
PAPI Programmer’s Reference Version 3.5.0

This document is a compilation of the reference material needed by a programmer to effectively use PAPI.
It is identical to the material found in the PAPI man pages, but organized in a way that may be more
portable and accessible. The information here is extensively hyperlinked, which makes it useful in
electronic formats, but less useful in hardcopy format.
For other PAPI documentation, see also, the PAPI User’s Guide.

- 1 -

PAPI Programmer’s Reference

PAPI Programmer’s Reference Version 3.5.0

NAME

NAME

PAPI - Performance Application Programming Interface

SYNOPSIS

The PAPI Performance Application Programming Interface provides machine and operating system
independent access to hardware performance counters found on most modern processors. Any of over 100
preset events can be counted through either a simple high level programming interface or a more complete
low level interface from either C or Fortran. A list of the function calls in these interfaces is given below,
with references to other pages for more complete details. For general information on the Fortran interface
see: PAPIF

PAPI Presets

An extensive list of predefined events is implemented on all systems where they can be supported. For a
list of these events, see: PAPI_presets

PAPI Native Events

PAPI also supports interface functions for discovering the native events on a given platform. For more
information on native events, see: PAPI_native

High Level Functions

A simple interface for instrumenting end-user applications. Fully supported on both C and Fortran. See
individual functions for details on usage.

PAPI_num_counters - get the number of hardware counters available on
the system
PAPI_flips - simplified call to get Mflips/s (floating point
instruction rate), real and processor time
PAPI_flops - simplified call to get Mflops/s (floating point operation
rate), real and processor time
PAPI_ipc - gets instructions per cycle, real and processor time
PAPI_accum_counters - add current counts to array and reset counters
PAPI_read_counters - copy current counts to array and reset counters
PAPI_start_counters - start counting hardware events
PAPI_stop_counters - stop counters and return current counts

Note that the high-level interface is self-initializing. You can mix high and low level calls, but you must
call either PAPI_library_init or a high level routine before calling a low level routine.

Low Level Functions

Advanced interface for all applications and performance tools. Some functions may be implemented only
for C or Fortran. See individual functions for details on usage and support.

PAPI_accum - accumulate and reset hardware events from an event set

- 2 -

PAPI Programmer’s Reference Version 3.5.0
PAPI_add_event - add single PAPI preset or native hardware event to an
event set
PAPI_add_events - add array of PAPI preset or native hardware events
to an event set
PAPI_attach - attach specified event set to a specific process or
thread id
PAPI_cleanup_eventset - remove all PAPI events from an event set
PAPI_create_eventset - create a new empty PAPI event set
PAPI_destroy_eventset - deallocates memory associated with an empty
PAPI event set
PAPI_detach - detach specified event set from a previously specified
process or thread id
PAPI_enum_event - return the event code for the next available preset
or natvie event
PAPI_event_code_to_name - translate an integer PAPI event code into an
ASCII PAPI preset or native name
PAPI_event_name_to_code - translate an ASCII PAPI preset or native
name into an integer PAPI event code
PAPI_get_dmem_info - get dynamic memory usage information
PAPI_get_event_info - get the name and descriptions for a given preset
or native event code
PAPI_get_executable_info - get the executable’s address space
information
PAPIF_get_exe_info - Fortran version of PAPI_get_executable_info with
different calling semantics
PAPI_get_hardware_info - get information about the system hardware
PAPI_get_multiplex - get the multiplexing status of specified event set
PAPI_get_opt - query the option settings of the PAPI library or a
specific event set
PAPIF_get_clockrate - get the processor clockrate in MHz. Fortran only.
PAPIF_get_domain - get the domain of the specified eventset. Fortran
only.
PAPIF_get_granularity - get the granularity of the specified eventset.
Fortran only.
PAPIF_get_preload - get the ’LD_PRELOAD’ environment equivalent.
Fortran only.
PAPI_get_real_cyc - return the total number of cycles since some
arbitrary starting point
PAPI_get_real_usec - return the total number of microseconds since
some arbitrary starting point
PAPI_get_shared_lib_info - get information about the shared libraries
used by the process
PAPI_get_substrate_info - get information about the substrate features
PAPI_get_thr_specific - return a pointer to a thread specific stored
data structure
PAPI_get_overflow_event_index - decomposes an overflow_vector into an
event index array
PAPI_get_virt_cyc - return the process cycles since some arbitrary
starting point
PAPI_get_virt_usec - return the process microseconds since some
arbitrary starting point
PAPI_is_initialized - return the initialized state of the PAPI library
PAPI_library_init - initialize the PAPI library
PAPI_list_events - list the events that are members of an event set
PAPI_list_threads - list the thread ids currently known to PAPI
PAPI_lock - lock one of two PAPI internal user mutex variables
PAPI_multiplex_init - initialize multiplex support in the PAPI library
PAPI_num_hwctrs - return the number of hardware counters
PAPI_num_events - return the number of events in an event set
PAPI_overflow - set up an event set to begin registering overflows

- 3 -

PAPI Programmer’s Reference Version 3.5.0
PAPI_perror - convert PAPI error codes to strings
PAPI_profil - generate PC histogram data where hardware counter
overflow occurs
PAPI_query_event - query if a PAPI event exists
PAPI_read - read hardware events from an event set with no reset
PAPI_register_thread - inform PAPI of the existence of a new thread
PAPI_remove_event - remove a hardware event from a PAPI event set
PAPI_remove_events - remove an array of hardware events from a PAPI
event set
PAPI_reset - reset the hardware event counts in an event set
PAPI_set_debug - set the current debug level for PAPI
PAPI_set_domain - set the default execution domain for new event sets
PAPIF_set_event_domain - set the execution domain for a specific event
set. Fortran only.
PAPI_set_granularity - set the default granularity for new event sets
PAPI_set_multiplex - convert a standard event set to a multiplexed
event set
PAPI_set_opt - change the option settings of the PAPI library or a
specific event set
PAPI_set_thr_specific - save a pointer as a thread specific stored
data structure
PAPI_shutdown - finish using PAPI and free all related resources
PAPI_sprofil - generate hardware counter profiles from multiple code
regions
PAPI_start - start counting hardware events in an event set
PAPI_state - return the counting state of an event set
PAPI_stop - stop counting hardware events in an event set and return
current events
PAPI_strerror - return a pointer to the error message corresponding to
a specified error code
PAPI_thread_id - get the thread identifier of the current thread
PAPI_thread_init - initialize thread support in the PAPI library
PAPI_unlock - unlock one of two PAPI internal user mutex variables
PAPI_unregister_thread - inform PAPI that a previously registered
thread is disappearing
PAPI_write - write counter values into counters

PAPI Utility Commands

A collection of simple utility commands is available in the \utils directory. See individual utilities for
details on usage.

papi_avail - provides availability and detail information for PAPI
preset events
papi_clockres - provides availability and detail information for PAPI
preset events
papi_cost - provides availability and detail information for PAPI
preset events
papi_command_line - executes PAPI preset or native events from the
command line
papi_decode - decodes PAPI preset events into a csv format suitable
for PAPI_encode_events
papi_event_chooser - given a list of named events, lists other events
that can be counted with them
papi_mem_info - provides information on the memory architecture of the
current processor
papi_native_avail - provides detailed information for PAPI native
events

- 4 -

PAPI Programmer’s Reference Version 3.5.0

SEE ALSO

The PAPI Web site: http://icl.cs.utk.edu/papi
PAPIF, PAPI_presets, PAPI_native

- 5 -

http://icl.cs.utk.edu/papi

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPIF - Performance Application Programming Interface (Fortran)

SYNOPSIS

#include fpapi.h
call PAPIF_function_name(arg1,arg2,...,check)

DESCRIPTION

Fortran Calling Interface The PAPI library comes with a specific Fortran library interface. The Fortran
interface covers the complete library with a few minor exceptions. Functions returning C pointers to
structures, such as PAPI_get_opt and PAPI_get_executable_info , are either not implemented in the
Fortran interface, or implemented with different calling semantics.
Semantics for specific functions in the Fortran interface are documented on the equivalent C man page.
For example, the semantics and functionality of PAPIF_accum are covered in the PAPI_accum man page.
For most architectures the following relation holds between the pseudo-types listed and Fortran variable
types.

Pseuodo-type Fortran type Description

C_INT INTEGER Default Integer type

C_FLOAT REAL Default Real type

C_LONG_LONG INTEGER*8 Extended size integer

C_STRING CHARACTER*(PAPI_MAX_STR_LEN) Fortran string

C_INT FUNCTION EXTERNAL INTEGER FUNCTION Fortran function returning integer result

C_INT(*)

C_FLOAT(*)

C_LONG_LONG(*)

Array of corresponding type C_TYPE(*) refers to an array of the
corresponding Fortan type. The length
of the array needed is context
dependent. It may be e.g.
PAPI_MAX_HWCTRS or
PAPIF_num_counters.

Array arguments must be of sufficent size to hold the input/output from/to the subroutine for predictable
behavior. The array length is indicated either by the accompanying argument or by internal PAPI
definitions. For details on this see the corresponding C routine.
Subroutines accepting C_STRING as an argument are on most implementations capable of reading the
character string length as provided by Fortran. In these implementations the string is truncated or space
padded as necessary. For other implementations the length of the character array is assumed to be of
sufficient size. No character string longer than PAPI_MAX_STR_LEN is returned by the PAPIF
interface.

RETURN VALUES

The return code of the corresponding C routine is returned in the argument check in the Fortran interface.

- 6 -

PAPI Programmer’s Reference Version 3.5.0

SEE ALSO

The PAPI Interface: PAPI

- 7 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_presets - PAPI predefined named events

SYNOPSIS

#include <papi.h>

DESCRIPTION

The PAPI library names a number of predefined, or preset events. This set is a collection of events
typically found in many CPUs that provide performance counters. A PAPI preset event name is mapped
onto one or more of the countable native events on each hardware platform. On any particular platform,
the preset can either be directly available as a single counter, derived using a combination of counters or
unavailable.
The PAPI preset events can be broken loosely into several categories, as shown in the table below:
PAPI Preset Event Definitions by Category:

Name Description

Conditional Branching

PAPI_BR_CN Conditional branch instructions

PAPI_BR_INS Branch instructions

PAPI_BR_MSP Conditional branch instructions mispredicted

PAPI_BR_NTK Conditional branch instructions not taken

PAPI_BR_PRC Conditional branch instructions correctly predicted

PAPI_BR_TKN Conditional branch instructions taken

PAPI_BR_UCN Unconditional branch instructions

PAPI_BRU_IDL Cycles branch units are idle

PAPI_BTAC_M Branch target address cache misses

Cache Requests:

PAPI_CA_CLN Requests for exclusive access to clean cache line

PAPI_CA_INV Requests for cache line invalidation

PAPI_CA_ITV Requests for cache line intervention

PAPI_CA_SHR Requests for exclusive access to shared cache line

PAPI_CA_SNP Requests for a snoop

Conditional Store:

PAPI_CSR_FAL Failed store conditional instructions

PAPI_CSR_SUC Successful store conditional instructions

- 8 -

PAPI Programmer’s Reference Version 3.5.0

PAPI_CSR_TOT Total store conditional instructions

Floating Point Operations:

PAPI_FAD_INS Floating point add instructions

PAPI_FDV_INS Floating point divide instructions

PAPI_FMA_INS FMA instructions completed

PAPI_FML_INS Floating point multiply instructions

PAPI_FNV_INS Floating point inverse instructions

PAPI_FP_INS Floating point instructions

PAPI_FP_OPS Floating point operations

PAPI_FP_STAL Cycles the FP unit

PAPI_FPU_IDL Cycles floating point units are idle

PAPI_FSQ_INS Floating point square root instructions

Instruction Counting:

PAPI_FUL_CCY Cycles with maximum instructions completed

PAPI_FUL_ICY Cycles with maximum instruction issue

PAPI_FXU_IDL Cycles integer units are idle

PAPI_HW_INT Hardware interrupts

PAPI_INT_INS Integer instructions

PAPI_TOT_CYC Total cycles

PAPI_TOT_IIS Instructions issued

PAPI_TOT_INS Instructions completed

PAPI_VEC_INS Vector/SIMD instructions

Cache Access:

PAPI_L1_DCA L1 data cache accesses

PAPI_L1_DCH L1 data cache hits

PAPI_L1_DCM L1 data cache misses

PAPI_L1_DCR L1 data cache reads

PAPI_L1_DCW L1 data cache writes

PAPI_L1_ICA L1 instruction cache accesses

PAPI_L1_ICH L1 instruction cache hits

PAPI_L1_ICM L1 instruction cache misses

PAPI_L1_ICR L1 instruction cache reads

PAPI_L1_ICW L1 instruction cache writes

- 9 -

PAPI Programmer’s Reference Version 3.5.0

PAPI_L1_LDM L1 load misses

PAPI_L1_STM L1 store misses

PAPI_L1_TCA L1 total cache accesses

PAPI_L1_TCH L1 total cache hits

PAPI_L1_TCM L1 total cache misses

PAPI_L1_TCR L1 total cache reads

PAPI_L1_TCW L1 total cache writes

PAPI_L2_DCA L2 data cache accesses

PAPI_L2_DCH L2 data cache hits

PAPI_L2_DCM L2 data cache misses

PAPI_L2_DCR L2 data cache reads

PAPI_L2_DCW L2 data cache writes

PAPI_L2_ICA L2 instruction cache accesses

PAPI_L2_ICH L2 instruction cache hits

PAPI_L2_ICM L2 instruction cache misses

PAPI_L2_ICR L2 instruction cache reads

PAPI_L2_ICW L2 instruction cache writes

PAPI_L2_LDM L2 load misses

PAPI_L2_STM L2 store misses

PAPI_L2_TCA L2 total cache accesses

PAPI_L2_TCH L2 total cache hits

PAPI_L2_TCM L2 total cache misses

PAPI_L2_TCR L2 total cache reads

PAPI_L2_TCW L2 total cache writes

PAPI_L3_DCA L3 data cache accesses

PAPI_L3_DCH L3 Data Cache Hits

PAPI_L3_DCM L3 data cache misses

PAPI_L3_DCR L3 data cache reads

PAPI_L3_DCW L3 data cache writes

PAPI_L3_ICA L3 instruction cache accesses

PAPI_L3_ICH L3 instruction cache hits

PAPI_L3_ICM L3 instruction cache misses

PAPI_L3_ICR L3 instruction cache reads

- 10 -

PAPI Programmer’s Reference Version 3.5.0

PAPI_L3_ICW L3 instruction cache writes

PAPI_L3_LDM L3 load misses

PAPI_L3_STM L3 store misses

PAPI_L3_TCA L3 total cache accesses

PAPI_L3_TCH L3 total cache hits

PAPI_L3_TCM L3 cache misses

PAPI_L3_TCR L3 total cache reads

PAPI_L3_TCW L3 total cache writes

Data Access:

PAPI_LD_INS Load instructions

PAPI_LST_INS Load/store instructions completed

PAPI_LSU_IDL Cycles load/store units are idle

PAPI_MEM_RCY Cycles Stalled Waiting for memory Reads

PAPI_MEM_SCY Cycles Stalled Waiting for memory accesses

PAPI_MEM_WCY Cycles Stalled Waiting for memory writes

PAPI_PRF_DM Data prefetch cache misses

PAPI_RES_STL Cycles stalled on any resource

PAPI_SR_INS Store instructions

PAPI_STL_CCY Cycles with no instructions completed

PAPI_STL_ICY Cycles with no instruction issue

PAPI_SYC_INS Synchronization instructions completed

TLB Operations:

PAPI_TLB_DM Data translation lookaside buffer misses

PAPI_TLB_IM Instruction translation lookaside buffer misses

PAPI_TLB_SD Translation lookaside buffer shootdowns

PAPI_TLB_TL Total translation lookaside buffer misses

AUTHORS

Nils Smeds <smeds@cs.utk.edu>

BUGS

The exact semantics of an event counter are platform dependent. PAPI preset names are mapped onto
available events in a way so as to count as similar types of events as possible on different platforms. Due

- 11 -

mailto:smeds@cs.utk.edu

PAPI Programmer’s Reference Version 3.5.0

to hardware implementation differences it is not necessarily possible to directly compare the counts of a
particular PAPI event obtained on different hardware platforms.

SEE ALSO

PAPI, PAPI_native, PAPI_enum_event, PAPI_get_event_info, PAPI_event_code_to_name,
PAPI_event_name_to_code

- 12 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_native - Accessing PAPI native events

SYNOPSIS

#include <papi.h>

DESCRIPTION

In addition to the predefined PAPI preset events, the PAPI library also exposes a majority of the events
native to each platform. Native events form the basic building blocks for PAPI presets. They can also be
used directly to access functions specific to a given platform.
Since native events are by definition specific to each platform, the names for these events are unique to
each platform. Native events for a given platform can be discovered by combining the PAPI_enum_event
and PAPI_event_code_to_name or PAPI_get_event_info functions.

BUGS

Not every native event on every platform can be represented through the native event interface.
Occasionally, exotic but valuable events are not represented. There is presently no method for representing
these events in a PAPI event set.

SEE ALSO

PAPI, PAPI_presets, PAPI_enum_event, PAPI_get_event_info, PAPI_event_code_to_name,
PAPI_event_name_to_code

- 13 -

PAPI Programmer’s Reference Version 3.5.0

NAME

papi_avail - provides availability and detail information for PAPI preset events.

SYNOPSIS

papi_avail [-adht] [-e event]

DESCRIPTION

papi_avail is a PAPI utility program that reports information about the current PAPI installation and
supported preset events. Using the -e option, it will also display information about specific native events.

OPTIONS

-a Display only the available PAPI preset events.

-d Display PAPI preset event information in a more detailed format.

-h Display help information about this utility.

-t Display the PAPI preset event information in a tabular format. This is the default.

-e <event>

 Display detailed event information for the named event. This event can be either a preset or a
native event.

BUGS

There are no known bugs in this utility.
If you find a bug, it should be reported to the PAPI Mailing List at <ptools-perfapi@ptools.org>.

SEE ALSO

PAPI, papi_clockres, papi_command_line, papi_cost, papi_decode, papi_event_chooser, papi_mem_info,
papi_native_avail

- 14 -

mailto:ptools-perfapi@ptools.org

PAPI Programmer’s Reference Version 3.5.0

NAME

papi_clockres - measures and reports clock latency and resolution for PAPI timers.

SYNOPSIS

papi_clockres

DESCRIPTION

papi_clockres is a PAPI utility program that measures and reports the latency and resolution of the four
PAPI timer functions: PAPI_get_real_cyc(), PAPI_get_virt_cyc(), PAPI_get_real_usec() and
PAPI_get_virt_usec().

OPTIONS

This utility has no command line options.

BUGS

There are no known bugs in this utility.
If you find a bug, it should be reported to the PAPI Mailing List at <ptools-perfapi@ptools.org>.

SEE ALSO

PAPI, papi_avail, papi_command_line, papi_cost, papi_decode, papi_event_chooser, papi_mem_info,
papi_native_avail

- 15 -

mailto:ptools-perfapi@ptools.org

PAPI Programmer’s Reference Version 3.5.0

NAME

papi_cost - computes execution time costs for basic PAPI operations.

SYNOPSIS

papi_cost [-dhs] [-b bins] [-t threshold]

DESCRIPTION

papi_cost is a PAPI utility program that computes the min / max / mean / std. deviation of execution times
for PAPI start/stop pairs and for PAPI reads. This information provides the basic operating cost to a user’s
program for collecting hardware counter data. Command line options control display capabilities.

OPTIONS

-b <bins>

 Define the number of bins into which the results are partitioned for display. The default is
100.

-d Display a graphical distribution of costs in a vertical histogram.

-h Display help information about this utility.

-s Show the number of iterations in each of the first 10 standard deviations above the mean.

-t <threshold>

 Set the threshold for the number of iterations to measure costs. The default is 100,000.

BUGS

There are no known bugs in this utility.
If you find a bug, it should be reported to the PAPI Mailing List at <ptools-perfapi@ptools.org>.

SEE ALSO

PAPI, papi_avail, papi_clockres, papi_command_line, papi_decode, papi_event_chooser, papi_mem_info,
papi_native_avail

- 16 -

mailto:ptools-perfapi@ptools.org

PAPI Programmer’s Reference Version 3.5.0

NAME

papi_command_line - executes PAPI preset or native events from the command line.

SYNOPSIS

papi_command_line <event> <event> ...

DESCRIPTION

papi_command_line is a PAPI utility program that adds named events from the command line to a PAPI
EventSet and does some work with that EventSet. This serves as a handy way to see if events can be
counted together, and if they give reasonable results for known work.

OPTIONS

This utility has no command line options.

BUGS

There are no known bugs in this utility.
If you find a bug, it should be reported to the PAPI Mailing List at <ptools-perfapi@ptools.org>.

SEE ALSO

PAPI, papi_avail, papi_clockres, papi_cost, papi_decode, papi_event_chooser, papi_mem_info,
papi_native_avail

- 17 -

mailto:ptools-perfapi@ptools.org

PAPI Programmer’s Reference Version 3.5.0

NAME

papi_decode - provides availability and detail information for PAPI preset events.

SYNOPSIS

papi_decode [-ah]

DESCRIPTION

papi_decode is a PAPI utility program that converts the PAPI presets for the existing library into a
comma separated value format that can then be viewed or modified in spreadsheet applications or text
editors, and can be supplied to PAPI_encode_events as a way of adding or modifying event definitions for
specialized applications. The format for the csv output consists of a line of field names, followed by a
blank line, followed by one line of comma separated values for each event contained in the preset table. A
portion of this output (for Pentium 4) is shown below:

name,derived,postfix,short_descr,long_descr,note,[native,...]

PAPI_L1_ICM,NOT_DERIVED,,"L1I cache misses","Level 1 instruction cache
misses",,BPU_fetch_request_TCMISS
PAPI_L2_TCM,NOT_DERIVED,,"L2 cache misses","Level 2 cache
misses",,BSQ_cache_reference_RD_2ndL_MISS_WR_2ndL_MISS
PAPI_TLB_DM,NOT_DERIVED,,"Data TLB misses","Data translation lookaside buffer
misses",,page_walk_type_DTMISS

OPTIONS

-a Convert only the available PAPI preset events.

-h Display help information about this utility.

BUGS

There are no known bugs in this utility.
If you find a bug, it should be reported to the PAPI Mailing List at <ptools-perfapi@ptools.org>.

SEE ALSO

PAPI, papi_avail, papi_clockres, papi_command_line, papi_cost, papi_event_chooser, papi_mem_info,
papi_native_avail

- 18 -

mailto:ptools-perfapi@ptools.org

PAPI Programmer’s Reference Version 3.5.0

NAME

papi_event_chooser - given a list of named events, lists other events that can be counted with them.

SYNOPSIS

papi_event_chooser NATIVE | PRESET <event> <event> ...

DESCRIPTION

papi_event_chooser is a PAPI utility program that reports information about the current PAPI installation
and supported preset events.

OPTIONS

This utility has no command line options.

BUGS

There are no known bugs in this utility.
If you find a bug, it should be reported to the PAPI Mailing List at <ptools-perfapi@ptools.org>.

SEE ALSO

PAPI, papi_avail, papi_clockres, papi_command_line, papi_cost, papi_decode, papi_mem_info,
papi_native_avail

- 19 -

mailto:ptools-perfapi@ptools.org

PAPI Programmer’s Reference Version 3.5.0

NAME

papi_mem_info - provides information on the memory architecture of the current processor.

SYNOPSIS

papi_mem_info

DESCRIPTION

papi_mem_info is a PAPI utility program that reports information about the cache memory architecture of
the current processor, including number, types, sizes and associativities of instruction and data caches and
Translation Lookaside Buffers.

OPTIONS

This utility has no command line options.

BUGS

There are no known bugs in this utility.
If you find a bug, it should be reported to the PAPI Mailing List at <ptools-perfapi@ptools.org>.

SEE ALSO

PAPI, papi_avail, papi_clockres, papi_command_line, papi_cost, papi_decode, papi_event_chooser,
papi_native_avail

- 20 -

mailto:ptools-perfapi@ptools.org

PAPI Programmer’s Reference Version 3.5.0

NAME

papi_native_avail - provides detailed information for PAPI native events.

SYNOPSIS

papi_native_avail

DESCRIPTION

papi_native_avail is a PAPI utility program that reports information about the native events available on
the current platform. A native event is an event specific to a specific hardware platform. On many
platforms, a specific native event may have a number of optional settings. In such cases, the native event
and the valid settings are presented, rather than every possible combination of those settings. For each
native event, a name, a description, and specific bit patterns are provided.

OPTIONS

This utility has no command line options.

BUGS

There are no known bugs in this utility.
If you find a bug, it should be reported to the PAPI Mailing List at <ptools-perfapi@ptools.org>.

SEE ALSO

PAPI, papi_avail, papi_clockres, papi_command_line, papi_cost, papi_decode, papi_event_chooser,
papi_mem_info

- 21 -

mailto:ptools-perfapi@ptools.org

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_read - read hardware counters from an event set
PAPI_accum - accumulate and reset counters in an event set

SYNOPSIS

C Interface

#include <papi.h>
int PAPI_read(int EventSet, long_long *values);
int PAPI_accum(int EventSet, long_long *values);

Fortran Interface

#include fpapi.h
PAPIF_read(C_INT EventSet, C_LONG_LONG(*) values, C_INT check)
PAPIF_accum(C_INT EventSet, C_LONG_LONG(*) values, C_INT check)

DESCRIPTION

These calls assume an initialized PAPI library and a properly added event set.
PAPI_read() copies the counters of the indicated event set into the array values. The counters continue
counting after the read.
PAPI_accum() adds the counters of the indicated event set into the array values. The counters are zeroed
and continue counting after the operation.
Note the differences between PAPI_read() and PAPI_accum(), specifically that PAPI_accum() resets the
values array to zero.

ARGUMENTS

EventSet -- an integer handle for a PAPI Event Set as created by PAPI_create_eventset
*values -- an array to hold the counter values of the counting events

RETURN VALUES

On success, these functions return PAPI_OK.
On error, a non-zero error code is returned.

ERRORS

PAPI_EINVAL

 One or more of the arguments is invalid.

PAPI_ESYS

 A system or C library call failed inside PAPI, see the errno variable.

PAPI_ENOEVST

 The event set specified does not exist.

- 22 -

PAPI Programmer’s Reference Version 3.5.0

EXAMPLES

 do_100events();
 if (PAPI_read(EventSet, values) != PAPI_OK)
 handle_error(1);
 /* values[0] now equals 100 */
 do_100events();
 if (PAPI_accum(EventSet, values) != PAPI_OK)
 handle_error(1);
 /* values[0] now equals 200 */
 values[0] = -100;
 do_100events();
 if (PAPI_accum(EventSet, values) != PAPI_OK)
 handle_error(1);
 /* values[0] now equals 0 */

BUGS

These functions have no known bugs.

SEE ALSO

PAPI_set_opt, PAPI_reset, PAPI_start, PAPI, PAPIF

- 23 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_read_counters - PAPI High Level: read and reset counters
PAPI_accum_counters - PAPI High Level: accumulate and reset counters

SYNOPSIS

C Interface

#include <papi.h>
int PAPI_read_counters(long_long *values, int array_len);
int PAPI_accum_counters(long_long *values, int array_len);

Fortran Interface

#include fpapi.h
PAPIF_read_counters(C_LONG_LONG(*) values, C_INT array_len, C_INT
check)
PAPIF_accum_counters(C_LONG_LONG(*) values, C_INT array_len, C_INT
check)

DESCRIPTION

PAPI_read_counters() copies the event counters into the array values .
The counters are reset and left running after the call.
PAPI_accum_counters() adds the event counters into the array values .
The counters are reset and left running after the call.
These calls assume an initialized PAPI library and a properly added event set.

