
NATIONAL

TESTBED

Please send the following documents
and/or software:

Clark, S.N., An Introduction to The NIST PDES Toolkit

Clark, S.N., The NIST PDES Toolkit: Technical Fundamentals

Clark, S.N., Fed-X: The NIST Express Translator

Clark, S.N., The NIST Working Form for STEP

Clark, S.N., NIST Express Working Form Programmer’s Reference

Clark, S.N., NIST STEP Working Form Programmer’s Reference,

Clark, S.N., QDES User’s Guide

Clark, S.N., QDES Administrative Guide

Morris, K.C., Translating Express to SQL: A User’s Guide

Nickerson, D., The NIST SQL Database Loader: STEP Working Form to
SQL

Strouse, K., McLay, M., The PDES Testbed User Guide

OTHER (PLEASE SPECIFY)

ORDER and INFORMATION FORM

National Institute of Standards and Technology

Gaithersburg MD., 20899

Metrology Building, Rm-A127

Attn: Secretary National PDES Testbed

(301) 975-3508

MAIL TO:

These documents and corresponding software will be
available from NTIS in the future. When available, the
.NTIS ordering information will be forthcoming.

Stephen Nowland Clark

NIST STEP Working Form Programmer’s Reference Page 22

A References

[Altemueller88] Altemueller, J., The STEP File Structure, ISO TC184/SC4/WG1
Document N279, September, 1988

[ANSI89] American National Standards Institute, Programming Language C,
Document ANSI X3.159-1989

[Clark90a] Clark, S. N., An Introduction to The NIST PDES Toolkit, NISTIR
4336, National Institute of Standards and Technology, Gaithersburg,
MD, May 1990

[Clark90b] Clark, S.N., Fed-X: The NIST Express Translator, NISTIR 4371,
National Institute of Standards and Technology, Gaithersburg, MD,
August 1990

[Clark90c] Clark, S.N., The NIST Working Form for STEP, NISTIR 4351,
National Institute of Standards and Technology, Gaithersburg, MD,
June 1990

[Clark90d] Clark, S.N., The NIST PDES Toolkit: Technical Fundamentals,
NISTIR 4335, National Institute of Standards and Technology,
Gaithersburg, MD, May 1990

[Clark90e] Clark, S.N., NIST Express Working Form Programmer’s Reference,
NISTIR 4407, National Institute of Standards and Technology,
Gaithersburg, MD, September 1990

[Smith88] Smith, B., and G. Rinaudot, eds., Product Data Exchange
Specification First Working Draft, NISTIR 88-4004, National
Institute of Standards and Technology, Gaithersburg, MD,
December 1988

Stephen Nowland Clark

NIST STEP Working Form Programmer’s Reference Page 21

Error: ERROR_string_expected
Severity: SEVERITY_ERROR
Meaning: A non-string Instance was provided for a string attribute
Format: %s - attribute name

Error: ERROR_too_many_attributes
Severity: SEVERITY_WARNING
Meaning: Too many attribute values were provided for a particular entity instantiation
Format: %s - entity instance identifier

Error: ERROR_undefined_reference
Severity: SEVERITY_ERROR
Meaning: A reference was made to an unknown entity instance identifier
Format: %s - entity instance identifier

Error: ERROR_unknown_entity
Severity: SEVERITY_ERROR
Meaning: A reference was made to an unknown entity class (type)
Format: %s - entity class name

Stephen Nowland Clark

NIST STEP Working Form Programmer’s Reference Page 20

Error: ERROR_index_out_of_range
Severity: SEVERITY_WARNING
Meaning: An attempt was made to index an aggregate instance outside of the legal bounds
Format: %d - index value

Error: ERROR_insufficient_attributes
Severity: SEVERITY_WARNING
Meaning: Too few attribute values were provided for a particular entity instantiation
Format: %s - entity instance identifier

Error: ERROR_integer_expected
Severity: SEVERITY_ERROR
Meaning: A non-integer value was provided for an integer attribute
Format: %s - attribute name

Error: ERROR_internal_expected
Severity: SEVERITY_WARNING
Meaning: An non-embedded (external) entity was provided for an attribute with "internal"

reference class
Format: %s - attribute name

Error: ERROR_list_expected
Severity: SEVERITY_ERROR
Meaning: An aggregate of a specific non-list class was provided for a list attribute
Format: %s - attribute name

Error: ERROR_logical_expected
Severity: SEVERITY_ERROR
Meaning: A non-logical value was provided for a logical attribute
Format: %s - attribute name

Error: ERROR_number_expected
Severity: SEVERITY_ERROR
Meaning: A non-numeric value was provided for a numeric attribute
Format: %s - attribute name

Error: ERROR_set_duplicate_entry
Severity: SEVERITY_ERROR
Meaning: A duplicate entry was added to a set
Format: -- none --

Error: ERROR_set_expected
Severity: SEVERITY_ERROR
Meaning: An aggregate of a specific non-set class was provided for a set attribute
Format: %s - attribute name

Error: ERROR_set_full
Severity: SEVERITY_WARNING
Meaning: An item was inserted into an already full set
Format: -- none --

Stephen Nowland Clark

NIST STEP Working Form Programmer’s Reference Page 19

6 STEP Working Form Error Codes

The Error module, which is used to manipulate these error codes, is described in
[Clark90d]. All STEP Working Form error codes are defined in the Instance module.

