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Summary

Nonlinear programming algorithms play an important role in
structural design optimization. Fortunately, several algorithms
with computer codes are available. At NASA Lewis Research
Center, a project was initiated to assess performance of differ-
ent optimizers through the development of a computer code
CometBoards. This paper summarizes the conclusions of that
research. CometBoards was employed to solve sets of small,
medium and large structural problems, using different optimizers
on a Cray-YMP8E/8128 computer. The reliability and effi-
ciency of the optimizers were determined from the perfor-
mance of these problems. For small problems, the performance
of most of the optimizers could be considered adequate. For
large problems however, three optimizers (two sequential
quadratic programming routines, DNCONG of IMSL and SQP
of IDESIGN, along with the sequential unconstrained minimi-
zations technique SUMT) outperformed others. At optimum,
most optimizers captured an identical number of active dis-
placement and frequency constraints but the number of active
stress constraints differed among the optimizers. This discrep-
ancy can be attributed to singularity conditions in the optimiza-
tion and the alleviation of this discrepancy can improve the
efficiency of optimizers.

Introduction

Nonlinear programming algorithms play an important role
in structural design optimization. Fortunately, several algorithms
with computer codes have been developed during the past few
decades. To assess performance of different optimizers, a
project was initiated at NASA Lewis Research Center and a
computer code called CometBoards, which is an acronym for
Comparative Evaluation Test Bed of Optimization and Analysis
Routines for the Design of Structures (ref. 1), was developed.

Because licenses for some of the optimization codes has
expired, numerical results are provided herein for six optimizers.
CometBoards incorporates about a dozen popular optimization
codes. These are: the feasible directions method (FD; ref. 2);
fully utilized design (FUD; ref. 3); genetic algorithm (GENMO;

ref. 4); generalized reduced gradient method (GRG; ref. 5); the
DNCONG of the IMSL routine (ref. 6); modified feasible
direction method (MFD; ref. 7); NPSOL, which is available in
the NAG library (ref. 8); the optimality criteria methods (OC;
ref. 3); the reduced gradient method (RG; ref. 9); the sequential
linear programming method (SLP; ref. 2); the sequential qua-
dratic programming technique (SQP of  IDESIGN; ref. 10); the
sequence of unconstrained minimizations technique (SUMT;
ref. 11); and the cascade strategy, which includes more than one
optimization algorithm (ref. 12). CometBoards was employed
to solve a set of 41 structural problems by using its eight
optimizers on a Cray-YMP8E/8128 computer. The reliability
and efficiency of the eight optimizers were ascertained on the
basis of the performance of these problems. The problems were
solved for multiple load conditions, and behavior constraints
were imposed on stresses, displacements, and frequencies. The
examples were selected so that at optimum, numerous stress,
displacement, and frequency constraints were active. Initial
design, upper and lower bounds, and convergence parameters
were specified to ensure that the evaluation had no bias towards
any particular optimizer or any particular problem. The eight
optimizers might have been updated during the time
CometBoards was developed, but any such improvements were
not accounted for.

Evaluations of optimizers that are available in the literature
(refs. 13 to 21) deal broadly with individual code validation by
their developers. The studies lacked uniformity because prob-
lems and computational platforms differed and the evaluations
were over a decade old. For example, Arora, (refs. 14 and 15),
the developer of SQP of IDESIGN, compared his algorithm to
the NAG/NPSOL optimizer. Most of Arora’s problems were
trusses for stress and displacement constraints and were solved
on a PRIME 750 computer. Schittkowski, who is the developer
of the DNCONG optimization routine in the IMSL library,
essentially validated his code (refs. 16 and 17) by solving many
theoretical examples on a Telefunken-TR-400 computer.
Venkayya (ref. 18), one of the developers of ASTROS, in
which OC and FD optimizers are used (ref. 19), attempted an
evaluation of a few practical problems on a VAX 11/785
computer. An intermediate complexity wing problem, used by
Venkayya with stress and displacement constraints (ref. 18), is
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also included in our test bed with the addition of frequency
constraints. Ragsdell’s evaluation (refs. 20 and 21) includes
mostly simple mechanical application problems. Our current
paper differs from those available in the literature in several
respects: (1) a single tool, CometBoards, evaluates all eight
optimizers on a common Cray-YMP computer; (2) solutions to
a set of problems, which were grouped into categories of small,
medium, and large, are used; and (3) design parameters were
selected to ensure that the evaluation had no bias towards
problems or optimizers. In brief, the comprehensive evaluation
presented in this paper does not duplicate previous work. This
paper presents a brief theory of optimization methods, a
description of CometBoards, a summary of the numerical
examples and their solutions, discussion, and conclusions.

