ORDER and INFORMATION FORM

MAIL TO: |_

NATIONAiLi National Institute of Standards and Technology
» . ~ Gaithersburg MD., 20899
Metrology Building, Rm-A127
~ Attn: Secretary National PDES Testbed
(301) 975-3508

TESTBED

Please send the following documents
and/or software:
Clark, S.N., An Introduction to The NIST PDES Toolkit

[]

Clark, S.N., The NIST PDES Toolkit: Technica Fundamentals

Clark, S.N., Fed-X: The NIST Express Translator

Clark, S.N., The NIST Working Form for STEP

Clark, S.N., NIST Express Working Form Programmer’s Reference

Clark, S.N., NIST STEP Working Form Programmer’ s Reference,

Clark, SN., QDES User's Guide

Clark, S.N., QDES Administrative Guide

Morris, K.C., Trandating Expressto SOL: A User’'s Guide

Nickerson, D., The NIST SOQL Database L oader: STEP Working Form to
SQL

Strouse, K., McLay, M., The PDES Testbed User Guide

L OOt oo o

OTHER (PLEASE SPECIFY)

These documents and corresponding software will be
available from NTIS in the future. When available, the
NTIS ordering information will be forthcoming.

NIST

Stephen Nowland Clark

A References

[Altemueller88] Altemueller, J.,, The STEP File Structure, 1SO TC184/SC4/WG1
Document N279, September, 1988

[ANSI89] American National Standards Institute, Programming L anguage C,
Document ANSI X3.159-1989

[Clark90a] Clark, S. N., An Introduction to The NIST PDES Toolkit, NISTIR
4336, National Institute of Standardsand Technology, Gaithersburg,
MD, May 1990

[Clark90b] Clark, SN., Fed-X: The NIST Express Tranglator, NISTIR 4371,
National Institute of Standards and Technology, Gaithersburg, MD,
August 1990

[Clark90c] Clark, S.N., The NIST Working Form for STEP, NISTIR 4351,
National Institute of Standards and Technology, Gaithersburg, MD,
June 1990

[Clark90d] Clark, S.N., The NIST PDES Toolkit: Technical Fundamentals,
NISTIR 4335, National Institute of Standards and Technology,
Gaithersburg, MD, May 1990

[Clark90¢] Clark, S.N., NIST ExpressWorking Form Programmer’ s Reference,
NISTIR 4407, National Institute of Standards and Technology,
Gaithersburg, MD, September 1990

[Smith88] Smith, B., and G. Rinaudot, eds., Product Data Exchange
Specification First Working Draft, NISTIR 88-4004, National
Institute of Standards and Technology, Gaithersburg, MD,
December 1988

NIST STEP Working Form Programmer’ s Reference Page 22

Error:
Severity:

M eaning:

Format:

Error:
Severity:

M eaning:

Format:

Error:
Severity:

M eaning:

Format:

Error:
Severity:

M eaning:

Format:

Stephen Nowland Clark

ERROR_string_expected

SEVERITY_ERROR

A non-string Instance was provided for a string attribute
%s - attribute name

ERROR_too_many_eattributes

SEVERITY_WARNING

Too many attribute values were provided for a particular entity instantiation
%s - entity instance identifier

ERROR_undefined_reference

SEVERITY_ERROR

A reference was made to an unknown entity instance identifier
%s - entity instance identifier

ERROR_unknown_entity

SEVERITY_ERROR

A reference was made to an unknown entity class (type)
%s - entity class name

NIST STEP Working Form Programmer’ s Reference Page 21

Error:
Severity:

M eaning:

Format:

Error:
Severity:

M eaning:

Format:

Error:
Severity:

M eaning:

Format:

Error:
Severity:

M eaning:

Format:

Error:
Severity:

Meaning:

Format:

Error:
Severity:

M eaning:

Format:

Error:
Severity:

Meaning:

Format:

Error:
Severity:

M eaning:

Format:

Error:
Severity:

Meaning:

Format:

Error:
Severity:

M eaning:

Format:

Stephen Nowland Clark

ERROR index_out_of range

SEVERITY_WARNING

An attempt was made to index an aggregate instance outside of the legal bounds
%d - index value

ERROR_insufficient_attributes

SEVERITY_WARNING

Too few attribute values were provided for a particular entity instantiation
%s - entity instance identifier

ERROR_integer_expected

SEVERITY_ERROR

A non-integer value was provided for an integer attribute
%s - attribute name

ERROR _internal_expected
SEVERITY_WARNING

An non-embedded (external) entity was provided for an attribute with "internal"
reference class

%s - attribute name

ERROR _list_expected

SEVERITY_ERROR

An aggregate of a specific non-list class was provided for alist attribute
%s - attribute name

ERROR_logical_expected

SEVERITY_ERROR

A non-logical value was provided for alogical attribute
%s - attribute name

ERROR_number_expected

SEVERITY_ERROR

A non-numeric value was provided for a numeric attribute
%s - attribute name

ERROR_set duplicate_entry
SEVERITY_ERROR

A duplicate entry was added to a set
-- none --

ERROR_set expected

SEVERITY_ERROR

An aggregate of a specific non-set class was provided for a set attribute
%s - attribute name

ERROR_set_full

SEVERITY_WARNING

An item was inserted into an aready full set
-- none --

NIST STEP Working Form Programmer’ s Reference Page 20

Stephen Nowland Clark

6 STEP Working Form Error Codes

The Error module, which is used to manipul ate these error codes, is described in
[Clark90d]. All STEP Working Form error codes are defined in the Instance module.

