 

which strives to make edge lengths short. Using the for-
merly defined Laplacian, this energy function can be com-
pactly written as LxxxE T=)( , with x being the vector of 

coordinates, T
nxxxx ),,,( 21 K= . Actually, to avoid de-

generate solutions, the following constrained minimization 
problem is the one that should be solved: 
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Here n1  is the n-vector ( )T1,,1,1 K . The constraint 

1=MxxT  poses an overall scaling to the drawing. For, if 
0x  is a minimizer of the problem with energy 

000 LxxE T= , then 0xc  (with energy 0cE ) will be a 
minimizer of the same problem but with the constraint 

cMxxT = . The constraint 01 =⋅ n
T Mx  limits us only to 

solutions that obey 0=∑i ii xm , thus avoiding the degen-
erate solution of putting all the nodes at the same location. 
The extrema of the Hall energy under the above constraints 
are obtained for those x that are the solutions of the gener-
alized eigenvalue problem of ),( ML , 

 MxLx λ= . 
The value of the Hall energy at these extrema is simply the 
corresponding generalized eigenvalues λ. It can be proved 
that all the eigenvalues are non-negative, with a zero ei-
genvalue corresponding to a degenerate solution. Conse-
quently, the optimal one-dimensional drawing of the graph 
is obtained by taking the vector of coordinates as the gen-
eralized eigenvector associated with the smallest positive 
generalized eigenvalue. If it is desired to plot the graph in 
more dimensions, subsequent generalized eigenvectors may 
be taken. Thus, a two-dimensional drawing is obtained by 
taking the x-coordinates of the nodes to be given by the 
smallest positive generalized eigenvector, and the y-
coordinates to be given by the next smallest generalized 
eigenvector. The entire drawing technique is appropriately 
called the eigenprojection method. 
This approach to graph drawing yields impressive drawings 
when applied to many kinds of graphs, see  [5]. But how 
can it be used in the context of eNose data visualization? 
We can think of each measurement as a node in a graph, 
and identify the similarity indices with the edge weights. 
Moreover, to better reflect the relative dominance of the so 
produced nodes, we associate with each measurement a 
mass which is equal to its degree, ii dm = , see also  [4]. 
The reason for this is that the drawing algorithm tends to 
push heavier nodes towards the origin of coordinates, thus 
placing presumably more central nodes in the center of the 
drawing. We then solve the generalized eigenvalue prob-
lem MxLx λ= , taking the first two smallest positive gen-
eralized eigenvectors as the x and y coordinates of the 
nodes. 
We seal this theoretical discussion by giving a simple-to-
follow recipe for those who wish to implement our tech-
nique: 



 
1. Calculate the similarities between the 

measurements using formulae (1) and 
(2). 

2. Zero self-similarities, i.e., set 0=iiS  for 
all i. 

3. Construct the diagonal mass matrix M, 
where ∑ === n

k ikiii SdM 1 . 

4. Construct the Laplacian SML −= . 
5. Solve the generalized eigenvalue prob-

lem MxLx λ= . 
6. Determine the x and y coordinates of the 

nodes as the two generalized eigenvec-
tors with the smallest and next smallest 
positive generalized eigenvalues, respec-
tively. 

Matlab implementation and examples can be found in 
www.wisdom.weizmann.ac.il/~liran.  
Figure 2 shows the two-dimensional drawing obtained by 
applying the eigenprojection method to our 30 chemical 
dataset. In the figure, each dot is a measurement, color-
coded by the odor species. For comparison, the orthodox 
drawing technique of applying PCA to standardized height 
feature vectors is also brought, see Figure 3. On the upmost 
level, the two drawing techniques seem quite comparable. 
A closer look, however, reveals the following: 
Outlier detection: The most prominent property of the 
eigenprojection drawing (Figure 2) is the sharp partition of 
the space into a large central region, and a small one, con-
taining only three chemicals, near the upper right corner. 
An inspection of the three isolated chemicals reveals that 
they are true outliers, with some of their sensors showing 
anomalous double peak time response. Figure 4 shows an 
example to this behavior, probably caused by some kind of 
“chromatographic effect”. The corresponding PCA draw-
ing (Figure 3) does not distinguish these outliers at all. The 
combination of the Lorentzian model feature extraction and 
the eigenprojection visualization technique turns out, there-
fore, to form a powerful tool for outlier detection. 
General layout (qualitative): The way clusters are spread 
in space in the eigenprojection method is better observed if 
we zoom on the central region alone, as is done in Figure 5. 
It might be slightly difficult to see in the resolution of Fig-
ures 3 and 5, but the two layouts exhibit impressive dis-
criminatory power, with the different clusters being hardly 
overlapping. 
Cluster separability (quantitative): So both drawings are 
discriminatory to some extent. But which is more so? We 
can obtain a crude estimate of the quality of a drawing by 
measuring how well separated are the different clusters. To 
this end let us define the separability index of the drawing 
as 