Error: ERROR_aggregate_expected
Severity: SEVERITY_ERROR
Meaning: A non-aggregate value was provided for an aggregate attribute
Format: %s - attribute name

Error: ERROR_array_expected
Severity: SEVERITY_ERROR
Meaning: An aggregate of a specific non-array class was provided for an array attribute
Format: %s - attribute name

Error: ERROR_bag_expected
Severity: SEVERITY_ERROR
Meaning: An aggregate of a specific non-bag class was provided for a bag attribute
Format: %s - attribute name

Error: ERROR_bag_full
Severity: SEVERITY_WARNING
Meaning: An item was inserted into an already full bag
Format: -- none --

Error: ERROR_cannot_instantiate
Severity: SEVERITY_ERROR
Meaning: An attempt was made to instantiate an uninstantiable type
Format: %s - type name

Error: ERROR_entity_expected
Severity: SEVERITY_ERROR
Meaning: A non-entity Instance was provided for an attribute having an entity type
Format: %s - attribute name

Error: ERROR_external_expected
Severity: SEVERITY_WARNING
Meaning: An embedded (internal) entity was provided for an attribute with "external" reference

class
Format: %s - attribute name

Error: ERROR_inappropriate_entity
Severity: SEVERITY_ERROR
Meaning: An entity of the wrong type was provided for an attribute having an entity type
Format: %s - attribute name

Error: ERROR_incompatible_types
Severity: SEVERITY_ERROR
Meaning: Some other type problem was encountered in specifying an attribute of some instance.
Format: %s - attribute name

Stephen Nowland Clark

NIST STEP Working Form Programmer’s Reference Page 18

5.3 Product
Procedure: PRODadd_instance
Parameters: Product product - product to modify

Instance instance - entity instance to add
Returns: void
Requires: TYPEget_class(INSTget_type(instance)) == TYPE_ENTITY
Description: Adds an entity instance to a product model. The instance is assumed already to have

been added to the instance list of its class, since INSTcreate_entity() does this.
Errors: none

Procedure: PRODcreate
Parameters: String name - name for new product

Express model - conceptual schema in which to create product
Returns: Product - a new, empty product
Description: Creates an empty product within a particular conceptual schema.
Errors: none

Procedure: PRODget_conceptual_schema
Parameters: Product product - product to examine
Returns: Express - conceptual schema in which the product exists
Errors: none

Procedure: PRODget_contents
Parameters: Product product - product to examine
Returns: Linked_List - entity instances which make up the product
Description: Retrieves a list of the instances in a product model, in the order in which they were

created.
Errors: none

Procedure: PRODget_name
Parameters: Product product - product to examine
Returns: String - the name of the product
Errors: none

Procedure: PRODget_named_instance
Parameters: Product product - product to examine

String name - name of instance to retrieve
Returns: Instance - the named instance
LDescription: Retrieves a named instance from a STEP product model, if it is defined.
Errors: none

Procedure: PRODintiialize
Parameters: -- none --
Returns: void
Description: Initializes the Product module. This is called by STEPinitialize().
Errors: none

Stephen Nowland Clark

NIST STEP Working Form Programmer’s Reference Page 17

Procedure: INSTset_remove_all
Parameters: Instance set - set to remove from

Instance remove - set of items to remove
Error* errc - buffer for error code

Returns: void
Description: Removes all items in a set from some other set. This is set subtraction. This operation

is destructive: the first set holds the result on return.
Errors: none

Procedure: INSTset_subset
Parameters: Instance set - set to test as superset

Instance subset - set to test as subset
Error* errc - buffer for error code

Returns: Boolean - does the first set contain the second as a subset?
Errors: none

Procedure: INSTset_unite
Parameters: Instance set - set to unite onto

Instance unitee - set to unite with
Error* errc - buffer for error code

Returns: void
Description: Forms the union of two sets. This operation is destructive: the first set holds the

resulting union on return.
Errors: none

Procedure: INSTtype_cast
Parameters: Instance instance - instance to be cast

Type type - type to cast to
Error* errc - buffer for error code

Returns: Instance - the instance, cast to the requested type
Description: Converts an instance to a new type, if possible. If the cast is successful (*errc ==

ERROR_none), the original instance should no longer be used. It is guaranteed to be
valid only when an error is reported. This call does not report errors to stderr; it is
the callers responsibility to check *errc and to call ERRORreport(*errc,
(String)context) if it is not ERROR_none.

Errors: ERROR_aggregate_expected - value given for an aggregate was not an
aggregate
ERROR_array_expected - value given for an array was not an array
ERROR_bag_expected - value given for a bag was not a bag
ERROR_entity_expected - value given for an entity was not an entity
ERROR_inappropriate_entity - the entity given as a value was not of an
expected class
ERROR_integer_expected - value given for an integer was not an integer
ERROR_list_expected - value given for a list was not a list
ERROR_logical_expected - value given for a logical was not a logical
ERROR_number_expected - value given for a number was not a number
ERROR_set_expected - value given for a set was not a set
ERROR_string_expected - value given for a string was not a string
ERROR_incompatible_types - the value given is not of the expected type, in
some way not covered by any of the above messages

Stephen Nowland Clark

NIST STEP Working Form Programmer’s Reference Page 16

Procedure: INSTput_value
Parameters: Instance instance - instance to modify

Generic value - value for instance
Error* errc - buffer for error code

Returns: void
Description: Sets the value of a single-valued instance. The value given should be a char* for a

string object. For an integer, real, or logical object, it should be an int*, double*,
and Boolean*, respectively. For an enumeration object, the value given should be
of type Constant. See INSTaggr_at_put(), INSTarray_at_put(),
INSTbag_add(), INSTlist_add_first(), INSTlist_add_last(), and
INSTset_add() to store into an aggregate. See INSTput_attribute() to
store into an entity instance.