Error:
Severity:
M eaning:
Format:

Error:
Severity:
M eaning:
Format:

Error:
Severity:
M eaning:
Format:

Error:
Severity:
M eaning:
Format:

Error:
Severity:
M eaning:
Format:

Error:
Severity:
M eaning:
Format:

Error:
Severity:
M eaning:

Format:

Error:
Severity:

M eaning:

Format:

Error:
Severity:

Meaning:

Format:

ERROR_aggregate expected

SEVERITY_ERROR

A non-aggregate value was provided for an aggregate attribute
%s - attribute name

ERROR_array_expected

SEVERITY_ERROR

An aggregate of a specific non-array class was provided for an array attribute
%s - attribute name

ERROR_bag_expected

SEVERITY_ERROR

An aggregate of a specific non-bag class was provided for abag attribute
%s - attribute name

ERROR_bag_full

SEVERITY_WARNING

An item was inserted into an aready full bag
-- none --

ERROR_cannot_instantiate

SEVERITY_ERROR

An attempt was made to instantiate an uninstantiable type
%s - type name

ERROR_entity expected

SEVERITY_ERROR

A non-entity Instance was provided for an attribute having an entity type
%s - attribute name

ERROR_external_expected
SEVERITY_WARNING

An embedded (internal) entity was provided for an attribute with "external” reference
class

%s - attribute name

ERROR _inappropriate_entity

SEVERITY_ERROR

An entity of the wrong type was provided for an attribute having an entity type
%s - attribute name

ERROR_incompatible_types

SEVERITY_ERROR

Some other type problem was encountered in specifying an attribute of some instance.
%s - attribute name

NIST STEP Working Form Programmer’ s Reference Page 19

5.3

NIST STEP Working Form Programmer’ s Reference

Product

Procedure:
Parameters:

Returns:
Requires:
Description:

Errors:

Procedure:
Parameters:

Returns:
Description:
Errors:

Procedure:
Parameters:
Returns:
Errors:

Procedure:
Parameters:
Returns:
Description:

Errors:

Procedure:
Parameters:
Returns:
Errors:

Procedure:
Parameters:

Returns:

L Description:

Errors:

Procedure:
Parameters:
Returns:
Description:
Errors:

Stephen Nowland Clark

PRODadd_instance

Product product - product to modify

Instance instance - entity instance to add

void

TYPEget_class(INSTget_type(instance)) == TYPE_ENTITY

Adds an entity instance to a product model. The instance is assumed already to have
been added to theinstancelist of itsclass, since INSTcreate_entity () doesthis.
none

PRODcreate

String name - name for new product

Express model - conceptual schemain which to create product
Product - a new, empty product

Creates an empty product within a particular conceptual schema.
none

PRODget_conceptual_schema

Product product - product to examine

Express - conceptual schema in which the product exists
none

PRODget_contents
Product product - product to examine
Linked List - entity instances which make up the product

Retrieves alist of the instances in a product model, in the order in which they were
created.

none

PRODget_name

Product product - product to examine
String - the name of the product

none

PRODget_named_instance

Product product - product to examine

String name - name of instance to retrieve

Instance - the named instance

Retrieves anamed instance from a STEP product model, if it is defined.
none

PRODintiialize

-- none --

void

Initializes the Product module. Thisis called by STEPinitialize().
none

Page 18

Procedure:

Parameters:

Returns:

Description:

Errors:

Procedure:

Parameters:

Returns:
Errors:

Procedure:

Parameters:

Returns:

Description:

Errors:

Procedure:

Parameters:

Returns:

Description:

Errors:

NIST STEP Working Form Programmer’ s Reference

Stephen Nowland Clark

INSTset_remove all

Instance set - set to remove from

Instance remove - set of items to remove

Error* errc - buffer for error code

void

Removesall itemsin aset from some other set. Thisisset subtraction. Thisoperation
is destructive: the first set holds the result on return.

none

INSTset_subset

Instance set - set to test as superset

Instance subset - set to test as subset

Error* errc - buffer for error code

Boolean - does the first set contain the second as a subset?
none

INSTset_unite

Instance set - set to unite onto

Instance unitee - set to unite with

Error* errc - buffer for error code

void

Forms the union of two sets. This operation is destructive: the first set holds the
resulting union on return.

none

INSTtype_cast

Instance instance - instance to be cast

Type type - type to cast to

Error* errc - buffer for error code

Instance - the instance, cast to the requested type

Converts an instance to anew type, if possible. If the cast issuccessful (*errc ==
ERROR_none), theoriginal instance should no longer be used. It is guaranteed to be

valid only when an error isreported. Thiscall does not report errorsto stderr; itis
the callers responsibility to check *errc and to call ERRORreport (*errc,
(String) context) if itisnot ERROR none.

ERROR_aggregate expected - value given for an aggregate was not an
aggregate

ERROR array expected - vauedgiven for an array was not an array
ERROR bag expected - value given for abag was not a bag

ERROR entity expected - valuegiven for an entity was not an entity

ERROR inappropriate entity -theentity given asavaluewas not of an
expected class

ERROR_integer expected - valuegiven for aninteger was not an integer
ERROR_ list expected - vauegiven for alist wasnot alist

ERROR_ logical expected - valuegivenfor alogical was not alogical
ERROR number_ expected - value given for anumber was not a number
ERROR_set expected - vauegiven for aset was not a set
ERROR_string expected - valuegiven for astring was not a string

ERROR_incompatible types - thevaue givenisnot of the expected type, in
some way not covered by any of the above messages

Page 17

Procedure:

Parameters:

Returns:

Description:

Errors:

Procedure:

Parameters:

Returns:

Description:

Errors:

Procedure:

Parameters:

Returns:
Errors:

Procedure:

Parameters:

Returns:

Description:

Errors:

Procedure:

Parameters:

Returns:

Description:

Errors:

NIST STEP Working Form Programmer’ s Reference

Stephen Nowland Clark

INSTput_value

Instance instance - instance to modify

Generic value - value for instance

Error* errc - buffer for error code

void

Sets the value of asingle-valued instance. The value given should be achar* for a
string object. For aninteger, real, or logical object, it should bean int *, double*,
and Boolean*, respectively. For an enumeration object, the value given should be
of type Constant. See INSTaggr_at put (), INSTarray at put (),
INSTbag_add (), INSTlist add first(),INSTlist add last(),and
INSTset add () tostoreinto an aggregate. See INSTput attribute () to
store into an entity instance.

