
TABLE-TOP MODEL FOR BLACK HOLE

ELECTROMAGNETIC INSTABILITIES

William H. PRESS

Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138,

USA, wpress@cfa.harvard.edu

Abstract

Place two conducting rings, one of slightly smaller diameter than the other,

coaxially in a plane. Spin the inner ring (relativistically) rapidly. If it is some-

what resistive, while the outer ring is a good conductor, a nontrivially radiating,

exponentially growing, electromagnetic instability will set in at a finite rotation

velocity, despite the time-invariance of the background system. This table-top

configuration models a plausible electromagnetic instability of a rotating black

hole in the presence of an accretion disk made from the last remnants of a swal-

lowed neutron star. Such a situation would extract pure electromagnetic energy

from the hole, building up a stored energy on the order of the gravitational bind-

ing energy of the disk material before explosively disassembling. In the resulting

electromagnetic explosion, most lines of sight to infinity are uncontaminated by

baryons, and thus capable of initiating the ultra-relativistic fireball needed to

power gamma-ray bursts. However, there is an important reason that the talk on

which this paper is based was titled, “NOT a Gamma-Ray Burst Model.”

1. Introduction

It has long been known [9, 17] that rotating black holes superradiantly

scatter (i.e., amplify) certain modes of an incident electromagnetic wave, and

that the condition for such amplification is simply 0 < ω < Ωm, where ω is

the angular frequency of the wave, m its axial mode number, and Ω is the ro-

tation rate of the black-hole horizon as seen from infinity. Indeed, this bit of

phenomenology applies more generally to any situation in which a wave interacts

with a dissipative medium that is moving faster than the wave’s local phase veloc-

ity, as recognized by Pierce [12] in the context of traveling wave tube amplifiers,

and later by Zel’dovich [17] in the context of black holes, whose rotating event

horizon provides the effective dissipation [15].
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Superradiant scattering is an amplifier, not an instability. Like any ampli-

fier, it can be turned into an instability by feeding output back to input, a point

made explicit by Press and Teukolsky [14], who pointed out that a rotating black

hole surrounded by a solid, reflecting mirror would explode electromagnetically.

However, the required geometry and high reflectivity (> 99.9%) rendered this

suggestion astrophysically fanciful.

This paper reports an explicit example of a configuration of conductors

that is (i) open to infinity in almost all 4π steradians, (ii) has a true exponential

growing mode of the Zel’dovich-Pierce variety, and (iii) can be built on any scale,

e.g., on a table top out of aluminum foil and carbon paper. (Spinning it up to the

required relativistic velocity should not be tried at home.) We then argue that an

analogous instability may be present when the inner edge of a thin, conducting

accretion disk comes sufficiently close to a rapidly rotating black hole, and that

this type could plausibly initiate the ultra-relativistic fireballs that are believed to

power gamma-ray bursts. However, as we will see, this mechanism alone cannot

be responsible for the full power output necessary for a gamma-ray burst.

2. The Gamma-Ray Burst Central Engine

With the cosmological distance of gamma-ray bursts confirmed [8], the

ultrarelativistic fireball model [3, 10], an expanding electron-positron pair plasma

singularly devoid of baryon content, has emerged as virtually the only possible

mechanism for gamma ray bursts. (See [16, 2, 13] for further discussion and

references.) Indeed, the fireball model seems capable of explaining both the wide

structural variability of gamma-ray flux seen from burst to burst via internal

shocks [6], and also the diversity that appears present in the X-ray, optical, and

radio afterglows, via viewing angle and environmental effects [7].

By its posited nature, the origin of the fireball is not directly observable; it

is shielded by ∼ 1012 optical depths to electron-positron pair production. What

we can deduce [16] about the original fireball is only its total energy (∼ 1052

erg, >∼ 10−3M�c
2), compactness (<∼ 100 km), and – most remarkable by far –

low baryonic content (<∼ 10−5M�c
2), a requirement that follows directly from the

observational necessity that the expanding fireball contains sufficient total energy

per rest mass to accelerate to relativistic γ factors on the order γ ∼ 100, at least

along the lines of sight that we observe. However, as Piran [13] has emphasized,

it is also true that almost any mechanism for producing a fireball that satisfies

these constraints is a viable central engine.