Errors: none

Procedure: INSTset_add
Parameters: Instance set - set to modify

Instance item - item to add
Error* errc - buffer for error code

Returns: void
Description: Inserts an instance into a set, if it is not already present.
Errors: ERROR_set_full - there is no more room in the set

Procedure: INSTset_includes
Parameters: Instance set - set to test

Instance item - item to test for
Error* errc - buffer for error code

Returns: Boolean - does this set contain this item?
Errors: none

Procedure: INSTset_intersect
Parameters: Instance set - set to intersect into

Instance with - set to intersect with
Error* errc - buffer for error code

Returns: void
Description: Intersects two sets. This operation is destructive: the first set holds the resulting

intersection on return.
Errors: none

Procedure: INSTset_remove
Parameters: Instance set - set to remove from

Instance item - item to remove
Error* errc - buffer for error code

Returns: void
Description: Remove an item from a set, if it appears.
Errors: none

Stephen Nowland Clark

NIST STEP Working Form Programmer’s Reference Page 15

Procedure: INSTput_attribute
Parameters: Instance instance - instance to modify

String attributeName - name of attribute to store into
Instance value - value to store into attribute
Error* errc - buffer for error code

Returns: void
Requires: TYPEget_class(INSTget_type(instance)) == TYPE_ENTITY
Description: Stores a value into a named attribute of an entity instance. This call is the slower

method for storing into an attribute. If the actual attribute record is available, for
example from traversing the Entity’s attribute list, use
INSTfast_put_attribute() instead.

Errors: ERROR_aggregate_expected - value given for an aggregate was not an
aggregate
ERROR_array_expected - value given for an array was not an array
ERROR_bag_expected - value given for a bag was not a bag
ERROR_entity_expected - value given for an entity was not an entity
ERROR_external_expected - an external attribute was given an internal
(embedded) entity as a value
ERROR_inappropriate_entity - the entity given as a value was not of an
expected class
ERROR_integer_expected - value given for an integer was not an integer
ERROR_internal_expected - an internal attribute was given an external
entity reference as a value
ERROR_list_expected - value given for a list was not a list
ERROR_logical_expected - value given for a logical was not a logical
ERROR_number_expected - value given for a number was not a number
ERROR_set_expected - value given for a set was not a set
ERROR_string_expected - value given for a string was not a string
ERROR_incompatible_types - the value given is not of the expected type, in
some way not covered by any of the above messages

Procedure: INSTput_name
Parameters: Instance instance - instance to modify

String name - name for instance
Returns: void
Description: Sets the name (identifier) of an instance; normally, only entity instances which are not

embedded are named.
Errors: none

Procedure: INSTput_user_data
Parameters: Instance instance - instance to modify

Generic value - user data value for instance
Error* errc - buffer for error code

Returns: Generic - old value of user data field for this instance
Description: Stores a value into an instance’s user data field
Errors: none

Stephen Nowland Clark

NIST STEP Working Form Programmer’s Reference Page 14

Procedure: INSTinitialize
Parameters: Error* errc - buffer for error code
Returns: void
Description: Initialize the Instance module. This is called by STEPinitialize().
Errors: none

Procedure: INSTis_external
Parameters: Instance instance - instance to examine
Returns: Boolean - is this an external instance (non-embedded entity)?
Errors: none

Procedure: INSTis_internal
Parameters: Instance instance - instance to examine
Returns: Boolean - is this an internal instance (embedded entity)?
Errors: none

Procedure: INSTlist_add_first
Parameters: Instance list - list to modify

Instance item - item to insert
Error* errc - buffer for error code

Returns: void
Description: Adds an item to the beginning of a list. This function is not yet implemented.
Errors: none

Procedure: INSTlist_add_last
Parameters: Instance list - list to modify

Instance item - item to insert
Error* errc - buffer for error code

Returns: void
Description: Adds an item to the end of a list. This function is not yet implemented.
Errors: none

Procedure: INSTlist_concat
Parameters: Instance list - list to concatenate onto

Instance tail - list to concatenate
Error* errc - buffer for error code

Returns: void
Description: Concatenate a list onto the end of another. This operation is destructive: the first list

is modified so that it includes a copy of the second. Changes to the second will not
appear in the first. This function is not yet implemented.

Errors: none

Stephen Nowland Clark

NIST STEP Working Form Programmer’s Reference Page 13

Procedure: INSTfast_put_attribute
Parameters: Instance instance - instance to modify

Variable attribute - attribute to store into
Instance value - value to store into attribute
Error* errc - buffer for error code

Returns: void
Requires: TYPEget_class(INSTget_type(instance)) == TYPE_ENTITY
Description: Store a value into an attribute of an entity instance. This call is faster than

INSTput_attribute() when the caller already has the actual attribute record for
the desired attribute, rather than simply having its name (as expected by
INSTput_attribute()).

Errors: Same as for INSTput_attribute().

Procedure: INSTget_attribute
Parameters: Instance instance - instance to examine

String attributeName - name of attribute to retrieve
Error* errc - buffer for error code

Returns: Instance - value of the named attribute
Description: Retrieves the value of a named attribute from an entity instance. This call is the slower

method for retrieving an attribute value. If the actual attribute recored is already
available, use INSTfast_get_attribute() instead.

