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Abstract. The paper describes large scale, three-dimensional, Potts model simulations of the 
interaction between a coarse particle and a straight boundary driven by a bulk stored energy 
difference across the boundary. It is shown that the variation of the interaction energy as a 
function of the interface position is significantly affected by the choice of the lattice temperature. 
The maximum force offered by the particle on the grain boundary decreases with increasing 
lattice temperature and approaches the theoretical limit at high lattice temperatures. The 
boundary velocity responds appropriately to changes in the magnitude and direction of the 
interaction force only at high lattice temperatures.  
 
Introduction 
 
Coarse, incoherent particles offer a drag to the motion of grain boundaries because of the 
interaction between the boundary and the particle. Since the total boundary energy decreases 
because of the loss of the boundary area equal to the cross-sectional area of the particle, a 
boundary that contacts the particle is initially attracted to the particle. As the boundary tries to 
leave the particle, a pinning force is generated that opposes the driving force. In order to break 
the boundary away from the particle, a driving force greater than the pinning force is required. 
The maximum pinning force depends on the particle radius, r,  and the interfacial energy per unit 
area of the boundary, γ, according to [1] 
 
 γπrF =max . (1) 
 
In the past there have been several attempts to simulate the interaction between a curved 
boundary and an incoherent particle. Couturier et al [2] used three-dimensional finite element 
simulations to capture the interaction between a spherical boundary and a particle. The 
simulations clearly showed the acceleration of the boundary as it contacted the particle, and the 
deceleration as it attempted to exit the particle. At low driving forces, the boundary velocity 
approached zero, indicating the complete pinning of the boundary by the particle. Miodownik et 
al [3] used Potts model simulations and showed that the interaction between the particle and 
grain boundary is correctly captured only at lattice temperatures high enough to eliminate the 
faceting of the grain boundary when it interacts with the particle. Carrying a high enough lattice 
temperature promotes the formation of boundary roughness which results in a transition from a 
pyramidal to hemispherical morphology of the boundary in the vicinity of the pinning particle. 
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The critical lattice temperature above which such a transition occurred was shown to be kT=2.0 
for a simple cubic lattice. 
 
In Potts model simulations involving curved boundaries, boundary facets exist inherently on the 
boundary because of the regular geometry of the lattice. However, the presence of facets on a 
straight boundary depends on the inclination of the boundary plane. If the boundary is parallel to 
a symmetry direction, there will be no facets on the boundary.  Therefore, the choice of the 
lattice temperature is far more critical in correctly capturing the interaction between an 
incoherent particle and a high-angle grain boundary. The current simulations show that lattice 
temperatures as high as kT=6.0 are required in this case. 
 
Simulations 
 
Monte Carlo simulations were carried out in three dimensional simple cubic lattice using a lattice 
size of 200 × 200 × 400 sites. The simulation methodology is described elsewhere and will not 
be repeated here [4]. A coarse particle of radius 40 lattice units was placed at the center of the 
simulation domain. Periodic boundary conditions were used in all three lattice directions. The 
straight boundary was driven by a bulk stored energy difference of 0.05 per lattice site. 
Simulations were carried out at lattice temperatures of kT= 2.5, 3.0 or 6.0. At lower lattice 
temperatures, the boundary did not move, or moved extremely slowly because of the inability to 
nucleate a large fraction of steps on the boundary. The position of the boundary and the total 
boundary energy were tracked as a function of the simulation time. The simulations were 
repeated with different seed values for the random generator used in the Monte Carlo code, and 
the results shown represent an average of several runs. The simulations made use of the 
massively parallel computing facilities at the Oak Ridge National Laboratory. 
 
Results and Discussion 
 
Fig. 1 shows the interaction energy, and force between a flat boundary lying parallel to a lattice 
symmetry direction driven by a bulk stored energy difference and a particle, and the resulting 
boundary velocity for a lattice temperature of kT=6.0.  As shown in fig. 1a, the boundary energy 
remains constant prior to interaction with the particle as the boundary remains straight. As it 
interacts with the particle, boundary energy decreases abruptly as the cross-sectional area that is 
consumed by the particle increases. In fig. 1 and in subsequent figures, the distance is plotted in 
units of s/r where s is the average position of the boundary segment that lies within a distance 25 
% of the particle radius from the particle surface, and r is the particle radius.  The average 
position is measured relative to the center of the particle.  
 