Despite this seeming lack of observational constraint, there is a paucity

of believable models for the central fireball engine. While the energy and size
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requirements are clearly reminiscent of collision or collapse events among solar-

mass scale neutrons stars or black holes, there has been no credible mechanism

(other than the highly exotic, for example [11]) for separating radiation from

baryons so exquisitely cleanly. The disruption of a neutron star is, in plausible

models, quite a dirty event!

The mechanism proposed in this paper has three things going for it. First,

it requires (as we will show) only<∼ 10−2M� in the inner region of an accretion disk

to produce >∼ 10−3M�c
2 of purely electromagnetic energy. Second, the required

baryonic mass can all be restricted to the equatorial plane, allowing most of 4π

steradians to be arbitrarily “clean” of baryons. Third, it is capable of providing

bursts with both the millisecond timescale required of the fireball, and the ∼ 1

second envelope structure required by some observed events. We envision the

mechanism acting at a “late” time, on a black hole that has swallowed a neutron

star (possibly during its own formation), when all the nearby debris has been

swallowed – except for the last ∼ 10−2M� of degenerate neutron star material in

a thin accretion disk.

What causes this model to fail as – by itself – a model for gamma-ray bursts

is the quantum electrodynamic breakdown of the assumed hard vacuum: before

the necessary energy density of electromagnetic field is reached, copious electron-

positron pair production will always be initiated, “shorting out” the exponential

instability posited here. Below, we will discuss this effect and its consequences.

3. The Table-Top Model: Setup

We now outline a toy electromagnetic calculation that any reader should

readily be able to reproduce (perhaps with an old graduate electromagnetism

text in hand [5]): Consider two conducting rings, one of slightly smaller major

diameter than the other, coaxially in a plane. We write Maxwell’s equations as

utAµ = −4πJµ (1)

with the 3 + 1 split

Aµ ≡ (A0,A) ≡ (ϕ,A) (2)

Jµ ≡ (J0,J) ≡ (ρ,J) (3)

The gauge condition and continuity equations are

Aµ,µ = ϕ,t +∇ ·A = 0 (4)

Jµ,µ = ρ,t +∇ · J = 0 (5)
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Now, the general retarded-potential solution that couples these fields to

sources with an outgoing radiative boundary condition is

ϕ =
∫
ρ[t− R]retarded

R
d3V (6)

A =
∫

J[t−R]retarded
R

d3V (7)

Suppose a conducting ring of radius R1 has circumferential 3-current (units

of charge per time) and lineal charge density (units of charge per length) given

by

J φ̂ = J1 exp(−iωt) exp(imφ) (8)

ρ = ρ1 exp(−iωt) exp(imφ) (9)

Note that J φ̂ is a physical (orthonormal tetrad) component, not a covariant or

contravariant component.

The continuity equation (5) implies

− iωρ1 = −
(
im

R1

)
J1, i.e., ρ1 =

m

ωR1
J1 (10)

Also, for the retardation calculation in equations (6) and (7), note that

J φ̂(t− τ ) ∝ J1 exp[−iω(t− τ )] ∝ J1 exp(iωτ ) (11)

The constitutive relation (“Ohm’s Law”) J = σEφ must be applied in

the matter rest frame of each ring element, so we now need to consider Lorentz

transformations into the rotating ring frame. A ring of radius R1 rotating with

angular frequency Ω1 has circumferential velocity and γ-factor

v1 ≡ Ω1R1 γ1 ≡ (1− v2
1)−1/2 (12)

Using primes to denote the rotating frame, we have

J ′0 = γJ0 − γvJ φ̂ (13)

J ′φ̂ = γJ φ̂ − γvJ0 (14)

(One can see that the signs are correct by noting that a rest charge J0 turns into

a negative current for positive v.) Now using equations (5) and (12), we get

J ′φ̂ = γ1

(
1− Ω1m

ω

)
J φ̂ (15)

By contrast E ′φ̂ has the trivial Lorentz transformation

E ′φ̂ = Eφ̂ (16)
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conducting ring

resistive ring

Fig. 1. Table-top model calculated in this paper. The inner resistive ring is spun

at relativistic speed. The outer conductor may, but need not, be spinning.