Symbols

FD feasible directions

FUD fully utilized design

GENMO genetic algorithm

GRG generalized reduced gradient method

IMSL international mathematical subroutine library

MFD modified feasible direction method

NPSOL nonlinear programming package of the systems
optimization laboratory

OC optimality criteria

RG reduced gradient

SLP sequential linear programming

SQP sequential quadratic programming

SUMT sequence of unconstrained minimizations technique

Theory of Optimization Methods

Structural design can be formulated as: Find the n design
variables   

r
x , within prescribed upper and lower bounds (xi

L ≤ xi
≤ xi

U, i = 1,2,. . .,n) which make a scalar objective function f(  
r
x )

an extremum (here, minimum weight) subject to: a set of  mi
inequality constraints gj(  

r
x ) ≥ 0, (j = 1,2, . . .,mi) and  me equality

constraints   g xj mi+ ( )
r

 = 0 (j = 1,2, . . .,me).
Stress, displacement, and frequency behavior constraints were

investigated in this study. A cursory account of representative

optimization methods available in CometBoards is provided
herein. Readers may refer to specified references for details.

(1) The sequence of unconstrained minimizations technique
(SUMT), as implemented in the code NEWSUMT, is available
in CometBoards. In NEWSUMT, the penalty function has been
modified to improve efficiency and a modified Newton’s
approach is used to calculate the direction vector while a golden
section technique is used to determine step length.

(2) Sequential linear programming (SLP), as implemented
in design optimization tools (DOT 2.0) is available in
CometBoards. From the original nonlinear problem, a linear
programming subproblem is obtained by linearizing a set of
critical constraints and the objective function around a design
point. The linearization process and linear solution sequence is
repeated until convergence is achieved.

(3) The method of feasible directions (FD), as implemented
in DOT 2.0, is available in CometBoards. In FD, a usable
feasible direction is used. A minimum along the search direc-
tion is generated by polynomial approximation.

(4) SQP of IDESIGN, DNCONG of IMSL, and NPSOL in
NAG, three implementations of the sequential quadratic pro-
gramming technique, are available in CometBoards. In this
technique, the original nonlinear problem is solved through a
sequence of quadratic subproblems. In SQP of IDESIGN, a
Lagrangian function is approximated. The step length is obtained
by minimizing a composite descent function. DNCONG of
IMSL uses quasi-Newton updates for the Hessian of the
Lagrangian function while the constraints are linearized
(ref. 22). The step length for an augmented Lagrangian is
calculated using a bisection method (ref. 23). NPSOL in NAG
also uses an augmented Lagrangian. The search direction is
generated through a quadratic subproblem while step length is
calculated using an augmented Lagrangian, which is designed
to avoid discontinuities as much as possible.

(5) The reduced gradient method (RG), as implemented in
the code OPT, has been incorporated into CometBoards. This
method partitions the design variable into decision and slave
variables and a reduced gradient is used to generate a search
direction. A line search is carried out by bounding the minimum
and then calculating the minimum within some tolerance.

(6) The optimality criteria method (OC), available in
CometBoards, can be considered as a variant of the Lagrange
multiplier approach applied to structural design problems. In
OC, an iterative scheme is followed to update the multipliers
and the design variables separately.

Description of CometBoards

The basic organization of CometBoards is depicted in figure 1.
The central executive with command level interface (fig. 1)
links the three modules (optimizer, analyzer, and data input) of
the code to formulate and solve an optimization problem. The
analyzer options are the displacement method (refs. 8 and 20),



3NASA TM–4698

FD
FUD
GENMO
GRG
IMSL
MFD
NPSOL
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Optimizers Analyzers Data files

- Displacement
- Force (IFM)
- Others

- Analysis data
- Design data
- Optimization data

Central executive via
command level

interface

Results

Figure 1.—Comparative evaluation test bed of optimization and analysis
   routines for the design of structures (CometBoards).

CometBoards

the integrated force method (refs. 3 and 25), and the simplified
force method (ref. 3), etc. There are three input data files, one
for analysis (anldat), one for design (dsgndat), and one for
optimization (optdat). CometBoards has considerable flexibil-
ity in solving a design problem by choosing any one of the
available optimizers and any one of three analyzers. A more
detailed description of CometBoards can be found in the
reference 1, User’s Manual.