ARGUMENTS

*values -- an array to hold the counter values of the counting events
array_len -- the number of items in the *events array

RETURN VALUES

On success, these functions return PAPI_OK.
On error, a non-zero error code is returned.

ERRORS

PAPI_EINVAL

 One or more of the arguments is invalid.

PAPI_ESYS

 A system or C library call failed inside PAPI, see the errno variable.

EXAMPLES

- 24 -

PAPI Programmer’s Reference Version 3.5.0
 do_100events();
 if (PAPI_read_counters(values, num_hwcntrs) != PAPI_OK)
 handle_error(1);
 /* values[0] now equals 100 */
 do_100events();
 if (PAPI_accum_counters(values, num_hwcntrs) != PAPI_OK)
 handle_error(1);
 /* values[0] now equals 200 */
 values[0] = -100;
 do_100events();
 if (PAPI_accum_counters(values, num_hwcntrs) != PAPI_OK)
 handle_error(1);
 /* values[0] now equals 0 */

BUGS

These functions have no known bugs.

SEE ALSO

PAPI_start_counters, PAPI_set_opt, PAPI, PAPIF

- 25 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_add_event - add PAPI preset or native hardware event to an event
set
PAPI_add_events - add PAPI presets or native hardware events to an
event set

SYNOPSIS

C Interface

#include <papi.h>
int PAPI_add_event(int EventSet, int EventCode);
int PAPI_add_events(int EventSet, int *EventCodes, int number);

Fortran Interface

#include fpapi.h
PAPIF_add_event(C_INT EventSet, C_INT EventCode, C_INT check)
PAPIF_add_events(C_INT EventSet, C_INT(*) EventCodes, C_INT number,
C_INT check)

DESCRIPTION

PAPI_add_event() adds one event to a PAPI Event Set.
PAPI_add_events() does the same, but for an array of events.

A hardware event can be either a PAPI preset or a native hardware event code. For a list of PAPI preset
events, see PAPI_presets or run the avail test case in the PAPI distribution. PAPI presets can be passed to
PAPI_query_event to see if they exist on the underlying architecture. For a list of native events available
on current platform, run native_avail test case in the PAPI distribution. For the encoding of native events,
see PAPI_event_name_to_code to learn how to generate native code for the supported native event on the
underlying architecture.

ARGUMENTS

EventSet -- an integer handle for a PAPI Event Set as created by PAPI_create_eventset
EventCode -- a defined event such as PAPI_TOT_INS.
*EventCode -- an array of defined events
number -- an integer indicating the number of events in the array *EventCode
It should be noted that PAPI_add_events can partially succeed, exactly like PAPI_remove_events.

RETURN VALUES

On success, these functions return PAPI_OK.
On error, a less than zero error code is returned or the the number of elements that succeeded before the
error.

- 26 -

PAPI Programmer’s Reference Version 3.5.0

ERRORS

Positive integer

 The number of consecutive elements that succeeded before the error.

PAPI_EINVAL

 One or more of the arguments is invalid.

PAPI_ENOMEM

 Insufficient memory to complete the operation.

PAPI_ENOEVST

 The event set specified does not exist.

PAPI_EISRUN

 The event set is currently counting events.

PAPI_ECNFLCT

 The underlying counter hardware can not count this event and other events in the event set
simultaneously.

PAPI_ENOEVNT

 The PAPI preset is not available on the underlying hardware.

PAPI_EBUG

 Internal error, please send mail to the developers.

EXAMPLES

int EventSet = PAPI_NULL;
unsigned int native = 0x0;

if (PAPI_create_eventset(&EventSet) != PAPI_OK)
 handle_error(1);

/* Add Total Instructions Executed to our EventSet */

if (PAPI_add_event(EventSet, PAPI_TOT_INS) != PAPI_OK)
 handle_error(1);

/* Add native event PM_CYC to EventSet */

if (PAPI_event_name_to_code("PM_CYC",&native) != PAPI_OK)
 handle_error(1);

if (PAPI_add_event(EventSet, native) != PAPI_OK)
 handle_error(1);

- 27 -

PAPI Programmer’s Reference Version 3.5.0

BUGS

The vector function should take a pointer to a length argument so a proper return value can be set upon
partial success.

SEE ALSO

PAPI_presets, PAPI_native, PAPI_remove_event, PAPI_remove_events, PAPI_query_event,
PAPI_cleanup_eventset, PAPI_destroy_eventset, PAPI_event_code_to_name

- 28 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_add_event - add PAPI preset or native hardware event to an event
set
PAPI_add_events - add PAPI presets or native hardware events to an
event set

SYNOPSIS

C Interface

#include <papi.h>
int PAPI_add_event(int EventSet, int EventCode);
int PAPI_add_events(int EventSet, int *EventCodes, int number);

Fortran Interface

#include fpapi.h
PAPIF_add_event(C_INT EventSet, C_INT EventCode, C_INT check)
PAPIF_add_events(C_INT EventSet, C_INT(*) EventCodes, C_INT number,
C_INT check)

DESCRIPTION

PAPI_add_event() adds one event to a PAPI Event Set.
PAPI_add_events() does the same, but for an array of events.

A hardware event can be either a PAPI preset or a native hardware event code. For a list of PAPI preset
events, see PAPI_presets or run the avail test case in the PAPI distribution. PAPI presets can be passed to
PAPI_query_event to see if they exist on the underlying architecture. For a list of native events available
on current platform, run native_avail test case in the PAPI distribution. For the encoding of native events,
see PAPI_event_name_to_code to learn how to generate native code for the supported native event on the
underlying architecture.

ARGUMENTS

EventSet -- an integer handle for a PAPI Event Set as created by PAPI_create_eventset
EventCode -- a defined event such as PAPI_TOT_INS.
*EventCode -- an array of defined events
number -- an integer indicating the number of events in the array *EventCode
It should be noted that PAPI_add_events can partially succeed, exactly like PAPI_remove_events.

RETURN VALUES

On success, these functions return PAPI_OK.
On error, a less than zero error code is returned or the the number of elements that succeeded before the
error.

- 29 -

PAPI Programmer’s Reference Version 3.5.0

ERRORS

Positive integer

 The number of consecutive elements that succeeded before the error.

PAPI_EINVAL

 One or more of the arguments is invalid.

PAPI_ENOMEM

 Insufficient memory to complete the operation.

PAPI_ENOEVST

 The event set specified does not exist.

PAPI_EISRUN

 The event set is currently counting events.

PAPI_ECNFLCT

 The underlying counter hardware can not count this event and other events in the event set
simultaneously.

PAPI_ENOEVNT

 The PAPI preset is not available on the underlying hardware.

PAPI_EBUG

 Internal error, please send mail to the developers.

EXAMPLES

int EventSet = PAPI_NULL;
unsigned int native = 0x0;

if (PAPI_create_eventset(&EventSet) != PAPI_OK)
 handle_error(1);

/* Add Total Instructions Executed to our EventSet */

if (PAPI_add_event(EventSet, PAPI_TOT_INS) != PAPI_OK)
 handle_error(1);

/* Add native event PM_CYC to EventSet */

if (PAPI_event_name_to_code("PM_CYC",&native) != PAPI_OK)
 handle_error(1);

if (PAPI_add_event(EventSet, native) != PAPI_OK)
 handle_error(1);

- 30 -

PAPI Programmer’s Reference Version 3.5.0

BUGS

The vector function should take a pointer to a length argument so a proper return value can be set upon
partial success.

SEE ALSO

PAPI_presets, PAPI_native, PAPI_remove_event, PAPI_remove_events, PAPI_query_event,
PAPI_cleanup_eventset, PAPI_destroy_eventset, PAPI_event_code_to_name

- 31 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_attach - attach PAPI event set to the specified thread id
PAPI_detach - detach PAPI event set from previously specified thread id and restore to executing thread

SYNOPSIS

C Interface

#include <papi.h>
int PAPI_attach(int EventSet, unsigned long tid);
int PAPI_detach(int EventSet);

Fortran Interface

<none>

DESCRIPTION

PAPI_attach() and PAPI_detach() are wrapper functions that access PAPI_set_opt() to allow PAPI to
monitor performance counts on a thread other than the one currently executing. This is sometimes referred
to as third party monitoring. PAPI_attach() connects the specified EventSet to the specifed thread;
PAPI_detach() breaks that connection and restores the EventSet to the original executing thread.

ARGUMENTS

EventSet -- an integer handle for a PAPI Event Set as created by PAPI_create_eventset
tid -- a thread id as obtained from, for example, PAPI_list_threads or PAPI_thread_id.

RETURN VALUES

On success, these functions return PAPI_OK. On error, a negative error code is returned.

ERRORS

PAPI_ESBSTR

 This feature is unsupported on this substrate.

PAPI_EINVAL

 One or more of the arguments is invalid.

PAPI_ENOEVST

 The event set specified does not exist.

PAPI_EISRUN

 The event set is currently counting events.

- 32 -

PAPI Programmer’s Reference Version 3.5.0

EXAMPLES

int EventSet = PAPI_NULL;
unsigned long pid;

pid = fork();
if (pid <= 0)
 exit(1);

if (PAPI_create_eventset(&EventSet) != PAPI_OK)
 exit(1);

/* Add Total Instructions Executed to our EventSet */

if (PAPI_add_event(EventSet, PAPI_TOT_INS) != PAPI_OK)
 exit(1);

/* Attach this EventSet to the forked process */

if (PAPI_attach(EventSet, pid) != PAPI_OK)
 exit(1);

BUGS

There are no known bugs in these functions.

SEE ALSO

PAPI_list_threads, PAPI_thread_id, PAPI_thread_init, PAPI_set_opt

- 33 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_destroy_eventset, PAPI_cleanup_eventset - empty and destroy an EventSet

SYNOPSIS

C Interface

#include <papi.h>
int PAPI_cleanup_eventset(int EventSet);
int PAPI_destroy_eventset(int *EventSet);

Fortran Interface

#include fpapi.h
PAPIF_cleanup_eventset(C_INT EventSet, C_INT check)
PAPIF_destroy_eventset(C_INT EventSet, C_INT check)

DESCRIPTION

PAPI_cleanup_eventset() removes all events from a PAPI event set and turns off profiling and overflow
for all events in the eventset. This can not be called if the EventSet is not stopped.
PAPI_destroy_eventset() deallocates the memory associated with an empty PAPI event set.

ARGUMENTS

EventSet -- an integer handle for a PAPI event set as created by PAPI_create_eventset.
*EventSet -- a pointer to the integer handle for a PAPI event set as created by PAPI_create_eventset. The
value pointed to by EventSet is then set to PAPI_NULL on success.

RETURN VALUES

On success, this function returns PAPI_OK.
On error, a non-zero error code is returned.

ERRORS

PAPI_EINVAL

 One or more of the arguments is invalid. Attempting to destroy a non-empty event set or
passing in a null pointer to be destroyed.

PAPI_ENOEVST

 The EventSet specified does not exist.

PAPI_EISRUN

 The EventSet is currently counting events.

PAPI_EBUG

 Internal error, send mail to ptools-perfapi@ptools.org and complain.

- 34 -

mailto:ptools-perfapi@ptools.org

PAPI Programmer’s Reference Version 3.5.0

EXAMPLES

/* Remove all events in the eventset */

if (PAPI_cleanup_eventset(EventSet) != PAPI_OK)
 handle_error(1);

/* Free all memory and data structures, EventSet must be empty. */

if (PAPI_destroy_eventset(&EventSet) != PAPI_OK)
 handle_error(1);

BUGS

If the user has set profile on an event with the PAPI_profil (3) call, then when destroying the EventSet the
memory allocated by PAPI_profil (3) will not be freed. The user should turn off profiling on the Events
before destroying the EventSet to prevent this behavior.

SEE ALSO

PAPI_create_eventset, PAPI_add_event, PAPI_stop, PAPI_profil

- 35 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_create_eventset - create an EventSet

SYNOPSIS

C Interface

#include <papi.h>
PAPI_create_eventset (int *EventSet);

Fortran Interface

#include fpapi.h
PAPIF_create_eventset(C_INT EventSet, C_INT check)

DESCRIPTION

PAPI_create_eventset() creates a new EventSet pointed to by EventSet, which must be initialized to
PAPI_NULL before calling this routine. The user may then add hardware events to the event set by calling
PAPI_add_event or similar routines.

ARGUMENTS

EventSet -- Address of an integer location to store the new EventSet handle

RETURN VALUES

On success, this function returns PAPI_OK.
On error, a non-zero error code is returned.

ERRORS

PAPI_EINVAL

 The argument handle has not been initialized to PAPI_NULL or the argument is a NULL
pointer.

PAPI_ENOMEM

 Insufficient memory to complete the operation.

EXAMPLES

 int EventSet = PAPI_NULL;

 if (PAPI_create_eventset(&EventSet) != PAPI_OK)
 handle_error(1);

 /* Add Total Instructions Executed to our EventSet */

- 36 -

PAPI Programmer’s Reference Version 3.5.0
 if (PAPI_add_event(EventSet, PAPI_TOT_INS) != PAPI_OK)
 handle_error(1);

BUGS

This function has no known bugs.

SEE ALSO

PAPI_destroy_eventset, PAPI_cleanup_eventset, PAPI_add_event

- 37 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_destroy_eventset, PAPI_cleanup_eventset - empty and destroy an EventSet

SYNOPSIS

C Interface

#include <papi.h>
int PAPI_cleanup_eventset(int EventSet);
int PAPI_destroy_eventset(int *EventSet);

Fortran Interface

#include fpapi.h
PAPIF_cleanup_eventset(C_INT EventSet, C_INT check)
PAPIF_destroy_eventset(C_INT EventSet, C_INT check)

DESCRIPTION

PAPI_cleanup_eventset() removes all events from a PAPI event set and turns off profiling and overflow
for all events in the eventset. This can not be called if the EventSet is not stopped.
PAPI_destroy_eventset() deallocates the memory associated with an empty PAPI event set.

ARGUMENTS

EventSet -- an integer handle for a PAPI event set as created by PAPI_create_eventset.
*EventSet -- a pointer to the integer handle for a PAPI event set as created by PAPI_create_eventset. The
value pointed to by EventSet is then set to PAPI_NULL on success.

RETURN VALUES

On success, this function returns PAPI_OK.
On error, a non-zero error code is returned.

ERRORS

PAPI_EINVAL

 One or more of the arguments is invalid. Attempting to destroy a non-empty event set or
passing in a null pointer to be destroyed.

PAPI_ENOEVST

 The EventSet specified does not exist.

PAPI_EISRUN

 The EventSet is currently counting events.

PAPI_EBUG

 Internal error, send mail to ptools-perfapi@ptools.org and complain.

- 38 -

mailto:ptools-perfapi@ptools.org

PAPI Programmer’s Reference Version 3.5.0

EXAMPLES

/* Remove all events in the eventset */

if (PAPI_cleanup_eventset(EventSet) != PAPI_OK)
 handle_error(1);

/* Free all memory and data structures, EventSet must be empty. */

if (PAPI_destroy_eventset(&EventSet) != PAPI_OK)
 handle_error(1);

BUGS

If the user has set profile on an event with the PAPI_profil (3) call, then when destroying the EventSet the
memory allocated by PAPI_profil (3) will not be freed. The user should turn off profiling on the Events
before destroying the EventSet to prevent this behavior.

SEE ALSO

PAPI_create_eventset, PAPI_add_event, PAPI_stop, PAPI_profil

- 39 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_attach - attach PAPI event set to the specified thread id
PAPI_detach - detach PAPI event set from previously specified thread
id and restore to executing thread

SYNOPSIS

C Interface

#include <papi.h>
int PAPI_attach(int EventSet, unsigned long tid);
int PAPI_detach(int EventSet);

Fortran Interface

<none>

DESCRIPTION

PAPI_attach() and PAPI_detach() are wrapper functions that access PAPI_set_opt() to allow PAPI to
monitor performance counts on a thread other than the one currently executing. This is sometimes referred
to as third party monitoring. PAPI_attach() connects the specified EventSet to the specifed thread;
PAPI_detach() breaks that connection and restores the EventSet to the original executing thread.

ARGUMENTS

EventSet -- an integer handle for a PAPI Event Set as created by PAPI_create_eventset
tid -- a thread id as obtained from, for example, PAPI_list_threads or PAPI_thread_id.

RETURN VALUES

On success, these functions return PAPI_OK. On error, a negative error code is returned.

ERRORS

PAPI_ESBSTR

 This feature is unsupported on this substrate.

PAPI_EINVAL

 One or more of the arguments is invalid.

PAPI_ENOEVST

 The event set specified does not exist.

PAPI_EISRUN

 The event set is currently counting events.

- 40 -

PAPI Programmer’s Reference Version 3.5.0

EXAMPLES

int EventSet = PAPI_NULL;
unsigned long pid;

pid = fork();
if (pid <= 0)
 exit(1);

if (PAPI_create_eventset(&EventSet) != PAPI_OK)
 exit(1);

/* Add Total Instructions Executed to our EventSet */

if (PAPI_add_event(EventSet, PAPI_TOT_INS) != PAPI_OK)
 exit(1);

/* Attach this EventSet to the forked process */

if (PAPI_attach(EventSet, pid) != PAPI_OK)
 exit(1);

BUGS

There are no known bugs in these functions.

SEE ALSO

PAPI_list_threads, PAPI_thread_id, PAPI_thread_init, PAPI_set_opt

- 41 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_encode_events - read event definitions from a file and modify the existing PAPI preset table.

SYNOPSIS

C Interface

#include <papi.h>
int PAPI_encode_events(char * event_file, int replace);

DESCRIPTION

NOTE: This API has been deprecated in PAPI 3.5 pending a data structure redesign.
This function reads event descriptions from a file where they are stored in comma separated value format
and modifies or adds events to the PAPI preset event table. The file format is described below. This
function presently works only to define or modify PAPI preset events.

FILE FORMAT

The comma separated value file format is one that can be easily edited in a standard text editor or a csv-
aware spreadsheet application, and can be easily parsed. Text strings can contain commas, but only if the
strings are enclosed in quotes. Each entry in the file is a separate line, and each field, including empty
fields, is separated by a comma from its neighbor. The specific format used in this case consists of a title
line for readability, a blank line, and a series of lines containing event definitions. A portion of such a file
(for Pentium 4) is shown below:

name,derived,postfix,short_descr,long_descr,note,[native,...]

PAPI_L1_ICM,NOT_DERIVED,,"L1I cache misses","Level 1 instruction cache
misses",,BPU_fetch_request_TCMISS
PAPI_L2_TCM,NOT_DERIVED,,"L2 cache misses","Level 2 cache
misses",,BSQ_cache_reference_RD_2ndL_MISS_WR_2ndL_MISS
PAPI_TLB_DM,NOT_DERIVED,,"Data TLB misses","Data translation lookaside buffer
misses",,page_walk_type_DTMISS
MY_PAPI_TLB_DM,NOT_DERIVED,,"Data TLB misses","Data translation lookaside buffer
misses","This is a note for my event",page_walk_type_DTMISS

ARGUMENTS

event_file -- string containing the name of the csv event file to be read
replace -- 1 to replace existing events, or 0 to prevent accidental replacement

RETURN VALUES

On success, the function returns PAPI_OK. On error, a non-zero error code is returned by the function.

- 42 -

PAPI Programmer’s Reference Version 3.5.0

ERRORS

PAPI_EPERM

 You are trying to modify an existing event without specifying replace.

PAPI_EISRUN

 You are trying to modify an event that has been added to an EventSet.

PAPI_EINVAL

 One or more of the arguments or fields of the info structure is invalid.

PAPI_ENOTPRESET

 The PAPI preset table is full and there is no room for a new event.

PAPI_ENOEVNT

 The event specified is not a PAPI preset. Usually because the PAPI_PRESET_MASK bit is
not set.

EXAMPLE

/* Use the command line utility to create a csv copy of the currently
defined events */
> /papi/utils/decode -a -> current.csv
/* View and modify the events in an editor */
> vi current.csv
/* Load the modified events into the preset table */
if (PAPI_encode_events("./current.csv", 1) != PAPI_OK)
 handle_error(1);

BUGS

This function has no known bugs.

SEE ALSO

papi_decode , PAPI, PAPIF, PAPI_get_event_info , PAPI_set_event_info

- 43 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_enum_event - enumerate PAPI preset or native events

SYNOPSIS

C Interface

#include <papi.h>
int PAPI_enum_event(int *EventCode,int modifer);

Fortran Interface

#include fpapi.h
PAPIF_enum_event(C_INT EventCode, C_INT modifier, C_INT check)

DESCRIPTION

Given a preset or native event code, PAPI_enum_event() replaces the event code with the next available
event in either the preset or native table. The modifier argument affects which events are returned. For all
platforms and event types, a value of PAPI_ENUM_ALL (zero) directs the function to return all possible
events. For preset events, a TRUE (non-zero) value currently directs the function to return event codes
only for PAPI preset events available on this platform. This may change in the future. For native events,
the effect of the modifier argument is different on each platform. See the discussion below for platform-
specific definitions.

ARGUMENTS

EventCode -- a defined preset or native event such as PAPI_TOT_INS.
modifier -- modifies the search logic. For preset events, TRUE specifies available events only. For native
events, each platform behaves differently. See platform-specific documentation for details

PENTIUM 4

The following values are implemented for modifier on Pentium 4: PAPI_PENT4_ENUM_GROUPS - 45
groups + custom + user event types PAPI_PENT4_ENUM_COMBOS - all combinations of mask bits
for given group PAPI_PENT4_ENUM_BITS - all individual bits for a given group

ITANIUM

The following values are implemented for modifier on Itanium: PAPI_ITA_ENUM_IARR - Enumerate
IAR (instruction address ranging) events PAPI_ITA_ENUM_DARR - Enumerate DAR (data address
ranging) events PAPI_ITA_ENUM_OPCM - Enumerate OPC (opcode matching) events
PAPI_ITA_ENUM_IEAR - Enumerate IEAR (instr event address register) events
PAPI_ITA_ENUM_DEAR - Enumerate DEAR (data event address register) events

- 44 -

PAPI Programmer’s Reference Version 3.5.0

POWER 4

The following values are implemented for modifier on POWER 4: PAPI_PWR4_ENUM_GROUPS -
Enumerate groups to which an event belongs

RETURN VALUES

On success, this function returns PAPI_OK , and on error, a non-zero error code is returned.

ERRORS

PAPI_ENOEVNT

 The next requested PAPI preset or native event is not available on the underlying hardware.

EXAMPLES

/* Scan for all supported native events on this platform */

 printf("Name Code Description0);
 do {
 retval = PAPI_get_event_info(i, &info);
 if (retval == PAPI_OK) {
 printf("%-30s 0x%-10x0s0, info.symbol, info.event_code,
info.long_descr);
 }
 } while (PAPI_enum_event(&i, PAPI_ENUM_ALL) == PAPI_OK);

BUGS

This function has no known bugs.

SEE ALSO

PAPI_preset, PAPI_native, PAPI_get_event_info, PAPI_event_name_to_code PAPI, PAPIF

- 45 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_event_code_to_name - convert a numeric hardware event code to a name.
PAPI_event_name_to_code - convert a name to a numeric hardware event code.

SYNOPSIS

C Interface

#include <papi.h>
int PAPI_event_code_to_name(int EventCode, char *EventName);
int PAPI_event_name_to_code(char *EventName, int *EventCode);

Fortran Interface

#include fpapi.h
PAPIF_event_code_to_name(C_INT EventCode, C_STRING EventName, C_INT
check)
PAPIF_event_name_to_code(C_STRING EventName, C_INT EventCode, C_INT
check)

DESCRIPTION

PAPI_event_code_to_name() is used to translate a 32-bit integer PAPI event code into an ASCII PAPI
event name. Either Preset event codes or Native event codes can be passed to this routine. Native event
codes and names differ from platform to platform.
PAPI_event_name_to_code() is used to translate an ASCII PAPI event name into an integer PAPI event
code.

ARGUMENTS

EventName -- a string containing the event name as listed in PAPI_presets or discussed in PAPI_native
EventCode -- the numeric code for the event

RETURN VALUES

On success, these functions return PAPI_OK.
On error, a non-zero error code is returned.

ERRORS

PAPI_EINVAL

 One or more of the arguments is invalid.

PAPI_ENOTPRESET

 The hardware event specified is not a valid PAPI preset.

PAPI_ENOEVNT

 The hardware event is not available on the underlying hardware.

- 46 -

PAPI Programmer’s Reference Version 3.5.0

EXAMPLES

int EventCode, EventSet = PAPI_NULL;
char EventCodeStr[PAPI_MAX_STR_LEN];
char EventDescr[PAPI_MAX_STR_LEN];
char EventLabel[20];

/* Convert to integer */

if (PAPI_event_name_to_code("PAPI_TOT_INS",&EventCode) != PAPI_OK)
 handle_error(1);

/* Create the EventSet */

if (PAPI_create_eventset(&EventSet) != PAPI_OK)
 handle_error(1);

/* Add Total Instructions Executed to our EventSet */

if (PAPI_add_event(EventSet, EventCode) != PAPI_OK)
 handle_error(1);

BUGS

These functions have no known bugs.

SEE ALSO

PAPI_presets, PAPI_native, PAPI_enum_events, PAPI_add_event, PAPI_remove_event,
PAPI_get_event_info

- 47 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_event_code_to_name - convert a numeric hardware event code to a name.
PAPI_event_name_to_code - convert a name to a numeric hardware event code.

SYNOPSIS

C Interface

#include <papi.h>
int PAPI_event_code_to_name(int EventCode, char *EventName);
int PAPI_event_name_to_code(char *EventName, int *EventCode);

Fortran Interface

#include fpapi.h
PAPIF_event_code_to_name(C_INT EventCode, C_STRING EventName, C_INT
check)
PAPIF_event_name_to_code(C_STRING EventName, C_INT EventCode, C_INT
check)

DESCRIPTION

PAPI_event_code_to_name() is used to translate a 32-bit integer PAPI event code into an ASCII PAPI
event name. Either Preset event codes or Native event codes can be passed to this routine. Native event
codes and names differ from platform to platform.
PAPI_event_name_to_code() is used to translate an ASCII PAPI event name into an integer PAPI event
code.

ARGUMENTS

EventName -- a string containing the event name as listed in PAPI_presets or discussed in PAPI_native
EventCode -- the numeric code for the event

RETURN VALUES

On success, these functions return PAPI_OK.
On error, a non-zero error code is returned.

ERRORS

PAPI_EINVAL

 One or more of the arguments is invalid.

PAPI_ENOTPRESET

 The hardware event specified is not a valid PAPI preset.

PAPI_ENOEVNT

 The hardware event is not available on the underlying hardware.

- 48 -

PAPI Programmer’s Reference Version 3.5.0

EXAMPLES

int EventCode, EventSet = PAPI_NULL;
char EventCodeStr[PAPI_MAX_STR_LEN];
char EventDescr[PAPI_MAX_STR_LEN];
char EventLabel[20];

/* Convert to integer */

if (PAPI_event_name_to_code("PAPI_TOT_INS",&EventCode) != PAPI_OK)
 handle_error(1);

/* Create the EventSet */

if (PAPI_create_eventset(&EventSet) != PAPI_OK)
 handle_error(1);

/* Add Total Instructions Executed to our EventSet */

if (PAPI_add_event(EventSet, EventCode) != PAPI_OK)
 handle_error(1);

BUGS

These functions have no known bugs.

