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Abstract

Planning complex missions requires a number of pro-
grams to be executed in concert. The Application Naviga-
tion System (ANS), developed in the NASA Advanced Su-
percomputing Division, can execute many interdependent
programs in a distributed environment. We show that the
ANS simplifies user effort and reduces time in optimization
of the trajectory of a martian airplane. We use a software
package, Cart3D, to evaluate trajectories and a wave front
algorithm to determine the optimal trajectory. ANS employs
the “GridScape” to represent the dynamic state of the avail-
able computer resources. Then, ANS uses a scheduler to dy-
namically assign ready tasks to machine resources and the
GridScape for tracking available resources and forecasting
completion time of running tasks. We demonstrate system
capability to schedule and run the trajectory optimization
application with efficiency exceeding 60 percent on 64 pro-
cessors.1

Keywords: dynamic scheduling, performance, naviga-
tion, trajectory optimization.

1 Introduction

Planning NASA missions involves a number of applica-
tions working in concert to provide a feasible or optimal
planning decision. These applications simulate various as-
pects of the anticipated mission environment, evaluate vari-
ous scenarios of achieving mission goals, and evaluate mul-
tiple configurations of the vehicles to be involved in the mis-

1The paper was presented at 16th IASTED International Conference on
Parallel and Distributed Systems, November 9-11, 2004, MIT, Cambridge,
USA

sion. The quantity of applications, scenarios, and configu-
rations could be significant and would require a substantial
amount of computer resources and human effort to perform
the calculations. To reduce the time required for the sim-
ulation and evaluation of various scenarios and configura-
tions, we have developed an Application Navigation System
(ANS).

The ANS works with applications composed of commu-
nicating tasks. It uses a task graph representation of such
applications. This model can be used to represent many
data flow applications c.f. [2]; ANS makes scheduling de-
cisions based on the state of the tasks and the state of the
resources of the distributed system.

ANS performs an automatic characterization of the re-
sources, extrapolates the application’s performance to the
available resources, and assigns the tasks to the best re-
sources with the goal of minimizing the application turn
around time. In [8] we have shown that this approach re-
duces some applications turnaround time by 25-35 percent.

In this paper, we demonstrate that ANS can efficiently
manage the problem of optimizing a trajectory of a mar-
tian airplane, Section 5. The plane has a base and a num-
ber of fly-over targets located in a canyon on Mars. The
goal is to find the most energy-efficient trajectory that starts
at the base, visits all the targets, and returns to the base.
To solve this problem, we choose a number of intermediate
way points in the martian airspace and calculate the optimal
trajectories between each point and its closest neighbors.
Then, we use a combination of the wave front algorithm and
a heuristic traveling salesman algorithm to find the most ef-
ficient trajectory. For calculation of the most lift and drag
between a pair of way points we use theCart3D package
[3].

The architecture of the system is shown in Figure 1. We
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describe the interaction between servers and navigators in
Section 3.1, and the acquisition and use of the GridScape in
Section 3.2.
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Figure 1. The Architecture of our Navigation
System. Each navigator executes the itera-
tions of the Navigational Cycle (see Figure 2).

The results in Section 6 show that our navigation system
achieves 60 percent efficiency relative to the optimal run-
ning time of the tasks without dependencies. In our exper-
iments, we used five machines containing 1,152 processors
and having peak performance of 4.1 TFLOPS, Table 1.

As an abstraction of system resources we use aGrid-
Scape, a map of the system resources represented by a di-
rected graph, where each machine and router is represented
as a node of the graph with an attached list of machine re-
sources and a history of their dynamics. Communication
links between machines are represented by the arcs of the
graph labeled with the observed bandwidth and latency of
the links. The initial information about the GridScape is
acquired during installation of the benchmark/application
servers (Figure 1). The dynamic component of the Grid-
Scape is measured by means of the NAS Grid Benchmarks
(NGB) [9] during the monitoring, and by requests of the
navigators.

2 Related Work

2.1 Scheduling

Application scheduling in a distributed computing envi-
ronment has been a popular topic of research for several
years. One type of application is the so-called parameter-
sweep application, comprised of many independet experi-
ments. In [4] the authors discuss the methods of scheduling
a dynamic parameter-sweep application. In our case, the
scheduler must deal with large numbers of dependent tasks
with complex I/O relations. Fortunately, our main applica-
tion Cart3Dallows us to compose the tasks so that they can
be executed in a data flow manner: a task can be launched
as soon as all its input data have arrived.