Example Problems

The numerical test bed of CometBoards includes over 41
problems, most of which were taken from the literature (refs. 1,
3, 18, and 26 to 31). Minimum weight was the objective and a
linking strategy was followed to reduce the number of design
variables. Stress, displacement, and frequency behavior con-
straints were considered. Multiple static load conditions and
consistent elemental mass for dynamic analyses were also con-
sidered. The load conditions, mass distributions, and behavior
limitations were specified to ensure that several types of behav-
ior constraints were active at the optimum. The initial design of
unity was considered for all problems unless otherwise speci-
fied. Each problem had a consistent set of upper and lower
bounds specified. Typically, default optimization parameters
and convergence criteria specified in the individual codes were
used. These parameters, however, were changed when conver-
gence difficulty was encountered. Results for all 41 examples
are summarized in table I. The normalized optimum weight and
the normalized Cray-YMP8E/8128 CPU time for a select set of

14 examples are given in table II and depicted in figures 2 to 5.
The weight was normalized with respect to the optimum weight
obtained for the best feasible design. A brief description of the
14 examples follows.

Examples P1a to P1d: 3-Bar Truss

The popular 3-bar truss (refs. 3, 26, 30), as shown in fig-
ure 6, (with modulus E = 30 000 ksi, and density ρ = 0.1 lb/in.3)
was subjected to a single load condition. It had three design
variables, and six constraints (3 stress, two displacement and
one frequency). Optimum weight and CPU time are depicted in
table II (P1a, P1b, P1c, P1d), and figures 2 and 5. The optimum
weight was 92.87 lb and one stress, one displacement, and one
frequency constraints were active. Five optimizers (SUMT,
SQP, IMSL, NPSOL and RG) performed satisfactorily. OC
was inadequate, yielding a 38.6 percent over-design. The
problem was solved again for three different initial designs (the
SUMT optimum design, 150 percent of SUMT optimum, and
50 percent of SUMT optimum). Results followed the pattern of
the earlier problem where the initial design was unity. The CPU
times on the Cray-YMP computer required for different
optimizers are depicted in figure 5. For unit initial design, SQP
required the least CPU time of 0.14 sec, while RG was most
expensive at 3.18 sec.

Example P2: Tapered 10-Bar Truss

A tapered 10-bar aluminum truss (ref. 3), shown in figure 7,
was subjected to two load conditions. It had 10 design variables,
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TABLE I.— SUMMARY FOR 41 TEST BED PROBLEMS

Problem
number

 Problem description and
number of design variables

Constraints
specified

Active constraints for optimization codes

SUMT SQP IMSL NPSOL RG OC

P1a 3-bar truss (3 IDV,  ID = 1) 3S, 2D, 1F 1S, 1D, 1F 1S, 1D, 1F 1S, 1D, 1F 1S, 1D, 1F 1S, 1D, 1F
a
1F

P1b 3-bar truss (3 IDV,  ID = OPT) 3S, 2D, 1F 1S, 1D, 1F 1S, 1D, 1F 1S, 1D, 1F 1S, 1D, 1F 1S, 1D, 1F
a
1F

P1c 3-bar truss (3 IDV,  ID = 1.5 × OPT) 3S, 2D, 1F 1S, 1D, 1F 1S, 1D, 1F 1S, 1D, 1F 1S, 1D, 1F 1S, 1D, 1F
a
1F

P1d 3-bar truss (3 IDV,  ID = 0.5 × OPT) 3S, 2D, 1F 1S, 1D, 1F 1S, 1D, 1F 1S, 1D, 1F 1S, 1D, 1F 1S, 1D, 1F
a
1F

P2 Tapered 10-bar truss (10 IDV) 20S, 4D, 1F 7S, 2D, 1F 8S, 2D, 1F 8S, 2D, 1F 8S, 2D, 1F
a
1S, 1F

a
5S, 2D, 1F

P3 Tapered cantilever beam (8 IDV) 16S, 4D, 1F 6S 6S 6S 6S 6S 4S

P4 25-bar truss (8 LDV) 50S, 36D 4D 4D 4D 4D
a
2D (a)

P5 165 feet tall antenna tower (6 LDV) 504S, 24D, 1F
a
7S, 12D, 1F 6S, 12D, 1F 6S, 12D, 1F 6S, 12D, 1F

a
1F (a)