none

INSTset_add

Instance set - set to modify

Instance item - item to add

Error* errc - buffer for error code

void

Inserts an instance into a set, if it is not already present.
ERROR_set_ full - thereisno moreroom in the set

INSTset_includes

Instance set - set to test

Instance item - item to test for

Error* errc - buffer for error code
Boolean - does this set contain thisitem?
none

INSTset_intersect

Instance set - set to intersect into

Instance with - set to intersect with

Error* errc - buffer for error code

void

Intersects two sets. This operation is destructive: the first set holds the resulting
intersection on return.

none

INSTset_remove

Instance set - set to remove from
Instance item - item to remove

Error* errc - buffer for error code

void

Remove an item from a set, if it appears.
none

Page 16

Procedure:

Parameters:

Returns:
Requires:

Description:

Errors:

Procedure:

Parameters:

Returns:

Description:

Errors:

Procedure:

Parameters:

Returns:

Description:

Errors:

NIST STEP Working Form Programmer’ s Reference

Stephen Nowland Clark

INSTput_attribute

Instance instance - instance to modify

String attributeName - name of attribute to store into

Instance value - value to store into attribute

Error* errc - buffer for error code

void

TYPEQet_class(INSTget_type(instance)) == TYPE_ENTITY

Stores avalue into a named attribute of an entity instance. Thiscall isthe slower
method for storing into an attribute. If the actual attribute record is available, for
example from traversing the Ent i ty’s attribute list, use
INSTfast put attribute () instead.

ERROR aggregate expected - vauegiven for an aggregate was not an
aggregate

ERROR_array_ expected - valuegiven for an array was not an array
ERROR_bag expected - value given for abag was not a bag

ERROR_entity expected - valuegivenfor an entity was not an entity

ERROR external expected -anexternal atribute was given an internal
(embedded) entity asavalue

ERROR_inappropriate entity - theentity given asavaluewas not of an
expected class

ERROR_ integer expected - vaue given for aninteger was not an integer

ERROR internal expected -aninternal attribute wasgiven an externa
entity reference asavalue

ERROR_list expected - vauegiven for alist wasnot alist
ERROR_logical expected - valuegivenfor alogical was not alogical
ERROR_ number_ expected - valuegiven for a number was not a number
ERROR_set expected - vauegiven for aset was not a set
ERROR_string expected - valuegiven for astring was not a string

ERROR_incompatible types - thevaue givenisnot of the expected type, in
some way not covered by any of the above messages

INSTput_name

Instance instance - instance to modify
String name - name for instance

void

Setsthe name (identifier) of aninstance; normally, only entity instances which are not
embedded are named.
none

INSTput_user_data

Instance instance - instance to modify

Generic value - user data value for instance

Error* errc - buffer for error code

Generic - old value of user datafield for thisinstance
Stores avalue into an instance’ s user datafield

none

Page 15

Procedure:

Parameters:

Returns:

Description:

Errors:

Procedure:

Parameters:

Returns:
Errors:

Procedure:

Parameters:

Returns:
Errors:

Procedure:

Parameters:

Returns:

Description:

Errors:

Procedure:

Parameters:

Returns:

Description:

Errors:

Procedure:

Parameters:

Returns:

Description:

Errors:

NIST STEP Working Form Programmer’ s Reference

Stephen Nowland Clark

INSTinitialize

Error* errc - buffer for error code

void

Initialize the Instance module. Thisiscalled by STEPinitialize().
none

INSTis_external

Instance instance - instance to examine

Boolean - isthis an externa instance (non-embedded entity)?
none

INSTis internal

Instance instance - instance to examine

Boolean - isthis an internal instance (embedded entity)?
none

INSTIist_add_first

Instance list - list to modify

Instance item - item to insert

Error* errc - buffer for error code

void

Adds an item to the beginning of alist. Thisfunction is not yet implemented.
none

INSTIlist_add last

Instance list - list to modify

Instance item - item to insert

Error* errc - buffer for error code

void

Adds an item to the end of alist. Thisfunction isnot yet implemented.
none

INSTIlist_concat

Instance list - list to concatenate onto

Instance tail - list to concatenate

Error* errc - buffer for error code

void

Concatenate a list onto the end of another. This operation is destructive: the first list

ismodified so that it includes a copy of the second. Changes to the second will not
appear inthefirst. Thisfunctionis not yet implemented.

none

Page 14

Procedure:

Parameters:

Returns:
Requires:

Description:

Errors:

Procedure:

Parameters:

Returns:

Description:

Errors:

Procedure:

Parameters:

Returns:

Description:

Errors:

Procedure:

Parameters:

Returns:
Errors:

Procedure:

Parameters:

Returns:
Errors:

Procedure:

Parameters:

Returns:

Description:

Errors:

NIST STEP Working Form Programmer’ s Reference

Stephen Nowland Clark

INSTfast_put_attribute

Instance instance - instance to modify

Variable attribute - attribute to store into

Instance value - value to store into attribute

Error* errc - buffer for error code

void

TYPEQet_class(INSTget_type(instance)) == TYPE_ENTITY

Store avalue into an attribute of an entity instance. This call isfaster than
INSTput attribute () whenthecaller already hasthe actual attribute record for
the desired attribute, rather than simply having its name (as expected by
INSTput attribute()).

Sameasfor INSTput attribute ().