To manage dependencies between tasks, we are using
lists (proposed in [5]) to keep track of which nodes can be
executed and which nodes cannot. The authors required the

scheduler to update the ”ready nodes” list after every local
schedule action it performs. They also used a critical path
scheduling algorithm to improve the performance of their
tasks. We do not use the critical path algorithm for two rea-
sons. First, large numbers of paths in our graphs are close
to critical, and second, the length of a path can only be cal-
culated when all tasks have finished. Also, our tasks are all
virtually the same size and require the same amount of com-
puting power, so they are somewhat more predictable than
the tasks mentioned in other research papers.

Scheduling data flow graphs is an NP-complete problem
unless gross assumptions are made to simplify it. Most re-
search on data flow graphs conclude that simplifying as-
sumptions are detrimental to the quality of the scheduler.
Memory, processor, and cluster architecture are generally
accepted to be too unpredictable to simplify the scheduling
problem [10]. However, in our case, our simplifying as-
sumptions have been tested and have been shown through
our experiments to be reliable and predictable. This is most
likely the case because we are using batch scheduler con-
trolled systems to avoid interference among tasks.

Two models of data flow graphs are generally accepted
for modeling the tasks and interconnections: task interac-
tion graphs (TIGs) and task precedence graphs (TPGs) [10].
The TIG model is generally used for static scheduling and
the TPG model is used for dynamic scheduling. In this pa-
per, we use the TPG model, which is also referred to as
the directed acyclic graph (DAG) model. When scheduling
a DAG, it is important to decide whether to sacrifice effi-
ciency of the scheduler to find an optimal solution, or to
sacrifice the optimality of the solution for efficiency of the
scheduler. As our initial scheduler, we used a simple but ef-
ficient scheduling method that achieved about 60 percent of
the efficency of the schedule (relative to the optimal sched-
ule of the tasks without dependencies).

2.2 Mars Airplane

The dream of a Mars airplane has been pursued and re-
searched by many different scientists throughout the last
decade. Many felt that an unpiloted vehicle would be un-
able to make the judgement calls necessary for a successful
flight, but recent demonstrations of unpiloted flying vehi-
cles on Earth has eroded their theorized evidence. It is im-
portant that a flying vehicle be unpiloted because it makes
the vehicle lighter. It also allows the vehicle to conduct re-
search long before humans can get to Mars.

A flying vehicle on Mars is important because the
wheeled rover missions are limited to a small area with rel-
atively simple terrain. An airplane would allow researchers
to cover much more distance and analyze more difficult
terrain. One of the most interesting areas on Mars to re-
searchers is the Valles Marineris, a canyon 1,860 miles long,
and up five miles deep. Scientists hope that the canyon walls
will provide clues on the sedimentation of the crust and pos-
sibly existence of life on Mars.

In 1998, NASA offered a grant to an organization that



Table 1. The the grid machines used in our experiments.
Machine Name NP Clock Rate Peak Perf. Memory Maker Architecture Batch

(MHz) (GFLOPS) (GB) System

O3K 64 600 76 16 SGI Origin3800 -
O3K1 512 600 626 256 SGI Origin3800 PBS
Altix 64 1500 384 128 SGI Altix -
Altix1 512 1500 3072 1000 SGI Altix PBS

came up with the most compelling space exploration pro-
posal. Several of the 29 proposals were for aircraft that
would explore Mars. Even though none of the missions
have been fulfilled, there has been a significant amount of
research dedicated to designing an airplane that will fly on
Mars [14].

3 The Application Navigation System

3.1 The Navigational Cycle

In our navigation system, tasks are assigned to the ma-
chine resources by the navigators, Figure 1. The decision
to accept or reject an assigned task is performed by a server
based on its own criteria such as task priority and availbale
resources. The navigators run on launch machines, while
the servers are running on compute engines. For a given
application, a navigator performs the following functions:

• Obtains a list of tasks ready to be executed;

• Consults the “GridScape” to find resources able to ex-
ecute these tasks;

• Submits the tasks to the resources that will provide the
fastest advance of the application;

• Repeats this sequence until all tasks are executed.

In order for a navigator to accomplish these functions, it
must understand an application’s requirements and know
the current state of the system resources.