P6 60-bar trussed ring (25 LDV) 180S, 3D, 1F 21S, 1D, 1F 21S, 1D, 1F 21S, 1D, 1F 19S, 1D, 1F
a
18S, 1D, 1F

a
10S, 1F

P7 Geodesic dome (12 LDV) 252S, 1D, 1F 162S, 1D, 1F 168S, 1D, 1F 156S, 1D, 1F 162S, 1D, 1F
a
18S, 1D

a
12S

P8a Intermediate Complexity Wing (57 LDV, ID =1.0) 316S, 4D, 1F 106S, 1D 117S, 1D, 1F 117S, 1D, 1F 75S, 1D, 1F
a
6S

a
19S

P8b Intermediate Complexity Wing (57 LDV, ID =OPT) 316S, 4D, 1F (a) 106S, 1D 117S, 1D, 1F 117S, 1D, 1F 106S, 1D
a
42S

P8c Intermediate Complexity Wing (57 LDV, ID =1.5 × OPT) 316S, 4D, 1F 109S, 1D
a
115S, 1D, 1F

a
88S, 1D, 1F

a
2S

a
7S (a)

P8d Intermediate Complexity Wing (57 LDV, ID =0.5 × OPT) 316S, 4D, 1F 117S, 1D, 1F
a
99S, 1D, 1F (a)

a
14S

a
7S (a)

P9 10-bar truss (10 IDV) 20S, 4D, 1F 7S, 2D, 1F 8S, 2D, 1F 8S, 2D, 1F 8S, 2D, 1F
a
1F

a
5S, 2D, 1F

P10 10-bar truss (5 LDV) 20S, 4D, 1F 6S, 2D, 1F 6S, 2D, 1F 6S, 2D, 1F 6S, 2D, 1F
a
3S, 1F 6S, 2D, 1F

P11 Stiffened 10-bar truss (18 IDV) 36S, 4D, 1F 8S 9S 8S 9S
a
1S 5S

P12 Stiffened 10-bar truss (2 LDV) 36S, 4D, 1F 2S 2S 2S 2S
a
1F 2S

P13 Cantilever membrane ( 8 IDV) 16S, 4D, 1F 6S 6S 6S 6S 6S 4S

P14 Cantilever membrane ( 1 LDV) 16S, 4D, 1F 1S 1S 1S 1S 1S 1S

P15 Cantilever membrane 16-quad elements (16 IDV) 32S, 4D, 1F 1S, 4D (a) 4D
a
4S

a
5S 4D

P16 Cantilever membrane 32-quad elements (16 LDV) 64S, 4D, 1F 1S, 4D 4D 4D
a
9S

a
4S 4D

P17 Cantilever membrane 48-quad elements (16 LDV) 96S, 4D, 1F 13S, 4D
a
13S, 4D 15S, 4D

a
8S

a
3S 13S, 2D

P18 Cantilever membrane 64-quad elements (16 LDV) 128S, 4D, 1F 32S, 4D
a
29S, 4D 31S, 4D

a
16S (a) 23S, 2D

P19 60-bar trussed ring (25 LDV) 180S 38S
a
35S 38S 38S

a
14S 40S

P20 60-bar trussed ring (25 LDV) 3D 1D 1D 1D 1D
a
1D 1D

P21 60-bar trussed ring (25 LDV) 1F (a) 1F 1F 1F
a
1F

a
1F

P22 60-bar trussed ring (25 LDV) 180S, 24D 28S, 1D
a
30S, 1D 27S, 1D 29S, 1D

a
20S 18S, 1D

P23 60-bar trussed ring (25 LDV) 24D, 1F
a
1D, 1F 1D, 1F 1D, 1F

a
1D, 1F

a
1F

a
1D, 1F

P24 Stiffened 60-bar trussed ring (49 LDV) 252S 75S 75S 75S 75S 75S
a
59S

P25 Stiffened 60-bar trussed ring (49 LDV) 3D 1D
a
1D 1D (a) 1D 1D

P26 Stiffened 60-bar trussed ring (49 LDV) 1F 1F 1F 1F (a) 1F 1F

P27 Stiffened 60-bar trussed ring (49 LDV) 252S, 24D 75S, 1D 75S, 1D 75S, 1D 75S, 1D 76S, 1D
a
17S

P28 Stiffened 60-bar trussed ring (49 LDV) 24D, 1F 1D, 1F 1D, 1F 1D, 1F 
a
1D 1D, 1F 1D, 1F

P29 Stiffened 60-bar trussed ring (49 LDV) 252S, 3D, 1F 44S, 1F 46S, 1F 46S, 1F 46S, 1F 47S, 1F
a
3S

P30 Stiffened ring (24 IDV) 72S 28S 28S 28S 28S 27S 28S

P31 Stiffened ring (24 IDV) 3D 1D 1D 1D (a) 1D 1D

P32 Stiffened ring (24 IDV) 1F 1F 1F 1F (a)
a
1F 1F

P33 Stiffened ring (24 IDV) 72S, 24D 28S, 1D 27S, 1D 28S, 1D 28S, 1D 25S, 1D
a
18S, 1D