Shading shows schematically the location of positive and negative charge in

an m = 2 growing mode. Rotational energy extracted from the resistive ring

more than compensates radiative losses to infinity, yielding exponential growth

of the stored field energy. Retardation effects are significant in the calculation.

because longitudinal E and B fields are invariant under boost. (One can also

derive this the long way by using the Lorentz transformations of Aµ and taking

the various partial derivatives.) Thus, the constitutive relation applied to each

ring in its rest frame is

J ′φ̂1 = σ1E
′φ̂ or, equivalently, γ1

(
1− Ω1m

ω

)
J1 = σ1E

φ̂
1 (17)

One sees the superradiance condition already emerging!
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4. Field Elsewhere in the Plane Due to a Ring Current

The plan is to evaluate A0 and Aφ̂ at a point r = R2, φ = z = 0. By

separation of variables we will then know it at all values of φ. We can thus

evaluate its time and φ derivatives and get Eφ̂
2 .

For a source point at (R1, φ), the law of cosines with (R2, 0) gives

τ 2 = R2
2 +R2

1 − 2R1R2 cosφ (18)

So,

ϕ ≡ A0 =
∫
ρretd`

τ
=
∫ 2π

0

ρ1 exp(iωτ ) exp(imφ)R1dφ

τ

=
mJ1

ωR1

∫ 2π

0
R1dφ

exp(imφ) exp[iω(R2
2 +R2

1 − 2R1R2 cos φ)1/2]

(R2
2 +R2

1 − 2R1R2 cosφ)1/2

=
mJ1

ωR1

∫ 2π

0
dφ

exp(imφ) exp[iωR1(R
2 + 1− 2R cos φ)1/2]

(R2 + 1− 2R cos φ)1/2

≡ mJ1

ωR1
Ht(ωR1,

R2

R1
) (19)

(where R ≡ R2/R1). We define an integral Ht by

Ht($, r;m) ≡
∫ 2π

0
dφ

exp(imφ) exp[i$(r2 − 2r cosφ+ 1)1/2]

(r2 − 2r cosφ+ 1)1/2

= 2
∫ π

0
dφ

cos(mφ)ei$(r2−2r cosφ+1)1/2

(r2 − 2r cos φ+ 1)1/2
(20)

where the second equality uses the fact that cos φ is even while sin(mφ) is odd in

φ.

Note that Ht($, r;m) has a logarithmic singularity as r → 1, due merely

to the infinite potential of a loop of zero minor radius. We can regularize this

by picking a small constant ε0, approximating the minor radius of the ring, and

redefining,

Ht($, r;m, ε0) ≡ 2
∫ π

0
dφ

cos(mφ)ei$(r2−2r cosφ+1)1/2

(r2 − 2r cos φ+ 1 + ε20)
1/2

(21)

Correspondingly for Aφ̂ we have

Aφ̂ =
∫ J φ̂ret,projd`

τ
=
∫ 2π

0

J1 exp(iωτ ) exp(imφ)R1 cos φdφ

τ

= J1

∫ 2π

0
R1 cosφdφ

exp(imφ) exp[iω(R2
2 +R2

1 − 2R1R2 cos φ)1/2]

(R2
2 +R2

1 − 2R1R2 cos φ)1/2
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= J1

∫ 2π

0
cosφdφ

exp(imφ) exp[iωR1(R
2 + 1− 2R cosφ)1/2]

(R2 + 1− 2R cos φ)1/2

≡ J1 Hφ(ωR1,
R2

R1
) (22)

with (regularizing the infinite self-inductance of a loop of zero minor radius),

Hφ($, r;m, ε0) ≡ 2
∫ π

0
dφ

cosφ cos(mφ)ei$(r2−2r cosφ+1)1/2

(r2 − 2r cosφ+ 1 + ε20)
1/2

(23)

Incidentally, we have the computationally useful relations

Hφ($, r;m, ε0) =
1

2
[Ht($, r;m + 1, ε0) +Ht($, r;m− 1, ε0)] (24)

and

Ht($, r;−m, ε0) = Ht($, r;m, ε0) (25)

Also note that everything above allows ω and thus $ to be complex, so that this

formalism can be used for exponentially growing or dying eigenmodes.

In terms of the integrals defined by equations (21) and (23), which are easy

to compute numerically and may thus be thought of as “tabulated” functions, the

circumferential electric field at R2 is

Eφ̂ ≡ E2 exp(−iωt) exp(imφ) (26)

with

E2 = −Aφ̂,t−∇φ̂A
0

= iωJ1

[
Hφ(ωR1,

R2

R1
)− m2

ω2R1R2
Ht(ωR1,

R2

R1
)

]
≡ iωJ1L21(ω,m) (27)

Here we have introduced the abbreviation L21(ω,m) for what amounts to the

“dynamic and retarded mutual inductance” between the two ring positions R1

and R2. (Because of retardation, it is not symmetrical on the indices 1 and 2.)