SEE ALSO

PAPI_presets, PAPI_native, PAPI_enum_events, PAPI_add_event, PAPI_remove_event,
PAPI_get_event_info

- 49 -

PAPI Programmer’s Reference Version 3.5.0

NAME

 PAPI_flips - PAPI High level: Simplified call to get Mflips/s, real and processor time
 PAPI_flops - PAPI High level: Simplified call to get Mflops/s, real and processor time

SYNOPSIS

C Interface

#include <papi.h>
int PAPI_flips (float *rtime, float *ptime, long_long *flpins, float
*mflips);
int PAPI_flops (float *rtime, float *ptime, long_long *flpops, float
*mflops);

Fortran Interface

#include fpapi.h
PAPIF_flips(C_FLOAT real_time, C_FLOAT proc_time, C_LONG_LONG flpins,
C_FLOAT mflips, C_INT check)
PAPIF_flops(C_FLOAT real_time, C_FLOAT proc_time, C_LONG_LONG flpops,
C_FLOAT mflops, C_INT check)

DESCRIPTION

The first call to PAPI_flips() or PAPI_flops() will initialize the PAPI High Level interface, set up the
counters to monitor PAPI_FP_INS or PAPI_FP_OPS and PAPI_TOT_CYC events and start the counters.
Subsequent calls will read the counters and return total real time, total process time, total floating point
instructions or operations since the start of the measurement and the Mflip/s or Mflop/s rate since latest
call to PAPI_flips() or PAPI_flops(). A call to PAPI_stop_counters() will stop the counters from
running and then calls such as PAPI_start_counters() can safely be used.

ARGUMENTS

*rtime -- total realtime since the first PAPI_flops() call
*ptime -- total process time since the first PAPI_flops() call
*flpins, flpops -- total floating point instructions or operations since the first call
*mflips, *mflops -- Mflip/s or Mflop/s achieved since the previous call

RETURN VALUES

On success, this function returns PAPI_OK.
On error, a non-zero error code is returned.

ERRORS

In addition to the possible errors returned by the various PAPI low level calls, the following errors could
also be returned:
PAPI_EINVAL

- 50 -

PAPI Programmer’s Reference Version 3.5.0

 The counters were already started by something other than: PAPI_flips() or PAPI_flops().

PAPI_ENOEVNT

 The floating point operations,floating point instruction or total cycles event does not exist.

PAPI_ENOMEM

 Insufficient memory to complete the operation.

NOTES

Mflip/s, or millions of floating point instructions per second, is defined in this context as the number of
instructions issued to the floating point unit per second. It is usually calculated directly from a counter
measurement and may be different from platform to platform. Mflop/s, or millions of floating point
operations per second, is intended to represent the number of floating point arithmetic operations per
second. Attempts are made to massage the counter values to produce the theoreticallly expected value by,
for instance, doubling FMA counts or subtracting floating point loads and stores if necessary. CAVEAT
EMPTOR

PAPI_flops()andPAPI_flips() may be called by:

 the user application program

PAPI_flops() contains calls to:

 PAPI_perror()
 PAPI_library_init()
 PAPI_get_hardware_info()
 PAPI_create_eventset()
 PAPI_add_event()
 PAPI_start()
 PAPI_get_real_usec()
 PAPI_accum()
 PAPI_shutdown()

BUGS

These functions have no known bugs.

SEE ALSO

PAPI_stop_counters , PAPI_ipc , PAPI_set_opt

- 51 -

PAPI Programmer’s Reference Version 3.5.0

NAME

 PAPI_flips - PAPI High level: Simplified call to get Mflips/s, real and processor time
 PAPI_flops - PAPI High level: Simplified call to get Mflops/s, real and processor time

SYNOPSIS

C Interface

#include <papi.h>
int PAPI_flips (float *rtime, float *ptime, long_long *flpins, float
*mflips);
int PAPI_flops (float *rtime, float *ptime, long_long *flpops, float
*mflops);

Fortran Interface

#include fpapi.h
PAPIF_flips(C_FLOAT real_time, C_FLOAT proc_time, C_LONG_LONG flpins,
C_FLOAT mflips, C_INT check)
PAPIF_flops(C_FLOAT real_time, C_FLOAT proc_time, C_LONG_LONG flpops,
C_FLOAT mflops, C_INT check)

DESCRIPTION

The first call to PAPI_flips() or PAPI_flops() will initialize the PAPI High Level interface, set up the
counters to monitor PAPI_FP_INS or PAPI_FP_OPS and PAPI_TOT_CYC events and start the counters.
Subsequent calls will read the counters and return total real time, total process time, total floating point
instructions or operations since the start of the measurement and the Mflip/s or Mflop/s rate since latest
call to PAPI_flips() or PAPI_flops(). A call to PAPI_stop_counters() will stop the counters from
running and then calls such as PAPI_start_counters() can safely be used.

ARGUMENTS

*rtime -- total realtime since the first PAPI_flops() call
*ptime -- total process time since the first PAPI_flops() call
*flpins, flpops -- total floating point instructions or operations since the first call
*mflips, *mflops -- Mflip/s or Mflop/s achieved since the previous call

RETURN VALUES

On success, this function returns PAPI_OK.
On error, a non-zero error code is returned.

ERRORS

In addition to the possible errors returned by the various PAPI low level calls, the following errors could
also be returned:
PAPI_EINVAL

- 52 -

PAPI Programmer’s Reference Version 3.5.0

 The counters were already started by something other than: PAPI_flips() or PAPI_flops().

PAPI_ENOEVNT

 The floating point operations,floating point instruction or total cycles event does not exist.

PAPI_ENOMEM

 Insufficient memory to complete the operation.

NOTES

Mflip/s, or millions of floating point instructions per second, is defined in this context as the number of
instructions issued to the floating point unit per second. It is usually calculated directly from a counter
measurement and may be different from platform to platform. Mflop/s, or millions of floating point
operations per second, is intended to represent the number of floating point arithmetic operations per
second. Attempts are made to massage the counter values to produce the theoreticallly expected value by,
for instance, doubling FMA counts or subtracting floating point loads and stores if necessary. CAVEAT
EMPTOR

PAPI_flops()andPAPI_flips() may be called by:

 the user application program

PAPI_flops() contains calls to:

 PAPI_perror()
 PAPI_library_init()
 PAPI_get_hardware_info()
 PAPI_create_eventset()
 PAPI_add_event()
 PAPI_start()
 PAPI_get_real_usec()
 PAPI_accum()
 PAPI_shutdown()

BUGS

These functions have no known bugs.

SEE ALSO

PAPI_stop_counters , PAPI_ipc , PAPI_set_opt

- 53 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_get_dmem_info - get information about the dynamic memory usage of the current program

SYNOPSIS

C Interface

#include <papi.h>
int PAPI_get_dmem_info(PAPI_dmem_info_t *dmem);

Fortran Interface

#include fpapi.h
PAPIF_get_dmem_info(C_LONG_LONG(*) dmem, C_INT check)

DESCRIPTION

In C, this function takes a pointer to a PAPI_dmem_info_t structure and returns with the structure fields
filled in. In Fortran, this function takes a pointer to an array of long_long values and fills in the array on
return. A value of PAPI_EINVAL in any field indicates an undefined parameter.

NOTE

This function is currently implemented only for the Linux operating system.

ARGUMENTS

dmem -- Structure (C) or array (Fortran) containing the following values (Fortran values can be accessed
using the specified indices):
size [PAPIF_DMEM_VMSIZE] (Size of process image),
resident [PAPIF_DMEM_RESIDENT] (Resident set size),
high_water_mark [PAPIF_DMEM_HIGH_WATER] (High water memory usage),
shared [PAPIF_DMEM_SHARED] (Shared memory),
text [PAPIF_DMEM_TEXT] (Memory allocated to code),
library [PAPIF_DMEM_LIBRARY] (Memory allocated to libraries),
heap [PAPIF_DMEM_HEAP] (Size of the heap),
locked [PAPIF_DMEM_LOCKED] (Locked memory),
stack [PAPIF_DMEM_STACK] (Size of the stack)
pagesize [PAPIF_DMEM_PAGESIZE] (Size of a page in bytes),

RETURN VALUES

On success, this function returns PAPI_OK with the data structure or array values filled in. On error a
negative error value is returned.

ERRORS

PAPI_ESBSTR

- 54 -

PAPI Programmer’s Reference Version 3.5.0

 The funtion is not implemented for the current substrate.

PAPI_EINVAL

 Any value in the structure or array may be undefined as indicated by this error value.

PAPI_SYS

 A system error occured.

EXAMPLE

 int retval;
 PAPI_dmem_info_t dmem;

 if (PAPI_library_init(PAPI_VER_CURRENT) != PAPI_VER_CURRENT)
 exit(1);

 retval = PAPI_library_init(PAPI_VER_CURRENT);
 if (retval != PAPI_VER_CURRENT)
 handle_error(retval);

 PAPI_get_dmem_info(&dmem);
 printf("Mem Size: %lld0,dmem.size);
 printf("Mem Resident: %lld0,dmem.resident);
 printf("Mem High Water Mark: %lld0,dmem.high_water_mark);
 printf("Mem Shared: %lld0,dmem.shared);
 printf("Mem Text: %lld0,dmem.text);
 printf("Mem Library: %lld0,dmem.library);
 printf("Mem Heap: %lld0,dmem.heap);
 printf("Mem Locked: %lld0,dmem.locked);
 printf("Mem Stack: %lld0,dmem.stack);
 printf("Mem Pagesize: %lld0,dmem.pagesize);

BUGS

If called before PAPI_library_init() the behavior of the routine is undefined.

SEE ALSO

PAPI_library_init, PAPI_get_opt, PAPI_get_hardware_info, PAPI_get_executable_info

- 55 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_get_event_info - get the event’s name and description info

SYNOPSIS

C Interface

#include <papi.h>
int PAPI_get_event_info(int EventCode, PAPI_event_info_t *info);

Fortran Interface

#include fpapi.h
PAPIF_get_event_info(C_INT EventCode, C_STRING symbol,
 C_STRING long_descr, C_STRING C_INT count,
 C_STRING event_note, C_INT , C_INT check)

DESCRIPTION

In C, this function fills the event information into a structure. In Fortran, some fields of the structure are
returned explicitly. This function works with existing PAPI preset and native event codes.

ARGUMENTS

The following arguments are implicit in the structure returned by the C function, or explicitly returned by
Fortran.
EventCode -- event code(preset or native)
info -- structure with the event information
symbol -- whether the preset is part of the API
long_descr -- detail description about the event
short_descr -- short description about the event
event_note -- notes about the event

RETURN VALUES

On success, the C function returns PAPI_OK, and the Fortran function returns PAPI_OK.
On error, a non-zero error code is returned by the function.

ERRORS

PAPI_EINVAL

 One or more of the arguments is invalid.

PAPI_ENOTPRESET

 The PAPI preset mask was set, but the hardware event specified is not a valid PAPI preset.

PAPI_ENOEVNT

 The PAPI preset is not available on the underlying hardware.

- 56 -

PAPI Programmer’s Reference Version 3.5.0

EXAMPLE

/*Find the event code for PAPI_TOT_INS and its info*/
PAPI_event_name_to_code("PAPI_TOT_INS",&EventCode)
if (PAPI_get_event_info(EventCode, &info) == PAPI_OK)
 handle_error(1);

BUGS

This function has no known bugs.

SEE ALSO

PAPI, PAPIF, PAPI_set_event_info , PAPI_event_name_to_code

- 57 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_get_executable_info - get the executable’s address space info

SYNOPSIS

C Interface

#include <papi.h>
const PAPI_exe_info_t *PAPI_get_executable_info(void);

Fortran Interface

#include fpapi.h
PAPIF_get_exe_info(C_STRING fullname, C_STRING name,
 C_LONG_LONG text_start, C_LONG_LONG text_end,
 C_LONG_LONG data_start, C_LONG_LONG data_end,
 C_LONG_LONG bss_start, C_LONG_LONG bss_end, C_INT check)

DESCRIPTION

In C, this function returns a pointer to a structure containing information about the current program. In
Fortran, the fields of the structure are returned explicitly.

ARGUMENTS

The following arguments are implicit in the structure returned by the C function, or explicitly returned by
Fortran.
fullname -- fully qualified path + filename of the executable
name -- filename of the executable with no path information
text_start, text_end -- Start and End addresses of program text segment
data_start, data_end -- Start and End addresses of program data segment
bss_start, bss_end -- Start and End addresses of program bss segment

RETURN VALUES

On success, the C function returns a non-NULL pointer, and the Fortran function returns PAPI_OK.
On error, NULL is returned by the C function, and a non-zero error code is returned by the Fortran
function.

ERRORS

PAPI_EINVAL

 One or more of the arguments is invalid.

EXAMPLE

const PAPI_exe_info_t *prginfo = NULL;

- 58 -

PAPI Programmer’s Reference Version 3.5.0

if ((prginfo = PAPI_get_executable_info()) == NULL)
 exit(1);

printf("Path+Program: %s0,exeinfo->fullname);
printf("Program: %s0,exeinfo->address_info.name);
printf("Text start: %p, Text end: %p0,exeinfo->address_info.text_start,exeinfo-
>address_info.text_end);
printf("Data start: %p, Data end: %p0,exeinfo->address_info.data_start,exeinfo-
>address_info.data_end);
printf("Bss start: %p, Bss end: %p0,exeinfo->address_info.bss_start,exeinfo-
>address_info.bss_end);

DATA STRUCTURES

 typedef struct _papi_address_map {
 char name[PAPI_HUGE_STR_LEN];
 caddr_t text_start; /* Start address of program text
segment */
 caddr_t text_end; /* End address of program text segment
*/
 caddr_t data_start; /* Start address of program data
segment */
 caddr_t data_end; /* End address of program data segment
*/
 caddr_t bss_start; /* Start address of program bss segment
*/
 caddr_t bss_end; /* End address of program bss segment */
 } PAPI_address_map_t;

 typedef struct _papi_program_info {
 char fullname[PAPI_HUGE_STR_LEN]; /* path+name */
 PAPI_address_map_t address_info;
 } PAPI_exe_info_t;

BUGS

Only the text_start and text_end fields are filled on every architecture.

SEE ALSO

PAPI_get_hardware_info, PAPI_get_opt

- 59 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_get_hardware_info - get information about the system hardware

SYNOPSIS

C Interface

#include <papi.h>
const PAPI_hw_info_t *PAPI_get_hardware_info(void);

Fortran Interface

#include fpapi.h
PAPIF_get_hardware_info(C_INT ncpu, C_INT nnodes,
 C_INT totalcpus, C_INT vendor,
 C_STRING vendor_string, C_INT model,
 C_STRING model_string,
 C_FLOAT revision, C_FLOAT mhz)

DESCRIPTION

In C, this function returns a pointer to a structure containing information about the hardware on which the
program runs. In Fortran, the values of the structure are returned explicitly.

NOTE

The C structure contains detailed information about cache and TLB sizes. This information is not available
from Fortran.

ARGUMENTS

The following arguments are implicit in the structure returned by the C function, or explicitly returned by
Fortran.
ncpu -- number of CPUs in an SMP Node
nnodes -- number of Nodes in the entire system
totalcpus -- total number of CPUs in the entire system
vendor -- vendor id number of CPU
vendor_string -- vendor id string of CPU
model -- model number of CPU
model_string -- model string of CPU
revision -- Revision number of CPU
mhz -- Cycle time of this CPU; *may* be an estimate generated at init time with a quick timing routine
mem_hierarchy -- PAPI memory heirarchy description

RETURN VALUES

On success, the C function returns a non-NULL pointer, and the Fortran function returns PAPI_OK.
On error, NULL is returned by the C function, and a non-zero error code is returned by the Fortran
function.

- 60 -

PAPI Programmer’s Reference Version 3.5.0

ERRORS

PAPI_EINVAL

 One or more of the arguments is invalid.

EXAMPLE

const PAPI_hw_info_t *hwinfo = NULL;

if (PAPI_library_init(PAPI_VER_CURRENT) != PAPI_VER_CURRENT)
 exit(1);

if ((hwinfo = PAPI_get_hardware_info()) == NULL)
 exit(1);

printf("%d CPU’s at %f Mhz.\n",hwinfo->totalcpus,hwinfo->mhz);

DATA STRUCTURE

The C data structure returned by this function is found in papi.h and reproduced below:

 typedef struct _papi_mh_tlb_info {
 int type; /* See papi.h for PAPI_MH definitions. */
 int num_entries;
 int associativity;
 } PAPI_mh_tlb_info_t;

 typedef struct _papi_mh_cache_info {
 int type; /* See papi.h for PAPI_MH definitions. */
 int size;
 int line_size;
 int num_lines;
 int associativity;
 } PAPI_mh_cache_info_t;

 typedef struct _papi_mh_level_info {
 PAPI_mh_tlb_info_t tlb[2];
 PAPI_mh_cache_info_t cache[2];
 } PAPI_mh_level_t;

 typedef struct _papi_mh_info { /* mh for mem hierarchy maybe? */
 int levels;
 PAPI_mh_level_t level[PAPI_MAX_MEM_HIERARCHY_LEVELS];
 } PAPI_mh_info_t;

 typedef struct _papi_hw_info {
 int ncpu; /* Number of CPU’s in an SMP Node */
 int nnodes; /* Number of Nodes in the entire system */
 int totalcpus; /* Total number of CPU’s in the entire system */
 int vendor; /* Vendor number of CPU */
 char vendor_string[PAPI_MAX_STR_LEN]; /* Vendor string of CPU */
 int model; /* Model number of CPU */
 char model_string[PAPI_MAX_STR_LEN]; /* Model string of CPU */

- 61 -

PAPI Programmer’s Reference Version 3.5.0
 float revision; /* Revision of CPU */
 float mhz; /* Cycle time of this CPU, *may* be estimated at
 init time with a quick timing routine */
 PAPI_mh_info_t mem_hierarchy; /* PAPI memory heirarchy description */
 } PAPI_hw_info_t;

BUGS

If called before PAPI_library_init() the behavior of the routine is undefined.

SEE ALSO

PAPI_library_init, PAPI_get_dmem_info, PAPI_get_opt, PAPI_get_executable_info

- 62 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_get_multiplex - get the multiplexing status of specified event set PAPI_set_multiplex - convert a
standard event set to a multiplexed event set

SYNOPSIS

C Interface

#include <papi.h>
int PAPI_get_multiplex(int EventSet);
int PAPI_set_multiplex(int EventSet);

Fortran Interface

#include fpapi.h
PAPIF_get_multiplex(C_INT EventSet, C_INT check)
PAPIF_set_multiplex(C_INT EventSet, C_INT check)

DESCRIPTION

PAPI_get_multiplex tests the state of the PAPI_MULTIPLEXING flag in the specified event set,
returning TRUE if a PAPI event set is multiplexed, or FALSE if not.
PAPI_set_multiplex converts a standard PAPI event set created by a call to PAPI_create_eventset() into
an event set capable of handling multiplexed events. This must be done after calling
PAPI_multiplex_init() , but prior to calling PAPI_start(). Events can be added to an event set either
before or after converting it into a multiplexed set, but the conversion must be done prior to using it as a
multiplexed set.

ARGUMENTS

EventSet -- an integer handle for a PAPI event set as created by PAPI_create_eventset

RETURN VALUES

PAPI_get_multiplex returns either TRUE (positive non-zero) if multiplexing is enabled for this event set,
FALSE (zero) if multiplexing is not enabled, or PAPI_ENOEVST if the specified event set cannot be
found.
On success, PAPI_get_multiplex returns PAPI_OK. On error, a non-zero error code is returned, as
described below.

ERRORS

PAPI_EINVAL

 One or more of the arguments is invalid, or the EventSet is already multiplexed.

PAPI_ENOEVST

 The EventSet specified does not exist.

PAPI_EISRUN

- 63 -

PAPI Programmer’s Reference Version 3.5.0

 The EventSet is currently counting events.

PAPI_ENOMEM

 Insufficient memory to complete the operation.

EXAMPLES

 retval = PAPI_get_multiplex(EventSet);
 if (retval > 0) printf("This event set is ready for multiplexing0")
 if (retval == 0) printf("This event set is not enabled for
multiplexing0")
 if (retval < 0) handle_error(retval);

 retval = PAPI_set_multiplex(EventSet);
 if ((retval == PAPI_EINVAL) && (PAPI_get_multiplex(EventSet) > 0))
 printf("This event set already has multiplexing enabled0);
 else if (retval != PAPI_OK) handle_error(retval);

BUGS

This function has no known bugs.

SEE ALSO

PAPI_multiplex_init, PAPI_set_opt, PAPI_create_eventset

- 64 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_get_opt - get PAPI library or event set options
PAPI_set_opt - set PAPI library or event set options
PAPIF_get_clockrate - get the clockrate (Fortran only)
PAPIF_get_domain - get the counting domain (Fortran only)
PAPIF_get_granularity - get the counting granularity (Fortran only)
PAPIF_get_preload - get the library preload setting (Fortran only)

SYNOPSIS

C Interface

#include <papi.h>
int PAPI_get_opt(int option, PAPI_option_t *ptr);
int PAPI_set_opt(int option, PAPI_option_t *ptr);

Fortran Interface

#include fpapi.h
PAPIF_get_clockrate(C_INT clockrate)
PAPIF_get_domain(C_INT EventSet, C_INT domain, C_INT mode, C_INT check)
PAPIF_get_granularity(C_INT EventSet, C_INT granularity, C_INT mode,
C_INT check)
PAPIF_get_preload(C_STRING preload, C_INT check)

DESCRIPTION

PAPI_get_opt() and PAPI_set_opt() query or change the options of the PAPI library or a specific event
set created by PAPI_create_eventset. The C interface for these functions passes a pointer to the
PAPI_option_t structure. Not all options require or return information in this structure, and not all options
are implemented for both get and set.
The Fortran interface is a series of calls implementing various subsets of the C interface. Not all options in
C are available in Fortran.
NOTE: Some options, such as PAPI_DOMAIN and PAPI_MULTIPLEX, are also available as separate
entry points in both C and Fortran.
The reader is urged to see the example code in the PAPI distribution for usage of PAPI_get_opt. The file
papi.h contains definitions for the structures unioned in the PAPI_option_t structure.

ARGUMENTS

option -- is an input parameter describing the course of action. Possible values are defined in papi.h and
briefly described in the table below. The Fortran calls are implementations of specific options.
ptr -- is a pointer to a structure that acts as both an input and output parameter. It is defined in papi.h and
below.
EventSet -- input; a reference to an EventSetInfo structure
clockrate -- output; cycle time of this CPU in MHz; *may* be an estimate generated at init time with a
quick timing routine
domain -- output; execution domain for which events are counted
granularity -- output; execution granularity for which events are counted
mode -- input; determines if domain or granularity are default or for the current event set

- 65 -

PAPI Programmer’s Reference Version 3.5.0

preload -- output; environment variable string for preloading libraries

OPTIONS TABLE

Predefined name Explanation

General information requests

PAPI_CLOCKRATE Get clockrate in MHz.

PAPI_MAX_CPUS Get number of CPUs.

PAPI_MAX_HWCTRS Get number of counters.

PAPI_EXEINFO Get Executable addresses for text/data/bss.

PAPI_HWINFO Get information about the hardware.

PAPI_SHLIBINFO Get shared library information used by the program.

PAPI_SUBSTRATEINFO Get the PAPI features the substrate supports

PAPI_LIB_VERSION Get the full PAPI version of the library

PAPI_PRELOAD Get ‘‘LD_PRELOAD’’ environment equivalent.

Defaults for the global library

PAPI_DEFDOM Get/Set default counting domain for newly created event sets.

PAPI_DEFGRN Get/Set default counting granularity.

PAPI_DEBUG Get/Set the PAPI debug state and the debug handler. The available debug
states are defined in papi.h. The debug state is available in ptr->debug.level.
The debug handler is available in ptr->debug.handler. For information
regarding the behavior of the handler, please see the man page for
PAPI_set_debug.

Multiplexing control

PAPI_MULTIPLEX Get/Set options for multiplexing.

PAPI_MAX_MPX_CTRS Get maximum number of multiplexing counters.

PAPI_DEF_MPX_USEC Get/Set the sampling time slice in microseconds for multiplexing.

Manipulating individual event sets

PAPI_ATTACH Get thread or process id to which event set is attached. Returns TRUE if
currently attached. Set event set specified in ptr->ptr->attach.eventset to be
attached to thread or process id specified in in ptr->attach.tid

PAPI_DETACH Get thread or process id to which event set is attached. Returns TRUE if
currently detached. Set event set specified in ptr->ptr->attach.eventset to be
detached from any thread or process id.

PAPI_DOMAIN Get/Set domain for a single event set. The event set is specified in ptr-
>domain.eventset

PAPI_GRANUL Get/Set granularity for a single event set. The event set is specified in ptr-
>granularity.eventset. Not implemented yet.

- 66 -

PAPI Programmer’s Reference Version 3.5.0

Platform specific options

PAPI_DATA_ADDRESS Set data address range to restrict event counting for event set specified in
ptr->addr.eventset. Starting and ending addresses are specified in ptr-
>addr.start and ptr->addr.end, respectively. If exact addresses cannot be
instantiated, offsets are returned in ptr->addr.start_off and ptr-
>addr.end_off. Currently implemented on Itanium only.

PAPI_INSTR_ADDRESS Set instruction address range as described above. Itanium only.

The option_t *ptr structure is defined in papi.h and looks something like the following example from the
source tree. Users should use the definition in papi.h which is in synch with the library used.

typedef union {
 PAPI_preload_option_t preload;
 PAPI_debug_option_t debug;
 PAPI_granularity_option_t granularity;
 PAPI_granularity_option_t defgranularity;
 PAPI_domain_option_t domain;
 PAPI_domain_option_t defdomain;
 PAPI_attach_option_t attach;
 PAPI_multiplex_option_t multiplex;
 PAPI_hw_info_t *hw_info;
 PAPI_shlib_info_t *shlib_info;
 PAPI_exe_info_t *exe_info;
 PAPI_substrate_info_t *sub_info;
 PAPI_overflow_option_t ovf_info;
 PAPI_addr_range_option_t addr;
} PAPI_option_t;

RETURN VALUES

On success, these functions return PAPI_OK. On error, a non-zero error code is returned.

ERRORS

PAPI_EINVAL

 One or more of the arguments is invalid.

PAPI_ENOEVST

 The event set specified does not exist.

PAPI_EISRUN

 The event set is currently counting events.

EXAMPLES

PAPI_option_t options;

if ((num = PAPI_get_opt(PAPI_MAX_HWCTRS,NULL)) <= 0)
 handle_error();

printf("This machine has %d counters.0,num);

- 67 -

PAPI Programmer’s Reference Version 3.5.0
/* Set the domain of this EventSet
 to counter user and kernel modes for this
 process */

memset(&options,0x0,sizeof(options));
options.domain.eventset = EventSet;
options.domain.domain = PAPI_DOM_ALL;
if (PAPI_set_opt(PAPI_DOMAIN, &options) != PAPI_OK)
 handle_error();

BUGS

The granularity functions are not yet implemented. The domain functions are only implemented on some
platforms. There are no known bugs in these functions.