Errors: none

Procedure: INSTget_name
Parameters: Instance instance - instance to examine
Returns: String - the instance’s name
Description: Retrieves the name of an instance. Unnamed instances, which would normally be

embedded entities and non-entities, yield STRING_NULL.
Errors: none

Procedure: INSTget_type
Parameters: Instance instance - instance to examine
Returns: Type - the type of the instance
Errors: none

Procedure: INSTget_user_data
Parameters: Instance instance - instance to examine

Error* errc - buffer for error code
Returns: Generic - value of user data field for this instance
Errors: none

Procedure: INSTget_value
Parameters: Instance instance - instance to examine

Error* errc - buffer for error code
Returns: Generic - the instance’s value
Description: Retrieves the value of a single-valued instance. The value returned will be a char*

for a string object, a Constant for an enumeration object, and a pointer to an int,
double, or Boolean for an integer, real, or logical object, respectively. See
INSTarray_at(), INSTbag_includes(), INSTlist_at(), and
INSTset_at() to read from an aggregate. See INSTget_attribute() to read
from an entity instance.

Errors: none

Stephen Nowland Clark

NIST STEP Working Form Programmer’s Reference Page 12

Procedure: INSTbag_subset
Parameters: Instance bag - bag to test as superset

Instance subset - bag to test as subset
Error* errc - buffer for error code

Returns: Boolean - does the first bag contain the second as a subset?
Description: This implementation is not completely correct. In particular, the following returns

true: INSTbag_subset({a, b, c}, {a, a}).
Errors: none

Procedure: INSTbag_unite
Parameters: Instance bag - bag to unite onto

Instance unitee - bag to unite with
Error* errc - buffer for error code

Returns: void
Description: Adds the contents of a bag to another bag. This operation is destructive: the first bag

holds the resulting union on return. It is not safe to unite a bag with itself.
Errors: none

Procedure: INSTcreate
Parameters: Type type - type to instantiate

Error* errc - buffer for error code
Returns: Instance - a new, empty instance of the given type
Errors: ERROR_cannot_instantiate - the type given cannot be instantiated (e.g.,

Generic)

Procedure: INSTcreate_entity
Parameters: Entity entity - entity class to instantiate

Linked_List attributes - list of attribute values
int line - source line number of the instance to be created
Error* errc - buffer for error code

Returns: Instance - a new entity instance, as described
Description: A new instance of the specified entity type is created. There should be a one-to-one

correspondence between the values on the attribute value list and the list of attributes
for the entity being instantiated.

Errors: ERROR_insufficient_attributes - not enough attribute values in the list
provided
ERROR_too_many_attributes - too many attribute values in the list provided

Procedure: INSTcreate_ud_entity
Description: Create a user-defined entity. This procedure is not yet implemented.

Procedure: INSTfast_get_attribute
Parameters: Instance instance - instance to examine

Variable attribute - attribute to retrieve
Error* errc - buffer for error code

Returns: Instance - value of attribute
Description: Retrieves the value of an attribute from an entity instance. This call is faster than

INSTget_attribute() when the caller already has the actual attribute record for
the desired attribute, rather than simply having its name (as expected by
INSTget_attribute()).

Errors: none

Stephen Nowland Clark

NIST STEP Working Form Programmer’s Reference Page 11

Procedure: INSTarray_at_put
Parameters: Instance array - array to modify

int index - index at which to put element
Instance value - value to insert
Error* errc - buffer for error code

Returns: void
Description: Store a value into an array instance.
Errors: ERROR_index_out_of_range - the index is outside of the bounds of the

aggregate

Procedure: INSTbag_add
Parameters: Instance bag - bag to modify

Instance item - item to add
Error* errc - buffer for error code

Returns: void
Description: Inserts an instance into a bag.
Errors: ERROR_bag_full - there is no more room in the bag

Procedure: INSTbag_includes
Parameters: Instance bag - bag to test

Instance item - item to test for
Error* errc - buffer for error code

Returns: Boolean - does this bag contain this item?
Errors: none

Procedure: INSTbag_intersect
Parameters: Instance bag - bag to intersect into

Instance unitee - bag to intersect with
Error* errc - buffer for error code

Returns: void
Description: Intersects two bags. This operation is destructive: the first bag holds the resulting

intersection on return.
Errors: none

Procedure: INSTbag_remove
Parameters: Instance bag - bag to remove from

Instance item - item to remove
Error* errc - buffer for error code

Returns: void
Description: Remove a single occurence of some item from a bag, if it appears.
Errors: none

Procedure: INSTbag_remove_all
Parameters: Instance bag - bag to remove from

Instance remove - bag of items to remove
Error* errc - buffer for error code

Returns: void
Description: Removes all items in a bag from some other bag. This is bag subtraction. This

operation is destructive: the first bag holds the result on return.
Errors: none

Stephen Nowland Clark

NIST STEP Working Form Programmer’s Reference Page 10

5.2 Instance
Procedure: INSTaggr_at
Parameters: Instance instance - instance to examine

int index - index of requested element
Error* errc - buffer for error code

Returns: Instance - value at requested position
Description: Retrieves the value at some position in an aggregate. Note that the calls which are

specific to a particular aggregate class are much to be preferred.
Errors: ERROR_index_out_of_range - the index is outside of the bounds of the

aggregate

Procedure: INSTaggr_at_put
Parameters: Instance instance - instance to modify

int index - index at which to put element
Instance value - value to insert
Error* errc - buffer for error code

Returns: void
Description: Store a value into an aggregate instance. Note that the calls which are specific to a

particular aggregate class are much to be preferred.
Errors: ERROR_index_out_of_range - the index is outside of the bounds of the

aggregate

Procedure: INSTaggr_lower_bound
Parameters: Instance instance - instance to examine

Error* errc - buffer for error code
Returns: int - the lower bound of the instance
Description: Retrieves the lower bound of an aggregate instance. For an array, this is the index of

the first element of the array. For other aggregates, it is 1.
Errors: none

Procedure: INSTaggr_upper_bound
Parameters: Instance instance - instance to examine

Error* errc - buffer for error code
Returns: int - the upper bound of the instance
Description: Retrieves the upper bound of an aggregate instance. For an aggregate with a

constrained size, this is the value of the upper limit or index. For an aggregate with an
infinite upper bound, the value returned is guaranteed to be larger than the highest
index of a filled slot in the aggregate.