The normal force on the boundary obtained by taking the derivative of the energy curve with 
respect to s/r is shown in fig. 1b. The force in fig. 1b and in subsequent figures is shown in terms 
of πrγ which is the maximum theoretical drag force exerted by a precipitate of radius r. There is 
a strong attractive force as the boundary starts to interact with the particle. At this stage of the 
interaction, there are two competing effects that determine the net boundary energy: (1) the loss 
in energy due to loss of boundary surface area and (2) the increase in boundary area as it bends 
towards the particle as shown in fig. 2 which shows the shape of the boundary at various 
distances from the particle as it moves through the particle. The attractive force increases in 
magnitude and reaches the maximum very quickly, but the magnitude starts to decrease as the 
increase in energy due to boundary bending becomes more significant. At a location close to the 
center of the particle (s/r ≈ 0) the boundary energy becomes minimum at which point the net 



force on the boundary is zero. As the boundary starts to come 
out of the particle, (s/r > 0) the energy starts to increase as the 
negative contribution from loss of surface becomes lower and 
lower and the positive contribution from bending also 
increases. Consequently, the force becomes positive, and 
reaches a maximum value corresponding to s/r ≈ 1.0. The 
contact angle at this point is roughly 45° in accordance with 
the theoretical value. Beyond this point, the energy increases at 
a lower rate because the boundary bending close to the particle 
causes the loss of surface energy by continuing to establish a 
contact with the boundary even though the undistorted 
boundary is well beyond the edge of the particle. As the 
boundary bending becomes more significant and the loss of 
area becomes insignificant the energy becomes higher than the 
starting value (s/r ≈ 1.8). As the boundary moves further, it 
breaks away from the particle, and the energy drops gradually 
to the original value. During this time the force drops to zero. 
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(b) The above detailed description of the variation of energy and 
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force is in close agreement with theoretical predictions [5]. Fig. 
1c shows the velocity of the boundary as a function of s/r. The 
boundary velocity is given by MF where M is the mobility and 
F is the driving force. Initially, the boundary is moving at a 
constant velocity as it is driven by a constant force due to the 
bulk stored energy difference across the boundary. When the 
boundary experiences an additional force, it responds by 
increasing or decreasing its velocity proportional to the new 
driving force. When the boundary approaches the particle, the 
attractive force due to interaction adds to the driving force and 
therefore the velocity increases. When the interaction force is 
repulsive it opposes the original driving force, and therefore the 
boundary velocity decreases. When interaction force becomes 
zero as it transitions from attractive to repulsive force, the 
boundary velocity 
reaches the original 
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kT=6.0. 
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Fig. 2. Boundary shape at various 
distances from the particle for  kT=6.0.

=3.0. The energy curve shown in fig. 3a is very 
milar to the one for kT=6.0. However, there is a small 
mp in the curve just beyond s/r ≈ -1, just after the 
undary contacts the particle. Fig. 4 shows the shape 
 the boundary at various distances from the particle 
r kT=3.0. An important difference between fig. 4 and



 fig.2 that shows the boundary shapes for kT=6.0 is the initial 
roughness of the boundary.  The initial density of steps on the 
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boundary for kT=6.0 is significantly higher than for kT=3.0. 
When the boundary interacts with the particle, the roughness 
increases for kT=3.0 because the bending of the boundary 
towards the particle requires boundary steps to be formed. 
However, the roughness remains fairly constant for the 
boundary at kT=6.0. The increased roughness of the boundary 
causes the energy to increase for kT=3.0. The increased 
boundary roughness is particularly significant in the s/r range 
of -1 to 0.5 where the hump in the energy curve in figure 3a is 
seen. There is also a shift in s/r at which the energy is a 
minimum. While the energy minimum occurs at s/r =0 for 
kT=6.0, it occurs at s/r =0.4 for kT=3.0. This is again due to the 
differences in the boundary roughness and the differences in 
the overall bending of the boundary between the two cases.  
 