SEE ALSO

PAPI_set_debug, PAPI_set_multiplex, PAPI_set_domain

- 68 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_get_overflow_event_index - converts an overflow vector into an array of indexes to overflowing
events

SYNOPSIS

C Interface

#include <papi.h>
int PAPI_get_overflow_event_index(int EventSet, long_long
overflow_vector, int *array, int *number);

Fortran Interface

Not implemented

DESCRIPTION

PAPI_get_overflow_event_index decomposes an overflow_vector into an event index array in which the
first element corresponds to the least significant set bit in overflow_vector and so on. Based on
overflow_vector, the user can only tell which physical counters overflowed. Using this function, the user
can map overflowing counters to specific events in the event set. An array is used in this function to
support the possibility of multiple simultaneous overflow events.

ARGUMENTS

EventSet -- an integer handle to a PAPI event set as created by PAPI_create_eventset
overflow_vector -- a vector with bits set for each counter that overflowed. This vector is passed by the
system to the overflow handler routine.
*array -- an array of indexes for events in EventSet. No more than *number indexes will be stored into the
array.
*number -- On input the variable determines the size of the array.
On output the variable contains the number of indexes in the array.
Note that if the given *array is too short to hold all the indexes correspond to the set bits in the
overflow_vector the *number variable will be set to the size of array.

RETURN VALUES

On success, this function returns PAPI_OK.
On error, a non-zero error code is returned.

ERRORS

PAPI_EINVAL

 One or more of the arguments is invalid. This could occur if the overflow_vector is empty
(zero), if the array or number pointers are NULL, if the value of number is less than one, or
if the EventSet is empty.

- 69 -

PAPI Programmer’s Reference Version 3.5.0

PAPI_ENOEVST

 The EventSet specified does not exist.

EXAMPLES

Create a user defined overflow handler routine that prints diagnostic information about the overflow:

void handler(int EventSet, void *address, long_long overflow_vector,
void *context)
{
 int Events[4], number, i;
 int total = 0, retval;

 printf("Overflow #%d0 Handler(%d) Overflow at %p! vector=0x%llx0,
 total, EventSet, address, overflow_vector);
 total++;
 number = 4;
 retval = PAPI_get_overflow_event_index(EventSet,
 overflow_vector, Events, &number);
 if(retval == PAPI_OK)
 for(i=0; i<number; i++) printf("Event index[%d] = %d", i,
Events[i]);
}

BUGS

This function may not return all overflowing events if used with software-driven overflow of multiple
derived events.

SEE ALSO

PAPI_overflow

- 70 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_get_real_cyc - get real time counter value in clock cycles
PAPI_get_real_usec - get real time counter value in microseconds

SYNOPSIS

C Interface

#include <papi.h>
long_long PAPI_get_real_cyc(void);
long_long PAPI_get_real_usec(void);

Fortran Interface

#include fpapi.h
PAPIF_get_real_usec(C_LONG_LONG time)
PAPIF_get_real_cyc(C_LONG_LONG real_cyc)

DESCRIPTION

Both of these functions return the total real time passed since some arbitrary starting point. The time is
returned in clock cycles or microseconds respectively. These calls are equivalent to wall clock time.

ERRORS

These functions always succeed.

EXAMPLE

s = PAPI_get_real_cyc();
your_slow_code();
e = PAPI_get_real_cyc();
printf("Wallclock cycles: %lld\n",e-s);

BUGS

These functions have no known bugs.

SEE ALSO

PAPI_library_init, PAPI_get_virt_cyc, PAPI_get_virt_usec, PAPI, PAPIF

- 71 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_get_real_cyc - get real time counter value in clock cycles
PAPI_get_real_usec - get real time counter value in microseconds

SYNOPSIS

C Interface

#include <papi.h>
long_long PAPI_get_real_cyc(void);
long_long PAPI_get_real_usec(void);

Fortran Interface

#include fpapi.h
PAPIF_get_real_usec(C_LONG_LONG time)
PAPIF_get_real_cyc(C_LONG_LONG real_cyc)

DESCRIPTION

Both of these functions return the total real time passed since some arbitrary starting point. The time is
returned in clock cycles or microseconds respectively. These calls are equivalent to wall clock time.

ERRORS

These functions always succeed.

EXAMPLE

s = PAPI_get_real_cyc();
your_slow_code();
e = PAPI_get_real_cyc();
printf("Wallclock cycles: %lld\n",e-s);

BUGS

These functions have no known bugs.

SEE ALSO

PAPI_library_init, PAPI_get_virt_cyc, PAPI_get_virt_usec, PAPI, PAPIF

- 72 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_get_shared_lib_info - get address info about the shared libraries used by the process

SYNOPSIS

C Interface

#include <papi.h>
const PAPI_shlib_info_t *PAPI_get_shared_lib_info(void);

DESCRIPTION

In C, this function returns a pointer to a structure containing information about the shared library used by
the program. There is no Fortran equivalent call.

NOTE

This data will be incorporated into the PAPI_get_executable_info call in the future. will be deprecated
and should be used with caution.

RETURN VALUES

On success, the function returns a non-NULL pointer.
On error, NULL is returned.

DATA STRUCTURE

 typedef struct _papi_address_map {
 char name[PAPI_MAX_STR_LEN];
 caddr_t text_start; /* Start address of program text
segment */
 caddr_t text_end; /* End address of program text segment
*/
 caddr_t data_start; /* Start address of program data
segment */
 caddr_t data_end; /* End address of program data segment
*/
 caddr_t bss_start; /* Start address of program bss segment
*/
 caddr_t bss_end; /* End address of program bss segment */
 } PAPI_address_map_t;

 typedef struct _papi_shared_lib_info {
 PAPI_address_map_t *map;
 int count;
 } PAPI_shlib_info_t;

- 73 -

PAPI Programmer’s Reference Version 3.5.0

BUGS

If called before PAPI_library_init() the behavior of the routine is undefined.

SEE ALSO

PAPI_library_init, PAPI_get_opt, PAPI_get_dmem_info, PAPI_get_executable_info,
PAPI_get_hardware_info

- 74 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_get_substrate_info - get information about the software substrate

SYNOPSIS

C Interface

#include <papi.h>
const PAPI_substrate_info_t *PAPI_get_substrate_info(void);

Fortran Interface

<none>

DESCRIPTION

This function returns a pointer to a structure containing detailed information about the software substrate
on which the program runs. This includes versioning information, preset and native event information,
details on event multiplexing, and more. For full details, see the structure listing below.

RETURN VALUES

On success, the function returns a non-NULL pointer. On error, a NULL pointer is returned.

ERRORS

<none>

EXAMPLE

const PAPI_substrate_info_t *sbinfo = NULL;

if (PAPI_library_init(PAPI_VER_CURRENT) != PAPI_VER_CURRENT)
 exit(1);

if ((sbinfo = PAPI_get_substrate_info()) == NULL)
 exit(1);

printf("This substrate supports %d Preset Events and %d Native events.0,
 sbinfo->num_preset_events, sbinfo->num_native_events);

DATA STRUCTURE

The C data structure returned by this function is found in papi.h and reproduced below:

 typedef struct _papi_substrate_option {

- 75 -

PAPI Programmer’s Reference Version 3.5.0
 char name[PAPI_MAX_STR_LEN]; /* Name of the substrate
we’re using, usually CVS RCS Id */
 char version[PAPI_MIN_STR_LEN]; /* Version of this
substrate, usually CVS Revision */
 char support_version[PAPI_MIN_STR_LEN]; /* Version of the support
library */
 char kernel_version[PAPI_MIN_STR_LEN]; /* Version of the kernel
PMC support driver */
 int num_cntrs; /* Number of hardware counters the
substrate supports */
 int num_mpx_cntrs; /* Number of hardware counters the
substrate or PAPI can multiplex supports */
 int num_preset_events; /* Number of preset events the
substrate supports */
 int num_native_events; /* Number of native events the
substrate supports */
 int default_domain; /* The default domain when this
substrate is used */
 int available_domains; /* Available domains */
 int default_granularity; /* The default granularity when this
substrate is used */
 int available_granularities; /* Available granularities */
 int multiplex_timer_sig; /* Signal number used by the
multiplex timer, 0 if not */
 int multiplex_timer_num; /* Number of the itimer or POSIX 1
timer used by the multiplex timer */
 int multiplex_timer_us; /* uS between switching of sets */
 int hardware_intr_sig; /* Signal used by hardware to deliver
PMC events */
 int opcode_match_width; /* Width of opcode matcher if exists,
0 if not */
 int reserved_ints[4];
 unsigned int hardware_intr:1; /* hw overflow intr, does
not need to be emulated in software*/
 unsigned int precise_intr:1; /* Performance interrupts
happen precisely */
 unsigned int posix1b_timers:1; /* Using POSIX 1b interval
timers (timer_create) instead of setitimer */
 unsigned int kernel_profile:1; /* Has kernel profiling
support (buffered interrupts or sprofil-like) */
 unsigned int kernel_multiplex:1; /* In kernel multiplexing */
 unsigned int data_address_range:1; /* Supports data address
range limiting */
 unsigned int instr_address_range:1; /* Supports instruction
address range limiting */
 unsigned int fast_counter_read:1; /* Supports a user level PMC
read instruction */
 unsigned int fast_real_timer:1; /* Supports a fast real
timer */
 unsigned int fast_virtual_timer:1; /* Supports a fast virtual
timer */
 unsigned int attach:1; /* Supports attach */
 unsigned int attach_must_ptrace:1; /* Attach must first ptrace
and stop the thread/process*/
 unsigned int edge_detect:1; /* Supports edge detection
on events */
 unsigned int invert:1; /* Supports invert detection
on events */
 unsigned int profile_ear:1; /* Supports data/instr/tlb
miss address sampling */

- 76 -

PAPI Programmer’s Reference Version 3.5.0
 unsigned int grouped_cntrs:1; /* Underlying hardware uses
counter groups */
 unsigned int reserved_bits:16;
 } PAPI_substrate_info_t;

BUGS

If called before PAPI_library_init() the behavior of the routine is undefined.

SEE ALSO

PAPI_library_init, PAPI_get_opt, PAPI_get_dmem_info, PAPI_get_hardware_info,
PAPI_get_executable_info

- 77 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_get_thr_specific, PAPI_set_thr_specific - Store or retrieve a pointer to a thread specific data
structure

SYNOPSIS

#include <papi.h>
int PAPI_get_thr_specific(int tag, void **ptr);
int PAPI_set_thr_specific(int tag, void *ptr);

DESCRIPTION

In C, PAPI_set_thr_specific will save ptr into an array indexed by tag. PAPI_get_thr_specific will retrieve
the pointer from the array with index tag. There are 2 user available locations and tag can be either
PAPI_USR1_TLS or PAPI_USR2_TLS. The array mentioned above is managed by PAPI and allocated to
each thread which has called PAPI_thread_init. There are no Fortran equivalent functions.

ARGUMENTS

tag -- An identifier, the value of which is either PAPI_USR1_TLS or PAPI_USR2_TLS. This identifier
indicates which of several data structures associated with this thread is to be accessed.
ptr -- A pointer to the memory containing the data structure.

RETURN VALUES

On success, this function returns PAPI_OK.
On error, a negative error value is returned.

ERRORS

PAPI_EINVAL

 The tag argument is out of range.

EXAMPLE

 HighLevelInfo *state = NULL;

 if (retval = PAPI_thread_init(pthread_self) != PAPI_OK)
 handle_error(retval);

 /*
 * Do we have the thread specific data setup yet?
 */
 if ((retval = PAPI_get_thr_specific(PAPI_USR1_TLS, (void *) &state))
 != PAPI_OK || state == NULL) {
 state = (HighLevelInfo *) malloc(sizeof(HighLevelInfo));
 if (state == NULL)

- 78 -

PAPI Programmer’s Reference Version 3.5.0
 return (PAPI_ESYS);

 memset(state, 0, sizeof(HighLevelInfo));
 state->EventSet = PAPI_NULL;

 if ((retval = PAPI_create_eventset(&state->EventSet)) != PAPI_OK)
 return (PAPI_ESYS);

 if ((retval=PAPI_set_thr_specific(PAPI_USR1_TLS, state))!=PAPI_OK)
 return (retval);
 }

BUGS

There are no known bugs in these functions.

SEE ALSO

PAPI_thread_init, .BR PAPI_thread_id (3), PAPI_register_thread

- 79 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_get_virt_cyc - get virtual time counter value in clock cycles
PAPI_get_virt_usec - get virtual time counter values in microseconds

SYNOPSIS

C Interface

#include <papi.h>
long_long PAPI_get_virt_cyc(void);
long_long PAPI_get_virt_usec(void);

Fortran Interface

#include fpapi.h
PAPIF_get_virt_usec(C_LONG_LONG time)
PAPIF_get_virt_cyc(C_LONG_LONG virt_cyc)

DESCRIPTION

Both of these functions return the total number of virtual units from some arbitrary starting point. Virtual
units accrue every time the process is running in user-mode on behalf of the process. Like the real time
counters, these are guaranteed to exist on every platform PAPI supports. However on some platforms, the
resolution can be as bad as 1/Hz as defined by the operating system.

ERRORS

The functions returns PAPI_ECNFLCT if there is no master event set. This will happen if the library has
not been initialized, or for threaded applications, if there has been no thread id function defined by the
PAPI_thread_init function.
For threaded applications, if there has not yet been any thread specific master event created for the current
thread, and if the allocation of such an event set fails, the call will return
PAPI_ENOMEMorPAPI_ESYS.

EXAMPLE

s = PAPI_get_virt_cyc();
your_slow_code();
e = PAPI_get_virt_cyc();
printf("Process has run for cycles: %lld\n",e-s);

BUGS

These functions have no known bugs.

SEE ALSO

PAPI_library_init, PAPI_get_real_usec, PAPI_get_real_cyc, PAPI, PAPIF

- 80 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_get_virt_cyc - get virtual time counter value in clock cycles
PAPI_get_virt_usec - get virtual time counter values in microseconds

SYNOPSIS

C Interface

#include <papi.h>
long_long PAPI_get_virt_cyc(void);
long_long PAPI_get_virt_usec(void);

Fortran Interface

#include fpapi.h
PAPIF_get_virt_usec(C_LONG_LONG time)
PAPIF_get_virt_cyc(C_LONG_LONG virt_cyc)

DESCRIPTION

Both of these functions return the total number of virtual units from some arbitrary starting point. Virtual
units accrue every time the process is running in user-mode on behalf of the process. Like the real time
counters, these are guaranteed to exist on every platform PAPI supports. However on some platforms, the
resolution can be as bad as 1/Hz as defined by the operating system.

ERRORS

The functions returns PAPI_ECNFLCT if there is no master event set. This will happen if the library has
not been initialized, or for threaded applications, if there has been no thread id function defined by the
PAPI_thread_init function.
For threaded applications, if there has not yet been any thread specific master event created for the current
thread, and if the allocation of such an event set fails, the call will return
PAPI_ENOMEMorPAPI_ESYS.

EXAMPLE

s = PAPI_get_virt_cyc();
your_slow_code();
e = PAPI_get_virt_cyc();
printf("Process has run for cycles: %lld\n",e-s);

BUGS

These functions have no known bugs.

SEE ALSO

PAPI_library_init, PAPI_get_real_usec, PAPI_get_real_cyc, PAPI, PAPIF

- 81 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_get_opt - get PAPI library or event set options
PAPI_set_opt - set PAPI library or event set options
PAPIF_get_clockrate - get the clockrate (Fortran only)
PAPIF_get_domain - get the counting domain (Fortran only)
PAPIF_get_granularity - get the counting granularity (Fortran only)
PAPIF_get_preload - get the library preload setting (Fortran only)

SYNOPSIS

C Interface

#include <papi.h>
int PAPI_get_opt(int option, PAPI_option_t *ptr);
int PAPI_set_opt(int option, PAPI_option_t *ptr);

Fortran Interface

#include fpapi.h
PAPIF_get_clockrate(C_INT clockrate)
PAPIF_get_domain(C_INT EventSet, C_INT domain, C_INT mode, C_INT check)
PAPIF_get_granularity(C_INT EventSet, C_INT granularity, C_INT mode,
C_INT check)
PAPIF_get_preload(C_STRING preload, C_INT check)

DESCRIPTION

PAPI_get_opt() and PAPI_set_opt() query or change the options of the PAPI library or a specific event
set created by PAPI_create_eventset. The C interface for these functions passes a pointer to the
PAPI_option_t structure. Not all options require or return information in this structure, and not all options
are implemented for both get and set.
The Fortran interface is a series of calls implementing various subsets of the C interface. Not all options in
C are available in Fortran.
NOTE: Some options, such as PAPI_DOMAIN and PAPI_MULTIPLEX, are also available as separate
entry points in both C and Fortran.
The reader is urged to see the example code in the PAPI distribution for usage of PAPI_get_opt. The file
papi.h contains definitions for the structures unioned in the PAPI_option_t structure.

ARGUMENTS

option -- is an input parameter describing the course of action. Possible values are defined in papi.h and
briefly described in the table below. The Fortran calls are implementations of specific options.
ptr -- is a pointer to a structure that acts as both an input and output parameter. It is defined in papi.h and
below.
EventSet -- input; a reference to an EventSetInfo structure
clockrate -- output; cycle time of this CPU in MHz; *may* be an estimate generated at init time with a
quick timing routine
domain -- output; execution domain for which events are counted
granularity -- output; execution granularity for which events are counted
mode -- input; determines if domain or granularity are default or for the current event set

- 82 -

PAPI Programmer’s Reference Version 3.5.0

preload -- output; environment variable string for preloading libraries

OPTIONS TABLE

Predefined name Explanation

General information requests

PAPI_CLOCKRATE Get clockrate in MHz.

PAPI_MAX_CPUS Get number of CPUs.

PAPI_MAX_HWCTRS Get number of counters.

PAPI_EXEINFO Get Executable addresses for text/data/bss.

PAPI_HWINFO Get information about the hardware.

PAPI_SHLIBINFO Get shared library information used by the program.

PAPI_SUBSTRATEINFO Get the PAPI features the substrate supports

PAPI_LIB_VERSION Get the full PAPI version of the library

PAPI_PRELOAD Get ‘‘LD_PRELOAD’’ environment equivalent.

Defaults for the global library

PAPI_DEFDOM Get/Set default counting domain for newly created event sets.

PAPI_DEFGRN Get/Set default counting granularity.

PAPI_DEBUG Get/Set the PAPI debug state and the debug handler. The available
debug states are defined in papi.h. The debug state is available in ptr-
>debug.level. The debug handler is available in ptr->debug.handler.
For information regarding the behavior of the handler, please see the
man page for PAPI_set_debug.

Multiplexing control

PAPI_MULTIPLEX Get/Set options for multiplexing.

PAPI_MAX_MPX_CTRS Get maximum number of multiplexing counters.

PAPI_DEF_MPX_USEC Get/Set the sampling time slice in microseconds for multiplexing.

Manipulating individual event sets

PAPI_ATTACH Get thread or process id to which event set is attached. Returns TRUE
if currently attached. Set event set specified in ptr->ptr-
>attach.eventset to be attached to thread or process id specified in in
ptr->attach.tid

PAPI_DETACH Get thread or process id to which event set is attached. Returns TRUE
if currently detached. Set event set specified in ptr->ptr-
>attach.eventset to be detached from any thread or process id.

PAPI_DOMAIN Get/Set domain for a single event set. The event set is specified in ptr-
>domain.eventset

PAPI_GRANUL Get/Set granularity for a single event set. The event set is specified in

- 83 -

PAPI Programmer’s Reference Version 3.5.0

ptr->granularity.eventset. Not implemented yet.

Platform specific options

PAPI_DATA_ADDRESS Set data address range to restrict event counting for event set
specified in ptr->addr.eventset. Starting and ending addresses are
specified in ptr->addr.start and ptr->addr.end, respectively. If exact
addresses cannot be instantiated, offsets are returned in ptr-
>addr.start_off and ptr->addr.end_off. Currently implemented on
Itanium only.

PAPI_INSTR_ADDRESS Set instruction address range as described above. Itanium only.

The option_t *ptr structure is defined in papi.h and looks something like the following example from the
source tree. Users should use the definition in papi.h which is in synch with the library used.

typedef union {
 PAPI_preload_option_t preload;
 PAPI_debug_option_t debug;
 PAPI_granularity_option_t granularity;
 PAPI_granularity_option_t defgranularity;
 PAPI_domain_option_t domain;
 PAPI_domain_option_t defdomain;
 PAPI_attach_option_t attach;
 PAPI_multiplex_option_t multiplex;
 PAPI_hw_info_t *hw_info;
 PAPI_shlib_info_t *shlib_info;
 PAPI_exe_info_t *exe_info;
 PAPI_substrate_info_t *sub_info;
 PAPI_overflow_option_t ovf_info;
 PAPI_addr_range_option_t addr;
} PAPI_option_t;

RETURN VALUES

On success, these functions return PAPI_OK. On error, a non-zero error code is returned.

ERRORS

PAPI_EINVAL

 One or more of the arguments is invalid.

PAPI_ENOEVST

 The event set specified does not exist.

PAPI_EISRUN

 The event set is currently counting events.

EXAMPLES

PAPI_option_t options;

if ((num = PAPI_get_opt(PAPI_MAX_HWCTRS,NULL)) <= 0)
 handle_error();

- 84 -

PAPI Programmer’s Reference Version 3.5.0

printf("This machine has %d counters.0,num);

/* Set the domain of this EventSet
 to counter user and kernel modes for this
 process */

memset(&options,0x0,sizeof(options));
options.domain.eventset = EventSet;
options.domain.domain = PAPI_DOM_ALL;
if (PAPI_set_opt(PAPI_DOMAIN, &options) != PAPI_OK)
 handle_error();

BUGS

The granularity functions are not yet implemented. The domain functions are only implemented on some
platforms. There are no known bugs in these functions.

SEE ALSO

PAPI_set_debug, PAPI_set_multiplex, PAPI_set_domain

- 85 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_get_opt - get PAPI library or event set options
PAPI_set_opt - set PAPI library or event set options
PAPIF_get_clockrate - get the clockrate (Fortran only)
PAPIF_get_domain - get the counting domain (Fortran only)
PAPIF_get_granularity - get the counting granularity (Fortran only)
PAPIF_get_preload - get the library preload setting (Fortran only)

SYNOPSIS

C Interface

#include <papi.h>
int PAPI_get_opt(int option, PAPI_option_t *ptr);
int PAPI_set_opt(int option, PAPI_option_t *ptr);

Fortran Interface

#include fpapi.h
PAPIF_get_clockrate(C_INT clockrate)
PAPIF_get_domain(C_INT EventSet, C_INT domain, C_INT mode, C_INT check)
PAPIF_get_granularity(C_INT EventSet, C_INT granularity, C_INT mode,
C_INT check)
PAPIF_get_preload(C_STRING preload, C_INT check)

DESCRIPTION

PAPI_get_opt() and PAPI_set_opt() query or change the options of the PAPI library or a specific event
set created by PAPI_create_eventset. The C interface for these functions passes a pointer to the
PAPI_option_t structure. Not all options require or return information in this structure, and not all options
are implemented for both get and set.
The Fortran interface is a series of calls implementing various subsets of the C interface. Not all options in
C are available in Fortran.
NOTE: Some options, such as PAPI_DOMAIN and PAPI_MULTIPLEX, are also available as separate
entry points in both C and Fortran.
The reader is urged to see the example code in the PAPI distribution for usage of PAPI_get_opt. The file
papi.h contains definitions for the structures unioned in the PAPI_option_t structure.

ARGUMENTS

option -- is an input parameter describing the course of action. Possible values are defined in papi.h and
briefly described in the table below. The Fortran calls are implementations of specific options.
ptr -- is a pointer to a structure that acts as both an input and output parameter. It is defined in papi.h and
below.
EventSet -- input; a reference to an EventSetInfo structure
clockrate -- output; cycle time of this CPU in MHz; *may* be an estimate generated at init time with a
quick timing routine
domain -- output; execution domain for which events are counted
granularity -- output; execution granularity for which events are counted
mode -- input; determines if domain or granularity are default or for the current event set

- 86 -

PAPI Programmer’s Reference Version 3.5.0

preload -- output; environment variable string for preloading libraries

OPTIONS TABLE

Predefined name Explanation

General information requests

PAPI_CLOCKRATE Get clockrate in MHz.

PAPI_MAX_CPUS Get number of CPUs.

PAPI_MAX_HWCTRS Get number of counters.

PAPI_EXEINFO Get Executable addresses for text/data/bss.

PAPI_HWINFO Get information about the hardware.

PAPI_SHLIBINFO Get shared library information used by the program.

PAPI_SUBSTRATEINFO Get the PAPI features the substrate supports

PAPI_LIB_VERSION Get the full PAPI version of the library

PAPI_PRELOAD Get ‘‘LD_PRELOAD’’ environment equivalent.

Defaults for the global library

PAPI_DEFDOM Get/Set default counting domain for newly created event sets.

PAPI_DEFGRN Get/Set default counting granularity.

PAPI_DEBUG Get/Set the PAPI debug state and the debug handler. The available
debug states are defined in papi.h. The debug state is available in ptr-
>debug.level. The debug handler is available in ptr->debug.handler.
For information regarding the behavior of the handler, please see the
man page for PAPI_set_debug.

Multiplexing control

PAPI_MULTIPLEX Get/Set options for multiplexing.

PAPI_MAX_MPX_CTRS Get maximum number of multiplexing counters.

PAPI_DEF_MPX_USEC Get/Set the sampling time slice in microseconds for multiplexing.

Manipulating individual event sets

PAPI_ATTACH Get thread or process id to which event set is attached. Returns TRUE
if currently attached. Set event set specified in ptr->ptr-
>attach.eventset to be attached to thread or process id specified in in
ptr->attach.tid

PAPI_DETACH Get thread or process id to which event set is attached. Returns TRUE
if currently detached. Set event set specified in ptr->ptr-
>attach.eventset to be detached from any thread or process id.

PAPI_DOMAIN Get/Set domain for a single event set. The event set is specified in ptr-
>domain.eventset

PAPI_GRANUL Get/Set granularity for a single event set. The event set is specified in

- 87 -

PAPI Programmer’s Reference Version 3.5.0

ptr->granularity.eventset. Not implemented yet.

Platform specific options

PAPI_DATA_ADDRESS Set data address range to restrict event counting for event set
specified in ptr->addr.eventset. Starting and ending addresses are
specified in ptr->addr.start and ptr->addr.end, respectively. If exact
addresses cannot be instantiated, offsets are returned in ptr-
>addr.start_off and ptr->addr.end_off. Currently implemented on
Itanium only.

PAPI_INSTR_ADDRESS Set instruction address range as described above. Itanium only.

The option_t *ptr structure is defined in papi.h and looks something like the following example from the
source tree. Users should use the definition in papi.h which is in synch with the library used.

typedef union {
 PAPI_preload_option_t preload;
 PAPI_debug_option_t debug;
 PAPI_granularity_option_t granularity;
 PAPI_granularity_option_t defgranularity;
 PAPI_domain_option_t domain;
 PAPI_domain_option_t defdomain;
 PAPI_attach_option_t attach;
 PAPI_multiplex_option_t multiplex;
 PAPI_hw_info_t *hw_info;
 PAPI_shlib_info_t *shlib_info;
 PAPI_exe_info_t *exe_info;
 PAPI_substrate_info_t *sub_info;
 PAPI_overflow_option_t ovf_info;
 PAPI_addr_range_option_t addr;
} PAPI_option_t;

RETURN VALUES

On success, these functions return PAPI_OK. On error, a non-zero error code is returned.

ERRORS

PAPI_EINVAL

 One or more of the arguments is invalid.