-1 -0.5 0 0.5 1
-0.5

0

0.5

1

x-coordinate

y-
co

or
di

na
te

(1s)-(-)-(beta)-pinene           
buty lbuty rate                    
citral                           
ethy lacetoacetate                
(1s)-(-)-alf a-pinene             
(R)-(-)-limonene                 
(s)-(-)-limonene                 
2-acety lpy ridine                 
cis-3-hexeny lacetate             
ethy l-2-methy l-4-pentenoate   
pheny lacetaldehy dedimethy lac
2,3-heptanedione                 
1-pheny l-1,2-propanedione      
4-methy lanisole                  
ethy lpy razine                    
propy lidenephthalide             
amy lbuty rate                     
buty lbuty ry llactate              
ethy l-3-methy lthio-propionate  
buty lidenephthalide              
trans-2-hexenal                  
trans-2-hexenol                  
alf a-angelicalactone             
cis-6-nonenal                    
ethy lcaproate                    
ethy l-2-methy lbuty rate           
trans-2-methy l-2-pentenoicacid
trans-2-octenal                  
ethy ln-v alerate                  
terpinotene                      

Figure 2: Visualization of our 30 chemical dataset using the 
eigenprojection method. 
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Figure 3: Visualization of our 30 chemical dataset using PCA 
on standardized height feature vectors. 
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Here WS  is the average within-cluster covariance matrix 
(the average scatter of a cluster), and BS  is the between-
cluster covariance matrix (the scatter of the clusters them-
selves, where each cluster is represented by its centroid). 
For more information on these magnitudes see  [8]. The 
reasoning for defining the separability index as in (3) stems 
from the fact that the trace of a covariance matrix is pro-
portional to the average Euclidean distance between the 
cluster members. Thus, the higher is I, the denser the clus-
ters, and better is their separation. The eigenprojection 
drawing (Figure 1) gives 9.147=I , while the PCA draw-
ing (Figure 2) gives an index smaller by a factor of three, 

2.53=I . We therefore expect the eigenprojection method 
to have more powerful discriminatory abilities, as is indeed 
supported by the results that we bring in the next section. 



Cluster shape (qualitative): Comparing Figures 3 and 5, 
one can notice that the clusters in the eigenprojection draw-
ing tend to be circular, while those in the PCA drawing 
tend to be cigar-shaped. The most outstanding example of 
this is the propylidenephthalide cluster (uppermost cluster 
in Figure 3, uppermost and leftmost cluster in Figure 5), 
which is elongated in the PCA drawing, but much more 
compact in the eigenprojection drawing. Probably, this 
compactness of the eigenprojection clusters is one of the 
reasons for the high separability index in the eigenprojec-
tion drawing. 
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Figure 4: A signal of one of the outliers (citral measured with 
a QMB sensor), showing the double-peaked behavior. 
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Figure 5: Zoom on the central region of the eigenprojection 
drawing presented in Figure 1. 

Classification 
In analogy to the KNN algorithm, we propose to use a K-
most-similar (KMS) algorithm, whose stages are: 

1. Define a reference set, which is the set of repre-
sentative measurements for which the class asso-
ciation is known in advance. 

2. Given an unknown sample, calculate its similarity 
index with respect to each of the measurements in 
the reference set. 

3. Find the K most similar measurements from 
within the references set. 

4. Associate the unknown sample with the cluster 
that contains the majority of the K most similar 
measurements. 

 The probability of classification error in this method ap-
pears to be very small. For our 30 chemical dataset, the 
classification success rate is 96.7%. Here we take the first 7 
measurements of each odor as references, and treat subse-
quent measurements as unknown samples. Thus, 70% of 
the measurements were taken as references, and 30% as 
unknown samples. For comparison, a KNN algorithm in 
the original feature space yields in this case only a 72.2% 
rate of correct classification. 

Summary 
Standard methodology of eNose data analysis dictates the 
use of visualization and classification algorithms directly 
on the feature vectors. We suggest here an alternative ap-
proach, utilizing the Lorentzian model feature extraction 
technique to obtain a similarity index for each pair of meas-
urements. We present a visualization algorithm and a 
classification algorithm, both operate on these similarity 
indices. 
The visualization algorithm uses tools borrowed from the 
field of graph drawing. It was shown to have powerful dis-
crimination ability, stronger about three times than PCA. 
Moreover, it was demonstrated to be capable of efficiently 
screening out outliers. 
The classification algorithm is a similarity index oriented 
variation on the KNN algorithm. However, when compared 
to KNN, it was shown to have significantly lower rate of 
classification errors. 
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