Errors: none

Procedure: INSTarray_at
Parameters: Instance array - array to examine

int index - index of requested element
Error* errc - buffer for error code

Returns: Instance - value at requested position
Description: Retrieves the value at some position in an array.
Errors: ERROR_index_out_of_range - the index is outside of the bounds of the

aggregate

Stephen Nowland Clark

NIST STEP Working Form Programmer’s Reference Page 9

Since step_static.o and step_dynamic.o both define the function
STEPreport(), only one is linked into any given executable. This selection is what
determines whether a STEPparse translator links in output modules statically or dynam-
ically. By default, the linkage mechanism will be step_static.o, which actually
appears in the Working Form library. This choice can be overridden by placing
step_dynamic.o before libstep.a in the link command. Note that a suitable
output module (.o file) must appear after step_static.o in the linker’s argument
list when a statically linked translator is being built. For more information on how to
build a report generator into a STEPparse translator, see [Clark90d].

5 Working Form Routines

The remainder of this manual consists of specifications and brief descriptions of the ac-
cess routines and associated error codes for the STEP Working Form. The error codes
are manipulated by the Error module [Clark90d]. Each subsection below corresponds
to a module in the Working Form library. The Working Form Manager module is listed
first, followed by the remaining data abstractions in alphabetical order.

5.1 Working Form Manager
Procedure: STEPinitialize
Parameters: Error* errc - buffer for error code
Returns: void
Description: Initialize the STEP Working From package. In a typical STEP translator, this is called

by the default main() provided in the Working Form library. Other applications
should call this function at initialization time.

Errors: none

Procedure: STEPparse
Parameters: String filename - the name of the file to be parsed

Express data_model - conceptual schema (as produced by EXPRESSpass_2())
Returns: Product - the product model parsed
Description: Parse a STEP physical file into the Working Form

Procedure: STEPreport
Parameters: Product product - the product to output
Returns: void
Description: Invoke one or more report generators for a STEP Working Form model.
Description: Invoke one (or more) report generator(s), according to the selected linkage

mechanism.

Stephen Nowland Clark

NIST STEP Working Form Programmer’s Reference Page 8

void
entry_point(void* product, void* file)
{

extern void print_file();
print_file(product, file);

}

#include "step.h"

... actual output routines . ..

void
print_file(void* product, void* file)
{

print_file_header((Product)product,
(FILE*)file);

STEPprint(product, file);
print_file_trailer((Product)product,

(FILE*)file);
}

The print_file() function will probably always be quite similar to the one shown,
although in many cases, the file header and/or trailer may well be empty, eliminating
the need for these calls. In this case, STEPprint() and print_file() will prob-
ably become interchangeable.

Having said all of the above about templates, code layout, and so forth, we add the fol-
lowing note: In the final analysis, the output module really is a free-form piece of C
code. There is one and only one rule which must be followed: The entry point (accord-
ing to the a.out format) to the .o file which is produced when the report generator is
compiled must be appropriate to be called with a Product and a FILE*. The sim-
plest (and safest) way of doing this is to adhere strictly to the layout given, and write an
entry_point() routine which jumps to the real (conceptual) entry point. But any
other convention which guarantees this property may be used.

4.2 Output Module Linkage Mechanisms

One of the powers of STEPparse is the flexibility which it gives a user with regard to
generating output. An important component of this flexibility on BSD Unix systems is
the dynamic loading of output modules. Both static and dynamic binding of output
modules are supported by STEPparse. This is implemented by providing two distinct
versions of the Working Form manager. Code common to both versions (including ini-
tialization code and the STEPparse parser itself) is found in step.c, which is included
by each of the distinct manager modules. The static linking version of the output pass,
without any output module, is in step_static.c, and the corresponding
step_static.o is included in libstep.a, making it the default; the dynamic
loading version is in step_dynamic.c.

Stephen Nowland Clark

NIST STEP Working Form Programmer’s Reference Page 7

stances were added to the Product, and so is appropriate for applications, such as
writing a STEP physical file, which require that there be no forward references to as-
yet-undefined Instances. Each external Instance is also added to a dictionary
which the Product maintains, to allow retrieval by name. And when an entity in-
stance is first created, it is added to the instance list of its class.

4 Writing An Output Module

We now turn to the topic of actually writing a report generator. The end result of this
process will be an object module (under Unix, a .o file) which can be loaded into
STEPparse. This module contains a single entry point which traverses a given
Product and writes its output to a particular file. The conceptual entry point is con-
ventionally called print_file(), while the physical entry point, which simply dis-
patches to print_file(), is called entry_point().