PAPI_ENOEVST

 The event set specified does not exist.

PAPI_EISRUN

 The event set is currently counting events.

EXAMPLES

PAPI_option_t options;

if ((num = PAPI_get_opt(PAPI_MAX_HWCTRS,NULL)) <= 0)
 handle_error();

- 88 -

PAPI Programmer’s Reference Version 3.5.0

printf("This machine has %d counters.0,num);

/* Set the domain of this EventSet
 to counter user and kernel modes for this
 process */

memset(&options,0x0,sizeof(options));
options.domain.eventset = EventSet;
options.domain.domain = PAPI_DOM_ALL;
if (PAPI_set_opt(PAPI_DOMAIN, &options) != PAPI_OK)
 handle_error();

BUGS

The granularity functions are not yet implemented. The domain functions are only implemented on some
platforms. There are no known bugs in these functions.

SEE ALSO

PAPI_set_debug, PAPI_set_multiplex, PAPI_set_domain

- 89 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_get_executable_info - get the executable’s address space info

SYNOPSIS

C Interface

#include <papi.h>
const PAPI_exe_info_t *PAPI_get_executable_info(void);

Fortran Interface

#include fpapi.h
PAPIF_get_exe_info(C_STRING fullname, C_STRING name,
 C_LONG_LONG text_start, C_LONG_LONG text_end,
 C_LONG_LONG data_start, C_LONG_LONG data_end,
 C_LONG_LONG bss_start, C_LONG_LONG bss_end, C_INT check)

DESCRIPTION

In C, this function returns a pointer to a structure containing information about the current program. In
Fortran, the fields of the structure are returned explicitly.

ARGUMENTS

The following arguments are implicit in the structure returned by the C function, or explicitly returned by
Fortran.
fullname -- fully qualified path + filename of the executable
name -- filename of the executable with no path information
text_start, text_end -- Start and End addresses of program text segment
data_start, data_end -- Start and End addresses of program data segment
bss_start, bss_end -- Start and End addresses of program bss segment

RETURN VALUES

On success, the C function returns a non-NULL pointer, and the Fortran function returns PAPI_OK.
On error, NULL is returned by the C function, and a non-zero error code is returned by the Fortran
function.

ERRORS

PAPI_EINVAL

 One or more of the arguments is invalid.

EXAMPLE

const PAPI_exe_info_t *prginfo = NULL;

- 90 -

PAPI Programmer’s Reference Version 3.5.0

if ((prginfo = PAPI_get_executable_info()) == NULL)
 exit(1);

printf("Path+Program: %s0,exeinfo->fullname);
printf("Program: %s0,exeinfo->address_info.name);
printf("Text start: %p, Text end: %p0,exeinfo->address_info.text_start,exeinfo-
>address_info.text_end);
printf("Data start: %p, Data end: %p0,exeinfo->address_info.data_start,exeinfo-
>address_info.data_end);
printf("Bss start: %p, Bss end: %p0,exeinfo->address_info.bss_start,exeinfo-
>address_info.bss_end);

DATA STRUCTURES

 typedef struct _papi_address_map {
 char name[PAPI_HUGE_STR_LEN];
 caddr_t text_start; /* Start address of program text
segment */
 caddr_t text_end; /* End address of program text segment
*/
 caddr_t data_start; /* Start address of program data
segment */
 caddr_t data_end; /* End address of program data segment
*/
 caddr_t bss_start; /* Start address of program bss segment
*/
 caddr_t bss_end; /* End address of program bss segment */
 } PAPI_address_map_t;

 typedef struct _papi_program_info {
 char fullname[PAPI_HUGE_STR_LEN]; /* path+name */
 PAPI_address_map_t address_info;
 } PAPI_exe_info_t;

BUGS

Only the text_start and text_end fields are filled on every architecture.

SEE ALSO

PAPI_get_hardware_info, PAPI_get_opt

- 91 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_get_opt - get PAPI library or event set options
PAPI_set_opt - set PAPI library or event set options
PAPIF_get_clockrate - get the clockrate (Fortran only)
PAPIF_get_domain - get the counting domain (Fortran only)
PAPIF_get_granularity - get the counting granularity (Fortran only)
PAPIF_get_preload - get the library preload setting (Fortran only)

SYNOPSIS

C Interface

#include <papi.h>
int PAPI_get_opt(int option, PAPI_option_t *ptr);
int PAPI_set_opt(int option, PAPI_option_t *ptr);

Fortran Interface

#include fpapi.h
PAPIF_get_clockrate(C_INT clockrate)
PAPIF_get_domain(C_INT EventSet, C_INT domain, C_INT mode, C_INT check)
PAPIF_get_granularity(C_INT EventSet, C_INT granularity, C_INT mode,
C_INT check)
PAPIF_get_preload(C_STRING preload, C_INT check)

DESCRIPTION

PAPI_get_opt() and PAPI_set_opt() query or change the options of the PAPI library or a specific event
set created by PAPI_create_eventset. The C interface for these functions passes a pointer to the
PAPI_option_t structure. Not all options require or return information in this structure, and not all options
are implemented for both get and set.
The Fortran interface is a series of calls implementing various subsets of the C interface. Not all options in
C are available in Fortran.
NOTE: Some options, such as PAPI_DOMAIN and PAPI_MULTIPLEX, are also available as separate
entry points in both C and Fortran.
The reader is urged to see the example code in the PAPI distribution for usage of PAPI_get_opt. The file
papi.h contains definitions for the structures unioned in the PAPI_option_t structure.

ARGUMENTS

option -- is an input parameter describing the course of action. Possible values are defined in papi.h and
briefly described in the table below. The Fortran calls are implementations of specific options.
ptr -- is a pointer to a structure that acts as both an input and output parameter. It is defined in papi.h and
below.
EventSet -- input; a reference to an EventSetInfo structure
clockrate -- output; cycle time of this CPU in MHz; *may* be an estimate generated at init time with a
quick timing routine
domain -- output; execution domain for which events are counted
granularity -- output; execution granularity for which events are counted
mode -- input; determines if domain or granularity are default or for the current event set

- 92 -

PAPI Programmer’s Reference Version 3.5.0

preload -- output; environment variable string for preloading libraries

OPTIONS TABLE

Predefined name Explanation

General information requests

PAPI_CLOCKRATE Get clockrate in MHz.

PAPI_MAX_CPUS Get number of CPUs.

PAPI_MAX_HWCTRS Get number of counters.

PAPI_EXEINFO Get Executable addresses for text/data/bss.

PAPI_HWINFO Get information about the hardware.

PAPI_SHLIBINFO Get shared library information used by the program.

PAPI_SUBSTRATEINFO Get the PAPI features the substrate supports

PAPI_LIB_VERSION Get the full PAPI version of the library

PAPI_PRELOAD Get ‘‘LD_PRELOAD’’ environment equivalent.

Defaults for the global library

PAPI_DEFDOM Get/Set default counting domain for newly created event sets.

PAPI_DEFGRN Get/Set default counting granularity.

PAPI_DEBUG Get/Set the PAPI debug state and the debug handler. The available
debug states are defined in papi.h. The debug state is available in ptr-
>debug.level. The debug handler is available in ptr->debug.handler.
For information regarding the behavior of the handler, please see the
man page for PAPI_set_debug.

Multiplexing control

PAPI_MULTIPLEX Get/Set options for multiplexing.

PAPI_MAX_MPX_CTRS Get maximum number of multiplexing counters.

PAPI_DEF_MPX_USEC Get/Set the sampling time slice in microseconds for multiplexing.

Manipulating individual event sets

PAPI_ATTACH Get thread or process id to which event set is attached. Returns TRUE
if currently attached. Set event set specified in ptr->ptr-
>attach.eventset to be attached to thread or process id specified in in
ptr->attach.tid

PAPI_DETACH Get thread or process id to which event set is attached. Returns TRUE
if currently detached. Set event set specified in ptr->ptr-
>attach.eventset to be detached from any thread or process id.

PAPI_DOMAIN Get/Set domain for a single event set. The event set is specified in ptr-
>domain.eventset

PAPI_GRANUL Get/Set granularity for a single event set. The event set is specified in

- 93 -

PAPI Programmer’s Reference Version 3.5.0

ptr->granularity.eventset. Not implemented yet.

Platform specific options

PAPI_DATA_ADDRESS Set data address range to restrict event counting for event set
specified in ptr->addr.eventset. Starting and ending addresses are
specified in ptr->addr.start and ptr->addr.end, respectively. If exact
addresses cannot be instantiated, offsets are returned in ptr-
>addr.start_off and ptr->addr.end_off. Currently implemented on
Itanium only.

PAPI_INSTR_ADDRESS Set instruction address range as described above. Itanium only.

The option_t *ptr structure is defined in papi.h and looks something like the following example from the
source tree. Users should use the definition in papi.h which is in synch with the library used.

typedef union {
 PAPI_preload_option_t preload;
 PAPI_debug_option_t debug;
 PAPI_granularity_option_t granularity;
 PAPI_granularity_option_t defgranularity;
 PAPI_domain_option_t domain;
 PAPI_domain_option_t defdomain;
 PAPI_attach_option_t attach;
 PAPI_multiplex_option_t multiplex;
 PAPI_hw_info_t *hw_info;
 PAPI_shlib_info_t *shlib_info;
 PAPI_exe_info_t *exe_info;
 PAPI_substrate_info_t *sub_info;
 PAPI_overflow_option_t ovf_info;
 PAPI_addr_range_option_t addr;
} PAPI_option_t;

RETURN VALUES

On success, these functions return PAPI_OK. On error, a non-zero error code is returned.

ERRORS

PAPI_EINVAL

 One or more of the arguments is invalid.

PAPI_ENOEVST

 The event set specified does not exist.

PAPI_EISRUN

 The event set is currently counting events.

EXAMPLES

PAPI_option_t options;

if ((num = PAPI_get_opt(PAPI_MAX_HWCTRS,NULL)) <= 0)
 handle_error();

- 94 -

PAPI Programmer’s Reference Version 3.5.0

printf("This machine has %d counters.0,num);

/* Set the domain of this EventSet
 to counter user and kernel modes for this
 process */

memset(&options,0x0,sizeof(options));
options.domain.eventset = EventSet;
options.domain.domain = PAPI_DOM_ALL;
if (PAPI_set_opt(PAPI_DOMAIN, &options) != PAPI_OK)
 handle_error();

BUGS

The granularity functions are not yet implemented. The domain functions are only implemented on some
platforms. There are no known bugs in these functions.

SEE ALSO

PAPI_set_debug, PAPI_set_multiplex, PAPI_set_domain

- 95 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_get_opt - get PAPI library or event set options
PAPI_set_opt - set PAPI library or event set options
PAPIF_get_clockrate - get the clockrate (Fortran only)
PAPIF_get_domain - get the counting domain (Fortran only)
PAPIF_get_granularity - get the counting granularity (Fortran only)
PAPIF_get_preload - get the library preload setting (Fortran only)

SYNOPSIS

C Interface

#include <papi.h>
int PAPI_get_opt(int option, PAPI_option_t *ptr);
int PAPI_set_opt(int option, PAPI_option_t *ptr);

Fortran Interface

#include fpapi.h
PAPIF_get_clockrate(C_INT clockrate)
PAPIF_get_domain(C_INT EventSet, C_INT domain, C_INT mode, C_INT check)
PAPIF_get_granularity(C_INT EventSet, C_INT granularity, C_INT mode,
C_INT check)
PAPIF_get_preload(C_STRING preload, C_INT check)

DESCRIPTION

PAPI_get_opt() and PAPI_set_opt() query or change the options of the PAPI library or a specific event
set created by PAPI_create_eventset. The C interface for these functions passes a pointer to the
PAPI_option_t structure. Not all options require or return information in this structure, and not all options
are implemented for both get and set.
The Fortran interface is a series of calls implementing various subsets of the C interface. Not all options in
C are available in Fortran.
NOTE: Some options, such as PAPI_DOMAIN and PAPI_MULTIPLEX, are also available as separate
entry points in both C and Fortran.
The reader is urged to see the example code in the PAPI distribution for usage of PAPI_get_opt. The file
papi.h contains definitions for the structures unioned in the PAPI_option_t structure.

ARGUMENTS

option -- is an input parameter describing the course of action. Possible values are defined in papi.h and
briefly described in the table below. The Fortran calls are implementations of specific options.
ptr -- is a pointer to a structure that acts as both an input and output parameter. It is defined in papi.h and
below.
EventSet -- input; a reference to an EventSetInfo structure
clockrate -- output; cycle time of this CPU in MHz; *may* be an estimate generated at init time with a
quick timing routine
domain -- output; execution domain for which events are counted
granularity -- output; execution granularity for which events are counted
mode -- input; determines if domain or granularity are default or for the current event set

- 96 -

PAPI Programmer’s Reference Version 3.5.0

preload -- output; environment variable string for preloading libraries

OPTIONS TABLE

Predefined name Explanation

General information requests

PAPI_CLOCKRATE Get clockrate in MHz.

PAPI_MAX_CPUS Get number of CPUs.

PAPI_MAX_HWCTRS Get number of counters.

PAPI_EXEINFO Get Executable addresses for text/data/bss.

PAPI_HWINFO Get information about the hardware.

PAPI_SHLIBINFO Get shared library information used by the program.

PAPI_SUBSTRATEINFO Get the PAPI features the substrate supports

PAPI_LIB_VERSION Get the full PAPI version of the library

PAPI_PRELOAD Get ‘‘LD_PRELOAD’’ environment equivalent.

Defaults for the global library

PAPI_DEFDOM Get/Set default counting domain for newly created event sets.

PAPI_DEFGRN Get/Set default counting granularity.

PAPI_DEBUG Get/Set the PAPI debug state and the debug handler. The available
debug states are defined in papi.h. The debug state is available in ptr-
>debug.level. The debug handler is available in ptr->debug.handler.
For information regarding the behavior of the handler, please see the
man page for PAPI_set_debug.

Multiplexing control

PAPI_MULTIPLEX Get/Set options for multiplexing.

PAPI_MAX_MPX_CTRS Get maximum number of multiplexing counters.

PAPI_DEF_MPX_USEC Get/Set the sampling time slice in microseconds for multiplexing.

Manipulating individual event sets

PAPI_ATTACH Get thread or process id to which event set is attached. Returns TRUE
if currently attached. Set event set specified in ptr->ptr-
>attach.eventset to be attached to thread or process id specified in in
ptr->attach.tid

PAPI_DETACH Get thread or process id to which event set is attached. Returns TRUE
if currently detached. Set event set specified in ptr->ptr-
>attach.eventset to be detached from any thread or process id.

PAPI_DOMAIN Get/Set domain for a single event set. The event set is specified in ptr-
>domain.eventset

PAPI_GRANUL Get/Set granularity for a single event set. The event set is specified in

- 97 -

PAPI Programmer’s Reference Version 3.5.0

ptr->granularity.eventset. Not implemented yet.

Platform specific options

PAPI_DATA_ADDRESS Set data address range to restrict event counting for event set
specified in ptr->addr.eventset. Starting and ending addresses are
specified in ptr->addr.start and ptr->addr.end, respectively. If exact
addresses cannot be instantiated, offsets are returned in ptr-
>addr.start_off and ptr->addr.end_off. Currently implemented on
Itanium only.

PAPI_INSTR_ADDRESS Set instruction address range as described above. Itanium only.

The option_t *ptr structure is defined in papi.h and looks something like the following example from the
source tree. Users should use the definition in papi.h which is in synch with the library used.

typedef union {
 PAPI_preload_option_t preload;
 PAPI_debug_option_t debug;
 PAPI_granularity_option_t granularity;
 PAPI_granularity_option_t defgranularity;
 PAPI_domain_option_t domain;
 PAPI_domain_option_t defdomain;
 PAPI_attach_option_t attach;
 PAPI_multiplex_option_t multiplex;
 PAPI_hw_info_t *hw_info;
 PAPI_shlib_info_t *shlib_info;
 PAPI_exe_info_t *exe_info;
 PAPI_substrate_info_t *sub_info;
 PAPI_overflow_option_t ovf_info;
 PAPI_addr_range_option_t addr;
} PAPI_option_t;

RETURN VALUES

On success, these functions return PAPI_OK. On error, a non-zero error code is returned.

ERRORS

PAPI_EINVAL

 One or more of the arguments is invalid.

PAPI_ENOEVST

 The event set specified does not exist.

PAPI_EISRUN

 The event set is currently counting events.

EXAMPLES

PAPI_option_t options;

if ((num = PAPI_get_opt(PAPI_MAX_HWCTRS,NULL)) <= 0)
 handle_error();

- 98 -

PAPI Programmer’s Reference Version 3.5.0

printf("This machine has %d counters.0,num);

/* Set the domain of this EventSet
 to counter user and kernel modes for this
 process */

memset(&options,0x0,sizeof(options));
options.domain.eventset = EventSet;
options.domain.domain = PAPI_DOM_ALL;
if (PAPI_set_opt(PAPI_DOMAIN, &options) != PAPI_OK)
 handle_error();

BUGS

The granularity functions are not yet implemented. The domain functions are only implemented on some
platforms. There are no known bugs in these functions.

SEE ALSO

PAPI_set_debug, PAPI_set_multiplex, PAPI_set_domain

- 99 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_ipc - PAPI High level: Simplified call to get instructions per cycle, real and processor time

SYNOPSIS

C Interface

#include <papi.h>
int PAPI_ipc (float *rtime, float *ptime, long_long *ins, float *ipc);

Fortran Interface

#include fpapi.h
PAPIF_ipc(C_FLOAT real_time, C_FLOAT proc_time, C_LONG_LONG ins,
C_FLOAT ipc, C_INT check)

DESCRIPTION

The first call to PAPI_ipc() will initialize the PAPI High Level interface, set up the counters to monitor
PAPI_TOT_INS and PAPI_TOT_CYC events and start the counters. Subsequent calls will read the
counters and return total real time, total process time, total instructions since the start of the measurement
and the instructions per cycle rate since latest call to PAPI_ipc(). A call to PAPI_stop_counters() will
stop the counters from running and then calls such as PAPI_start_counters() can safely be used.

ARGUMENTS

*rtime -- total realtime since the first PAPI_ipc() call
*ptime -- total process time since the first PAPI_ipc() call
*ins -- total instructions since the first call
*ipc -- instructions per cycle achieved since the previous call

RETURN VALUES

On success, this function returns PAPI_OK.
On error, a non-zero error code is returned.

ERRORS

In addition to the possible errors returned by the various PAPI low level calls, the following errors could
also be returned:
PAPI_EINVAL

 The counters were already started by something other than: PAPI_ipc()

PAPI_ENOEVNT

 The total instructions or total cycles event does not exist.

PAPI_ENOMEM

 Insufficient memory to complete the operation.
PAPI_ipc() may be called by: the user application program

- 100 -

PAPI Programmer’s Reference Version 3.5.0

PAPI_ipc() contains calls to:

 PAPI_perror()
 PAPI_library_init()
 PAPI_get_hardware_info()
 PAPI_create_eventset()
 PAPI_add_event()
 PAPI_start()
 PAPI_get_real_usec()
 PAPI_accum()
 PAPI_shutdown()

BUGS

This function has no known bugs.

SEE ALSO

PAPI_stop_counters , PAPI_set_opt , PAPI_flips , PAPI_flops

- 101 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_library_init - initialize the PAPI library.
PAPI_is_initialized - check for initialization.

SYNOPSIS

C Interface

#include <papi.h>
int PAPI_library_init(int version);
int PAPI_is_initialized(void);

Fortran Interface

#include fpapi.h
PAPIF_library_init(C_INT check)
PAPIF_is_initialized(C_INT check)

DESCRIPTION

PAPI_library_init() initializes the PAPI library. It must be called before any low level PAPI functions
can be used. If your application is making use of threads PAPI_thread_init must also be called prior to
making any calls to the library other than PAPI_library_init().
PAPI_is_initialized() returns the status of the PAPI library. The PAPI library can be in one of three states,
as described under RETURN VALUES.

ARGUMENTS

version -- upon initialization, PAPI checks the argument against the internal value of
PAPI_VER_CURRENT when the library was compiled. This guards against portability problems when
updating the PAPI shared libraries on your system.

RETURN VALUES

PAPI_library_init : On success, this function returns PAPI_VER_CURRENT . A positive return code
other than PAPI_VER_CURRENT indicates a library version mis-match. A negative error code indicates
an initialization error.
PAPI_is_initialized :
PAPI_NOT_INITED
-- PAPI has not been initialized
PAPI_LOW_LEVEL_INITED
-- PAPI_library_init has been called
PAPI_HIGH_LEVEL_INITED
-- a high level PAPI function has been called

ERRORS

PAPI_is_initialized never returns an error.

- 102 -

PAPI Programmer’s Reference Version 3.5.0

PAPI_library_init can return the following:
PAPI_EINVAL

 papi.h is different from the version used to compile the PAPI library.

PAPI_ENOMEM

 Insufficient memory to complete the operation.

PAPI_ESBSTR

 This substrate does not support the underlying hardware.

PAPI_ESYS

 A system or C library call failed inside PAPI, see the errno variable.

EXAMPLES

int retval;

/* Initialize the library */

retval = PAPI_library_init(PAPI_VER_CURRENT);

if (retval != PAPI_VER_CURRENT && retval > 0) {
 fprintf(stderr,"PAPI library version mismatch!\n");
 exit(1); }

if (retval < 0)
 handle_error(retval);

retval = PAPI_is_initialized();

if (retval != PAPI_LOW_LEVEL_INITED)
 handle_error(retval);

BUGS

If you don’t call this before using any of the low level PAPI calls, your application could core dump.

SEE ALSO

PAPI_thread_init, PAPI

- 103 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_library_init - initialize the PAPI library.
PAPI_is_initialized - check for initialization.

SYNOPSIS

C Interface

#include <papi.h>
int PAPI_library_init(int version);
int PAPI_is_initialized(void);

Fortran Interface

#include fpapi.h
PAPIF_library_init(C_INT check)
PAPIF_is_initialized(C_INT check)

DESCRIPTION

PAPI_library_init() initializes the PAPI library. It must be called before any low level PAPI functions
can be used. If your application is making use of threads PAPI_thread_init must also be called prior to
making any calls to the library other than PAPI_library_init().
PAPI_is_initialized() returns the status of the PAPI library. The PAPI library can be in one of three states,
as described under RETURN VALUES.

ARGUMENTS

version -- upon initialization, PAPI checks the argument against the internal value of
PAPI_VER_CURRENT when the library was compiled. This guards against portability problems when
updating the PAPI shared libraries on your system.

RETURN VALUES

PAPI_library_init : On success, this function returns PAPI_VER_CURRENT . A positive return code
other than PAPI_VER_CURRENT indicates a library version mis-match. A negative error code indicates
an initialization error.
PAPI_is_initialized :
PAPI_NOT_INITED
-- PAPI has not been initialized
PAPI_LOW_LEVEL_INITED
-- PAPI_library_init has been called
PAPI_HIGH_LEVEL_INITED
-- a high level PAPI function has been called

ERRORS

PAPI_is_initialized never returns an error.

- 104 -

PAPI Programmer’s Reference Version 3.5.0

PAPI_library_init can return the following:
PAPI_EINVAL

 papi.h is different from the version used to compile the PAPI library.

PAPI_ENOMEM

 Insufficient memory to complete the operation.

PAPI_ESBSTR

 This substrate does not support the underlying hardware.

PAPI_ESYS

 A system or C library call failed inside PAPI, see the errno variable.

EXAMPLES

int retval;

/* Initialize the library */

retval = PAPI_library_init(PAPI_VER_CURRENT);

if (retval != PAPI_VER_CURRENT && retval > 0) {
 fprintf(stderr,"PAPI library version mismatch!\n");
 exit(1); }

if (retval < 0)
 handle_error(retval);

retval = PAPI_is_initialized();

if (retval != PAPI_LOW_LEVEL_INITED)
 handle_error(retval);

BUGS

If you don’t call this before using any of the low level PAPI calls, your application could core dump.

SEE ALSO

PAPI_thread_init, PAPI

- 105 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_list_events - list the events in an event set

SYNOPSIS

C Interface

#include papi.h
int PAPI_list_events(int EventSet, int *Events, int *number);

Fortran Interface

#include fpapi.h
PAPIF_list_events(C_INT EventSet, C_INT(*) Events, C_INT number, C_INT
check)

DESCRIPTION

PAPI_list_events() decomposes an event set into the hardware events it contains.
This call assumes an initialized PAPI library and a successfully added event set.

ARGUMENTS

EventSet -- An integer handle for a PAPI event set as created by PAPI_create_eventset.
*Events -- An array of codes for events, such as PAPI_INT_INS. No more than *number codes will be
stored into the array.
*number -- On input the variable determines the size of the Events array. On output the variable contains
the number of counters in the event set.
Note that if the given array Events is too short to hold all the counters in the event set the *number variable
will be greater than the actually stored number of counter codes.

RETURN VALUES

PAPI_OK

 The call returned successfully.

PAPI_EINVAL

 One or more of the arguments is invalid.

PAPI_ENOEVST

 The EventSet specified does not exist.

EXAMPLES

 /* Convert an event name to an event code */
 if (PAPI_event_name_to_code("PAPI_TOT_INS",&EventCode) != PAPI_OK)
 exit(1);

- 106 -

PAPI Programmer’s Reference Version 3.5.0
 /* Add Total Instructions Executed to our EventSet */
 if (PAPI_add_event(EventSet, EventCode) != PAPI_OK)
 exit(1);

 /* Convert a second event name to an event code */
 if (PAPI_event_name_to_code("PAPI_L1_LDM",&EventCode) != PAPI_OK)
 exit(1);

 /* Add L1 Load Misses to our EventSet */
 if (PAPI_add_event(EventSet, EventCode) != PAPI_OK)
 exit(1);

 /* List the events in our EventSet */
 number = 4;
 if(PAPI_list_events(EventSet, Events, &number);
 exit(1);

 if(number != 2)
 exit(1);

BUGS

This function has no known bugs.

SEE ALSO

PAPI_event_name_to_code, PAPI_add_event, PAPI_create_eventset, PAPI_event_code_to_name, PAPI,

- 107 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_list_threads - list the registered thread ids

SYNOPSIS

C Interface

#include <papi.h>
int PAPI_list_threads(PAPI_thread_id_t *id, int *number);

Fortran Interface

<none>

DESCRIPTION

PAPI_list_threads() returns to the caller a list of all thread ID’s known to PAPI.
This call assumes an initialized PAPI library.

ARGUMENTS

*id -- A pointer to a preallocated array. This may be NULL to only return a count of threads. No more than
*number codes will be stored in the array.
*number -- An input and output parameter, input specifies the number of allocated elements in *id (if non-
NULL) and output specifies the number of threads.

RETURN VALUES

PAPI_OK

 The call returned successfully.

PAPI_EINVAL

 One or more of the arguments is invalid.

EXAMPLES

/* Reserved for example usage */

BUGS

This function has no known bugs.

SEE ALSO

PAPI_thread_init, PAPI_thread_id, PAPI_register_thread, PAPI_unregister_thread,
PAPI_get_thr_specific, PAPI_set_thr_specific, PAPI

- 108 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_lock - Lock one of two mutex variables defined in papi.h
PAPI_unlock - Unlock one of the mutex variables defined in papi.h

SYNOPSIS

C Interface

#include <papi.h>
void PAPI_lock(intlock);
void PAPI_unlock(intlock);

Fortran Interface

#include fpapi.h
PAPIF_lock(C_INT lock)
PAPIF_unlock(C_INT lock)

DESCRIPTION

PAPI_lock() Grabs access to one of the two PAPI mutex variables. This function is provided to the user to
have a platform independent call to (hopefully) efficiently implemented mutex.
PAPI_unlock() unlocks the mutex acquired by a call to PAPI_lock.

