
JPF–SE: A Symbolic Execution Extension to
Java PathFinder

Saswat Anand1, Corina S. Păsăreanu2, and Willem Visser2

1 College of Computing, Georgia Institute of Technology saswat@cc.gatech.edu
2 QSS and RIACS, NASA Ames Research Center, Moffett Field, CA 94035

{pcorina,wvisser}@email.arc.nasa.gov

Abstract. We present JPF–SE, an extension to the Java PathFinder
Model Checking framework (JPF) that enables the symbolic execution
of Java programs. JPF–SE uses JPF to generate and explore symbolic
execution paths and it uses off-the-shelf decision procedures to manipu-
late numeric constraints.

1 Introduction

Explicit state model checking tools, such as Java PathFinder (JPF) [5, 12], are
becoming effective in detecting subtle errors in complex concurrent software, but
they typically can only deal with closed systems. We present here JPF–SE, a
symbolic execution extension to Java PathFinder, that allows model checking of
concurrent Java programs that take inputs from unbounded domains.

JPF–SE enables symbolic execution of Java programs during explicit state
model checking, which has the following unique characteristics: (a) checks the
behavior of code using symbolic values that represent data for potentially in-
finite input domains, instead of enumerating and checking for small concrete
data domains (b) takes advantage of the built-in capabilities of JPF to perform
efficient search through the program state space: systematic analysis of different
thread interleavings, heuristic search, state abstraction, symmetry and partial
order reductions (c) enables modular analysis: checking programs on un-specified
inputs enables the analysis of a compilation unit in isolation (d) automates test
input generation for Java library classes [13] (e) uses annotations in the form
of method specifications and loop invariants to prove light-weight properties of
Java programs [8] and (f) uses a common interface to several well-known de-
cision procedures to manipulate symbolic numeric constraints; JPF–SE can be
extended easily to handle other decision procedures

2 JPF–SE Overview

Java PathFinder JPF [5, 12] is an explicit-state model checker for Java pro-
grams that is built on top of a customized Java Virtual Machine. By default,
JPF stores all the explored states, and it backtracks when it visits a previously



2 Saswat Anand, Corina S. Păsăreanu, and Willem Visser

Instrumented
ProgramProgram

Source

Omega YICES STPCVC−Lite

Generic Decision Procedure Interface

Code
Instrumentation

Specification
Correctness

Continue/Backtrack

Test Suite

JPF

Counterexample/

Fig. 1. Tool Architecture

explored state. The user can also customize the search (using heuristics) and it
can specify what part of the state to be stored and used for matching.
Symbolic Execution Symbolic execution [7] is a technique that enables analy-
sis of programs that take un-initialized inputs. The main idea is to use symbolic
values, instead of actual (concrete) data, as input values and to represent the
values of program variables as symbolic expressions. As a result, the outputs
computed by a program are expressed as a function of the symbolic inputs. The
state of a symbolically executed program includes the (symbolic) values of pro-
gram variables, a path condition and a program counter. The path condition
accumulates constraints which the inputs must satisfy in order for an execution
to follow the corresponding path.
JPF–SE Architecture In previous work, we presented a framework that uses
JPF to perform symbolic execution for Java programs [6, 8]. It has now been
added to the JPF open-source repository [5] and is illustrated in Figure 1. Pro-
grams are instrumented to enable JPF to perform symbolic execution; concrete
types are replaced with corresponding symbolic types and concrete operations
are replaced with calls to methods that implement corresponding operations on
symbolic expressions. Whenever a path condition is updated, it is checked for
satisfiability using an appropriate decision procedure. If the path condition is un-
satisfiable, the model checker backtracks. The approach can be used for finding
counterexamples to safety properties and for test input generation (that satisfy
a testing criterion, such as branch coverage).
Symbolic State Space Exploration JPF–SE exploits JPF’s ability to ex-
plore arbitrary program control flow (loops, recursion, method invocation), but
performing symbolic execution on a program with loops (or recursion) may re-
sult in an infinite number of symbolic states. JPF–SE uses two complementary
techniques to address this problem: (a) for systematic state space exploration
JPF–SE puts a bound on the size of the program inputs and/or the search depth,
and (b) JPF–SE provides automated tool support for abstracting and compar-
ing symbolic states, to determine if a symbolic state has been visited before, in
which case the model checker will backtrack (see [1] for details).



JPF–SE: A Symbolic Execution Extension to Java PathFinder 3

Table 1. Comparative Results. “N/A” indicates not supported.