P34 Stiffened ring (24 IDV) 24D, 1F 1D, 1F 1D, 1F 1D, 1F
a
2D 1D, 1F 1D, 1F

P35 Stiffened ring (24 IDV) 72S, 3D, 1F 17S, 1F 17S, 1F 17S, 1F 17S, 1F 17S, 1F
a
16S, 1F

a Optimum weight obtained differs by more than 5 percent or constraint violation more than 1 percent (see ref. 1).
IDV: Independent design variable     ID: Initial design      LDV: Linked design variable     OPT: SUMT optimum design     D: Displacement constraints     F: Frequency constraints 
S: Stress constraints
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TABLE II.—OPTIMUM WEIGHT AND CRAY-YMP 8E/8128 CPU TIME FOR
SELECTED SET OF EXAMPLE PROBLEMS

Optimization methods

Problem
number

SUMT SQP IMSL NPSOL RG OC

Weight
b CPU Weight

b CPU Weight
b CPU Weight

b CPU Weight
b CPU Weight

b CPU

P1a 1.001 1.799 1.000 1.000 1.000 1.972 1.000 2.076 1.000 22.069 1.386 10.257

P1b 1.001 7.833 1.000 1.000 1.000 9.633 1.000 155.267 1.000 5.567 1.386 49.233

P1c 1.001 1.588 1.000 1.000 1.000 1.662 1.000 31.818 1.000 2.000 1.386 10.000

P1d 1.001 1.926 1.000 1.000 1.000 2.733 1.000 14.444 1.000 16.452 1.386 10.985

P2 1.000 1.500 1.000 1.000 1.000 1.133 1.000 1.022 (Failed) – – – 1.056 9.324

P3 0.999 1.268 1.000 1.000 1.000 0.976 1.001 3.169 1.000 6.121 1.028 16.834

P4 1.000 2.533 1.000 1.000 1.000 1.539 1.000 3.759 (Failed) – – – (Failed) – – – 

P5 a
0.940 1.065 1.019 1.000 1.019 1.134 1.017 5.026 (Failed) – – – 2.773 4.62

P6 1.000 1.605 1.000 1.000 1.000 1.120 1.000 3.899 1.832 20.716    
a
1.041 8.279

P7 1.021 0.538 1.000 1.000 1.015 0.550 1.016 0.658 2.022 0.066 2.976 4.456

P8a 1.004 1.116 1.000 1.000 1.000 1.695 1.037 7.712 (Failed) – – – 1.201 1.571

P8b 0.790 1.680 1.000 1.000 1.000 5.884 1.000 3.323 1.004 0.089 1.350 8.076

P8c 1.000 1.000 a
0.998 0.571 a

1.077 0.602 1.346 0.244 1.471 0.627 1.000 0.666

P8d 1.000 1.000 a
0.981 0.244 (Failed) – – – a

0.501 0.028 (Failed) – – – 1.000 0.276
a
Infeasible design.

bNormalized weight.
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Figure 2.—Performance of different optimizers for small problems.
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Figure 3.—Performance of different optimizers for medium problems.
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Figure 4.—Performance of different optimizers for large problems.
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Figure 5.—Cray-YMP cpu time for different optimization methods for 14 problems.
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variables. The problem had 21 constraints (16 von Mises stress,
four displacement and one frequency). Optimum results
obtained are given in table II. The optimum weight was
1440.24 lb with six active stress constraints. Five optimizers
(SUMT, SQP, IMSL, NPSOL, and RG) performed well while
OC produced a 2.8-percent over-design (see table II). Cray-
YMP CPU time varied from 1.79 sec for IMSL to 11.22 sec for
RG.

Example P4: 25-Bar Truss

A 25-bar aluminum truss (refs. 26 and  27), as shown in fig-
ure 9, had 8 linked design variables, and was subjected to two
load conditions. It had a total of 86 behavior constraints,

x400300200100

75 in.

6

1

100

50

y

1

Figure 7.—Tapered ten-bar truss. (Elements are circled, nodes are not.)
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4

3 50 in.
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5
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x

75 in.

6

1

100

y

Figure 8.—Tapered cantilever beam modeled with eight triangular membrane elements.
   (Elements are circled, nodes are not.)

3

4

162.5 in.

62.5 in.8
7

2

1
4 2 50 in.6

5

162.5 in.