ARGUMENT

lock -- an integer value specifying one of the two user locks: PAPI_USR1_LOCK or
PAPI_USR2_LOCK

RETURN VALUES

There are no return values for these calls. Upon return from PAPI_lock the current thread has acquired
exclusive access to the specified PAPI mutex.

BUGS

These functions have no known bugs.

SEE ALSO

PAPI_thread_init

- 109 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_multiplex_init - initialize multiplex support in the PAPI library

SYNOPSIS

C Interface

#include <papi.h>
int PAPI_multiplex_init (void);

Fortran Interface

#include fpapi.h
PAPIF_multiplex_init(C_INT check)

DESCRIPTION

PAPI_multiplex_init enables and initializes multiplex support in the PAPI library. Multiplexing allows a
user to count more events than total physical counters by time sharing the existing counters at some loss in
precision. Applications that make no use of multiplexing do not need to call this routine.

RETURN VALUES

This function always returns PAPI_OK.

ERRORS

No errors are reported.

EXAMPLES

retval = PAPI_multiplex_init();

BUGS

This function has no known bugs.

SEE ALSO

PAPI_set_multiplex, PAPI_get_multiplex

- 110 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_num_events - return the number of events in an event set

SYNOPSIS

C Interface

#include <papi.h>
int PAPI_num_events(int EventSet);

Fortran Interface

#include fpapi.h
PAPIF_num_events(C_INT EventSet, C_INT count)

DESCRIPTION

PAPI_num_events() returns the number of preset events contained in an event set. The event set should
be created by PAPI_create_eventset.

ARGUMENTS

EventSet -- an integer handle for a PAPI event set as created by PAPI_create_eventset
*count -- On output the variable contains the number of events in the event set.

RETURN VALUES

On success, this function returns the positive number of events in the event set. On error, a non-zero error
code is returned.

ERRORS

PAPI_EINVAL

 The event count is zero; only if code is compiled with debug enabled.

PAPI_ENOEVST

 The EventSet specified does not exist.

EXAMPLES

 /* Count the events in our EventSet */
 printf("%d events found in EventSet.0, PAPI_num_events(EventSet));

- 111 -

PAPI Programmer’s Reference Version 3.5.0

BUGS

This function has no known bugs.

SEE ALSO

PAPI_add_event, PAPI_create_eventset, PAPI, PAPIF

- 112 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_num_counters - PAPI High Level: return the number of hardware counters available on the system

SYNOPSIS

C Interface

#include <papi.h>
int PAPI_num_counters(void);

Fortran Interface

#include fpapi.h
PAPIF_num_counters(C_INT number)

DESCRIPTION

PAPI_num_counters() returns the optimal length of the values array for the high level functions. This
value corresponds to the number of hardware counters supported by the current substrate.
PAPI_num_counters() initializes the library to PAPI_HIGH_LEVEL_INITED if necessary.

RETURN VALUES

On success, this function returns the number of hardware counters available.
On error, a negative error code is returned.

ERRORS

PAPI_EINVAL

 papi.h is different from the version used to compile the PAPI library.

PAPI_ENOMEM

 Insufficient memory to complete the operation.

PAPI_ESYS

 A system or C library call failed inside PAPI, see the errno variable.

EXAMPLES

 int num_hwcntrs;
 /* The installation does not support PAPI */
 if ((num_hwcntrs = PAPI_num_counters()) < 0)
 handle_error(1);

 /* The installation supports PAPI, but has no counters */
 if ((num_hwcntrs = PAPI_num_counters()) == 0)
 fprintf(stderr,"Info:: This machine does not provide hardware counters.0);

- 113 -

PAPI Programmer’s Reference Version 3.5.0

BUGS

If you don’t call this function, your application could core dump.

SEE ALSO

PAPI, PAPIF

- 114 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_num_hwctrs - return the number of hardware counters

SYNOPSIS

C Interface

#include <papi.h>
int PAPI_num_hwctrs();

Fortran Interface

#include fpapi.h
PAPIF_num_hwctrs(C_INT num)

DESCRIPTION

PAPI_num_hwctrs() returns the number of physical hardware counters present in the processor. This
count does not include any special purpose registers or performance hardware. PAPI_library_init must be
called in order for this function to return anything greater than 0.

ARGUMENTS

This function takes no arguments.

RETURN VALUES

On success, this function returns a value greater than zero.
A zero result usually means the library has not been initialized.

EXAMPLES

/* Query the substrate for our resources. */
printf("%d hardware counters found.0, PAPI_num_hwctrs());

BUGS

None.

SEE ALSO

PAPI_init_library, PAPI, PAPI_F

- 115 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_overflow - set up an event set to begin registering overflows
_papi_overflow_handler - user defined function to process overflow events

SYNOPSIS

C Interface

#include <papi.h>
int PAPI_overflow
 (int EventSet, int EventCode, int threshold, int flags,
PAPI_overflow_handler_t handler);
(*PAPI_overflow_handler_t) _papi_overflow_handler
 (int EventSet, void * address, long_long overflow_vector, void *
context);

Fortran Interface

Not implemented

DESCRIPTION

PAPI_overflow() marks a specific EventCode in an EventSet to generate an overflow signal after every
threshold events are counted. More than one event in an event set can be used to trigger overflows. In such
cases, the user must call this function once for each overflowing event. To turn off overflow on a specified
event, call this function with a threshold value of 0.
Overflows can be implemented in either software or hardware, but the scope is the entire event set. PAPI
defaults to hardware overflow if it is available. In the case of software overflow, a periodic timer interrupt
causes PAPI to compare the event counts against the threshold values and call the overflow handler if one
or more events have exceeded their threshold. In the case of hardware overflow, the counters are typically
set to the negative of the threshold value and count up to 0. This zero-crossing triggers a hardware
interrupt that calls the overflow handler. Because of this counter interrupt, the counter values for
overflowing counters may be very small or even negative numbers, and cannot be relied upon as accurate.
In such cases the overflow handler can approximate the counts by supplying the threshold value whenever
an overflow occurs.
_papi_overflow_handler() is a placeholder for a user-defined function to process overflow events. A
pointer to this function is passed to the PAPI_overflow routine, where it is invoked whenever a software
or hardware overflow occurs. This handler receives the EventSet of the overflowing event, the Program
Counter address when the interrupt occured, an overflow_vector that can be processed to determined
which event(s) caused the overflow, and a pointer to the machine context, which can be used in a platform-
specific manor to extract register information about what was happening when the overflow occured.

ARGUMENTS

EventSet -- an integer handle to a PAPI event set as created by PAPI_create_eventset
EventCode -- the preset or native event code to be set for overflow detection. This event must have already
been added to the EvenSet.
threshold -- the overflow threshold value for this EventCode.

- 116 -

PAPI Programmer’s Reference Version 3.5.0

flags -- bit map that controls the overflow mode of operation. Set to PAPI_OVERFLOW_FORCE_SW to
force software overflowing, even if hardware overflow support is available. If hardware overflow support
is available on a given system, it will be the default mode of operation. There are situations where it is
advantageous to use software overflow instead. Although software overflow is inherently less accurate,
with more latency and processing overhead, it does allow for overflowing on derived events, and for the
accurate recording of overflowing event counts. These two features are typically not available with
hardware overflow. Only one type of overflow is allowed per event set, so setting one event to hardware
overflow and another to forced software overflow will result in an error being returned.
handler -- pointer to the user supplied handler function to call upon overflow
address -- the Program Counter address at the time of the overflow
overflow_vector -- a long_long word containing flag bits to indicate which hardware counter(s) caused the
overflow
*context -- pointer to a machine specific structure that defines the register context at the time of overflow.
This parameter is often unused and can be ignored in the user function.

RETURN VALUES

On success, PAPI_overflow returns PAPI_OK. On error, a non-zero error code is returned.
_papi_overflow_handler is a void function and returns nothing.

ERRORS

PAPI_EINVAL

 One or more of the arguments is invalid. Specifically, a bad threshold value.

PAPI_ENOMEM

 Insufficient memory to complete the operation.

PAPI_ENOEVST

 The EventSet specified does not exist.

PAPI_EISRUN

 The EventSet is currently counting events.

PAPI_ECNFLCT

 The underlying counter hardware cannot count this event and other events in the EventSet
simultaneously. Or you are trying to overflow both by hardware and by forced software at
the same time.

PAPI_ENOEVNT

 The PAPI preset is not available on the underlying hardware.

EXAMPLES

Define a simple overflow handler:

void handler(int EventSet, void *address, long_long overflow_vector,
void *context)
{
 fprintf(stderr,"Overflow at %p! bit=0x%llx \n",
 address,overflow_vector);
}

- 117 -

PAPI Programmer’s Reference Version 3.5.0

Call PAPI_overflow for an event set containing the PAPI_TOT_INS event, setting the threshold to
100000. Use the handler defined above.

 retval = PAPI_overflow(EventSet, PAPI_TOT_INS, 100000, 0, handler);

BUGS

This function has no known bugs.

SEE ALSO

PAPI_get_overflow_event_index

- 118 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_perror - convert PAPI error codes to strings, and print error
message to stderr.
PAPI_strerror - convert PAPI error codes to strings, and return the
error string to user.

SYNOPSIS

C Interface

#include <papi.h>
int PAPI_perror(int code, char *destination, int length);
char *PAPI_strerror(int code);

Fortran Interface

#include fpapi.h
PAPIF_perror(C_INT code, C_STRING destination, C_INT check)

DESCRIPTION

PAPI_perror() fills the string destination with the error message corresponding to the error code code.
The function copies length worth of the error description string corresponding to code into destination.
The resulting string is always null terminated. If length is 0, then the string is printed on stderr.
PAPI_strerror() returns a pointer to the error message corresponding to the error code code. If the call
fails the function returns the NULL pointer. This function is not implemented in Fortran.

ARGUMENTS

code -- the error code to interpret
*destination -- "the error message in quotes"
length -- either 0 or strlen(destination)

RETURN VALUES

On success PAPI_perror() returns PAPI_OK. and PAPI_strerror() returns a non-NULL pointer.

ERRORS

PAPI_EINVAL

 One or more of the arguments to PAPI_perror() is invalid.

NULL The input error code to PAPI_strerror() is invalid.

EXAMPLE

int EventSet = PAPI_NULL;
int native = 0x0;

- 119 -

PAPI Programmer’s Reference Version 3.5.0
char error_str[PAPI_MAX_STR_LEN];

if ((retval = PAPI_create_eventset(&EventSet)) != PAPI_OK)
 {
 fprintf(stderr, "PAPI error %d:
%s\n",retval,PAPI_strerror(retval));
 exit(1);
 }

/* Add Total Instructions Executed to our EventSet */

if ((retval = PAPI_add_event(EventSet, PAPI_TOT_INS)) != PAPI_OK)
 {
 PAPI_perror(retval,error_str,PAPI_MAX_STR_LEN);
 fprintf(stderr,"PAPI_error %d: %s\n",retval,error_str);
 exit(1);
 }

/* Start counting */

if ((retval = PAPI_start(EventSet)) != PAPI_OK)
 handle_error(retval);

BUGS

These functions have no known bugs.

SEE ALSO

PAPI_set_debug, PAPI_set_opt, PAPI_get_opt, PAPI_shutdown,

- 120 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_profil - generate a histogram of hardware counter overflows vs. PC addresses

SYNOPSIS

C Interface

#include <papi.h>
int PAPI_profil(void * buf, unsigned bufsiz, unsigned long offset,
 unsigned scale, int EventSet, int EventCode, int
threshold,
 int flags);

Fortran Interface

The profiling routines have no Fortran interface.

DESCRIPTION

PAPI_profil() provides hardware event statistics by profiling the occurence of specified hardware counter
events. It is designed to mimic the UNIX SVR4 profil call. The statistics are generated by creating a
histogram of hardware counter event overflows vs. program counter addresses for the current process. The
histogram is defined for a specific region of program code to be profiled, and the identified region is
logically broken up into a set of equal size subdivisions, each of which corresponds to a count in the
histogram. With each hardware event overflow, the current subdivision is identified and its corresponding
histogram count is incremented. These counts establish a relative measure of how many hardware counter
events are occuring in each code subdivision. The resulting histogram counts for a profiled region can be
used to identify those program addresses that generate a disproportionately high percentage of the event of
interest.
Events to be profiled are specified with the EventSet and EventCode parameters. More than one event can
be simultaneously profiled by calling PAPI_profil() several times with different EventCode values.
Profiling can be turned off for a given event by calling PAPI_profil() with a threshold value of 0.

ARGUMENTS

*buf -- pointer to a buffer of bufsiz bytes in which the histogram counts are stored in an array of unsigned
short, unsigned int, or unsigned long long values, or ’buckets’. The size of the buckets is determined by
values in the flags argument.
bufsiz -- the size of the histogram buffer in bytes. It is computed from the length of the code region to be
profiled, the size of the buckets, and the scale factor as discussed below.
offset -- the start address of the region to be profiled.
scale -- broadly and historically speaking, a contraction factor that indicates how much smaller the
histogram buffer is than the region to be profiled. More precisely, scale is interpreted as an unsigned 16-bit
fixed-point fraction with the decimal point implied on the left. Its value is the reciprocal of the number of
addresses in a subdivision, per counter of histogram buffer. Below is a table of representative values for
scale:

Representative values for the scale variable

HEX DECIMAL DEFININTION

- 121 -

PAPI Programmer’s Reference Version 3.5.0

0x20000 131072 Maps precisely one instruction address to a unique bucket in buf.

0x10000 65536 Maps precisely two instruction addresses to a unique bucket in buf.

0xFFFF 65535 Maps approximately two instruction addresses to a unique bucket in buf.

0x8000 32768 Maps every four instruction addresses to a bucket in buf.

0x4000 16384 Maps every eight instruction addresses to a bucket in buf.

0x0002 2 Maps all instruction addresses to the same bucket in buf.

0x0001 1 Undefined.

0x0000 0 Undefined.

Historically, the scale factor was introduced to allow the allocation of buffers smaller than the code size to
be profiled. Data and instruction sizes were assumed to be multiples of 16-bits. These assumptions are no
longer necessarily true. PAPI_profil has preserved the traditional definition of scale where appropriate,
but deprecated the definitions for 0 and 1 (disable scaling) and extended the range of scale to include
65536 and 131072 to allow for exactly two addresses and exactly one address per profiling bucket.
The value of bufsiz is computed as follows:
bufsiz = (end - start)*(bucket_size/2)*(scale/65536) where
bufsiz - the size of the buffer in bytes
end, start - the ending and starting addresses of the profiled region
bucket_size - the size of each bucket in bytes; 2, 4, or 8 as defined in flags
scale - as defined above
EventSet -- The PAPI EventSet to profile. This EventSet is marked as profiling-ready, but profiling
doesn’t actually start until a PAPI_start() call is issued.
EventCode -- Code of the Event in the EventSet to profile. This event must already be a member of the
EventSet.
threshold -- minimum number of events that must occur before the PC is sampled. If hardware overflow is
supported for your substrate, this threshold will trigger an interrupt when reached. Otherwise, the counters
will be sampled periodically and the PC will be recorded for the first sample that exceeds the threshold. If
the value of threshold is 0, profiling will be disabled for this event.
flags -- bit pattern to control profiling behavior. Defined values are shown in the table below:

Defined bits for the flags variable

PAPI_PROFIL_POSIX Default type of profiling, similar to

PAPI_PROFIL_RANDOM Drop a random 25% of the samples.

PAPI_PROFIL_WEIGHTED Weight the samples by their value.

PAPI_PROFIL_COMPRESS Ignore samples as values in the hash buckets get big.

PAPI_PROFIL_BUCKET_16 Use unsigned short (16 bit) buckets, This is the default bucket.

PAPI_PROFIL_BUCKET_32 Use unsigned int (32 bit) buckets.

PAPI_PROFIL_BUCKET_64 Use unsigned long long (64 bit) buckets.

PAPI_PROFIL_FORCE_SW Force software overflow in profiling.

- 122 -

PAPI Programmer’s Reference Version 3.5.0

RETURN VALUES

On success, this function returns PAPI_OK.
On error, a non-zero error code is returned.

ERRORS

PAPI_EINVAL

 One or more of the arguments is invalid.

PAPI_ENOMEM

 Insufficient memory to complete the operation.

PAPI_ENOEVST

 The EventSet specified does not exist.

PAPI_EISRUN

 The EventSet is currently counting events.

PAPI_ECNFLCT

 The underlying counter hardware can not count this event and other events in the EventSet
simultaneously.

PAPI_ENOEVNT

 The PAPI preset is not available on the underlying hardware.

EXAMPLES

int retval;
unsigned long length;
PAPI_exe_info_t *prginfo;
unsigned short *profbuf;

if ((prginfo = PAPI_get_executable_info()) == NULL)
 handle_error(1);

length = (unsigned long)(prginfo->text_end - prginfo->text_start);

profbuf = (unsigned short *)malloc(length);
if (profbuf == NULL)
 handle_error(1);
memset(profbuf,0x00,length);
 .
 .
 .
if ((retval = PAPI_profil(profbuf, length, start, 65536, EventSet,
 PAPI_FP_INS, 1000000, PAPI_PROFIL_POSIX | PAPI_PROFIL_BUCKET_16)) !
= PAPI_OK)
 handle_error(retval);

- 123 -

PAPI Programmer’s Reference Version 3.5.0

BUGS

If you call PAPI_profil, PAPI allocates buffer space that will not be freed if you call PAPI_shutdown or
PAPI_cleanup_eventset. To clean all memory, you must call PAPI_profil on the Events with a 0 threshold.

SEE ALSO

PAPI_sprofil, PAPI_overflow, PAPI_get_executable_info

- 124 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_query_event - query if PAPI event exists

SYNOPSIS

C Interface

#include <papi.h>
int PAPI_query_event(int EventCode);

Fortran Interface

#include fpapi.h
PAPIF_query_event(C_INT EventCode, C_INT check)

DESCRIPTION

PAPI_query_event() asks the PAPI library if the PAPI Preset event can be counted on this architecture. If
the event CAN be counted, the function returns PAPI_OK. If the event CANNOT be counted, the function
returns an error code. This function also can be used to check the syntax of a native event.

ARGUMENTS

EventCode -- a defined event such as PAPI_TOT_INS.

RETURN VALUES

On success, PAPI_query_event returns PAPI_OK
On error, a non-zero error code is returned.

ERRORS

PAPI_EINVAL

 One or more of the arguments is invalid.

PAPI_ENOTPRESET

 The hardware event specified is not a valid PAPI preset.

PAPI_ENOEVNT

 The PAPI preset is not available on the underlying hardware.

EXAMPLES

int retval;

/* Initialize the library */

- 125 -

PAPI Programmer’s Reference Version 3.5.0
retval = PAPI_library_init(PAPI_VER_CURRENT);

if (retval != PAPI_VER_CURRENT) {
 fprintf(stderr,"PAPI library init error!\n");
 exit(1); }

if (PAPI_query_event(PAPI_TOT_INS) != PAPI_OK) {
 fprintf(stderr,"No instruction counter? How lame.\n");
 exit(1);
 }

BUGS

These functions have no known bugs.

SEE ALSO

PAPI_preset, PAPI_native, PAPI_remove_event, PAPI_remove_events,

- 126 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_read - read hardware counters from an event set
PAPI_accum - accumulate and reset counters in an event set

SYNOPSIS

C Interface

#include <papi.h>
int PAPI_read(int EventSet, long_long *values);
int PAPI_accum(int EventSet, long_long *values);

Fortran Interface

#include fpapi.h
PAPIF_read(C_INT EventSet, C_LONG_LONG(*) values, C_INT check)
PAPIF_accum(C_INT EventSet, C_LONG_LONG(*) values, C_INT check)

DESCRIPTION

These calls assume an initialized PAPI library and a properly added event set.
PAPI_read() copies the counters of the indicated event set into the array values. The counters continue
counting after the read.
PAPI_accum() adds the counters of the indicated event set into the array values. The counters are zeroed
and continue counting after the operation.
Note the differences between PAPI_read() and PAPI_accum(), specifically that PAPI_accum() resets the
values array to zero.

ARGUMENTS

EventSet -- an integer handle for a PAPI Event Set as created by PAPI_create_eventset
*values -- an array to hold the counter values of the counting events

RETURN VALUES

On success, these functions return PAPI_OK.
On error, a non-zero error code is returned.

ERRORS

PAPI_EINVAL

 One or more of the arguments is invalid.

PAPI_ESYS

 A system or C library call failed inside PAPI, see the errno variable.

PAPI_ENOEVST

 The event set specified does not exist.

- 127 -

PAPI Programmer’s Reference Version 3.5.0

EXAMPLES

 do_100events();
 if (PAPI_read(EventSet, values) != PAPI_OK)
 handle_error(1);
 /* values[0] now equals 100 */
 do_100events();
 if (PAPI_accum(EventSet, values) != PAPI_OK)
 handle_error(1);
 /* values[0] now equals 200 */
 values[0] = -100;
 do_100events();
 if (PAPI_accum(EventSet, values) != PAPI_OK)
 handle_error(1);
 /* values[0] now equals 0 */

BUGS

These functions have no known bugs.

SEE ALSO

PAPI_set_opt, PAPI_reset, PAPI_start, PAPI, PAPIF

- 128 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_read_counters - PAPI High Level: read and reset counters
PAPI_accum_counters - PAPI High Level: accumulate and reset counters

SYNOPSIS

C Interface

#include <papi.h>
int PAPI_read_counters(long_long *values, int array_len);
int PAPI_accum_counters(long_long *values, int array_len);

Fortran Interface

#include fpapi.h
PAPIF_read_counters(C_LONG_LONG(*) values, C_INT array_len, C_INT
check)
PAPIF_accum_counters(C_LONG_LONG(*) values, C_INT array_len, C_INT
check)

DESCRIPTION

PAPI_read_counters() copies the event counters into the array values .
The counters are reset and left running after the call.
PAPI_accum_counters() adds the event counters into the array values .
The counters are reset and left running after the call.
These calls assume an initialized PAPI library and a properly added event set.

ARGUMENTS

*values -- an array to hold the counter values of the counting events
array_len -- the number of items in the *events array

RETURN VALUES

On success, these functions return PAPI_OK.
On error, a non-zero error code is returned.

ERRORS

PAPI_EINVAL

 One or more of the arguments is invalid.

PAPI_ESYS

 A system or C library call failed inside PAPI, see the errno variable.

EXAMPLES

- 129 -

PAPI Programmer’s Reference Version 3.5.0
 do_100events();
 if (PAPI_read_counters(values, num_hwcntrs) != PAPI_OK)
 handle_error(1);
 /* values[0] now equals 100 */
 do_100events();
 if (PAPI_accum_counters(values, num_hwcntrs) != PAPI_OK)
 handle_error(1);
 /* values[0] now equals 200 */
 values[0] = -100;
 do_100events();
 if (PAPI_accum_counters(values, num_hwcntrs) != PAPI_OK)
 handle_error(1);
 /* values[0] now equals 0 */

BUGS

These functions have no known bugs.

SEE ALSO

PAPI_start_counters, PAPI_set_opt, PAPI, PAPIF

- 130 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_register_thread, PAPI_unregister_thread - Inform PAPI of thread status

SYNOPSIS

#include <papi.h>
int PAPI_register_thread (void);
int PAPI_unregister_thread (void);

Fortran Interface

#include fpapi.h
PAPIF_register_thread(C_INT check)
PAPIF_unregister_thread(C_INT check)

DESCRIPTION

PAPI_register_thread should be called when the user wants to force PAPI to initialize a thread that PAPI
has not seen before. Usually this is not necessary as PAPI implicitly detects the thread when an eventset is
created or other thread local PAPI functions are called. However, it can be useful for debugging and
performance enhancements in the run-time systems of performance tools.
PAPI_unregister_thread should be called when the user wants to shutdown a particular thread and free
the associated thread ID. THIS IS IMPORTANT IF YOUR THREAD LIBRARY REUSES THE SAME
THREAD ID FOR A NEW KERNEL LWP. OpenMP does this. OpenMP parallel regions, if separated by
a call to omp_set_num_threads() will often kill off the underlying kernel LWPs and then start new ones for
the next region. However, omp_get_thread_id() does not reflect this, as the thread IDs for the new LWPs
will be the same as the old LWPs. PAPI needs to know that the underlying LWP has changed so it can set
up the counters for that new thread. This is accomplished by calling this function.

ARGUMENTS

None.

RETURN VALUES

On success, this function returns PAPI_OK. On error, a non-zero error code is returned.

ERRORS

PAPI_ENOMEM

 Space could not be allocated to store the new thread information.

PAPI_ESYS

 A system or C library call failed inside PAPI, see the errno variable.

PAPI_ESBSTR

 Hardware counters for this thread could not be initialized.

- 131 -

PAPI Programmer’s Reference Version 3.5.0

EXAMPLES

None.

SEE ALSO

PAPI_thread_init, PAPI_thread_id

- 132 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_remove_event - remove PAPI preset or native hardware event from
an EventSet
PAPI_remove_events - remove PAPI presets or native hardware events from
an EventSet

SYNOPSIS

C Interface

#include <papi.h>
int PAPI_remove_event(int EventSet, int EventCode);
int PAPI_remove_events(int EventSet, int *EventCode, int number);

Fortran Interface

#include fpapi.h
PAPIF_remove_event(C_INT EventSet, C_INT EventCode, C_INT check)
PAPIF_remove_events(C_INT EventSet, C_INT(*) EventCode, C_INT number,
C_INT check)

DESCRIPTION

PAPI_remove_event() removes a hardware event to a PAPI event set. PAPI_remove_events() does the
same, but for an array of hardware event codes.
A hardware event can be either a PAPI Preset or a native hardware event code. For a list of PAPI preset
events, see PAPI_presets or run the avail test case in the PAPI distribution. PAPI Presets can be passed to
PAPI_query_event to see if they exist on the underlying architecture. For a list of native events available
on current platform, run native_avail test case in the PAPI distribution. For the encoding of native events,
see PAPI_event_name_to_code to learn how to generate native code for the supported native event on the
underlying architecture."
It should be noted that PAPI_remove_events can partially succeed, exactly like PAPI_add_events.

ARGUMENTS

EventSet -- an integer handle for a PAPI event set as created by PAPI_create_eventset
EventCode -- a defined event such as PAPI_TOT_INS or a native event.
*EventCode -- an array of defined events
number -- an integer indicating the number of events in the array *EventCode

RETURN VALUES

On success, these functions return PAPI_OK. On error, a less than zero error code is returned or the the
number of elements that succeeded before the error.

ERRORS

Positive integer

- 133 -

PAPI Programmer’s Reference Version 3.5.0

 The number of consecutive elements that succeeded before the error.

PAPI_EINVAL

 One or more of the arguments is invalid.

PAPI_ENOEVST

 The EventSet specified does not exist.

PAPI_EISRUN

 The EventSet is currently counting events.

PAPI_ECNFLCT

 The underlying counter hardware can not count this event and other events in the EventSet
simultaneously.

PAPI_ENOEVNT

 The PAPI preset is not available on the underlying hardware.

