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Report 2: Census Adjustment Based on 
an Uncertah Population Total 

This report extends our Report 1: A Study of Whether Census 

Adjustment is Worthwhile. In that report we considered an 

across-the-board ratio adjustment using a known population total, 

T. Here we consider the same adjustment except that we do not 

know T perfectly. We only have an estimator of it, which we call 

i. 

We retain most of the notation in Report 1: ti is true 

population for area i, yi is unadjusted census count, Y is total 

unadjusted census count. Whereas in Report 1 we considered the 
. 

adjustment ai = PiT we now consider 

* 
i 
i 

= pii (1) 

with pi = yf/Y. We want to decide whether i. is in general 

closer to ti than is yi. As criteria for this decision we use 

the four loss functions fk (5) 9 k=1,2,3,4, in (2) of Report 1. 

There we compared fk(&) and fk(y). Here the vector 4 depends on 

7, which we view as a random variable. Thus we now compare 

E&(i)) 9 which we call f; , against fk(yJ . We will be led, at 

the end of the report, to recommend a fairly simple and easily 

interpreted "criterion 3A," in (3A). But for now we want to look 

at all 4 criteria. 

Suppose that ? is an unbiased estimator of T, with known 

variance W. We then have 

* 
fl = fl(a) + w(C Pi21 

* 

f2 
= '2(a) + ' 1 Pi2/Yi 

* 

f3 = '3(a) + ' C pi2/ti. 

c-9) 

(W 

(W 

For f; we presume, additionally, that 'i is normally distributed. 

This presumption makes sense if i is based on a large sample. For 



3 

W>O we are able to show that 

f; ’ 1 CiCdi (2$(di J-1) + 2g(di )I ( w 

with ci = piW 1'2, d . = IpiT-ti(/ci, + the c.d.f. for N(O,l), and 

g the density for Ni0.1). 

The larger W is, the larger each f; becomes. We will 

compute the value of WOO, typically) for which f; and fk(x) 

are equal. If this breakeven W is distinctly larger than the 

anticipated value of W, then according to criterion k we do 

better to use ai in preference to yi. As in Report 1, we will 

use the 1980 Post Enumeration Project (PEP) in our investigation. 

Before going to this investigation, however, we consider bias 

in i. 
* 

Above, we presumed E(i) = T. A more complete model 

is E(i) = T+B, with B possibly nonzero; thus each f; depends on W 

as well as B. We no longer can talk about a breakeven value for 

W, except with reference to a particular value of B. Results 

thus become hard to interpret. However, I think it is best to 

view $ as unbiased. If we sense that ? might be biased, we can 

use a bias correction, as we think appropriate. Then, W can be 

viewed as the sum total of sampling error, uncertainty in making 

the bias correction, etc. 

We view W in this manner, with ? unbiased, in the rest of 

this report; we are now ready to discuss our investigation. As 

values for ti and T we use PEP estimates as we did in Report 1; 

for each of 12 PEP sets we compute a breakeven value of W for 

each of our 4 loss functions. For k=1,2,3 the form of (2a-c) 

permits easy computation; for k=4 we use a binary search. 

We give results in terms of the coefficient of variation 

(C.V.) c = w Ij2/T, expressed as a percent. Let ck be the 

breakeven t.v. corresponding to criterion k. For the 12 PEP sets 

we have values of ck as follows: 
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PEP Set Criterion 1 Criterion 2 Criterion 3 Criterion 4 

2-8 
2-9 
2-20 

;:; 
3-20 
5-8 
5-9 

10-8 
14-8 
14-9 
14-20 

1.592 
2.116, 
2.438 
1.403 
1.927 
2.251 
1.950 
2.467 
0.430 
0.788 
0.145 

1.155 - 1.134 1.229 
1.577 1.552 1.662 
1.896 1.869 2.031 
1.003 0.982 1.033 
1.426 1.401 1.442 
1.745 1.718 1.810 
1.738 1.717 1.902 
2.156 2.131 2.336 
0.309 0.296 0.291 
0.916 0.931 0.896 
0.495 0.511 0.494 
0.173 0.189 0.131 

(For Cl and 14-20 the breakeven W is negative, corresponding to 

the fact fl(y)<fl(a). That is, according to criterion 1 and 14- 

. 20 we do better not to adjust even if we know T exactly.) Here 

our areas, for which census counts are to be adjusted, are the 50 

staJes plus DC. 