3

5

and 25 behavior constraints (20 stress, four displacement, and
one frequency). The optimum weight was 3326.74 lb with 11
active constraints (8 stress, two displacement, and one fre-
quency). Four optimizers (SUMT, SQP, IMSL, and NPSOL)
converged for this example. Optimizer RG failed, and OC was
marginal at 5.6 percent over-design. Cray-YMP CPU time
varied between 1.28 sec for NPSOL and 1.91 sec for SUMT.

Example P3: Tapered Cantilever Beam

The cantilever truss of example P2, was modeled next using
8 triangular membrane elements, as shown in figure 8. The
loads and constraints were identical to example P2. The eight
thicknesses of the elements were considered the 8 design
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(50 stress and 36 displacement). Four optimizers (SUMT, SQP,
IMSL, and NPSOL) converged to an optimum weight of
544.73 lb with four active displacement constraints (tables I
and II). Optimizers RG and OC failed. Cray-YMP CPU time
ranged from 1.64 sec for SQP to 6.15 sec for NPSOL.

Example P5: 165-Ft-Tall Antenna Tower

A 165-ft-tall steel antenna tower with 252 members, as
depicted in figure 10, (ref. 26), had six linked design variables
and was subjected to two load conditions. Its overhead dish
antenna was modeled as a lumped mass for frequency calcula-
tions. It had a total of 529 behavior constraints (504 stress, 24
displacement, and one frequency). Three optimizers (SQP,
IMSL, and NPSOL) converged to an optimum solution of
5299.84 lb with small deviations (table II). At optimum, six
stress, 12 displacement, and one frequency constraints were
active. Optimizers RG and OC failed while SUMT produced a
six percent under-design. The Cray-YMP CPU time varied
between 376.83 sec for SQP and 1893.80 sec for NPSOL.

Example P6: 60-Bar Trussed Ring

A 60-bar trussed aluminum ring (ref. 3) was subjected to
three load conditions and had two lumped masses, as depicted
in figure 11. It had a total of 184 constraints (180 stress, three
displacement, one frequency) and 25 linked design variables.
The optimum weight was 414.51 lbs, and at optimum, 22 stress,
one displacement, and one frequency constraints were active.
Four optimizers (SUMT, SQP, IMSL, and NPSOL) converged
(table II). Optimizer RG failed, whereas OC produced a 4.1 per-
cent over-design with a 1.1 percent constraint violation. Cray-
YMP CPU solution time ranged from 36.96 sec for SQP to
144.11 sec for NPSOL.
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Figure 9.—Twenty-five bar-truss. (Elements are circled,
   nodes are not.)
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Figure 10.—One-hundred-sixty-five-ft tall
   antenna tower.

Example P7: Geodesic Dome

A geodesic dome (refs. 28 and 29), shown in figure 12
with a diameter of 240 in. and height of 30 in., was subjected to
a single load condition. It was modeled using 156 bars and
96 triangular membrane elements. The bars were made
of a material with modulus E = 30 000 ksi, and density ρ =
0.1 lb/in.3 Membranes were made of aluminum, with modulus
E = 10 000 ksi, and density ρ = 0.1 lb/in.3 The bar areas and
membrane thicknesses were grouped to obtain eight and four
linked design variables, respectively. The dome had a total of
254 constraints, (156 stresses for bars, 96 von Mises stresses for
membranes, one displacement, and one frequency). The opti-
mum weight obtained was 1022.67 lb with 170 active con-
straints, (168 stress constraints, one displacement, and one
frequency (table I). Four optimizers (SUMT, SQP, IMSL, and
NPSOL) converged with small deviations. Optimizers RG and
OC failed. The Cray-YMP CPU time varied between 448.32 sec
for SUMT to 548.36 sec for NPSOL.
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Examples P8a to P8d: Intermediate Complexity Wing

An intermediate complexity wing (refs. 3 and 18), shown in
figure 13, was modeled with a total of 158 elements consisting
of 39 bars, two triangular membranes, 62 quadrilateral mem-
branes, and 55 shear panels. The wing is made of aluminum
with modulus E = 10 500 ksi, and density ρ = 0.1 lb/in.3 The
elements were grouped to obtain 57 linked design variables.
The wing, which was subjected to two load conditions, had a
total of 321 behavior constraints, (316 stress, four displace-
ment, and one frequency). The optimum design for this prob-
lem was obtained from four different initial points, (1) initial
design of unity; (2) initial design equal to the SUMT optimum

design; (3) initial design equal to 150 percent of the SUMT
optimum design; and (4) initial design which is infeasible at
50 percent lower than the SUMT optimum design. Results
obtained for all four cases are summarized in table II (P8a to
P8d). The optimum design was 387.76 lb and there were a total
of 119 active constraints, (117 stress, one displacement, and
one frequency). For initial design of unity (see table II, problem
P8a), optimizers SUMT, SQP, IMSL, and NPSOL reached the
optimum within a 3.7-percent error margin. Optimizer RG
failed to solve the problem. Optimizer OC also failed to con-
verge to the optimum (producing 20.1-percent over-design).
Cray-YMP CPU time varied between 1075.21 sec for SQP to
8292.35 sec for NPSOL.

z
y

x

Figure 12.—Geodesic dome. (All boundary nodes are fully restrained. Supports are shown for three
   sides only. Supports for other sides are not shown.)