In most cases, there will be a one-to-one correspondence between Instances in the in-
stantiated Working Form and records to be written on the output. When this is the case,
the meat of the report generator can be made fairly simple. Since a list of all of the In-
stances in the Working Form is available, it is easy to iterate over this list and output
each Instance in sequence:

STEPprint(Product product, FILE* file)
{

Linked_List list;
list = PRODget_contents(product);
LISTdo(list, inst, Instance)

INSTprint(inst, file);
LISTod;

}
The only remaining problem is to write a function INSTprint() which emits the out-
put record for a single Instance. Given the variety of types of Instances, this function
will probably be controlled by a large switch statement, selecting on the Instance’s
type class (numbers, strings, and aggregates all have to be printed differently). Code to
deal with multi-dimensional arrays an internal/external entity references can get tricky,
and should be written carefully. An example of a fairly simple report generator is that
used by STEPparse-QDES. The source code for this module is in
~pdes/src/stepparse_qdes/step_output_smalltalk.c.

4.1 Layout of the C Source

The layout of the C source file for a report generator which will be dynamically loaded
is of critical importance, due to the primitive level at which the load is carried out. The
very first piece of C source in the file must be the entry_point() function, or the
loader may find the wrong entry point to the file, resulting in mayhem. Only comments
may precede this function; even an #include directive may throw off the loader. An
output module is normally layed out as shown:

Stephen Nowland Clark

NIST STEP Working Form Programmer’s Reference Page 6

no specified upper bound, however, high may vary with the number of elements ac-
tually in the aggregate. The expression (from Express) giving the absolute upper bound
on an aggregate is cached in aggregate->max. high is never allowed to be greater
than the value of this expression.

The two calls INSTaggr_at() and INSTaggr_at_put() can be used with any
kind of aggregate, although they are intended to be used primarily for building general
aggregates which will later be INSTtype_cast() into specific types of aggregates.
This is how STEPparse builds aggregates, since it is considerably easier than figuring
out at parse time what type of aggregate should be built. The various class-specific ma-
nipulations (list concatenation, set intersection, etc.) are provided by calls requiring ag-
gregates of a particular class: INSTlist_concat(), INSTset_intersect(),
etc. It should be noted that the calls for combning aggregates are destructive: each mod-
ifies its first argument to hold its computed result. In general, the two arguments may
safely be set equal. Exceptions are noted in the individual function specifications.

Finally, a word about type conversion (also known as casting, as in C). Type conver-
sions of existing Instances are handled by INSTtype_cast(Instance,
Type, Error*). Only certain conversions are allowed; other attempted casts leave
the Instance unchanged and return an error code. Clearly, any Instance can triv-
ially be cast into its own type. The different numeric types can be cast about at will. A
general aggregate can be cast into any specific aggregate class; otherwise, an aggregate
can only be cast into another aggregate type of the same class: an array cannot be cast
into a set, etc. Each element of the aggregate being cast must, of course, be recursively
cast into the appropriate base type; each of these conversions is subject to the same rules
as any other cast. Finally, an entity Instance can be converted into an instance of a
supertype of its class, or into an instance of a SELECT type containing some type to
which it can be cast. These casts of entity instances in fact do not modify the In-
stance being cast.

3.6 Product

A product in STEP contains a large number of interrelated entity instances, and is rep-
resented by the Product abstraction. Each Product is named, and includes a point-
er to the Express model which provides the scope in which its component Instances
are defined. These component instances can be retrieved from the Product in several
ways: a specific (external) entity instance can be retrieved by name; a Linked_List
of all of the (external) entity instances in the Product can be requested; or a particular
entity class in the Product’s conceptual schema can be queried for all of its instances
(note that this last method retrieves both internal and external entity instances). Internal
(embedded) entity instances and non-entity Instances must appear as attribute val-
ues or aggregate elements somewhere in the Product, and are only accessible via
ENTITYget_instances() and component retrieval from the containing In-
stances.

The above three access methods are supported by storing three references to each In-
stance in a Product. When an Instance is added to a Product, it is added to
the end of the list of external instances. This list preserves the order in which the In-

Stephen Nowland Clark

NIST STEP Working Form Programmer’s Reference Page 5

The first two fields are pretty straightforward. Note that user_data is a generic
pointer field. In strict ANSI C, only a pointer can be safely stored into this field and
later retrieved; it is safest to only store pointers in this field. In particular, the age-old
trick of casting pointers and integers back and forth, never completely portable, is now
officially frowned upon.

The value union is where things get tricky. This field contains the actual value of the
object represented. Unstructured types (numbers, logicals, and strings) are represented
directly; e.g., instance.value.integer contains an integer, and
instance.value.string, a character pointer. The value of an enumeration in-
stance is represented as a Constant, which will be an element of the appropriate enu-
meration. The integer representation of this enumeration element can be retrieved by
calling (int)CSTget_value(instance.value.enumeration).

An entity instance’s value field, value.entity, is a pointer to the base of an array
of instances. Each element of this array corresponds to an attribute of the entity; at-
tributes appear in the same order as in a PDES/STEP physical file, with empty attributes
explicitly represented by INSTANCE_NULL. The offset to a particular attribute value
is retrieved from the Express data dictionary by calling
ENTITYget_attribute_offset(entity, attribute), where entity is
the entity class of the instance in question and attribute is the Variable repre-
senting the attribute to be located.