In our computational environment, the application de-
scription includes the application performance model (ex-
pected execution time, parallel efficiency, memory size, size
of I/O data). This performance model is based on several
runs of the tasks on an average (not extreme) flight param-
eters. Despite the fact that convergency of Computational
Fluid Dynamic codes may significantly vary depending on
small changes in initial conditions, during our runs, we ob-
served very consistent, predictable convergency of theflow-
Cart solver.

When deciding to submit a task, a navigator uses the
GridScape to match task requirements with abilities of the
current resources. It estimates the time it will take to exe-
cute the task and assigns to it the number of processors that
minimizes the application turnaround time. In summary,
the navigator performs the routine of thenavigational cy-
cle, Figure 2. A detailed description of the ANS can be
found in [8].

No more tasks 

Navigator

Application Performance ModelGridScape

Update GridScape

 Schedule and Submit Critical Tasks

Get Ready Tasks

Extrapolate Performance

Figure 2. The Navigational Cycle.

3.2 The GridScape

The GridScape serves as an abstract description of grid
resources that represents the current state of computing re-
sources. The navigators use it to make submission deci-
sions, while the servers use it to qualify submitted jobs. As
a result, the quality of scheduling and the overall efficiency
of the navigation system depend on how well the GridScape
is synchronized with task submissions and changes in the
state of grid resources.

We use three ways to update the GridScape to achieve a
good synchronization. First, each server updates the Grid-
Scape when it changes the state of a task to (or from) Run-
ning, by subtracting from (or adding to) the GridScape the
resources used by the task. Second, each monitor periodi-
cally updates the GridScape based on timings of the NAS
Grid Benchmarks. Finally, each navigator can request an
update to the GridScape. The details of the GridScape ac-
quisition process is described in [8].

4 The Martian Mission Site and Environ-
ment

The site of the mission at279o EL and 9o SA on the
Martian surface is shown on Figure 3 (left pane) and the
elevation map is shown on Figure 3 (right pane).

4.1 The Martian Flyer

The Martian Flyer2 (MF) is a delta-plane comprised
of a wing-integrated body, two movable elevons, and two

2The MF geometry was provided by Michael Aftosmis group



Figure 3. A stereo map (left pane) and eleva-
tion map (right pane) of the Martian airplane
mission area.

fixed winglets, Figure 4. The flier was designed for data-
gathering missions on the surface of Mars. The elevons
can be adjusted individually from deflections of 10 degrees
down to 20 degrees up to change the pitch, roll, and yaw
of the aircraft. The winglets were added to reduce drag and
increase lift. The computer model of MF has not been phys-
ically tested; however, it has been through rigorous virtual
testing using the Cart3D package. The Cart3D package al-
lows users to adjust the elevon settings, Mach number, and
other flight characteristics to simulate conditions on Mars.

Figure 4. MF configuration with the right
elevon down and a flow around it obtained
with Cart3D.

4.2 The Trajectory Space

The MF starts from a base on the Mars surface, flies over
a number of target points in the canyon, and returns back to
the base while spending as little energy as possible to over-

come the drag. The flyer takes advantage of the air updraft
along the warm slopes of the canyon while avoiding the
downdraft along the cold slopes. We estimate the updraft
as a function of the amount of the solar radiation obtained
by the slope during the current Martian day. It is a simple
function of the angle between the normal to the surface and
direction to the Sun3.

As an approximation of the space of all possible trajec-
tories, we create a mesh of points at a fixed elevation and
connect each point with the nearest neighbors by edges, see
Figure 5. Each trajectory consists of parts of edges and parts
of the circular arcs connecting the edges (not shown in the
picture). It can start/end at the base, way point, or a tar-
get point. The vector of the MF velocity at the beginning of
each segment is the calculated velocity at the end of the pre-
vious segment. The optimal trajectory is one that minimizes
the drag along it.

Figure 5. Approximation grid for the trajecto-
ries of MF. White edges indicate edges with
updraft and black edges indicate edges with
down draft. A sample trajectory is repre-
sented by the white line, with a small offset
from actual position.

3Currently we ignore effect of shadows on the updraft.
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Figure 6. The Mars Flyer test case using the
Cart3D package. Grey boxes show executa-
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5 Trajectory Optimization

To find the optimal trajectory for the MF we need to per-
form a complex data flow management. We formulate this
management problem as scheduling of the tasks represent-
ing flow calculations along the fragments of the trajectory.
The dependencies between pairs of tasks are derived from
the trajectory continuity condition.