INSTget_attribute

Instance instance - instance to examine

String attributeName - name of attribute to retrieve
Error* errc - buffer for error code

Instance - value of the named attribute

Retrievesthevalue of anamed attribute from an entity instance. Thiscall isthe slower
method for retrieving an attribute value. If the actual attribute recored is already
available, use INSTfast get attribute () instead.

none

INSTget_name
Instance instance - instance to examine
String - the instance’ s name

Retrieves the name of an instance. Unnamed instances, which would normally be
embedded entities and non-entities, yield STRING NULL.

none

INSTget_type

Instance instance - instance to examine
Type - the type of the instance

none

INSTget_user_data

Instance instance - instance to examine

Error* errc - buffer for error code

Generic - value of user datafield for thisinstance
none

INSTget_value

Instance instance - instance to examine
Error* errc - buffer for error code
Generic - theinstance' s value

Retrieves the value of asingle-valued instance. The value returned will beachar*
for astring object, a Constant for an enumeration object, and a pointer to an int,
double, or Boolean for aninteger, real, or logical object, respectively. See
INSTarray_at (), INSTbag includes (), INSTlist at (), and
INSTset at () toreadfromanaggregate. See INSTget attribute () toread
from an entity instance.

none

Page 13

Procedure:

Parameters:

Returns:

Description:

Errors:

Procedure:

Parameters:

Returns:

Description:

Errors:

Procedure:

Parameters:

Returns:
Errors:

Procedure:

Parameters:

Returns:

Description:

Errors:

Procedure:

Description:

Procedure:

Parameters:

Returns:

Description:

Errors:

NIST STEP Working Form Programmer’ s Reference

Stephen Nowland Clark

INSTbag_subset

Instance bag - bag to test as superset

Instance subset - bag to test as subset

Error* errc - buffer for error code

Boolean - does the first bag contain the second as a subset?

Thisimplementation is not completely correct. In particular, the following returns
true: INSTbag subset ({a, b, ¢}, {a, a}).
none

INSTbag_unite

Instance bag - bag to unite onto

Instance unitee - bag to unite with

Error* errc - buffer for error code

void

Adds the contents of a bag to another bag. This operation is destructive: the first bag
holds the resulting union on return. It isnot safe to unite a bag with itself.

none

INSTcreate

Typetype - type to instantiate

Error* errc - buffer for error code

Instance - a new, empty instance of the given type

ERROR_cannot_instantiate - thetype given cannot be instantiated (e.g.,
Generic)

INSTcreate_entity

Entity entity - entity classto instantiate

Linked_List attributes - list of attribute values

int line - source line number of the instance to be created
Error* errc - buffer for error code

Instance - a new entity instance, as described

A new instance of the specified entity typeis created. There should be a one-to-one
correspondence between the values on the attribute value list and the list of attributes
for the entity being instantiated.

ERROR insufficient attributes - not enough attribute valuesin the list
provided
ERROR_too many attributes - too many attribute valuesin the list provided

INSTcreate ud_entity
Create a user-defined entity. This procedureis not yet implemented.

INSTfast_get_attribute

Instance instance - instance to examine
Variable attribute - attribute to retrieve
Error* errc - buffer for error code
Instance - value of attribute

Retrieves the value of an attribute from an entity instance. Thiscal isfaster than
INSTget attribute () whenthecaller already hasthe actual attribute record for
the desired attribute, rather than simply having its name (as expected by

INSTget attribute()).

none

Page 12

Procedure:

Parameters:

Returns:

Description:

Errors:

Procedure:

Parameters:

Returns:

Description:

Errors:

Procedure:

Parameters:

Returns:
Errors:

Procedure:

Parameters:

Returns:

Description:

Errors:

Procedure:

Parameters:

Returns:

Description:

Errors:

Procedure:

Parameters:

Returns:

Description:

Errors:

NIST STEP Working Form Programmer’ s Reference

Stephen Nowland Clark

INSTarray_at_put

Instance array - array to modify

int index - index at which to put element

Instance value - value to insert

Error* errc - buffer for error code

void

Store avalue into an array instance.

ERROR index out of range -theindex isoutside of the bounds of the
aggregate

INSTbag_add

Instance bag - bag to modify

Instance item - item to add

Error* errc - buffer for error code

void

Inserts an instance into a bag.

ERROR bag full - thereisno moreroom in the bag

INSTbag_includes

Instance bag - bag to test

Instance item - item to test for

Error* errc - buffer for error code
Boolean - does this bag contain thisitem?
none

INSTbag_intersect

Instance bag - bag to intersect into

Instance unitee - bag to intersect with

Error* errc - buffer for error code

void

Intersects two bags. This operation is destructive: the first bag holds the resulting
intersection on return.

none

INSTbag_remove

Instance bag - bag to remove from

Instance item - item to remove

Error* errc - buffer for error code

void

Remove a single occurence of someitem from abag, if it appears.
none

INSTbag_remove all

Instance bag - bag to remove from

Instance remove - bag of items to remove

Error* errc - buffer for error code

void

Removes all items in a bag from some other bag. Thisis bag subtraction. This
operation is destructive: the first bag holds the result on return.

none

Page 11

5.2

NIST STEP Working Form Programmer’ s Reference

Instance

Procedure:
Parameters:

Returns:
Description:

Errors:

Procedure:
Parameters:

Returns:
Description:

Errors:

Procedure:
Parameters:

Returns:
Description:

Errors:

Procedure:
Parameters:

Returns:
Description:

Errors:

Procedure:
Parameters:

Returns:
Description:
Errors:

Stephen Nowland Clark

INSTagor_at

Instance instance - instance to examine
int index - index of requested element
Error* errc - buffer for error code
Instance - value at requested position

Retrieves the value at some position in an aggregate. Note that the calls which are
specific to a particular aggregate class are much to be preferred.

ERROR_index out_ of range - theindex isoutside of the bounds of the
aggregate

INSTaggr_at_put

Instance instance - instance to modify

int index - index at which to put element

Instance value - value to insert

Error* errc - buffer for error code

void

Store avalue into an aggregate instance. Note that the calls which are specificto a
particular aggregate class are much to be preferred.