Example Interface Omega CVCL YICES STP

File 00:15 00:26 N/A N/A
TCAS Pipe 00:04 00:12 N/A N/A

Native 00:03 00:13 00:06 00:31
Native table 00:01 00:11 00:05 N/A
Native inc N/A 00:03 00:01 N/A

File 02:02 06:02 N/A N/A
TreeMap Pipe 07:42 13:04 N/A N/A

Native 01:39 06:11 03:06 >60:00
Native table 00:40 05:10 02:36 N/A
Native inc N/A 02:58 00:33 N/A

Decision Procedures JPF–SE uses the following decision procedures; they
vary in the types of constraints they can handle and their efficiency. Omega
library [9] – supports linear integer constraints. CVC-Lite [3] – supports inte-
ger, rational, bit vectors, and linear constraints. YICES3 [4] – supports types
and operations similar to those of CVC-Lite. STP4 [2] – supports operations
over bit vectors. In the JPF–SE interface, all integers are treated as bit vectors
of size 32. Recently, we have also added a constraint solver, RealPaver [10],
that supports linear and non-linear constraints over floating point numbers.
Generic Decision Procedure Interfaces JPF–SE provides three interfaces
with decision procedures. They vary in their degree of simplicity and efficiency.
In the file based interface, the decision procedure is started for each query and
a query is sent (and result received) via a file. This interface is the simplest to
use and extend, but in general it is slow. With the pipe interface, the decision
procedure is run concurrently with JPF and the communication is accomplished
over a pipe. Although this does not suffer the process startup cost of the file
approach it is harder to use and extend and it is operating system and language
specific. With the native interface, JPF communicates directly with the decision
procedure through a Java Native Interface (JNI). This mode is most difficult to
implement among the three, but is usually much faster.

There are two optimizations available for the native interface: a table-based
approach for efficient storing of the path condition that allows sharing of common
sub-expressions and if the decision procedure supports incremental constraint
analysis, the path condition is not sent all at once but rather just the new
constraint that should be added/removed before checking satisfiability.
Experience with Different Decision Procedures The interfaces for commu-
nications with the decision procedures is defined such that it is straight-forward
to connect a new tool. As a consequence, JPF–SE is well suited for performance
comparisons across a wide array of examples. We show in Table 1 the runtime
results (in mins:secs) for generating all reachable states while running JPF–SE

3 SMT competition 2006 winner in all categories but one.
4 SMT competition 2006 winner for QF UFBV32 (Quantifier Free, Uninterpreted

Functions, Bit Vector).



4 Saswat Anand, Corina S. Păsăreanu, and Willem Visser

with varying decision procedure configurations over two examples: TCAS from
the Siemens Suite and on the TreeMap example from [13]. TCAS is small (only
2694 queries) but contains many constraints that are both satisfiable and unsat-
isfiable; TreeMap produces many queries (83592), but they are all satisfiable.

The preliminary results indicate that the native interfaces are the fastest and
both the optimizations (where applicable) improve the performance further. For
this reason YICES and STP are only used through the native interface.

3 Conclusion and Future Work

We have presented JPF–SE, an extension to JPF that enables symbolic exe-
cution of Java programs to be performed during model checking. JPF–SE uses
JPF to generate and explore symbolic states and it uses different decision proce-
dures to manipulate numeric constraints. JPF–SE has been applied to checking
concurrent Java programs and to generating test inputs for Java classes. In the
future we plan to extend JPF–SE’s code instrumentation package, which cur-
rently handles only numeric values, to handle symbolic complex data structures.
We also plan to add compositional reasoning for increased scalability and to
interface with tools using the SMT-LIB standard [11] (through file and pipe).

Acknowledgements
We thank Sarfraz Khurshid and Radek Pelánek for contributing to this work.

References

1. S. Anand, C. Pasareanu, and W. Visser. Symbolic execution with abstract sub-
sumption checking. In Proc. SPIN, 2006.

2. C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler. Exe: Auto-
matically generating inputs of death. In Computer and Comm. Security, 2006.

3. CVCL. http://www.cs.nyu.edu/acsys/cvcl/.
4. B. Dutertre and L. de Moura. A Fast Linear-Arithmetic Solver for DPLL(T). In

Proceedings of CAV, volume 4144 of LNCS, pages 81–94. Springer-Verlag, 2006.
5. Java PathFinder. http://javapathfinder.sourceforge.net.
6. S. Khurshid, C. Pasareanu, and W. Visser. Generalized symbolic execution for

model checking and testing. In Proc. TACAS’03, Warsaw, Poland, April 2003.
7. J. C. King. Symbolic execution and program testing. Commun. ACM, 19(7), 1976.
8. C. Pasareanu and W. Visser. Verification of java programs using symbolic execution

and invariant generation. In Proc of SPIN’04, volume 2989 of LNCS, 2004.
9. W. Pugh. The Omega test: A fast and practical integer programming algorithm

for dependence analysis. Commun. ACM, 31(8), Aug. 1992.
10. realPaver. http://www.sciences.univ-nantes.fr/info/perso/permanents/granvil/realpaver/.
11. SMT-LIB. http://combination.cs.uiowa.edu/smtlib/.
12. W. Visser, K. Havelund, G. Brat, S. J. Park, and F. Lerda. Model checking pro-

grams. Automated Software Engineering Journal, 10(2), April 2003.
13. W. Visser, C. Pasareanu, and R. Pelanek. Test input generation for java containers

using state matching. In Proc. ISSTA, 2006.