5.1 The Cart3D Package

TheCart3Dpackage [3] is a production NASA software
package used for high-fidelity inviscid analysis in concep-
tual aerodynamic design. It performs CFD analysis on com-
plex geometries. A data flow graph of theMartian Flier test
case is shown in Figure 6. It encapsulates six executables
written in FORTRAN and C. The package includes utili-
ties for geometry import, surface modeling, surface inter-
section, mesh generation, and flow simulation and analysis.

The geometry of an aircraft inCart3D is represented as a
collection of components, called aconfiguration. The con-
figuration is defined by the triangulation file (*.tri) which
describes the geometry of the aircraft. The triangulation file
is first run through a program calledintersectwhich pro-
duces apreSpec file. ThepreSpec file used bycubes
to generate mesh.Cubesproduces topologically unstruc-
tured, adaptively refined, Cartesian mesh around the con-
figuration. Reorderreorders the cells of the mesh using a
space-filling-curve ordering.MgPrep is the mesh coarsen-
ing module which creates coarse meshes from an initial in-
put mesh. These meshes are used inflowCart for multigrid
convergence acceleration.FlowCart takes these re-ordered
meshes and partitions them on-the-fly onto the assigned
number of processors. The flow simulation inflowCart is
a scalable, multilevel solver for the Euler equations gov-

erning the inviscid flow of a compressible fluid. Theclic
program is used to analyze the simulated flow.

In our “Martian Flyer” test case,cubescreated a mesh
with about 825,000 cells.FlowCart performed 150 itera-
tions including 50 iterations on the third level of refinement.
The efficiency for 16 processors was estimated at approxi-
mately 70-75 percent.

5.2 The Wave Front Algorithm

To find an optimal trajectory, we use the wave front al-
gorithm that expands trajectories from already reached way
points to yet unvisited way points. The algorithm ensures
that a fragment of trajectory waits to be calculated until the
optimal incoming trajectory is found. Once the optimal in-
coming trajectory is established, the fragment is calculated
to extend the optimal trajectories until a trajectory from the
base to all targets is found.

The finding a tour of minimum length that visits given
graph vertices is known as the Traveling Salesman Prob-
lem. The general problem isNP -hard, however, the
three-dimensional Euclidian problem can be solved approx-
imately in polynomial time by Arora’s algorithm. In our
case, there are only four graph vertices to visit, so even com-
plete enumeration looks efficient. However, the length of an
edge in a tour (represented as total drag along it) depends
on the previous edge of the tour (due to the continuity of
the MF trajectory) so that our problem can not be directly
reduced to the salesman problem. Therefore, we use the
heuristic wave-front algorithm to solve the trajectory opti-
mization problem.

We define depth of a vertex (way points or the targets)
of the trajectory graph as the minimum number of edges
on a path connecting the vertex with the base. Obviously,
vertices of depthd are connected only with vertices of the
depth,d − 1, d, andd + 1. The algorithm starts by sending
copies of the MF state from the base along edges to the way
points of depth 1. Each copy is processed byCart3D to cal-
culate drag along the edge. Then, on even iterations it sends
copies of the MF state from all way points of depthd along
edges to points of depthd. On odd iterations, it sends copies
of the MF state from all way points of depthd to points of
depthd + 1. At each point of the depthd, the copies of
MF arrive on one odd iteration from the points of the depth
d − 1 and on even iterations from the points of the same
depth. The algorithm records the path of minimal energy
from the base to the current way point. To maintain con-
tinuity of the trajectory, the algorithm takes the speed and
altitude of the MF on the last edge of the path and uses them
as initial conditions of the copies of the MF state sent to the
other way points. To make a first approximation of the ve-
locity mu matching given liftCL and to adjust the angle of
attackalpha for current fragment, we use Prandtl-Glauert
rule CL = alpha · k/

√
1 − mu2, wherek is a proportion-

ality coefficient, cf. [1]. Then, assuming that the velocity
vector is constant along the segment, the drag is computed
usingCart3D. If the newly incoming edge belongs to a path



of smaller energy, then the current path is replaced with the
more efficient one. The iterations continue until all targets
are visited.