ERROR_index out_ of range - theindex isoutside of the bounds of the
aggregate

INSTaggr_lower_bound

Instance instance - instance to examine
Error* errc - buffer for error code

int - the lower bound of the instance

Retrieves the lower bound of an aggregate instance. For an array, thisisthe index of
thefirst element of the array. For other aggregates, itis 1.

none

INSTaggr_upper_bound

Instance instance - instance to examine
Error* errc - buffer for error code

int - the upper bound of the instance

Retrieves the upper bound of an aggregate instance. For an aggregate with a
constrained size, thisisthe value of the upper limit or index. For an aggregate with an
infinite upper bound, the value returned is guaranteed to be larger than the highest
index of afilled slot in the aggregate.

none

INSTarray_at

Instance array - array to examine

int index - index of requested element

Error* errc - buffer for error code

Instance - value at requested position

Retrieves the value at some position in an array.

ERROR index out of range -theindex isoutside of the bounds of the
aggregate

Page 10

5.1

Stephen Nowland Clark

Sincestep static.oand step dynamic.o both definethe function
STEPreport (), only oneislinked into any given executable. Thisselectioniswhat
determineswhether a STEPparse trandator linksin output modules statically or dynam-
ically. By default, the linkage mechanism will be step static.o, which actually
appears in the Working Form library. This choice can be overridden by placing
step_dynamic.o beforelibstep.a inthelink command. Note that a suitable
output module (. o file) must appear after step static.ointhelinker’sargument
list when a statically linked trandlator is being built. For more information on how to
build areport generator into a STEPparse trandator, see [Clark90d].

Working Form Routines

Theremainder of thismanual consists of specifications and brief descriptions of the ac-
cess routines and associated error codes for the STEP Working Form. The error codes
are manipulated by the Error module [Clark90d]. Each subsection below corresponds
toamoduleinthe Working Form library. The Working Form Manager moduleislisted
first, followed by the remaining data abstractions in aphabetical order.

Working Form Manager

Procedure: STEPinitialize

Parameters: Error* errc - buffer for error code

Returns: void

Description: Initializethe STEP Working From package. Inatypical STEPtrandator, thisiscalled
by the default main () provided in the Working Form library. Other applications
should call thisfunction at initialization time.

Errors: none

Procedure: STEPparse

Parameters: String filename - the name of the file to be parsed
Express data_model - conceptual schema (as produced by EXPRESSpass_ 2 ())

Returns: Product - the product model parsed

Description: Parse a STEP physicd file into the Working Form

Procedure: STEPreport

Parameters: Product product - the product to output

Returns: void

Description: Invoke one or more report generators for a STEP Working Form model.

Description: Invoke one (or more) report generator(s), according to the selected linkage

mechanism.

NIST STEP Working Form Programmer’ s Reference Page 9

4.2

Stephen Nowland Clark

void
entry point (void* product, void* file)
{

extern void print file();

print file(product, file);

}

#include "step.h"
actual output routines

void
print file(void* product, void* file)
{
print file header ((Product)product,
(FILE*) file);
STEPprint (product, file);
print file trailer ((Product)product,
(FILE*) file);
}
Theprint file () functionwill probably alwaysbe quite similar to the one shown,
although in many cases, the file header and/or trailer may well be empty, eliminating
the need for these calls. Inthiscase, STEPprint () andprint file () will prob-
ably become interchangeable.

Having said all of the above about templates, code layout, and so forth, we add the fol -
lowing note: In the final analysis, the output module really is afree-form piece of C
code. Thereisoneand only onerulewhich must be followed: The entry point (accord-
ingtothea . out format) to the . o filewhichis produced when the report generator is
compiled must be appropriate to be called withaProduct andaFILE*. Thesim-
plest (and safest) way of doing thisisto adhere strictly to the layout given, and write an
entry point () routinewhich jumpsto thereal (conceptual) entry point. But any
other convention which guarantees this property may be used.

Output M odule Linkage M echanisms

One of the powers of STEPparse is the flexibility which it gives a user with regard to
generating output. Animportant component of thisflexibility on BSD Unix systemsis
the dynamic loading of output modules. Both static and dynamic binding of output
modules are supported by STEPparse. Thisisimplemented by providing two distinct
versions of the Working Form manager. Code common to both versions (including ini-
tialization code and the STEPparse parser itself) isfoundin step . ¢, whichisincluded
by each of the distinct manager modules. The static linking version of the output pass,
without any output module, isin step static.c, and the corresponding

step static.oisincludedinlibstep.a, making it the default; the dynamic
loading versionisin step dynamic.c

NIST STEP Working Form Programmer’ s Reference Page 8

4.1

Stephen Nowland Clark

stanceswere added to the Product, and so is appropriate for applications, such as
writing a STEP physical file, which require that there be no forward referencesto as-
yet-undefined Instances. Each external Instance isalso added to adictionary
which the Product maintains, to alow retrieval by name. And when an entity in-
stanceisfirst created, it is added to the instance list of its class.

Writing An Output Module

We now turn to the topic of actually writing areport generator. The end result of this
process will be an object module (under Unix, a . o file) which can be loaded into
STEPparse. This module contains a single entry point which traverses agiven
Product and writesits output to a particular file. The conceptual entry point is con-
ventionally called print file (), whilethe physical entry point, which ssimply dis-
patchestoprint file(),iscalledentry point ().

In most cases, there will be a one-to-one correspondence between Instancesin the in-
stantiated Working Form and recordsto be written on the output. When thisisthe case,
the meat of the report generator can be made fairly smple. Since alist of all of the In-
stances in the Working Form is available, it is easy to iterate over thislist and output
each Instance in sequence:

STEPprint (Product product, FILE* file)

{
Linked List list;
list = PRODget contents (product) ;
LISTdo(list, inst, Instance)
INSTprint (inst, file);
LISTod;

}
Theonly remaining problemistowriteafunction INSTprint () which emitsthe out-
put record for asingle Instance. Given the variety of types of Instances, this function
will probably be controlled by alarge switch statement, selecting on the Instance's
type class (numbers, strings, and aggregates al haveto be printed differently). Codeto
deal with multi-dimensional arraysan internal/external entity references can get tricky,
and should be written carefully. An example of afairly ssmple report generator is that
used by STEPparse-QDES. The source code for this moduleisin
~pdes/src/stepparse gdes/step output smalltalk.c.