Thus, as an example, set 3-8 and criterion 2 give us a 

breakeven C.V. of 1.003, or about 1%. That is, we estimate that 

if f has a relative standard error of 1% as an estimator of T, we 

are indifferent as to whether to use adjusted ai in preference to 

unadjusted yi. If the relative error is less than 1X, we would 

use i.. 
1 

If it is greater, we would use yi. For set 3-8 and 

criterion 3 we have, at 0.982, a breakeven C.V. barely under 1%. 

We now look closely at the formulas for the breakeven 

variance, Wk, corresponding to which we have presented Ck above. 

The breakeven W2 is just (Y-T)2. Thus according to 

criterion 2 we simply compare the two squared errors E((?-T)2) 

and (Y-T)2. That is, if the error (i.e., variance) in i is 

smaller than the error in Y, then the adjusted a 
i 

is preferred to 

the unadjusted yi. 

With pi = yi/Y we likewise set ri = ti/T. The breakeven W3 

is 

W2 + 2T(T-Y)tlI(C Pi2/ri)-l]* (3) 
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We have W3 = W2 if we have either: (1) T=Y, or (2) ri = pi 

for all i .(that is, the ratio yi/ti is constant). Otherwise, use 

of a Lagrange multiplier shows that the bracketed term in (3) is 

negative, and we have W3 < W2 if T>Y (i.e., if Y is an undercount 

of the total population). For our first 9 PEP sets, above, the 

estimated T exceeds Y; accordingly, we have W3 < W2. Thus as in 

the above discussed example, for PEP set 3-8 the breakeven C.V. 

falls from C2 = 1.003 to C3 = 0.982: not a major difference. For 

T<Y, as for the last 3 PEP sets, we have W3>W2; but T>Y seems 

more realistic for areas which are hard to enumerate. 

The breakeven WI is 

W2 + 2T(T-Y)C(C Piri)/(l Pi2)-ll* (4) 

As*for W3 we have W1 = W2 for either T=Y or ri = pi. Otherwise, 

our empirical results indicate that for the 50 states plus DC the 

bracketed term in (4) appears to be, in practice, positive. We 

have ri>pi typically, when pi is largest and ri<pi, typically, 

when pi is smallest (remember that 1 pi = 1 ri = 1). That is, 

the undercount rate is generally higher for the larger states, 

and as a result, for T>Y, the breakeven W is forced upward. 

Difference between WI and W2 appear to exceed those between W2 

and W3: e.g., for PEP set 3-8 we have Cl = 1.403 and 

c2 = 1.003. For groups of areas other than the 50 states and DC 

we may, of course, have a negative bracketed term in (4), with 

WI < W2 for T>Y. 

The breakeven W4 is W2n/2 (i.e., C4= C,(T/~)"~) for ri = pi 

as opposed to WI = W3 = W2 for ri = pi. Convex-programming and 

calculus manipulations show that for ri*pi we have W4<W2 n/2. 

For example, for PEP set 3-8 we have C4 = 1.033 - whereas the 

value of C2(m/2)1'2 is 1.003 x 1.253 = 1.256. 

Of the 4 criteria we prefer 4, because it works with 

absolute values, and 3, because it divides squared differences by 

the true tie For both of these, in practice, differential rates 

of undercount lead to a reduction in breakeven C.V. from what it 
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would be if we had Pi=ri for all i--equivalently, if we 

had yi/ti constant. Thus we might first consider, based on yi/ti 

constant, the breakeven c.v.' s IY/T-I( for criterion 3, 

and (n/2)li2 IY/T-11 for criterion 4. These provide useful 

starting points in deciding whether or not to adjust. That is, 

we can compare the C.V. of ? against these breakeven values in 

making this decision. But we must make some modification to 

reflect the fact that yi/ti is not constant. 