The most convoluted instance value representation is that for aggregates. An aggregate
value is represented as a pointer to a struct Aggregate, defined as

struct Aggregate {
int low;
int high;
Expression max;
Instance* contents;

};
The last field, contents, holds the actual contents of the aggregate, as an array of
Instances. The low field provides a lower bound on allowable indices into this ar-
ray, and doubles as a logical offset to the first element of the array. This value is 1 for
any non-array aggregate. Thus, when low is 1, some_aggregate[1] is found at
contents[0]. Similarly, in an array whose low is 10, the some_array[12] is
found at contents[12-10 = 2]. low remains constant in any particular aggre-
gate instance. The high field gives an upper bound on the indices of currently filled
slots in an aggregate instance. Every index into the aggregate beyond high which is
in bounds is guaranteed to return INSTANCE_NULL. The end result is that a loop of
the form for (i = low; i <= high; ++i) <use contents[i-low]>
will always hit all of the elements of an aggregate. This function of offsetting by the
lower bound is bundled into the various aggregate indexing functions of the working
form (INSTaggr_at(), INSTlist_insert(), etc.), so that the indices which a
user sees will be the ones which would be expected based on the Express model. In the
current implementation, high in an aggregate whose type (from Express) gives a finite
upper bound always remains constant at this bound. In the case of an aggregate with

Stephen Nowland Clark

NIST STEP Working Form Programmer’s Reference Page 4

functions may be implemented as macros; these macros are not distinguished typo-
graphically from other functions, and are guaranteed not to have unpleasant side effects
like evaluating arguments more than once. These macros are thus virtually indistin-
guishable from functions. Functions which are intended for internal use only are named
FOO_function(), and are usually static as well, unless this is not possible. Glo-
bal variables are often named FOO_variable; most enumeration identifiers and con-
stants are named FOO_CONSTANT (although these latter two rules are by no means
universal). For example, every abstraction defines a constant FOO_NULL, which rep-
resents an empty or missing value of the type.

3.4 Memory Management and Garbage Collection

In reading various portions of the STEP Working Form documentation, one may get the
impression that the Working Form does some reasonably intelligent memory manage-
ment. This is not entirely true. The NIST PDES Toolkit is primarily a research tool.
This is especially true of the Express and STEP Working Forms. The Working forms
allocate huge chunks of memory without batting an eye, and this memory often is not
released until an application exits. Hooks for doing memory management do exist (e.g.,
OBJfree() and reference counts), and some attempt is made to observe them, but this
is not given high priority in the current implementation.

3.5 Instance

The Instance abstraction is the basic building block of the STEP Working Form. An
Instance is created for each unit of value in a PDES/STEP product model: each en-
tity instance, aggregate, integer, string, etc. On the surface, this would seem to be a rea-
sonably straightforward module to implement: each Instance has an optional name,
a Type, and a value. The value may be simple or structured; in either case, it basically
comes down to a pointer - either to an array of Instances, or to an integer, real,
string, etc.

The definition of an instance is encapsulated in a private struct Instance, which
is defined thus:

struct Instance {
Type type;
Generic user_data;
union {

Constant enumeration;
Integer integer;
Logical logical;
Real real;
String string;
Instance* entity;
Aggregate aggregate;

 } value;
};

Stephen Nowland Clark

NIST STEP Working Form Programmer’s Reference Page 3

called. The code of this module consists of calls to STEP Working Form access func-
tions and to standard output routines. Chapter 4 provides a detailed description of the
creation of a new output module.

3 Working Form Implementation

As in the Express Working Form [Clark90e], the Instance abstraction is implemented
as an Object header block which ultimately points to a private struct Instance.
This C structure contains the real definition of the abstraction, but is never manipulated
directly outside of the Instance module. Product is implemented as a pointer to a private
structure, struct Product.

Most stylistic and other conventions from the Express Working Form are equally valid
for STEP; they are reiterated here for emphasis.

3.1 Primitive Types

The STEP Working Form makes use of several modules from the Toolkit general li-
braries, including the Error and Linked_List modules. These are described in
[Clark90d].

3.2 STEP Working Form Manager Module

In addition to the abstractions discussed in [Clark90c], libstep.a contains one more
(conceptual) module, the package manager. Defined in step.c and step.h, this
module includes calls to intialize the entire STEP (and Express) Working Form pack-
age, and to run each of the passes of a STEPparse translator.

3.3 Code Organization and Conventions

Each abstraction is implemented as a separate module. Modules share only their inter-
face specifications with other modules. A module Foo is composed of two C source
files, foo.c and foo.h. The former contains the body of the module, including all
non-inlined functions. The latter contains function prototypes for the module, as well
as all type and macro definitions. In addition, global variables are defined here, using
a mechanism which allows the same declarations to be used both for extern declara-
tions in other modules and the actual storage definition in the declaring module. These
globals can also be given constant initializers. Finally, foo.h contains inline function
definitions. In a compiler which supports inline functions, these are declared static
inline in every module which includes foo.h, including foo.c itself. In other
compilers, they are undefined except when included in foo.c, when they are compiled
as ordinary functions. foo.c resides in ~pdes/src/step/; foo.h in
~pdes/include/.

The type defined by module Foo is named Foo, and its private structure is struct
Foo. Access functions are named as FOOfunction(); this function prefix is abbre-
viated for longer abstraction names, so that access functions for type
Foolhardy_Bartender might be of the form FOO_BARfunction(). Some

Stephen Nowland Clark

NIST STEP Working Form Programmer’s Reference Page 2

2 STEPparse Control Flow

A STEPparse translator consists of two separate passes: parsing and output generation.
The first pass builds an instantiated Product representing the product model specified
in the STEP input file. This Product can then be traversed by an output module in
the second pass, producing whatever report is desired. It is anticipated that users will
need output formats other than those provided with the NIST Toolkit. The process of
writing a report generator for a new output format is discussed in detail in section 4.

2.1 First Pass: Parsing

The first pass of a STEPparse translator is a very simple parser. The STEPparse gram-
mar itself is independent of any conceptual schema. The lexical analyzer recognizes
any entity class name simply as an identifier; the actions associated with rules in the
grammar then interpret this name as referring to a particular Express entity, and con-
struct appropriate objects. As each construct is parsed, it is added to the Working Form.
Because the STEP physical file format does not allow forward references to as-yet-un-
defined entity instances, all symbol references can be (and are) resolved during this
parsing pass, so that no symbol resolution pass is required.