L ayout of the C Source

Thelayout of the C sourcefile for areport generator which will be dynamically loaded
isof critical importance, dueto the primitive level at which theload iscarried out. The
very first piece of C source in the file must betheentry point () function, or the
loader may find the wrong entry point to thefile, resulting in mayhem. Only comments
may precede thisfunction; even an # include directive may throw off theloader. An
output module is normally layed out as shown:

NIST STEP Working Form Programmer’ s Reference Page 7

3.6

Stephen Nowland Clark

no specified upper bound, however, high may vary with the number of elements ac-
tually inthe aggregate. The expression (from Express) giving the absol ute upper bound
onan aggregateiscachedinaggregate- >max. highisnever allowed to be greater
than the value of this expression.

Thetwo calls INSTaggr at () and INSTaggr_at put () can be used with any
kind of aggregate, although they are intended to be used primarily for building general
aggregateswhich will later be INSTtype cast () into specific types of aggregates.
Thisis how STEPparse builds aggregates, sinceit is considerably easier than figuring
out at parse time what type of aggregate should be built. The various class-specific ma-
nipulations (list concatenation, set intersection, etc.) are provided by callsrequiring ag-
gregates of aparticular class: INST1ist concat (), INSTset intersect(),
etc. It should be noted that the callsfor combning aggregates are destructive: each mod-
ifiesitsfirst argument to hold its computed result. In genera, the two arguments may
safely be set equal. Exceptions are noted in the individual function specifications.

Finally, aword about type conversion (also known as casting, asin C). Type conver-
sions of existing Instancesare handled by INSTtype cast (Instance,
Type, Error*). Only certain conversionsare alowed; other attempted castsleave
the Instance unchanged and return an error code. Clearly, any Instance cantriv-
ially be cast into itsown type. The different numeric types can be cast about at will. A
general aggregate can be cast into any specific aggregate class; otherwise, an aggregate
can only be cast into another aggregate type of the same class: an array cannot be cast
into aset, etc. Each element of the aggregate being cast must, of course, be recursively
cast into the appropriate base type; each of these conversionsis subject tothe samerules
asany other cast. Finally, an entity Instance can be converted into an instance of a
supertype of its class, or into an instance of a SELECT type containing some type to
which it can be cast. These casts of entity instancesin fact do not modify the In -
stance being cast.

Product

A product in STEP contains a large number of interrelated entity instances, and is rep-
resented by the Product abstraction. Each Product isnamed, and includes a point-
er to the Express model which providesthe scopein whichitscomponent Instances
aredefined. These component instances can beretrieved fromthe Product in severa
ways: aspecific (external) entity instance can beretrieved by name; aLinked List
of al of the (external) entity instancesin the Product can berequested; or aparticular
entity classinthe Product’sconceptual schema can be queried for all of itsinstances
(notethat thislast method retrievesboth internal and external entity instances). Internal
(embedded) entity instances and non-entity Instances must appear as attribute val-
ues or aggregate elements somewhere in the Product, and are only accessible via
ENTITYget instances () and component retrieval from the containing In-
stances.

The above three access methods are supported by storing three referencesto each In-
stanceinaProduct. When an Instance isadded to aProduct, it isadded to
the end of thelist of external instances. Thislist preserves the order in which the In-

NIST STEP Working Form Programmer’ s Reference Page 6

Stephen Nowland Clark

Thefirst two fields are pretty straightforward. Notethat user data isageneric
pointer field. In strict ANSI C, only a pointer can be safely stored into thisfield and
later retrieved; it is safest to only store pointersin thisfield. In particular, the age-old
trick of casting pointers and integers back and forth, never completely portable, is now
officialy frowned upon.

Thevalue unioniswherethingsget tricky. Thisfield containsthe actual value of the
object represented. Unstructured types (numbers, logicals, and strings) are represented
directly; e.g., instance.value. integer contains an integer, and
instance.value.string, acharacter pointer. The vaue of an enumeration in-
stanceisrepresented asa Constant, which will be an element of the appropriate enu-
meration. The integer representation of this enumeration element can be retrieved by
caling (int) CSTget value (instance.value.enumeration).

Anentity instance' svalue field, value . entity, isapointer to the base of an array
of instances. Each element of this array corresponds to an attribute of the entity; at-
tributes appear inthe same order asinaPDES/STEP physical file, with empty attributes
explicitly represented by INSTANCE NULL. The offset to aparticular attribute value
isretrieved from the Express data dictionary by calling

ENTITYget attribute offset (entity, attribute),whereentityis
the entity class of theinstance in question and attribute isthe Variable repre-
senting the attribute to be located.

The most convoluted instance val ue representation isthat for aggregates. An aggregate
valueisrepresented asapointer toastruct Aggregate, defined as

struct Aggregate {

int low;
int high;
Expression max;
Instance* contents;

}i

Thelast field, contents, holds the actual contents of the aggregate, as an array of
Instances. The low field provides alower bound on allowable indicesinto this ar-
ray, and doubles as alogical offset to the first element of thearray. Thisvalueis1 for
any non-array aggregate. Thus, when low is1, some aggregate [1] isfound at
contents [0]. Similarly, in anarray whose 1ow is 10, the some _array[12] IS
found a contents [12-10 = 2]. low remainsconstant in any particular aggre-
gate instance. The high field gives an upper bound on the indices of currently filled
dlotsin an aggregate instance. Every index into the aggregate beyond high whichis
in boundsis guaranteed to return INSTANCE NULL. Theend result is that aloop of
theform for (i = low; i <= high; ++1i) <use contents[i-low]>
will always hit all of the elements of an aggregate. This function of offsetting by the
lower bound is bundled into the various aggregate indexing functions of the working
form (INSTaggr at (), INSTlist insert (), €tc.), sothat theindiceswhich a
user seeswill be the ones which would be expected based on the Express model. In the
current implementation, high in an aggregate whose type (from Express) givesafinite
upper bound always remains constant at this bound. In the case of an aggregate with

NIST STEP Working Form Programmer’ s Reference Page 5

34

35

Stephen Nowland Clark

functions may be implemented as macros; these macros are not distinguished typo-
graphically from other functions, and are guaranteed not to have unpleasant side effects
like evaluating arguments more than once. These macros are thus virtually indistin-
guishablefrom functions. Functionswhich areintended for internal use only are named
FOO_ function(),andareusualy static aswell, unlessthisisnot possible. Glo-
bal variables are often named FOO_variable; most enumeration identifiersand con-
stants are named FOO _CONSTANT (although these latter two rules are by no means
universal). For example, every abstraction defines a constant FOO NULL, which rep-
resents an empty or missing value of the type.