Figure 13.—Intermediate complexity wing. (Representative elements are circled, 
   nodes are not.)
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Discussion

For the purpose of this discussion, the 41 problems of the test
bed are grouped as small, medium, and large. For the small
problems (Group I), the number of linked design variables
ranged between three and 19. Group I contains a total of
19 problems, which are designated as P1a to P5, P7, and P9 to
P18. The normalized optimum weight for small problems
obtained by each optimizer is depicted in figure 2. For medium
problems (Group II), the number of linked design variables
ranged between 20 and 39. There are 12 medium problems,
which are designated as P6, P19 to P23, and P30 to P35. The
normalized optimum weight for the medium problems ob-
tained by each optimizer is illustrated in figure 3. Problems with
more than 40 independent design variables are referred to as
large problems (Group III). There are 10 large problems which
are designated as P8a to P8d, and P24 to P29. The normalized
optimum weight for large problems obtained by each optimizer
is depicted in figure 4.

The following discussion is divided into five categories: (1)
convergence to the optimum weight, (2) number of active
constraints at optimum, (3) Cray-YMP8E/8128 CPU time
required to solve the problem, (4) singularity in structural
optimization, and (5) default optimization parameters.

Convergence to Optimum Weight

The normalized optimum weights for all 41 problems, ob-
tained by the six optimizers are depicted in figures 2 to 4 for
small, medium, and large problems, respectively. In these
figures, unity represents optimum weight and more than unity
indicates over-design, while less than unity is infeasible design.

For the purpose of comparison, a solution with constraint
violation of less than one percent and weight which is within
one percent of the best feasible design is considered optimum.
A design is acceptable when the constraint violation is less than
one percent and the weight is within five percent of the
minimum obtained by the eight optimizers. Convergence to the
optimum solution for each of the six optimizers follows.

(1) SUMT converged to optimum solution for 35 of 41
examples, which consisted of 17 small, nine medium, and nine
large problems. SUMT failed for four problems. These are: one
small problem (P5), two medium problems (P21 and P23), and
one large problem (P8b). For both medium problems, the
SUMT solution was more than one percent infeasible. For the
large problem, SUMT gave an under-design of more than five
percent.

(2) SQP of IDESIGN, successfully solved 32 of 41
examples, which consisted of 15 small, 10 medium, and seven
large problems. This optimizer failed to give a feasible opti-
mum design for three small problems (P15, P17, and P18), two
medium problems (P19 and P22), and three large problems
(P8c, P8d, and P25).

(3) IMSL optimizer DNCONG successfully solved 37 of 41
examples, which consisted of 17 small, 12 medium, and eight
large problems. DNCONG of IMSL failed to optimize the
intermediate complexity wing (problems P8c and P8d).

(4) NPSOL successfully solved 25 of 41 examples, which
consisted of 13 small, eight medium, and four large problems.
This optimizer failed (with an infeasible design over one
percent) for: four small problems (P15 to P18); four medium
problems (P23, P31, P32, and P34); and four large problems
(P8d, P25, P26, and P28). It produced more than five percent
over-design for large problem P8c.

(5) RG successfully solved 13 of 41 examples, which con-
sisted of seven small, four medium, and two large problems.
RG failed for 12 small problems. It also failed for seven
medium problems and three large problems. The optimizer RG
failed with well over 100 percent error in the optimum weight
for 15 problems.

(6) OC successfully solved 16 of 41 examples, which con-
sisted of six small, five medium, and five large problems. OC
failed for nine small, two medium, and five large problems with
an error in the optimum weight exceeding five percent, as well
as for three medium problems with an infeasible design greater
than one percent.