Then, the algorithm takes the speed and altitude of the
MF on the optimal path, incoming to each target as initial
conditions for the outgoing edges, and repeats the iterations
using the targets as a new base. As a result, we will get pair-
wise shortest paths among the base and all targets. Then,
we use the “go to the nearest unvisited neighbor” heuristic
to build a trajectory from the base that visits all targets and
comes back to the base. This path may have discontinuities
in velocity at some targets. To compensate for the disconti-
nuity we compute a maneuver that transits the MF between
the trajectories in these targets and add these maneuvers to
the final trajectory.

Currently, our algorithm only calculates the drag along
the straight line segments of the trajectory, ignoring transi-
tions and corners. The final version of our algorithm will
account for the drag generated by turns and use all the drag
values to determine the final optimal trajectory.

5.3 Scheduling Dependent Tasks

For finding the optimal trajectory by the Wave Front Al-
gorithm, we need to execute many tasks usingCart3D with
various flight parameters. The trajectory continuity con-
dition implies dependencies between the flight parameters
along the incoming and outgoing edges of each way point.
These dependencies are represented as an acyclic directed
task graph (e.g., the task graph of the trajectories from the
base to the targets had 393 nodes and 1,402 arcs).

An algorithm called the ”Allocator” was devised to
schedule the tasks of the graph using subsets of the proces-
sors of a supercomputer. The algorithm uses information
from the GridScape to determine the available resources,
and ultimately matches all the nodes (i.e., tasks) with a cer-
tain number of processors to minimize the total turnaround
time.

We keep the information about the current state of the
system resources (available, busy, estimated release time)
in the GridScape. The scheduler keeps track of the avail-
able and unavailable processors, along with the nodes that
are ready and those that are waiting for other nodes to com-
plete. During each cycle of the scheduler, it attempts to
allocate all available, idle processors to tasks ready to ex-
ecute. Processors are distributed evenly between the ready
nodes, and the leftover processors that cannot be evenly dis-
tributed are allocated to the nodes with the largest number
of outgoing arcs. Once all processors have been distributed,
the nodes allocated to processors begin execution. When a
node has finished, the processors it used become idle and
are used to execute another task assigned to them by the
Allocator.

The run time for each task is predictable because the
tasks differ only slightly in the areas of Mach number,
sideslip angle, and angle of attack, which negligibly affects
turnaround time. TheCart3Dcode was tested with different

numbers of processors to determine accurate simulated run
times. The simulation abilities of our scheduler allow the
user to see speedup capabilities of applications using differ-
ent numbers of processors or configurations of the schedul-
ing algorithm, see Figure 7.
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Figure 7. Scalability of Cart3D when computing
a single MF configuration.

In Figure 8, the graph of performance gains/losses from
the simulation predictions can be seen. Running the tasks
with no dependencies (where no trajectories depend on in-
coming trajectories) is the ideal case because no processors
are required to sit idle until some tasks become available.
The figure shows that using our algorithm with dependen-
cies returns only small performance losses from the ideal
case for a small number of processors. The tuned algorithm
in the figure gives more processors to tasks that pass their
results to many other tasks. The tuned algorithm performs
better in most, but not all cases.

6 Experiments

The navigation system is implemented in Java. It uses
the Java Registry to install task services on hosts used for
experiments and the Java Remote Method Invocation (RMI)
to run the benchmark tasks and to communicate data be-
tween them. In addition, it uses the Java Native Interface
(JNI) to invoke theCart3Dtasks written in C or FORTRAN.
We tested the navigation system on a distributed system
comprised of four machines shown in Table 1. During our
experiments, all machines had normal production loads.

To launch jobs, we implemented thejgrun command,
which has an interface similar tompirun. GridScape per-
formance was acquired by using the Java version of ED.S
of the NAS Grid Benchmarks [9]. We used automatic sub-
mission of the servers to the queue, requesting 16, 32, or
64 processors on the machines controlled by the PBS batch
scheduler.
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7 Conclusions and Future Work

We have described an architecture and implementation
of an Application Navigation System (ANS) that automates
execution of the applications comprised of many dependent
tasks. The ANS system automatically acquires a map of the
available compute resources and assigns tasks to them. The
system chooses resources that provide the fastest advance
of application tasks and, as a result, achieves 64 percent
efficiency when solving a trajectory optimization problem.

In this paper, we laid out a framework for scheduling
and execution of dependent tasks. This opens many areas
of research involving the trajectory optimization problem
and improving scheduling of the tasks. In particular, we
are planning to increase precision of our model. We will
improve our scheduling algorithm and reduce total amount
of work by pruning trajectories with high drag to eliminate
computations along suboptimal edges.
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