The STEPparse parser is written using the standard Unix™ parser generation languag-
es, Yacc and Lex. The grammar is processed by Bison, the Free Software Founda-

tion’s1 implementation of Yacc. The lexical analyzer is produced by Flex2, a fast,
Public Domain implementation of Lex.

2.2 Second Pass: Output Generation

The report or output generation pass manages the production of the various output files.
In the dynamically linked version of STEPparse, this pass loads successive output mod-
ules dynamically, calling each to traverse the Working Form. The dynamic linking
mechanism is discussed briefly in [Clark90d]. It is also possible to build a statically
linked translator, with a particular output module loaded in at build time; this is, in fact,
the only mechanism available in an environment which is not derived from BSD 4.2
Unix.

A report generator is an object module, most likely written in C, which has been com-
piled as a component module for a larger program (i.e., with the -c option to a Unix C
compiler). In the dynamically linked version, the object module is linked into the run-
ning parser, and its entry point (by convention a function called print_file()) is

1. The Free Software Foundation (FSF) of Cambridge, Massachusetts is responsible for the GNU Project,
whose ultimate goal is to provide a free implementation of the Unix operating system and environment.
These tools are not in the Public Domain: FSF retains ownership and copyright priviledges, but grants free
distribution rights under certain terms. At this writing, further information is available by electronic mail on
the Internet from gnu@prep.ai.mit.edu.
2. Vern Paxson’s Fast Lex is usually distributed with GNU software, although, being in the Public Domain,
it is not an FSF product and does not come under the FSF licensing restrictions.

NIST STEP Working Form Programmer’s Reference Page 1

NIST STEP Working Form
Programmer’s Reference

Stephen Nowland Clark

1 Introduction

The NIST STEP physical file parser [Clark90c], and its associated STEP parser,
STEPparse, are Public Domain tools for manipulating product models stored in the
STEP physical file format [Altemueller88]. These tools are a part of the NIST PDES
Toolkit [Clark90a], and are geared particularly toward building STEP translators. This
reference manual discusses the internals of the STEP Working Form, including
STEPparse. The reader is assumed to be familiar with the design of the Toolkit
([Clark90a], [Clark90b], [Clark90c]). In some cases, technical knowledge of the Ex-
press Working Form [Clark90e] is also required.

The STEP Working Form relies on the NIST Express Working Form [Clark90b] as an
in-core data dictionary, which provides a context in which STEP models can be inter-
preted. The tight dependency of the STEP Working Form abstractions on those of the
Express Working Form is due to the schema-independent nature of the former. The
STEP Working Form, and, in particular, STEPparse, contain no knowledge of any par-
ticular information model. Applications built on these tools can thus manipulate STEP
product models in the context of any number of Express information models without
requiring recompilation.

1.1 Context

The PDES (Product Data Exchange using STEP) activity is the United States’ effort in
support of the Standard for the Exchange of Product Model Data (STEP), an emerging
international standard for the interchange of product data between various vendors’
CAD/CAM systems and other manufacturing-related software [Smith88]. A National
PDES Testbed has been established at the National Institute of Standards and Technol-
ogy to provide testing and validation facilities for the emerging standard. The Testbed
is funded by the CALS (Computer-aided Acquisition and Logistic Support) program of
the Office of the Secretary of Defense. As part of the testing effort, NIST is charged
with providing a software toolkit for manipulating PDES data. This NIST PDES Tool-
kit is an evolving, research-oriented set of software tools. This document is one of a set
of reports which describe various aspects of the Toolkit. An overview of the Toolkit is
provided in [Clark90a], along with references to the other documents in the set.

For further information on the STEP Working Form or other components of the Toolkit,
or to obtain a copy of the software, use the attached order form.

Disclaimer
No approval or endorsement of any commercial product by the National Institute of
Standards and Technology is intended or implied

Unix is a trademark of AT&T Technologies, Inc.

iii

Table Of Contents

1 Introduction..1
1.1 Context...1

2 STEPparse Control Flow...2
2.1 First Pass: Parsing..2
2.2 Second Pass: Output Generation..2

3 Working Form Implementation ...3
3.1 Primitive Types..3
3.2 STEP Working Form Manager Module...3
3.3 Code Organization and Conventions ...3
3.4 Memory Management and Garbage Collection...4
3.5 Instance ..4
3.6 Product ...6

4 Writing An Output Module ..7
4.1 Layout of the C Source ..7
4.2 Output Module Linkage Mechanisms..8

5 Working Form Routines..9
5.1 Working Form Manager ..9
5.2 Instance ..10
5.3 Product ...18

6 STEP Working Form Error Codes ..19

Appendix A: References ...22

U.S. DEPARTMENT OF

COMMERCE

Robert A. Mosbacher,

Secretary of Commerce

National Institute of

Standards and Technology

John W. Lyons, Director

National PDES Testbed

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

NATIONAL

TESTBED

U
N

ITED STATES OF AMER
IC

A

D
E

P
A

R
TM

ENT OF COMM
E

R
C

E

NIST STEP
Working Form
Programmer’s
Reference
Stephen Nowland Clark

NISTIR 4353

November 29, 1990

National PDES Testbed
Report Series

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

NATIONAL

TESTBED

NIST STEP
Working Form
Programmer’s
Reference

Revised November, 1990

NISTIR 4353