Henceforth we restrict our discussion to criterion 3, 

largely because computation for criterion 4 has required the 

additional assumption, not yet fully justified, that ? has a 

normal distribution. Thus as a breakeven C.V. our starting point 

* is (Y/T-11, which is C2. As we have seen, departure of the 

actual C3 from C2 is a consequence of yi/ti not being constant. 

0~; table, above, indicated that the departure is small. 

Expressed as a percent, Ic,- C31 never exceeds .027: barely l/40 

of 1%. Thus one might be able to regard departure of C3 from C2 

as a secondary matter; but here we regard it as a primary matter. 

We develop a simple approximate representation for this departure 

as follows. Consider W3 in (3). Take the square root of it, and 

consider the lst-order Taylor expansion for this square root 

about the point W2. Dividing by T, we have that C3 is equal to 

approximately 

C3A’ c2 z [l- 
2 

l/tc Pijri )I* (3A) 

(Relative accuracy of the approximation is greatest when 

departure of C3 from C2 is smallest.) In (3A) the bracketed 

term, which we call B, is positive. In regard to the + sign we 

subtract B if Y<T: that is, if there is overall undercount as 

seems typical. We add B if Y>T: that is, if there is 

overcount. Thus we have developed our criterion 3A, against 

which we compare the C.V. of ?, in deciding whether to make 

adjustment for a set of areas. It has two components, one (C,) 

based on the relative difference between Y and T and one (B) 

based on differentials in undercount rates. 
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Note what happens when Y is close to T. The value of C2 

becomes essentially 0, thus C3A becomes -B for Y<T and +B for 

Y>T. Thus there is 'a discontinuity in the value of C3A and an 

internal inconsistency in our decision rule. However, for Y very 

close to T the adjustment (i.e., difference between yi and ii) 

is so small that it does not matter whether we make it or not. 

Hence we are not disturbed by the discontinuity. If one is 

disturbed by it, one can just use C3, which is the official exact 

breakeven C.V. We have introduced C3A only because it is so easy 

to interpret. Empirical results, as below, show that C3 and C3A 

are almost the same. 

. 
For our 12 PEP sets the departures C3A-C3, expressed in 

percent, always positive, seem inconsequential: 

I PEP Set 

2-8 
2-9 
2-20 
3-8 
3-9 
3-20 

5:; 
10-8 
14-8 
14-9 
14-20 

c3 '3A '3A - '3 

1.134054 1.134247 
1.552395 1.552591 
1.869063 1.869255 
0.981651 0.981876 
1.400801 1.401016 
1.717828 1.718035 
1.716989 1.717113 
2.131294 2.131434 
0.296249 0.296505 
0.931456 0.931582 
0.510619 0.510859 
0.189079 0.189815 

000193 
:000196 

000193 
:000225 

000215 
: 000208 
.000124 
l 000140 
.000256 
.000126 
.000240 
.000737 

On this basis we would prefer the easily interpreted C3A. For 

PEP set 3-8, as an example, the difference in breakeven C.V. is 

only .000225 of l%, or .00000225. 

Using C3A, we might look more closely at the bracketed term, 

B, in (3A). Perhaps some insights can be gotten from special 

cases. Suppose we have just 2 areas with rl=c, r2=l-c (two 

population proportions) and pl= c+6, p2= 1-c-6 (census 

proportions). Then we have, for 6>0, 

B=l/[l+c(l-~)/6~], or s~/C~~+ c(l-c)] 
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Suppose we have 3 areas with rl= r2= r3= l/3, pl= l/3 + 8, 

p2= l/3, and p3= l/3 - 6. Then we have 

B=l/[l + 1/662], or a2/[a2+ l/6]. 

(H ere, a function of general form f(*)51/[l+a/fs2] for constant a 

has f(O)=O, f(=)=l, f'(O)=O, f'(=)=O, fl(a)>o, for 6)0, and point 

of inflection 6=a1'2. If 6 is small, however, f behaves pretty 

much like the sample quadratic S2/a .) 


