Cosmo 02, Chicago

Cosmological Constraint on Dark Matter-Baryon Interaction

Xuelei Chen KITP, UC Santa Barbara

Collaborators:

Steen Hannestad (Nordita) Robert J. Scherrer (OSU),

Interaction of Dark Matter

Self Interacting Dark Matter (SIDM)

SIDM->halo core (Spergel & Steinhardt 1999)

$$\frac{\sigma/\text{cm}^2}{m/\text{GeV}} = 8.1 \times 10^{-25} \left(\frac{\lambda}{1\text{Mpc}}\right)^{-1}$$

Strongly Interacting Massive Particle (SIMP)

$$8 imes 10^{-25} < rac{\sigma/cm^2}{m/GeV} < 10^{-23}$$

(Wandelt et al 2000)

SIMP: interact with baryons, with a strength comparable to strong interaction, but no electromagnetic interaction.

WIMP search won't find SIMP because it lost energy when enter atmosphere

Candidates:

- •quark-gluino bound state
- •gauge-singlet meson
- •Q ball (Kusenko & Steinhart 2001)
- •Mirror matter (Mohapatra 2001)

2

SIMPs affect CMB and large scale structure.

SIMPs induce additional damping of acoustic oscillations in photon-baryon fluid before recombination

SIMP effect on CMB and power spectrum

black: fiducial CDM model red: increased baryon density blue: SIMP model

The effect of baryons: introduce a greater oscillator mass shift balance position and induce larger amplitude

The effect of SIMPs: introduce a viscosity term

Results:

Calculated with modified version of CMBFAST

Assumptions of calculation:

- Short Range interaction
- S wave elastic scattering (velocity-independent)
- Non-relativistic velocity
- Two-body interaction
- The dark matter and baryons behave as two coupled fluids
- In thermo-equilibrium
- No significant dark matterlepton interaction

constraint on cross section

σ	$0.63x^{1/2} + 0.22x^{3/2}$			
10 ⁻²⁴ cm ² <	$1 + x^{1/2}$			

prior type	Ω_m	$\Omega_b h^2$	h	n	au	Q	b
CMB	Ω_b -1	0.008 - 0.040	0.4-1.0	0.66-1.34	0-1	free	not used
$CMB + BBN + H_0$	Ω_b -1	0.020 ± 0.002	0.72 ± 0.08	0.66-1.34	0-1	free	not used
$CMB + BBN + H_0 + LSS$	Ω_b -1	0.020 ± 0.002	0.72 ± 0.08	0.66-1.34	0-1	free	free

Conclusion

Cosmic microwave background anisotropy and large scale structure can be used to constrain dark matter-baryon interaction. Using current data (Boomerang, MAXIMA, 2dF), SIMPs with an interaction cross section comparable to "Spergel-Steinhardt" cross section are ruled out. However, this method does not constrain self-interaction of dark matter.