Memory Management and Gar bage Collection

In reading various portions of the STEP Working Form documentation, one may get the
impression that the Working Form does some reasonably intelligent memory manage-
ment. Thisisnot entirely true. The NIST PDES Toolkit is primarily aresearch tool.
Thisis especialy true of the Express and STEP Working Forms. The Working forms
allocate huge chunks of memory without batting an eye, and this memory often is not
released until an application exits. Hooksfor doing memory management do exist (e.g.,
OBJfree () and reference counts), and some attempt is made to observe them, but this
isnot given high priority in the current implementation.

Instance

The Instance abstraction is the basic building block of the STEP Working Form. An
Instance iscreated for each unit of value in a PDES/STEP product model: each en-
tity instance, aggregate, integer, string, etc. On the surface, thiswould seemto bearea-
sonably straightforward module to implement: each Instance hasan optional name,
aType, and avalue. Thevalue may besimple or structured; in either case, it basically
comes down to a pointer - either to an array of Instances, or to an integer, real,
string, etc.

The definition of an instanceis encapsulated in aprivate struct Instance, which
is defined thus:

struct Instance ({

Type type;

Generic user data;

union {
Constant enumeration;
Integer integer;
Logical logical;
Real real;
String string;

Instance* entity;
Aggregate aggregate;
} value;

NIST STEP Working Form Programmer’ s Reference Page 4

31

3.2

3.3

Stephen Nowland Clark

called. The code of this module consists of callsto STEP Working Form access func-
tions and to standard output routines. Chapter 4 provides a detailed description of the
creation of anew output module.

Working Form Implementation

Asin the Express Working Form [Clark90e€], the Instance abstraction is implemented

asan Object header block which ultimately pointstoaprivatestruct Instance.

This C structure containsthe real definition of the abstraction, but is never manipul ated
directly outside of the Instance module. Product isimplemented asapointer to aprivate
structure, struct Product.

Most stylistic and other conventions from the Express Working Form are equally valid
for STEP; they are reiterated here for emphasis.

Primitive Types

The STEP Working Form makes use of several modules from the Toolkit general li-
braries, including the Error and Linked _List modules. These are described in
[Clark90d].

STEP Working Form Manager Module

In addition to the abstractionsdiscussed in[Clark90c], 1 ibstep . a contains one more
(conceptual) module, the package manager. Defined in step.c and step.h, this
module includes calls to intialize the entire STEP (and Express) Working Form pack-
age, and to run each of the passes of a STEPparse trandlator.

Code Organization and Conventions

Each abstraction isimplemented as a separate module. Modules share only their inter-
face specifications with other modules. A module Foo is composed of two C source
files, foo.c and foo.h. Theformer contains the body of the module, including all
non-inlined functions. The latter contains function prototypes for the module, as well
as all type and macro definitions. In addition, global variables are defined here, using
amechanism which allows the same declarations to be used both for extern declara-
tionsin other modules and the actual storage definition in the declaring module. These
globals can also be given constant initializers. Finally, foo . h containsinline function
definitions. Inacompiler which supportsinlinefunctions, thesearedeclared static
inline inevery module which includes foo . h, including foo. c itsalf. In other
compilers, they are undefined except whenincludedin foo . ¢, whenthey arecompiled
asordinary functions. foo.c residesin ~pdes/src/step/; foo.hin
~pdes/include/.

The type defined by module Foo is hamed Foo, and its private structureis st ruct
Foo. Accessfunctionsare named as FOOfunction () ; thisfunction prefix is abbre-
viated for longer abstraction names, so that access functions for type

Foolhardy Bartender might beof theform FOO BARfunction (). Some

NIST STEP Working Form Programmer’ s Reference Page 3

2.1

2.2

Stephen Nowland Clark

STEPparse Control Flow

A STEPparsetranglator consists of two separate passes. parsing and output generation.

Thefirst passbuildsaninstantiated Product representing the product model specified
inthe STEP input file. This Product can then be traversed by an output modulein

the second pass, producing whatever report isdesired. It is anticipated that users will

need output formats other than those provided with the NIST Toolkit. The process of
writing areport generator for a new output format is discussed in detail in section 4.

First Pass. Parsing

Thefirst pass of a STEPparse tranglator isavery simple parser. The STEPparse gram-
mar itself isindependent of any conceptual schema. The lexical analyzer recognizes
any entity class name simply as an identifier; the actions associated with rulesin the
grammar then interpret this name as referring to a particular Express entity, and con-
struct appropriate objects. Aseach construct isparsed, it isadded to the Working Form.
Because the STEP physical file format does not allow forward referencesto as-yet-un-
defined entity instances, all symbol references can be (and are) resolved during this
parsing pass, so that no symbol resolution passis required.

The STEPparse parser iswritten using the standard Unix™ parser generation languag-
es, Yacc and Lex. The grammar is processed by Bison, the Free Software Founda-

tion'st implementation of Yacc. Thelexical analyzer is produced by Fl ex?, afast,
Public Domain implementation of Lex.