EXAMPLES

int EventSet = PAPI_NULL;
unsigned int native = 0x0;

if (PAPI_create_eventset(&EventSet) != PAPI_OK)
 handle_error(1);

/* Add Total Instructions Executed to our EventSet */

if (PAPI_add_event(EventSet, PAPI_TOT_INS) != PAPI_OK)
 handle_error(1);

/* Start counting */

if (PAPI_start(EventSet) != PAPI_OK)
 handle_error(1);

/* Stop counting, ignore values */

if (PAPI_stop(EventSet, NULL) != PAPI_OK)
 handle_error(1);

/* Remove event */

if (PAPI_remove_event(EventSet, PAPI_TOT_INS) != PAPI_OK)
 handle_error(1);

BUGS

The vector function should take a pointer to a length argument so a proper return value can be set upon
partial success.

- 134 -

PAPI Programmer’s Reference Version 3.5.0

SEE ALSO

PAPI_preset,
PAPI_add_event (3),
PAPI_add_events (3),
PAPI_cleanup_eventset, PAPI_destroy_eventset, PAPI_event_name_to_code

- 135 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_remove_event - remove PAPI preset or native hardware event from
an EventSet
PAPI_remove_events - remove PAPI presets or native hardware events from
an EventSet

SYNOPSIS

C Interface

#include <papi.h>
int PAPI_remove_event(int EventSet, int EventCode);
int PAPI_remove_events(int EventSet, int *EventCode, int number);

Fortran Interface

#include fpapi.h
PAPIF_remove_event(C_INT EventSet, C_INT EventCode, C_INT check)
PAPIF_remove_events(C_INT EventSet, C_INT(*) EventCode, C_INT number,
C_INT check)

DESCRIPTION

PAPI_remove_event() removes a hardware event to a PAPI event set. PAPI_remove_events() does the
same, but for an array of hardware event codes.
A hardware event can be either a PAPI Preset or a native hardware event code. For a list of PAPI preset
events, see PAPI_presets or run the avail test case in the PAPI distribution. PAPI Presets can be passed to
PAPI_query_event to see if they exist on the underlying architecture. For a list of native events available
on current platform, run native_avail test case in the PAPI distribution. For the encoding of native events,
see PAPI_event_name_to_code to learn how to generate native code for the supported native event on the
underlying architecture."
It should be noted that PAPI_remove_events can partially succeed, exactly like PAPI_add_events.

ARGUMENTS

EventSet -- an integer handle for a PAPI event set as created by PAPI_create_eventset
EventCode -- a defined event such as PAPI_TOT_INS or a native event.
*EventCode -- an array of defined events
number -- an integer indicating the number of events in the array *EventCode

RETURN VALUES

On success, these functions return PAPI_OK. On error, a less than zero error code is returned or the the
number of elements that succeeded before the error.

ERRORS

Positive integer

- 136 -

PAPI Programmer’s Reference Version 3.5.0

 The number of consecutive elements that succeeded before the error.

PAPI_EINVAL

 One or more of the arguments is invalid.

PAPI_ENOEVST

 The EventSet specified does not exist.

PAPI_EISRUN

 The EventSet is currently counting events.

PAPI_ECNFLCT

 The underlying counter hardware can not count this event and other events in the EventSet
simultaneously.

PAPI_ENOEVNT

 The PAPI preset is not available on the underlying hardware.

EXAMPLES

int EventSet = PAPI_NULL;
unsigned int native = 0x0;

if (PAPI_create_eventset(&EventSet) != PAPI_OK)
 handle_error(1);

/* Add Total Instructions Executed to our EventSet */

if (PAPI_add_event(EventSet, PAPI_TOT_INS) != PAPI_OK)
 handle_error(1);

/* Start counting */

if (PAPI_start(EventSet) != PAPI_OK)
 handle_error(1);

/* Stop counting, ignore values */

if (PAPI_stop(EventSet, NULL) != PAPI_OK)
 handle_error(1);

/* Remove event */

if (PAPI_remove_event(EventSet, PAPI_TOT_INS) != PAPI_OK)
 handle_error(1);

BUGS

The vector function should take a pointer to a length argument so a proper return value can be set upon
partial success.

- 137 -

PAPI Programmer’s Reference Version 3.5.0

SEE ALSO

PAPI_preset,
PAPI_add_event (3),
PAPI_add_events (3),
PAPI_cleanup_eventset, PAPI_destroy_eventset, PAPI_event_name_to_code

- 138 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_reset - reset the hardware event counts in an event set

SYNOPSIS

C Interface

#include <papi.h>
int PAPI_reset (int EventSet);

Fortran Interface

#include fpapi.h
PAPIF_reset(C_INT EventSet, C_INT check)

DESCRIPTION

PAPI_reset() zeroes the values of the counters contained in EventSet. This call assumes an initialized
PAPI library and a properly added event set.

ARGUMENTS

EventSet -- an integer handle for a PAPI event set as created by PAPI_create_eventset

RETURN VALUES

On success, this function returns PAPI_OK.
On error, a non-zero error code is returned.

ERRORS

PAPI_ESYS

 A system or C library call failed inside PAPI, see the errno variable.

PAPI_ENOEVST

 The EventSet specified does not exist.

EXAMPLES

if (PAPI_reset(EventSet) != PAPI_OK)
 handle_error(1);

BUGS

This function has no known bugs.

- 139 -

PAPI Programmer’s Reference Version 3.5.0

SEE ALSO

PAPI_create_eventset, PAPI, PAPIF

- 140 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_set_debug - set the current debug level for PAPI

SYNOPSIS

C Interface

#include <papi.h>
int PAPI_set_debug(int debuglevel);

Fortran Interface

#include fpapi.h
PAPIF_set_debug(C_INT debug, C_INT check)

DESCRIPTION

PAPI_set_debug sets the debug level for error output from the PAPI library.

ARGUMENTS

debuglevel -- one of the constants shown in the table below and defined in the papi.h header file. The
current debug level is used by both the internal error and debug message handler subroutines. The debug
handler is only used if the library was compiled with -DDEBUG. The debug handler is called when there
is an error upon a call to the PAPI API. The error handler is always active and it’s behavior cannot be
modified except for whether or not it prints anything. NOTE: This is the ONLY function that may be
called BEFORE PAPI_library_init().
The PAPI error handler prints out messages in the following form:
PAPI Error: message.
The default PAPI debug handler prints out messages in the following form:
PAPI Error: Error Code code,symbol,description
If the error was caused from a system call and the return code is PAPI_ESYS, the message will have a
colon space and the error string as reported by strerror() appended to the end.
The possible debug levels for debugging are shown in the table below.

PAPI_QUIET Do not print anything, just return the error code

PAPI_VERB_ECONT Print error message and continue

PAPI_VERB_ESTOP Print error message and exit

RETURN VALUES

On success, this function returns PAPI_OK.
On error, a non-zero error code is returned.

ERRORS

PAPI_EINVAL

- 141 -

PAPI Programmer’s Reference Version 3.5.0

 The debuglevel is invalid.

EXAMPLES

 if (PAPI_set_debug(PAPI_VERB_ECONT) != PAPI_OK)
 handle_error();

BUGS

This function has no known bugs.

SEE ALSO

PAPI_set_opt, PAPI_get_opt, PAPI_library_init

- 142 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_set_domain - set the default execution domain for new event sets

SYNOPSIS

C Interface

#include <papi.h>
int PAPI_set_domain(int domain);

Fortran Interface

#include fpapi.h
PAPIF_set_domain(C_INT domain, C_INT check)
PAPIF_set_event_domain(C_INT EventSet, C_INT domain, C_INT check)

DESCRIPTION

PAPI_set_domain sets the default execution domain for all new event sets created by
PAPI_create_eventset in all threads. Event sets that are already in existance are not affected. To change
the domain of an existing event set, please see the PAPI_set_opt man page. The reader should note that the
domain of an event set affects only which mode the counter continue to run. Counts are still aggregated for
the current process, and not for any other processes in the system. Thus when requesting
PAPI_DOM_KERNEL, the user is asking for events that occur on behalf of the process, inside the
kernel.

ARGUMENTS

domain -- one of the following constants as defined in the papi.h header file:

PAPI_DOM_USER User context counted

PAPI_DOM_KERNEL Kernel/OS context counted

PAPI_DOM_OTHER Exception/transient mode counted

PAPI_DOM_SUPERVISOR Supervisor/hypervisor context counted

PAPI_DOM_ALL All above contexts counted

PAPI_DOM_MIN The smallest available context

PAPI_DOM_MAX The largest available context

RETURN VALUES

On success, this function returns PAPI_OK.
On error, a non-zero error code is returned.

- 143 -

PAPI Programmer’s Reference Version 3.5.0

ERRORS

PAPI_EINVAL

 One or more of the arguments is invalid.

PAPI_ENOEVST

 The event set specified does not exist.

PAPI_EISRUN

 The event set is currently counting events.

EXAMPLES

int retval;

/* Initialize the library */

retval = PAPI_library_init(PAPI_VER_CURRENT);

if (retval > 0 && retval != PAPI_VER_CURRENT) {
 fprintf(stderr,"PAPI library version mismatch!0);
 exit(1); }

if (retval < 0)
 handle_error(retval);

if ((retval = PAPI_set_domain(PAPI_DOM_KERNEL)) != PAPI_OK)
 handle_error(retval);

if ((retval = PAPI_create_eventset(&EventSet)) != PAPI_OK)
 handle_error(retval);

BUGS

This function has no known bugs.

SEE ALSO

PAPI_set_opt

- 144 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_set_event_info - set an event’s name, description and definition info

SYNOPSIS

C Interface

#include <papi.h>
int PAPI_set_event_info(PAPI_event_info_t *info, int *EventCode, int
replace);

DESCRIPTION

NOTE: This API has been deprecated in PAPI 3.5 pending a data structure redesign.
This function modifies or adds an event to the PAPI preset event table based on the contents of an even
info structure. This function presently works only to define or modify PAPI preset events.

ARGUMENTS

The following arguments are explicitly passed, or are implicit in the info structure.
EventCode -- event code returned by the function on success
replace -- 1 to replace an existing event, or 0 to prevent accidental replacement
info -- structure containing the event information. Relevant fields in this structure are discussed below.
event_code -- although the value of this event code is not used, the PAPI_PRESET_MASK bit must be set
to indicate that the following event description is for a preset event.
symbol -- name of the preset event. If the event name is found in the table and replace is non-zero, the
event definition will be replaced. If the names do not match a new entry will be created.
derived -- a string value indicating whether and how native event terms are combined to form a preset
event. Possible values include:
NOT_DERIVED: Do nothing; only one native event,
DERIVED_ADD: Add all native events,
DERIVED_CMPD: Event lives in first counter but takes 2 or more native codes,
DERIVED_SUB: Subtract all events from the first event specified,
DERIVED_POSTFIX: Process events based on specified postfix string,
postfix -- a string value containing postfix operations used only for DERIVED_POSTFIX events.
short_descr -- short description of the event
long_descr -- detailed description of the event
event_note -- special information or notes about the event
name -- an array of up to 8 names of native events that make up this preset event.

RETURN VALUES

On success, the function returns PAPI_OK. The EventCode parameter will also be set to the new event
code for this event. On error, a non-zero error code is returned by the function.

ERRORS

PAPI_EPERM

- 145 -

PAPI Programmer’s Reference Version 3.5.0

 You are trying to modify an existing event without specifying replace.

PAPI_EISRUN

 You are trying to modify an event that has been added to an EventSet.

PAPI_EINVAL

 One or more of the arguments or fields of the info structure is invalid.

PAPI_ENOTPRESET

 The PAPI preset table is full and there is no room for a new event.

PAPI_ENOEVNT

 The event specified is not a PAPI preset. Usually because the PAPI_PRESET_MASK bit is
not set.

EXAMPLE

/*Add a note to a custom definition of PAPI_TOT_INS */
PAPI_event_name_to_code("PAPI_TOT_INS",&EventCode)
if (PAPI_get_event_info(EventCode, &info) != PAPI_OK)
 handle_error(1);
strcpy(info.symbol, "MY_TOT_INS");
strcpy(info.note, "This note describes my version of total
instructions.");
if (PAPI_set_event_info(&info, EventCode, 0) != PAPI_OK)
 handle_error(1);

BUGS

This function has no known bugs.

SEE ALSO

PAPI, PAPIF, PAPI_get_event_info , PAPI_set_event_info , PAPI_event_name_to_code

- 146 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_set_granularity - set the execution granularity for which events are counted

SYNOPSIS

C Interface

#include <papi.h>
int PAPI_set_granularity(int granularity);

Fortran Interface

#include fpapi.h
PAPIF_set_granularity(C_INT granularity, C_INT check)

DESCRIPTION

This function is currently unimplemented.

RETURN VALUES

ERRORS

EXAMPLES

BUGS

This function is currently unimplemented.

SEE ALSO

PAPI_set_domain, PAPI_set_opt, PAPI_get_opt

- 147 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_get_multiplex - get the multiplexing status of specified event set PAPI_set_multiplex - convert a
standard event set to a multiplexed event set

SYNOPSIS

C Interface

#include <papi.h>
int PAPI_get_multiplex(int EventSet);
int PAPI_set_multiplex(int EventSet);

Fortran Interface

#include fpapi.h
PAPIF_get_multiplex(C_INT EventSet, C_INT check)
PAPIF_set_multiplex(C_INT EventSet, C_INT check)

DESCRIPTION

PAPI_get_multiplex tests the state of the PAPI_MULTIPLEXING flag in the specified event set,
returning TRUE if a PAPI event set is multiplexed, or FALSE if not.
PAPI_set_multiplex converts a standard PAPI event set created by a call to PAPI_create_eventset() into
an event set capable of handling multiplexed events. This must be done after calling
PAPI_multiplex_init() , but prior to calling PAPI_start(). Events can be added to an event set either
before or after converting it into a multiplexed set, but the conversion must be done prior to using it as a
multiplexed set.

ARGUMENTS

EventSet -- an integer handle for a PAPI event set as created by PAPI_create_eventset

RETURN VALUES

PAPI_get_multiplex returns either TRUE (positive non-zero) if multiplexing is enabled for this event set,
FALSE (zero) if multiplexing is not enabled, or PAPI_ENOEVST if the specified event set cannot be
found.
On success, PAPI_get_multiplex returns PAPI_OK. On error, a non-zero error code is returned, as
described below.

ERRORS

PAPI_EINVAL

 One or more of the arguments is invalid, or the EventSet is already multiplexed.

PAPI_ENOEVST

 The EventSet specified does not exist.

PAPI_EISRUN

- 148 -

PAPI Programmer’s Reference Version 3.5.0

 The EventSet is currently counting events.

PAPI_ENOMEM

 Insufficient memory to complete the operation.

EXAMPLES

 retval = PAPI_get_multiplex(EventSet);
 if (retval > 0) printf("This event set is ready for multiplexing0")
 if (retval == 0) printf("This event set is not enabled for
multiplexing0")
 if (retval < 0) handle_error(retval);

 retval = PAPI_set_multiplex(EventSet);
 if ((retval == PAPI_EINVAL) && (PAPI_get_multiplex(EventSet) > 0))
 printf("This event set already has multiplexing enabled0);
 else if (retval != PAPI_OK) handle_error(retval);

BUGS

This function has no known bugs.

SEE ALSO

PAPI_multiplex_init, PAPI_set_opt, PAPI_create_eventset

- 149 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_get_opt - get PAPI library or event set options
PAPI_set_opt - set PAPI library or event set options
PAPIF_get_clockrate - get the clockrate (Fortran only)
PAPIF_get_domain - get the counting domain (Fortran only)
PAPIF_get_granularity - get the counting granularity (Fortran only)
PAPIF_get_preload - get the library preload setting (Fortran only)

SYNOPSIS

C Interface

#include <papi.h>
int PAPI_get_opt(int option, PAPI_option_t *ptr);
int PAPI_set_opt(int option, PAPI_option_t *ptr);

Fortran Interface

#include fpapi.h
PAPIF_get_clockrate(C_INT clockrate)
PAPIF_get_domain(C_INT EventSet, C_INT domain, C_INT mode, C_INT check)
PAPIF_get_granularity(C_INT EventSet, C_INT granularity, C_INT mode,
C_INT check)
PAPIF_get_preload(C_STRING preload, C_INT check)

DESCRIPTION

PAPI_get_opt() and PAPI_set_opt() query or change the options of the PAPI library or a specific event
set created by PAPI_create_eventset. The C interface for these functions passes a pointer to the
PAPI_option_t structure. Not all options require or return information in this structure, and not all options
are implemented for both get and set.
The Fortran interface is a series of calls implementing various subsets of the C interface. Not all options in
C are available in Fortran.
NOTE: Some options, such as PAPI_DOMAIN and PAPI_MULTIPLEX, are also available as separate
entry points in both C and Fortran.
The reader is urged to see the example code in the PAPI distribution for usage of PAPI_get_opt. The file
papi.h contains definitions for the structures unioned in the PAPI_option_t structure.

ARGUMENTS

option -- is an input parameter describing the course of action. Possible values are defined in papi.h and
briefly described in the table below. The Fortran calls are implementations of specific options.
ptr -- is a pointer to a structure that acts as both an input and output parameter. It is defined in papi.h and
below.
EventSet -- input; a reference to an EventSetInfo structure
clockrate -- output; cycle time of this CPU in MHz; *may* be an estimate generated at init time with a
quick timing routine
domain -- output; execution domain for which events are counted
granularity -- output; execution granularity for which events are counted
mode -- input; determines if domain or granularity are default or for the current event set

- 150 -

PAPI Programmer’s Reference Version 3.5.0

preload -- output; environment variable string for preloading libraries

OPTIONS TABLE

Predefined name Explanation

General information requests

PAPI_CLOCKRATE Get clockrate in MHz.

PAPI_MAX_CPUS Get number of CPUs.

PAPI_MAX_HWCTRS Get number of counters.

PAPI_EXEINFO Get Executable addresses for text/data/bss.

PAPI_HWINFO Get information about the hardware.

PAPI_SHLIBINFO Get shared library information used by the program.

PAPI_SUBSTRATEINFO Get the PAPI features the substrate supports

PAPI_LIB_VERSION Get the full PAPI version of the library

PAPI_PRELOAD Get ‘‘LD_PRELOAD’’ environment equivalent.

Defaults for the global library

PAPI_DEFDOM Get/Set default counting domain for newly created event sets.

PAPI_DEFGRN Get/Set default counting granularity.

PAPI_DEBUG Get/Set the PAPI debug state and the debug handler. The available
debug states are defined in papi.h. The debug state is available in ptr-
>debug.level. The debug handler is available in ptr->debug.handler.
For information regarding the behavior of the handler, please see the
man page for PAPI_set_debug.

Multiplexing control

PAPI_MULTIPLEX Get/Set options for multiplexing.

PAPI_MAX_MPX_CTRS Get maximum number of multiplexing counters.

PAPI_DEF_MPX_USEC Get/Set the sampling time slice in microseconds for multiplexing.

Manipulating individual event sets

PAPI_ATTACH Get thread or process id to which event set is attached. Returns TRUE
if currently attached. Set event set specified in ptr->ptr-
>attach.eventset to be attached to thread or process id specified in in
ptr->attach.tid

PAPI_DETACH Get thread or process id to which event set is attached. Returns TRUE
if currently detached. Set event set specified in ptr->ptr-
>attach.eventset to be detached from any thread or process id.

PAPI_DOMAIN Get/Set domain for a single event set. The event set is specified in ptr-
>domain.eventset

PAPI_GRANUL Get/Set granularity for a single event set. The event set is specified in

- 151 -

PAPI Programmer’s Reference Version 3.5.0

ptr->granularity.eventset. Not implemented yet.

Platform specific options

PAPI_DATA_ADDRESS Set data address range to restrict event counting for event set
specified in ptr->addr.eventset. Starting and ending addresses are
specified in ptr->addr.start and ptr->addr.end, respectively. If exact
addresses cannot be instantiated, offsets are returned in ptr-
>addr.start_off and ptr->addr.end_off. Currently implemented on
Itanium only.

PAPI_INSTR_ADDRESS Set instruction address range as described above. Itanium only.

The option_t *ptr structure is defined in papi.h and looks something like the following example from the
source tree. Users should use the definition in papi.h which is in synch with the library used.

typedef union {
 PAPI_preload_option_t preload;
 PAPI_debug_option_t debug;
 PAPI_granularity_option_t granularity;
 PAPI_granularity_option_t defgranularity;
 PAPI_domain_option_t domain;
 PAPI_domain_option_t defdomain;
 PAPI_attach_option_t attach;
 PAPI_multiplex_option_t multiplex;
 PAPI_hw_info_t *hw_info;
 PAPI_shlib_info_t *shlib_info;
 PAPI_exe_info_t *exe_info;
 PAPI_substrate_info_t *sub_info;
 PAPI_overflow_option_t ovf_info;
 PAPI_addr_range_option_t addr;
} PAPI_option_t;

RETURN VALUES

On success, these functions return PAPI_OK. On error, a non-zero error code is returned.

ERRORS

PAPI_EINVAL

 One or more of the arguments is invalid.

PAPI_ENOEVST

 The event set specified does not exist.

PAPI_EISRUN

 The event set is currently counting events.

EXAMPLES

PAPI_option_t options;

if ((num = PAPI_get_opt(PAPI_MAX_HWCTRS,NULL)) <= 0)
 handle_error();

- 152 -

PAPI Programmer’s Reference Version 3.5.0

printf("This machine has %d counters.0,num);

/* Set the domain of this EventSet
 to counter user and kernel modes for this
 process */

memset(&options,0x0,sizeof(options));
options.domain.eventset = EventSet;
options.domain.domain = PAPI_DOM_ALL;
if (PAPI_set_opt(PAPI_DOMAIN, &options) != PAPI_OK)
 handle_error();

BUGS

The granularity functions are not yet implemented. The domain functions are only implemented on some
platforms. There are no known bugs in these functions.

SEE ALSO

PAPI_set_debug, PAPI_set_multiplex, PAPI_set_domain

- 153 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_get_thr_specific, PAPI_set_thr_specific - Store or retrieve a pointer to a thread specific data
structure

SYNOPSIS

#include <papi.h>
int PAPI_get_thr_specific(int tag, void **ptr);
int PAPI_set_thr_specific(int tag, void *ptr);

DESCRIPTION

In C, PAPI_set_thr_specific will save ptr into an array indexed by tag. PAPI_get_thr_specific will retrieve
the pointer from the array with index tag. There are 2 user available locations and tag can be either
PAPI_USR1_TLS or PAPI_USR2_TLS. The array mentioned above is managed by PAPI and allocated to
each thread which has called PAPI_thread_init. There are no Fortran equivalent functions.

ARGUMENTS

tag -- An identifier, the value of which is either PAPI_USR1_TLS or PAPI_USR2_TLS. This identifier
indicates which of several data structures associated with this thread is to be accessed.
ptr -- A pointer to the memory containing the data structure.

RETURN VALUES

On success, this function returns PAPI_OK.
On error, a negative error value is returned.

ERRORS

PAPI_EINVAL

 The tag argument is out of range.

EXAMPLE

 HighLevelInfo *state = NULL;

 if (retval = PAPI_thread_init(pthread_self) != PAPI_OK)
 handle_error(retval);

 /*
 * Do we have the thread specific data setup yet?
 */
 if ((retval = PAPI_get_thr_specific(PAPI_USR1_TLS, (void *) &state))
 != PAPI_OK || state == NULL) {
 state = (HighLevelInfo *) malloc(sizeof(HighLevelInfo));
 if (state == NULL)

- 154 -

PAPI Programmer’s Reference Version 3.5.0
 return (PAPI_ESYS);

 memset(state, 0, sizeof(HighLevelInfo));
 state->EventSet = PAPI_NULL;

 if ((retval = PAPI_create_eventset(&state->EventSet)) != PAPI_OK)
 return (PAPI_ESYS);

 if ((retval=PAPI_set_thr_specific(PAPI_USR1_TLS, state))!=PAPI_OK)
 return (retval);
 }

BUGS

There are no known bugs in these functions.

SEE ALSO

PAPI_thread_init, .BR PAPI_thread_id (3), PAPI_register_thread

- 155 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_set_domain - set the default execution domain for new event sets

SYNOPSIS

C Interface

#include <papi.h>
int PAPI_set_domain(int domain);

Fortran Interface

#include fpapi.h
PAPIF_set_domain(C_INT domain, C_INT check)
PAPIF_set_event_domain(C_INT EventSet, C_INT domain, C_INT check)

DESCRIPTION

PAPI_set_domain sets the default execution domain for all new event sets created by
PAPI_create_eventset in all threads. Event sets that are already in existance are not affected. To change
the domain of an existing event set, please see the PAPI_set_opt man page. The reader should note that the
domain of an event set affects only which mode the counter continue to run. Counts are still aggregated for
the current process, and not for any other processes in the system. Thus when requesting
PAPI_DOM_KERNEL, the user is asking for events that occur on behalf of the process, inside the
kernel.

ARGUMENTS

domain -- one of the following constants as defined in the papi.h header file:

PAPI_DOM_USER User context counted

PAPI_DOM_KERNEL Kernel/OS context counted

PAPI_DOM_OTHER Exception/transient mode counted

PAPI_DOM_SUPERVISOR Supervisor/hypervisor context counted

PAPI_DOM_ALL All above contexts counted

PAPI_DOM_MIN The smallest available context

PAPI_DOM_MAX The largest available context

RETURN VALUES

On success, this function returns PAPI_OK.
On error, a non-zero error code is returned.

- 156 -

PAPI Programmer’s Reference Version 3.5.0

ERRORS

PAPI_EINVAL

 One or more of the arguments is invalid.

PAPI_ENOEVST

 The event set specified does not exist.

PAPI_EISRUN

 The event set is currently counting events.

EXAMPLES

int retval;

/* Initialize the library */

retval = PAPI_library_init(PAPI_VER_CURRENT);

if (retval > 0 && retval != PAPI_VER_CURRENT) {
 fprintf(stderr,"PAPI library version mismatch!0);
 exit(1); }

if (retval < 0)
 handle_error(retval);

if ((retval = PAPI_set_domain(PAPI_DOM_KERNEL)) != PAPI_OK)
 handle_error(retval);

if ((retval = PAPI_create_eventset(&EventSet)) != PAPI_OK)
 handle_error(retval);

BUGS

This function has no known bugs.

SEE ALSO

PAPI_set_opt

- 157 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_shutdown - finish using PAPI and free all related resources

SYNOPSIS

C Interface

#include <papi.h>
void PAPI_shutdown (void);

Fortran Interface

#include fpapi.h
PAPIF_shutdown()

DESCRIPTION

PAPI_shutdown() is an exit function used by the PAPI Library to free resources and shut down when
certain error conditions arise. It is not necessary for the user to call this function, but doing so allows the
user to have the capability to free memory and resources used by the PAPI Library.

BUGS

This function has no known bugs.

SEE ALSO

PAPI_cleanup_eventset, PAPI_destroy_eventset

- 158 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_sprofil - generate PC histogram data from multiple code regions where hardware counter overflow
occurs

SYNOPSIS

C Interface

#include <papi.h>
int PAPI_sprofil(PAPI_sprofil_t * prof, int profcnt, int EventSet,
 int EventCode, int threshold, int flags);

Fortran Interface

The profiling routines have no Fortran interface.