5. Finessing the Complex Eigenproblem

Consider now the mutual interaction of the two rings shown in Figure

1. To simplify our problem in a way that will later model the astrophysically

interesting situation, let us suppose that the outer ring 2 is a perfect conductor

(σ →∞), while the inner ring 1 (which models the electromagnetic properties of
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a black hole’s event horizon) has finite conductivity. Then, in terms of the mutual

inductances defined by equation (27), we have

γ1

(
1− Ω1m

ω

)
J1 = σ1E1 = iωσ(L11J1 + L12J2)

0 = E2 = (L21J1 + L22J2) (28)

This is a homogeneous set of equations for J1 and J2, admitting a solution only

with the vanishing of the determinant∣∣∣∣∣∣ L11 − γ1

iωσ

(
1− Ωm

ω

)
L12

L21 L22

∣∣∣∣∣∣ = 0 (29)

For fixed σ,m,Ω, equation (29) is a transcendental equation in ω whose solutions

are the complex eigenfrequencies of the two-ring system. (Note that the L’s are

implicitly quite complicated transcendental functions of ω.)

Now a nice trick becomes possible: While it would be a challenging nu-

merical problem to solve equation (29) for the eigenfrequencies ω for a fixed σ,

it is quite trivial to solve for σ at any fixed complex ω, because σ occurs in only

one term, as shown. Of course most of the resulting σ’s are complex, or negative,

and therefore unphysical. Discarding these, one is left, in the complex ω-plane,

with a set of one-dimensional segments whose ω’s yield real and positive values

of σ. (Each segment could in principle be labeled along its length by the value of

σ, generally varying from zero at one end to infinity at the other.)

Figure 2 shows a specific example, calculated with the parameters m = 2,

v1 = 0.99, R2/R1 = 1.2, and ε2 = .003. One sees that almost all the physical

solutions are in the lower-half (stable) complex plane. However, in the region

close to ω = Ω1m (shown shaded and also shown, magnified, in Figure 3), there

are physical solutions extending into the upper-half (unstable) complex plane.

Indeed, with these parameters, the value of σ corresponding to the most unstable

solution, converted to physical units, is about 6 Ohms.

We have found similar unstable modes with m = 2, 3, 4 when the ratio of

major diameters is in the range of ∼ 1.1 to ∼ 1.4 (with ratio of minor to major

diameters ∼ 0.03 to ∼ 0.1). The unstable modes are always in the vicinity of

ω ≈ mΩ. They occur when the tangential velocity of the inner ring is sufficiently

large (say, >∼ 0.98c), and when the conductance is not too large. These modes are

the analytical continuation of the uninteresting (real ω) solution with ω = mΩ

and σ = 0, representing a spinning charge distribution on an insulator. For the

parameters already mentioned, this mode gets perturbed into the upper, unsta-

ble, complex half-plane. The maximum growth rate is never large, with a ratio

Im ω/Re ω <∼ 0.02.



9

Imω

Reω

ω = Ω1m

Fig. 2. Complex ω plane for a sample two-ring system, showing the locus of

allowed eigenfrequencies for all (real) positive values of the inner ring conduc-

tivity σ. All of the modes outside of the shaded region are stable. A magnified

view of the shaded region is in Figure 3. See text for details.

Incidentally, the trick of solving for σ instead of ω generalizes to the case

of one ring with finite conductance, and any number of perfectly conducting

rings. In that case the determinant is larger than 2× 2, but can be evaluated by

partitioning so that an explicit formula for σ can still be written.

6. From Table Top Model to Black Holes

A large literature (see, e.g., [15]) details the quantitative analogy between

the rotating event horizon of a black hole and a relativistically spinning, partially

conducting surface. Figure 4 shows schematically the charge, and image charge,

distribution for a (conjectural)m = 2 growing mode in the black hole case, exactly

analogous to the calculated 2-ring case shown in Figure 1.

The actual calculation of the modes of a black hole in the presence of

moving conductors in plausible geometries is a technically challenging project in

computational relativity; it is hoped that this paper will stimulate such calcula-

tions. For the remainder of this paper, let us assume that an instability analogous

to the table-top model exists, and discuss possibly relevant astrophysical scenar-

ios.
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ω = Ω1m

Re (ω − Ω1m)

Im (ω − Ω1m)

Fig. 3. Magnified view of the shaded region in Figure 2. For some values of

conductivity σ, there are modes with frequencies in the upper-half complex

plane, corresponding to exponentially growing electromagnetic modes. See

text for details.