Second Pass: Output Generation

Thereport or output generation pass manages the production of the variousoutput files.
In the dynamically linked version of STEPparse, this pass|oads successive output mod-
ules dynamically, calling each to traverse the Working Form. The dynamic linking
mechanism is discussed briefly in [Clark90d]. It isalso possible to build a statically
linked tranglator, with aparticular output module loaded in at build time; thisis, in fact,
the only mechanism available in an environment which is not derived from BSD 4.2
Unix.

A report generator is an object module, most likely written in C, which has been com-
piled as acomponent module for alarger program (i.e., with the - c optionto aUnix C
compiler). Inthe dynamically linked version, the object module is linked into the run-
ning parser, and its entry point (by convention afunction called print file())is

1. The Free Software Foundation (FSF) of Cambridge, Massachusetts is responsible for the GNU Project,
whose ultimate goal is to provide a free implementation of the Unix operating system and environment.
These tools are not in the Public Domain: FSF retains ownership and copyright priviledges, but grants free
distribution rights under certain terms. At thiswriting, further information is available by electronic mail on
the Internet from gnu@prep.ai.mit.edu.

2. Vern Paxson’'s Fast Lex is usualy distributed with GNU software, although, being in the Public Domain,
itis not an FSF product and does not come under the FSF licensing restrictions.

NIST STEP Working Form Programmer’ s Reference Page 2

NIST STEP Working Form
Programmer’s Reference

Stephen Nowland Clark

1 | ntroduction

The NIST STEP physical file parser [Clark90c], and its associated STEP parser,
STEPparse, are Public Domain tools for manipulating product models stored in the
STEP physical file format [Altemueller88]. Thesetools are a part of the NIST PDES
Toolkit [Clark90a], and are geared particularly toward building STEP trandators. This
reference manual discusses the internals of the STEP Working Form, including
STEPparse. Thereader is assumed to be familiar with the design of the Toolkit
([Clark90a)], [Clark90b], [Clark90c]). In some cases, technical knowledge of the Ex-
press Working Form [Clark90e€] is also required.

The STEP Working Form relies on the NIST Express Working Form [Clark90b] asan
in-core data dictionary, which provides a context in which STEP models can be inter-
preted. Thetight dependency of the STEP Working Form abstractions on those of the
Express Working Form is due to the schema-independent nature of the former. The
STEP Working Form, and, in particular, STEPparse, contain no knowledge of any par-
ticular information model. Applications built on these tools can thus manipul ate STEP
product modelsin the context of any number of Express information models without
requiring recompilation.

11 Context

The PDES (Product Data Exchange using STEP) activity isthe United States' effortin
support of the Standard for the Exchange of Product Model Data (STEP), an emerging
international standard for the interchange of product data between various vendors
CAD/CAM systems and other manufacturing-related software [Smith88]. A National
PDES Testbed has been established at the National Institute of Standards and Technol-
ogy to provide testing and validation facilities for the emerging standard. The Testbed
isfunded by the CAL S (Computer-aided Acquisition and L ogistic Support) program of
the Office of the Secretary of Defense. As part of the testing effort, NIST is charged
with providing a software toolkit for manipulating PDES data. ThisNIST PDES Tool-
kit isan evolving, research-oriented set of softwaretools. Thisdocument isone of aset
of reports which describe various aspects of the Toolkit. Anoverview of the Toolkit is
provided in [Clark90a], along with references to the other documents in the set.

For further information on the STEP Working Form or other components of the Toolkit,
or to obtain a copy of the software, use the attached order form.

NIST STEP Working Form Programmer’ s Reference Page 1

Disclaimer
No approval or endorsement of any commercial product by the National Institute of
Standards and Technology isintended or implied

Unix isatrademark of AT& T Technologies, Inc.

Table Of Contents

I 10T [Lot A o] T 1
1.1 CONLEXT ...ttt sttt e e b e e e ne e n e s ne e ne e neeennis 1
2 STEPparse Control FIOW.........ccovieiiiee e 2
2.1 FIrst PasS: PalSiNg.......cccoieiiniiriiniiseeeeee et sse s 2
2.2 Second Pass. Output GENEratioN...........ccuveveieeieeieeieesreeeeseesreeeesree e eee s 2
3 Working Form Implementationccccccveieeieecceeiie e, 3
S L PrIMITIVE TYPES. ettt 3
3.2 STEP Working Form Manager Module...........cccocceveeieeiieseesie e 3
3.3 Code Organization and CONVENLIONS...........cccueiiieeieeeireeseesiree e esreeseeeneeens 3
3.4 Memory Management and Garbage Collection...........cccocceveeverceeneeniennenne 4
.5 INSEANCE ... e 4
G S . (0o (U o SRR 6
AWriting An Output Module ..o, 7
4.1 Layout Of the C SOUICEcoieieeeieriee e 7
4.2 Output Module Linkage MeChaniSIMS...........ccceveeiieieeieeie e 8
5Working FOrm ROULINES..........cceeiiiiiiccie e 9
5.1 Working FOrm ManagErccceeererieieiene et 9
.2 INSLANCE ...ttt ne e e 10
G = (0o (1o SRR UPURURR 18
6 STEP Working Form Error Codes.........ccccceveveeevcieeeiiee e 19
Appendix A: REFENENCES.......coccie e 22

U.S. DEPARTMENT OF COMMERCE

National Institute of Standards and Technology

NISTIR 4353

National PDES Testbed

\
NATIONAL

= p NIST STEP
Working Form

oo PrOgrammer’s

Reference

Stephen Nowland Clark

U.S. DEPARTMENT OF

COMMERCE

Robert A. Mosbacher,

Secretary of Commerce

National Institute of

Standards and Technology

John W. Lyons, Director

November 29, 1990

@@NT OF o) O/b
N
é %
& ’6
u m
<
Z, £
D W
?s

874T55 o¥

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

NISTIR 4353

National PDES Testbed
Report Series —
=
NIST STEP
Working Form
Programmer’s
Reference
Revised November, 1990
NATIONAL
S

TESTBED

NIST