DESCRIPTION

PAPI_sprofil() is a structure driven profiler that profiles one or more disjoint regions of code in a single
call. It accepts a pointer to a preinitialized array of sprofil structures, and initiates profiling based on the
values contained in the array. Each structure in the array defines the profiling parameters that are normally
passed to PAPI_profil(). For more information on profiling, see: PAPI_pofil

STRUCTURE FIELDS

*pr_base -- pointer to the base address of the buffer.
pr_size -- the size of the histogram buffer in pr_base.
pr_off -- the start address of the region to be profiled.
pr_scale -- the scaling factor applied to the buffer.
These fields are described in greater detail in the documentation for PAPI_pofil

ARGUMENTS

*prof -- pointer to an array of PAPI_sprofil_t structures.
profcnt -- number of structures in the prof array for hardware profiling.
EventSet -- The PAPI EventSet to profile. This EventSet is marked as profiling-ready, but profiling
doesn’t actually start until a PAPI_start() call is issued.
EventCode -- Code of the Event in the EventSet to profile. This event must already be a member of the
EventSet.
threshold -- minimum number of events that must occur before the PC is sampled. If hardware overflow is
supported for your substrate, this threshold will trigger an interrupt when reached. Otherwise, the counters
will be sampled periodically and the PC will be recorded for the first sample that exceeds the threshold. If
the value of threshold is 0, profiling will be disabled for this event.
flags -- bit pattern to control profiling behavior. Defined values are given in a table in the documentation
for PAPI_pofil

- 159 -

PAPI Programmer’s Reference Version 3.5.0

RETURN VALUES

On success, this function returns PAPI_OK.
On error, a non-zero error code is returned.

ERRORS

Error returns for PAPI_sprofil() are identical to those for PAPI_profil Please refer to that page for further
details.

EXAMPLES

int retval;
unsigned long length;
PAPI_exe_info_t *prginfo;
unsigned short *profbuf1, *profbuf2, profbucket;
PAPI_sprofil_t sprof[3];

if ((prginfo = PAPI_get_executable_info()) == NULL)
 handle_error(1);

length = (unsigned long)(prginfo->text_end - prginfo->text_start);

/* Allocate 2 buffers of equal length */
profbuf1 = (unsigned short *)malloc(length);
profbuf2 = (unsigned short *)malloc(length);
if ((profbuf1 == NULL) || (profbuf2 == NULL))
 handle_error(1);
memset(profbuf1,0x00,length);
memset(profbuf2,0x00,length);

/* First buffer */
sprof[0].pr_base = profbuf1;
sprof[0].pr_size = length;
sprof[0].pr_off = (caddr_t) DO_FLOPS;
sprof[0].pr_scale = 0x10000;

/* Second buffer */
sprof[1].pr_base = profbuf2;
sprof[1].pr_size = length;
sprof[1].pr_off = (caddr_t) DO_READS;
sprof[1].pr_scale = 0x10000;

/* Overflow bucket */
sprof[2].pr_base = profbucket;
sprof[2].pr_size = 1;
sprof[2].pr_off = 0;
sprof[2].pr_scale = 0x0002;

if ((retval = PAPI_sprofil(sprof, EventSet, PAPI_FP_INS, 1000000,
 PAPI_PROFIL_POSIX | PAPI_PROFIL_BUCKET_16)) != PAPI_OK)
 handle_error(retval);

- 160 -

PAPI Programmer’s Reference Version 3.5.0

BUGS

These functions have no known bugs.

SEE ALSO

PAPI_profil, PAPI_get_executable_info, PAPI_overflow

- 161 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_start - start counting hardware events in an event set
PAPI_stop - stop counting hardware events in an event set

SYNOPSIS

C Interface

#include <papi.h>
int PAPI_start(int EventSet);
int PAPI_stop(int EventSet, long_long *values);

Fortran Interface

#include fpapi.h
PAPIF_start(C_INT EventSet, C_INT check)
PAPIF_stop(C_INT EventSet, C_LONG_LONG(*) values, C_INT check)

DESCRIPTION

PAPI_start starts counting all of the hardware events contained in the previously defined EventSet. All
counters are implicitly set to zero before counting.
PAPI_stop halts the counting of a previously defined event set and the counter values contained in that
EventSet are copied into the values array
These calls assume an initialized PAPI library and a properly added event set.

ARGUMENTS

EventSet -- an integer handle for a PAPI event set as created by PAPI_create_eventset
*values -- an array to hold the counter values of the counting events

RETURN VALUES

On success, this function returns PAPI_OK.
On error, a non-zero error code is returned.

ERRORS

PAPI_EINVAL

 One or more of the arguments is invalid.

PAPI_ESYS

 A system or C library call failed inside PAPI, see the errno variable.

PAPI_ENOEVST

 The EventSet specified does not exist.

PAPI_EISRUN

 The EventSet is currently counting events. (PAPI_start() only)

- 162 -

PAPI Programmer’s Reference Version 3.5.0

PAPI_ENOTRUN

 The EventSet is currently not running. (PAPI_stop() only)

PAPI_ECNFLCT

 The underlying counter hardware can not count this event and other events in the EventSet
simultaneously. (PAPI_start() only)

PAPI_ENOEVNT

 The PAPI preset is not available on the underlying hardware.

EXAMPLES

 if (PAPI_create_eventset(&EventSet) != PAPI_OK)
 handle_error(1);

 /* Add Total Instructions Executed to our EventSet */
 if (PAPI_add_event(EventSet, PAPI_TOT_INS) != PAPI_OK)
 handle_error(1);

 /* Start counting */
 if (PAPI_start(EventSet) != PAPI_OK)
 handle_error(1);

 poorly_tuned_function();

 if (PAPI_stop(EventSet, values) != PAPI_OK)
 handle_error(1);

 printf("%lld\n",values[0]);

BUGS

These functions have no known bugs.

SEE ALSO

PAPI_create_eventset, PAPI_add_event, PAPI, PAPIF

- 163 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_start_counters - PAPI High Level: start counting hardware events

SYNOPSIS

C Interface

#include <papi.h>
int PAPI_start_counters(int *events, int array_len);

Fortran Interface

#include fpapi.h
PAPIF_start_counters(C_INT(*) events, C_INT array_len, C_INT check)

DESCRIPTION

PAPI_start_counters() starts counting the events named in the events array. This function cannot be
called if the events array is already running. The user must call PAPI_stop_counters to stop the events
explicitly if he/she wants to call this function again. It is the user’s responsibility to choose events that can
be counted simultaneously by reading the vendor’s documentation. The length of the event array should be
no longer than the value returned by PAPI_num_counters.

ARGUMENTS

*events -- an array of codes for events such as PAPI_INT_INS or a native event code
array_len -- the number of items in the *events array

RETURN VALUES

On success, this function returns PAPI_OK.
On error, a non-zero error code is returned.

ERRORS

PAPI_EINVAL

 One or more of the arguments is invalid.

PAPI_EISRUN

 Counters already been started, you must call PAPI_stop_counters before you call this
function again.

PAPI_ESYS

 A system or C library call failed inside PAPI, see the errno variable.

PAPI_ENOMEM

 Insufficient memory to complete the operation.

PAPI_ECNFLCT

- 164 -

PAPI Programmer’s Reference Version 3.5.0

 The underlying counter hardware can not count this event and other events in the EventSet
simultaneously.

PAPI_ENOEVNT

 The PAPI preset is not available on the underlying hardware.

EXAMPLES

 /* Start counting events */
 if (PAPI_start_counters(Events, num_hwcntrs) != PAPI_OK)
 handle_error(1);

BUGS

This function has no known bugs.

SEE ALSO

PAPI_create_eventset, PAPI_add_event, PAPI_stop_counters, PAPI, PAPIF

- 165 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_state - return the counting state of an EventSet

SYNOPSIS

C Interface

#include <papi.h>
int PAPI_state (int EventSet, int *status);

Fortran Interface

#include fpapi.h
PAPIF_state(C_INT EventSet, C_INT status, C_INT check)

DESCRIPTION

PAPI_state() returns the counting state of the specified event set.

ARGUEMENTS

EventSet -- an integer handle for a PAPI event set as created by PAPI_create_eventset
status -- an integer containing a boolean combination of one or more of the following nonzero constants as
defined in the PAPI header file papi.h:

PAPI_STOPPED EventSet is stopped

PAPI_RUNNING EventSet is running

PAPI_PAUSED EventSet temporarily disabled by the library

PAPI_NOT_INIT EventSet defined, but not initialized

PAPI_OVERFLOWING EventSet has overflowing enabled

PAPI_PROFILING EventSet has profiling enabled

PAPI_MULTIPLEXING EventSet has multiplexing enabled

PAPI_ACCUMULATING reserved for future use

PAPI_HWPROFILING reserved for future use

RETURN VALUES

On success, this function returns PAPI_OK.
On error, a non-zero error code is returned.

ERRORS

PAPI_EINVAL

 One or more of the arguments is invalid.

- 166 -

PAPI Programmer’s Reference Version 3.5.0

PAPI_ENOEVST

 The EventSet specified does not exist.

EXAMPLES

int EventSet = PAPI_NULL;
int status = 0;

if (PAPI_create_eventset(&EventSet) != PAPI_OK)
 handle_error(1);

/* Add Total Instructions Executed to our EventSet */

if (PAPI_add_event(EventSet, PAPI_TOT_INS) != PAPI_OK)
 handle_error(1);

/* Start counting */

if (PAPI_state(EventSet, &status) != PAPI_OK)
 handle_error(1);

printf("State is now %d\n",status);

if (PAPI_start(EventSet) != PAPI_OK)
 handle_error(1);

if (PAPI_state(EventSet, &status) != PAPI_OK)
 handle_error(1);

printf("State is now %d\n",status);

BUGS

This function has no known bugs.

SEE ALSO

PAPI_start, PAPI_stop

- 167 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_start - start counting hardware events in an event set
PAPI_stop - stop counting hardware events in an event set

SYNOPSIS

C Interface

#include <papi.h>
int PAPI_start(int EventSet);
int PAPI_stop(int EventSet, long_long *values);

Fortran Interface

#include fpapi.h
PAPIF_start(C_INT EventSet, C_INT check)
PAPIF_stop(C_INT EventSet, C_LONG_LONG(*) values, C_INT check)

DESCRIPTION

PAPI_start starts counting all of the hardware events contained in the previously defined EventSet. All
counters are implicitly set to zero before counting.
PAPI_stop halts the counting of a previously defined event set and the counter values contained in that
EventSet are copied into the values array
These calls assume an initialized PAPI library and a properly added event set.

ARGUMENTS

EventSet -- an integer handle for a PAPI event set as created by PAPI_create_eventset
*values -- an array to hold the counter values of the counting events

RETURN VALUES

On success, this function returns PAPI_OK.
On error, a non-zero error code is returned.

ERRORS

PAPI_EINVAL

 One or more of the arguments is invalid.

PAPI_ESYS

 A system or C library call failed inside PAPI, see the errno variable.

PAPI_ENOEVST

 The EventSet specified does not exist.

PAPI_EISRUN

 The EventSet is currently counting events. (PAPI_start() only)

- 168 -

PAPI Programmer’s Reference Version 3.5.0

PAPI_ENOTRUN

 The EventSet is currently not running. (PAPI_stop() only)

PAPI_ECNFLCT

 The underlying counter hardware can not count this event and other events in the EventSet
simultaneously. (PAPI_start() only)

PAPI_ENOEVNT

 The PAPI preset is not available on the underlying hardware.

EXAMPLES

 if (PAPI_create_eventset(&EventSet) != PAPI_OK)
 handle_error(1);

 /* Add Total Instructions Executed to our EventSet */
 if (PAPI_add_event(EventSet, PAPI_TOT_INS) != PAPI_OK)
 handle_error(1);

 /* Start counting */
 if (PAPI_start(EventSet) != PAPI_OK)
 handle_error(1);

 poorly_tuned_function();

 if (PAPI_stop(EventSet, values) != PAPI_OK)
 handle_error(1);

 printf("%lld\n",values[0]);

BUGS

These functions have no known bugs.

SEE ALSO

PAPI_create_eventset, PAPI_add_event, PAPI, PAPIF

- 169 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_stop_counters - PAPI High Level: stop counting hardware events and reset values to zero

SYNOPSIS

C Interface

#include <papi.h>
int PAPI_stop_counters(long_long *values, int array_len);

Fortran Interface

PAPIF_stop_counters(C_LONG_LONG(*) values, C_INT array_len, C_INT
check)
#include fpapi.h

DESCRIPTION

PAPI_stop_counters()
This function stops the counters and copies the counts into the values array. The counters must have been
started by a previous call to PAPI_start_counters(). After this function is called, the values are reset to
zero.

ARGUMENTS

*values -- an array where to put the counter values
array_len -- the number of items in the *values array

RETURN VALUES

On success, this function returns PAPI_OK.
On error, a non-zero error code is returned.

ERRORS

PAPI_EINVAL

 One or more of the arguments is invalid.

PAPI_ENOTRUN

 The eventset is not started yet.

PAPI_ENOEVST

 The eventset has not been added yet.

EXAMPLES

 int Events[2] = { PAPI_TOT_CYC, PAPI_TOT_INS };
 long_long values[2];

- 170 -

PAPI Programmer’s Reference Version 3.5.0
 /* Start counting events */
 if (PAPI_start_counters(Events, 2) != PAPI_OK)
 handle_error(1);
 your_slow_code();
 /* Stop counting events */
 if (PAPI_stop_counters(values, 2) != PAPI_OK)
 handle_error(1);

BUGS

This function has no known bugs.

SEE ALSO

PAPI_start_counters, PAPI_set_opt, PAPI_read_counters, PAPI, PAPIF

- 171 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_perror - convert PAPI error codes to strings, and print error
message to stderr.
PAPI_strerror - convert PAPI error codes to strings, and return the
error string to user.

SYNOPSIS

C Interface

#include <papi.h>
int PAPI_perror(int code, char *destination, int length);
char *PAPI_strerror(int code);

Fortran Interface

#include fpapi.h
PAPIF_perror(C_INT code, C_STRING destination, C_INT check)

DESCRIPTION

PAPI_perror() fills the string destination with the error message corresponding to the error code code.
The function copies length worth of the error description string corresponding to code into destination.
The resulting string is always null terminated. If length is 0, then the string is printed on stderr.
PAPI_strerror() returns a pointer to the error message corresponding to the error code code. If the call
fails the function returns the NULL pointer. This function is not implemented in Fortran.

ARGUMENTS

code -- the error code to interpret
*destination -- "the error message in quotes"
length -- either 0 or strlen(destination)

RETURN VALUES

On success PAPI_perror() returns PAPI_OK. and PAPI_strerror() returns a non-NULL pointer.

ERRORS

PAPI_EINVAL

 One or more of the arguments to PAPI_perror() is invalid.

NULL The input error code to PAPI_strerror() is invalid.

EXAMPLE

int EventSet = PAPI_NULL;
int native = 0x0;

- 172 -

PAPI Programmer’s Reference Version 3.5.0
char error_str[PAPI_MAX_STR_LEN];

if ((retval = PAPI_create_eventset(&EventSet)) != PAPI_OK)
 {
 fprintf(stderr, "PAPI error %d:
%s\n",retval,PAPI_strerror(retval));
 exit(1);
 }

/* Add Total Instructions Executed to our EventSet */

if ((retval = PAPI_add_event(EventSet, PAPI_TOT_INS)) != PAPI_OK)
 {
 PAPI_perror(retval,error_str,PAPI_MAX_STR_LEN);
 fprintf(stderr,"PAPI_error %d: %s\n",retval,error_str);
 exit(1);
 }

/* Start counting */

if ((retval = PAPI_start(EventSet)) != PAPI_OK)
 handle_error(retval);

BUGS

These functions have no known bugs.

SEE ALSO

PAPI_set_debug, PAPI_set_opt, PAPI_get_opt, PAPI_shutdown,

- 173 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_thread_id - get the thread identifier of the current thread

SYNOPSIS

C Interface

#include <papi.h>
unsigned long PAPI_thread_id(void);

Fortran Interface

#include fpapi.h
PAPIF_thread_id(C_INT id)

DESCRIPTION

This function returns a valid thread identifier. It calls the function registered with PAPI through a call to
PAPI_thread_init().

ARGUMENTS

None.

RETURN VALUES

On success, this function returns PAPI_OK.
On error, a negative error value is returned.

ERRORS

PAPI_EMISC

 is returned if there are no threads registered.

-1 is returned if the thread id function returns an error.

EXAMPLE

unsigned long tid;

if ((tid = PAPI_thread_id()) == (unsigned long int)-1)
 exit(1);

printf("Initial thread id is: %lu\n",tid);

- 174 -

PAPI Programmer’s Reference Version 3.5.0

BUGS

This function has no known bugs.

SEE ALSO

PAPI_thread_init

- 175 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_thread_init - initialize thread support in the PAPI library

SYNOPSIS

C Interface

#include papi.h
int PAPI_thread_init (unsigned long int (*handle)());

Fortran Interface

#include fpapi.h
PAPIF_thread_init(C_INT FUNCTION handle, C_INT check)

DESCRIPTION

PAPI_thread_init initializes thread support in the PAPI library. Applications that make no use of threads
do not need to call this routine. This function MUST return a UNIQUE thread ID for every new
thread/LWP created. The OpenMP call omp_get_thread_num() violates this rule, as the underlying
LWPs may have been killed off by the run-time system or by a call to omp_set_num_threads(). In that
case, it may still possible to use omp_get_thread_num() in conjunction with PAPI_unregister_thread()
when the OpenMP thread has finished. However it is much better to use the underlying thread subsystem’s
call, which is pthread_self() on Linux platforms.

ARGUMENTS

handle -- Pointer to a function that returns current thread ID.

RETURN VALUES

PAPI_OK

 The call returned successfully.

PAPI_EINVAL

 One or more of the arguments is invalid.

EXAMPLES

if (PAPI_thread_init(pthread_self) != PAPI_OK)
 exit(1);

BUGS

This function has no known bugs.

- 176 -

PAPI Programmer’s Reference Version 3.5.0

SEE ALSO

PAPI_thread_id, PAPI_list_threads, PAPI_get_thr_specific, PAPI_set_thr_specific, PAPI_register_thread,
PAPI_unregister_thread (3), PAPI

- 177 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_lock - Lock one of two mutex variables defined in papi.h
PAPI_unlock - Unlock one of the mutex variables defined in papi.h

SYNOPSIS

C Interface

#include <papi.h>
void PAPI_lock(intlock);
void PAPI_unlock(intlock);

Fortran Interface

#include fpapi.h
PAPIF_lock(C_INT lock)
PAPIF_unlock(C_INT lock)

DESCRIPTION

PAPI_lock() Grabs access to one of the two PAPI mutex variables. This function is provided to the user to
have a platform independent call to (hopefully) efficiently implemented mutex.
PAPI_unlock() unlocks the mutex acquired by a call to PAPI_lock.

ARGUMENT

lock -- an integer value specifying one of the two user locks: PAPI_USR1_LOCK or
PAPI_USR2_LOCK

RETURN VALUES

There are no return values for these calls. Upon return from PAPI_lock the current thread has acquired
exclusive access to the specified PAPI mutex.

BUGS

These functions have no known bugs.

SEE ALSO

PAPI_thread_init

- 178 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_register_thread, PAPI_unregister_thread - Inform PAPI of thread status

SYNOPSIS

#include <papi.h>
int PAPI_register_thread (void);
int PAPI_unregister_thread (void);

Fortran Interface

#include fpapi.h
PAPIF_register_thread(C_INT check)
PAPIF_unregister_thread(C_INT check)

DESCRIPTION

PAPI_register_thread should be called when the user wants to force PAPI to initialize a thread that PAPI
has not seen before. Usually this is not necessary as PAPI implicitly detects the thread when an eventset is
created or other thread local PAPI functions are called. However, it can be useful for debugging and
performance enhancements in the run-time systems of performance tools.
PAPI_unregister_thread should be called when the user wants to shutdown a particular thread and free
the associated thread ID. THIS IS IMPORTANT IF YOUR THREAD LIBRARY REUSES THE SAME
THREAD ID FOR A NEW KERNEL LWP. OpenMP does this. OpenMP parallel regions, if separated by
a call to omp_set_num_threads() will often kill off the underlying kernel LWPs and then start new ones for
the next region. However, omp_get_thread_id() does not reflect this, as the thread IDs for the new LWPs
will be the same as the old LWPs. PAPI needs to know that the underlying LWP has changed so it can set
up the counters for that new thread. This is accomplished by calling this function.

ARGUMENTS

None.

RETURN VALUES

On success, this function returns PAPI_OK. On error, a non-zero error code is returned.

ERRORS

PAPI_ENOMEM

 Space could not be allocated to store the new thread information.

PAPI_ESYS

 A system or C library call failed inside PAPI, see the errno variable.

PAPI_ESBSTR

 Hardware counters for this thread could not be initialized.

- 179 -

PAPI Programmer’s Reference Version 3.5.0

EXAMPLES

None.

SEE ALSO

PAPI_thread_init, PAPI_thread_id

- 180 -

PAPI Programmer’s Reference Version 3.5.0

NAME

PAPI_write - Write counter values into counters

SYNOPSIS

C Interface

#include <papi.h>
int PAPI_write(int EventSet, long_long *values);

Fortran Interface

#include fpapi.h
PAPIF_write(C_INT EventSet, C_LONG_LONG(*) values, C_INT check)

DESCRIPTION

PAPI_write() writes the counter values provided in the array values into the event set EventSet. The
virtual counters managed by the PAPI library will be set to the values provided. If the event set is running,
an attempt will be made to write the values to the running counters. This operation is not permitted by all
substrates and may result in a run-time error.

ARGUMENTS

EventSet -- an integer handle for a PAPI event set as created by PAPI_create_eventset
*values -- an array to hold the counter values of the counting events

RETURN VALUES

On success, this function returns PAPI_OK.
On error, a non-zero error code is returned.

ERRORS

PAPI_ENOEVST

 The EventSet specified does not exist.

PAPI_ESBSTR

 PAPI_write() is not implemented for this architecture. PAPI_ESYS The EventSet is
currently counting events and the substrate could not change the values of the running
counters.

EXAMPLES

/* Yet to be written */

- 181 -

PAPI Programmer’s Reference Version 3.5.0

BUGS

This function has no known bugs.

SEE ALSO

PAPI_read, PAPI, PAPIF,

- 182 -

PAPI Programmer’s Reference Version 3.5.0

- 183 -

	NAME
	NAME
	SYNOPSIS
	PAPI Presets
	PAPI Native Events
	High Level Functions
	Low Level Functions
	PAPI Utility Commands
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN VALUES
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	AUTHORS
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	RETURN VALUES
	ERRORS
	EXAMPLES
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	RETURN VALUES
	ERRORS
	EXAMPLES
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	RETURN VALUES
	ERRORS
	EXAMPLES
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	RETURN VALUES
	ERRORS
	EXAMPLES
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	RETURN VALUES
	ERRORS
	EXAMPLES
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	RETURN VALUES
	ERRORS
	EXAMPLES
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	RETURN VALUES
	ERRORS
	EXAMPLES
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	RETURN VALUES
	ERRORS
	EXAMPLES
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	RETURN VALUES
	ERRORS
	EXAMPLES
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	FILE FORMAT
	ARGUMENTS
	RETURN VALUES
	ERRORS
	EXAMPLE
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	PENTIUM 4
	ITANIUM
	POWER 4
	RETURN VALUES
	ERRORS
	EXAMPLES
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	RETURN VALUES
	ERRORS
	EXAMPLES
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	RETURN VALUES
	ERRORS
	EXAMPLES
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	RETURN VALUES
	ERRORS
	NOTES
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	RETURN VALUES
	ERRORS
	NOTES
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	NOTE
	ARGUMENTS
	RETURN VALUES
	ERRORS
	EXAMPLE
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	RETURN VALUES
	ERRORS
	EXAMPLE
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	RETURN VALUES
	ERRORS
	EXAMPLE
	DATA STRUCTURES
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	NOTE
	ARGUMENTS
	RETURN VALUES
	ERRORS
	EXAMPLE
	DATA STRUCTURE
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	RETURN VALUES
	ERRORS
	EXAMPLES
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	OPTIONS TABLE
	RETURN VALUES
	ERRORS
	EXAMPLES
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	RETURN VALUES
	ERRORS
	EXAMPLES
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ERRORS
	EXAMPLE
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ERRORS
	EXAMPLE
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	NOTE
	RETURN VALUES
	DATA STRUCTURE
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN VALUES
	ERRORS
	EXAMPLE
	DATA STRUCTURE
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	RETURN VALUES
	ERRORS
	EXAMPLE
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ERRORS
	EXAMPLE
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ERRORS
	EXAMPLE
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	OPTIONS TABLE
	RETURN VALUES
	ERRORS
	EXAMPLES
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	OPTIONS TABLE
	RETURN VALUES
	ERRORS
	EXAMPLES
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	RETURN VALUES
	ERRORS
	EXAMPLE
	DATA STRUCTURES
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	OPTIONS TABLE
	RETURN VALUES
	ERRORS
	EXAMPLES
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	OPTIONS TABLE
	RETURN VALUES
	ERRORS
	EXAMPLES
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	RETURN VALUES
	ERRORS
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	RETURN VALUES
	ERRORS
	EXAMPLES
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	RETURN VALUES
	ERRORS
	EXAMPLES
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	RETURN VALUES
	EXAMPLES
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	RETURN VALUES
	EXAMPLES
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENT
	RETURN VALUES
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN VALUES
	ERRORS
	EXAMPLES
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	RETURN VALUES
	ERRORS
	EXAMPLES
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN VALUES
	ERRORS
	EXAMPLES
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	RETURN VALUES
	EXAMPLES
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	RETURN VALUES
	ERRORS
	EXAMPLES
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	RETURN VALUES
	ERRORS
	EXAMPLE
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	RETURN VALUES
	ERRORS
	EXAMPLES
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	RETURN VALUES
	ERRORS
	EXAMPLES
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	RETURN VALUES
	ERRORS
	EXAMPLES
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	RETURN VALUES
	ERRORS
	EXAMPLES
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	RETURN VALUES
	ERRORS
	EXAMPLES
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	RETURN VALUES
	ERRORS
	EXAMPLES
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	RETURN VALUES
	ERRORS
	EXAMPLES
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	RETURN VALUES
	ERRORS
	EXAMPLES
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	RETURN VALUES
	ERRORS
	EXAMPLES
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	RETURN VALUES
	ERRORS
	EXAMPLES
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	RETURN VALUES
	ERRORS
	EXAMPLE
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN VALUES
	ERRORS
	EXAMPLES
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	RETURN VALUES
	ERRORS
	EXAMPLES
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	OPTIONS TABLE
	RETURN VALUES
	ERRORS
	EXAMPLES
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	RETURN VALUES
	ERRORS
	EXAMPLE
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	RETURN VALUES
	ERRORS
	EXAMPLES
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	STRUCTURE FIELDS
	ARGUMENTS
	RETURN VALUES
	ERRORS
	EXAMPLES
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	RETURN VALUES
	ERRORS
	EXAMPLES
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	RETURN VALUES
	ERRORS
	EXAMPLES
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUEMENTS
	RETURN VALUES
	ERRORS
	EXAMPLES
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	RETURN VALUES
	ERRORS
	EXAMPLES
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	RETURN VALUES
	ERRORS
	EXAMPLES
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	RETURN VALUES
	ERRORS
	EXAMPLE
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	RETURN VALUES
	ERRORS
	EXAMPLE
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	RETURN VALUES
	EXAMPLES
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENT
	RETURN VALUES
	BUGS
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	RETURN VALUES
	ERRORS
	EXAMPLES
	SEE ALSO
	NAME
	SYNOPSIS
	DESCRIPTION
	ARGUMENTS
	RETURN VALUES
	ERRORS
	EXAMPLES
	BUGS
	SEE ALSO