The table-top calculation suggests that a black hole may need to be spun

up by accretion to near-maximal rotation before an instability appears. It is

important that this be done in an environment that does not permit the electro-

magnetic instability to grow; otherwise the hole would simply “sputter” at the

edge of instability, converting incrementally added spin to outgoing low-frequency

electromagnetic pulses. This might be astrophysically interesting in its own right,

but it is not what we have in mind here. We therefore imagine a “dirty” accre-

tion phase during which the plasma density surrounding the hole is sufficient to

blanket or “short-out” any growing electromagnetic mode. For cases of interest,

only after the hole is spun-up well into the unstable zone does its environment

clear up.

What might the situation be, say when only ∼ 10−2M� of original neutron

star material remain in the inner portion of the accretion disk, and when the en-

vironment clears? Two possibilities are interesting: (1) We might be left with a

conducting inner accretion disk already inside the (supposed) radius for an elec-

tromagnetic instability, in which case the instability begins to grow immediately.

(2) We might be left with a degenerate, electrically neutral, disk of neutron ma-

terial (the ratio of whose thickness to radius can be calculated as � 1), in which
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event horizon

conducting ring

Fig. 4. Conjectural analog of the table-top model to the case of a rotating black

hole. The spinning event horizon plays the role of the inner ring. Shading shows

the charge density on the ring, and the image charge density on the horizon.

Radiative losses to infinity are partially suppressed by non-flat geometry effects,

particularly so for a rapidly rotating black hole.

case the system remains quiescent until some other event (late-time accretion?

free decay of neutrons?) causes the disk to become conducting, in turn triggering

the instability.

For a maximally rotating Kerr black hole, we have Ω ≈ 105(M�/M) Hz, so

the e-folding time of the instability should be ∼ 1(M/M�) ms. Energetically, all

the action is of course in the last e-fold. The important astrophysical question is:

with what total stored energy does this last e-fold occur? That is, what processes

limit the exponential growth?
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7. Quantum Electrodynamic Vacuum Breakdown

If no other limiting process first intervened, the stored energy would grow

to become comparable to the gravitational binding energy of the ring of material

that is confining the growing electromagnetic mode. At that point, the system

would disassemble, the ring blowing off in the equatorial plane while electromag-

netic energy is released in all other directions. For a ring at ∼ 10 Schwarzchild

radii, this total energy release is ∼ 10−3M�c
2, and the implied peak luminosity is

∼ 1054 erg/s, both very interesting numbers in the context of gamma-ray bursts.

However, for black holes in the solar mass range, the quantum electro-

dynamic breakdown of the vacuum (see, e.g., [4]) occurs long before the system

disassembles. The critical electric field strength for vacuum breakdown is

Ecrit ∼
mec

2

e

(
h̄

mec

)−1

= 5× 1013 statvolt (cgs) (30)

(Indeed, the critical value may be a factor of 10 or 100 smaller due to tunneling

and cascading, but we’ll use the above more favorable value here.) Thus, in a

sphere of radius R, the maximum stored energy is

E =
E2
crit

8π

4πR3

3
(31)

The most favorable assumption about luminosity is that the stored energy

is cleared out, and then replaced by a newly growing instability, at the light travel

time c/R. This gives a luminosity

L = E c
R

= 1× 1049
(

R

10km

)2

erg/s (32)

which is about three orders of magnitude too small to be interesting as a gamma-

ray burst. Furthermore, the above most favorable assumption about luminosity

is almost surely wrong by a factor of 100 or more due to the fact the black hole

instability growth times, if they are anything like our table top model, are likely

∼ 100 times the light travel time.

What happens after vacuum breakdown occurs? Certainly the vacuum

mode analysis of this paper breaks down. It is by no means obvious, however, that

extraction of rotational energy from the black hole ceases. Because breakdown

occurs only where the electric field dominates the magnetic field (in the sense of

E2 − B2 > 0), the region near the hole is momentarily divided into regions of

high current density, and other regions with high magnetic field strength. Instead

of itself being a model for gamma ray bursts, the phenomenology discussed here
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might then be the initial “sparkplug” that initiates energy extraction that more

resembles the stationary force-free regime discussed by Blandford and Znajek [1].

About all we can be certain is that there is a need, after a long historical

hiatus, for further work on the complicated details of black hole electrodynamics.
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