Number of Active Constraints at Optimum

The number of active constraints at the optimum for all
examples is given in table I. Typically, different optimizers pro-
duced identical numbers of active frequency and active dis-
placement constraints. However, the number of active stress
constraints generated depended on the optimizer of choice. For
example, with the geodesic dome problem (P7), the number of
active stress constraints produced were 168 by SQP of IDESIGN,
162 by SUMT and NPSOL, and 156 by IMSL. Consider also
the set of five examples depicted in table III that failed to
converge, which produced minimum weights between 3.2 to
12.7 percent over- or under-designs. These examples produced
correct numbers of displacement and frequency constraints, but
failed to produce the correct numbers of active stress con-
straints. The deficiency in the number of active stress con-
straints ranged between three for problem P2 to 42 for problem
P8a. For these problems the failure of the optimizers could be
attributed to their inability to produce the correct number of
active stress constraints. This aspect is also described in the
section entitled, “Singularity in Structural Optimization” of
this paper.

CPU Time Required For the Solution

The normalized CPU times on a Cray-YMP8E/8128 com-
puter were recorded for a set of 14 examples. The normalization
was with respect to SQP of IDESIGN except for problems
P8c and P8d, which were normalized with respect to SUMT
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TABLE III.—FOUR EXAMPLES THAT FAILED TO REACH OPTIMUM WEIGHT
VERSUS BEST FEASIBLE DESIGN

Problem
number

Optimization
method

Percent
over-design

Number of active constraints at
optimum versus best feasible design

Frequency Stress Displacement

P2 OC 56 1   5 2

vs. SQP 0 1   8 2

P6 RG 83.2 1  18 1

vs. SQP 0 1  21 1

P8a NPSOL 3.2 1  75 1

vs. IMSL 0 1 117 1

P8c IMSL 7.7 1  88 1

vs. SUMT 0 1 109 1

(1) the number of active constraints exceed the number of
design variables. Out of the 41 problems the 14 examples listed
in table IV are prone to this type of singularity.

(2) linear functional dependencies among a small number of
active stress constraints. This type of singularity is suspected to
have occurred for some of the examples given in table III.

(3) linear functional dependencies among a small number of
active stress and displacement constraints. The identification of
this type of singularity by mere inspection may be difficult.

Singularity alleviation as discussed in references 8, 26, and
27 can reduce computation and improve reliability of optimizers
(fig. 14).

(table II and fig. 5). CPU time differed among optimizers. Even
for a small problem (P1a), normalized CPU time differed from
1.0 for SQP to 22.069 for RG. For a medium problem (P6),
normalized time differed between 1.0 for SQP to 3.899 for
NPSOL. For a large problem (P8a), normalized CPU time
varied from 1.695 for IMSL to 1.116 for SUMT and 1.000 for
SQP of IDESIGN. We observed that variation in CPU time was
rather mild for large problems.

Singularity in Structural Optimization

Singularity was identified for three situations (refs. 3 and
30):

TABLE IV.—PROBLEMS WITH ACTIVE CONSTRAINTS EXCEEDING
THE NUMBER OF DESIGN VARIABLES

[Singularity can occur in each of these problems.]

Problem
number

Description Number of
design

variables

Number of active
constraints
at optimum

P2 Tapered ten-bar truss 10  11

P5 Antenna tower   6   20

P7 Geodesic dome 12 170

P8a Intermediate complexity wing 57 119

P9 Ten-bar truss 10   11

P10 Ten-bar truss   5     9

P17 Cantilever membrane 16   19

P18 Cantilever membrane 16   35

P19 Sixty-bar trussed ring 25   38

P22 Sixty-bar trussed ring 25   30

P24 Stiffened ring 49   75

P27 Stiffened sixty-bar trussed ring 49   76

P30 Stiffened ring 24   28

P33 Stiffened ring 24   28
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Figure 14.—Convergence characteristics of a three-bar
   truss, showing the merit function (weight) versus the
   number of iterations (breaks in the graph indicate weight
   up to the order of 105 lb). (a) Solution when singularity is
   disregarded. (b) Solution when singularity is alleviated.

third of the examples. For large problems, the Cray-YMP CPU
time was comparable among the optimizers that succeeded.
Alleviation of singularity can improve the optimizer efficiency.

A single winner which can be called most reliable and
efficient could not be identified. Overall, three optimizers
(IMSL, SUMT, and SQP of IDESIGN) scored high marks. For
small problems, four optimizers (IMSL, SUMT, SQP of
IDESIGN, SLP, and NPSOL) satisfactorily solved more than
fifty percent of the problems. For medium problems, four
optimizers (IMSL, SQP of IDESIGN, SUMT, and NPSOL)
produced correct solutions for at least half of the problems. For
large problems three optimizers (IMSL, SUMT, and SQP of
IDESIGN) were found to be reliable and efficient.
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