The variation of interaction force with s/r for kT=3.0 is shown 
in fig. 3b. The main difference between fig. 3b and 1b that 
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here is also a significant difference between the 
velocity versus s/r curves for the boundary at kT=6.0 
and kT=3.0 as shown in figs 1c and 3c.  Note that there 
is no good correlation between force and velocity for 
kT=3.0. While the velocity increases as the attractive 
force increases at s/r ≈ -1, a decrease in the attractive 
force does not cause a drop in the boundary velocity in 
the s/r range of -1 to 0.5. In fact, the maximum in the 
boundary velocity occurs at s/r ≈ -0.5 when the force 
on the boundary is zero. After this, the velocity 
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the center of the particle, it 

ich results in a negative force. 
T e that corresponds to the drag 
force exerted by the particle on the boundary is very close to 
the theoretical value for kT=6.0 (1.1) while it is somewhat 
higher for kT=3.0 (1.2). The detachment of the boundary from 
the particle which 
roughly corresponds 

to the maximum in the energy curve occurs at s/r = 1.8 
for kT=6.0 and 1.3 for kT=3.0.  
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Fig.3. Energy, force and 
velocity of a flat boundary 
interacting with a particle at 
kT=3.0. 

Fig. 4. Boundary shape at various 
distances from the particle for  
kT=3.0.

T



drops while the attractive force increases in magnitude.  
Beyond s/r = 0.4, when the positive drag force increases, the 
velocity does not decrease below the initial value.  
 
These observations clearly indicate that for kT=3.0 the 
relationship between boundary velocity, driving force and 
boundary mobility are more complicated than for kT=6.0.  One 
reason for this behavior is the change in the boundary 
roughness as the boundary interacts with the particle. During 
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The above discrepancies become even more marked at kT=2.5 
as shown in fig. 5.  The boundary shape at various locations of 
the boundary is shown in fig. 6. The positive hump in the 
energy curve shown in fig. 5a  due to the roughening of the 
interface is so overwhelming that the energy initially increases 
and does not begin to drop until s/r = -0.5. Between s/r ≈ -1 
and s/r = -0.5, the velocity shown in fig. 5c increases even 
though there is a  positive drag force shown in fig. 5b which is 
mainly due to the roughening of the boundary. This is similar 
to the kT=3.0 case where the rough boundary, with an 
increased mobility moves faster although it is now driven by a 
lower driving force. As in fig 3 for kT=3.0, the velocity does 
not decrease below the 
becomes positive beyond 
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 mobility from the simulation output only when the lattice temperature used in the model is 
above a critical value. In the case of abnormal grain growth [6], boundary facets parallel to 

ttice symmetry directions are formed when sufficient lattice temperature is not used in the 

T=6.0 or higher. At such high lattice temperatures, the boundary roughness 
mained constant during the interaction of the boundary with the particle, which resulted in the 

action energy and the drag force. The interface velocity was found 
 be proportional to the net driving force. At lattice temperatures of kT=3.0 and kT=2.5, the 
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la
model. In the case of the interaction between a curved boundary and a particle, Miodownik et al 
[3] showed that a minimum lattice temperature of kT=2.0 should be used. In fact, they obtained 
essentially the same force versus s/r curve for kT values of 1.0, 2.0 and 3.0. However, the present 
simulations show that there are several important differences in the force versus s/r curve and 
velocity versus s/r curve up to kT=6.0 in the case of the interaction of a straight boundary with a 
particle. Interestingly however,  the maximum drag force obtained at these various kT values is 
roughly the same. 
 
Summary and Conclusions 
 
The interaction between a flat boundary and a coarse, incoherent precipitate was simulated using 
a three-dimensional Potts model. The flat boundary was driven by a bulk stored energy 
difference across the boundary. The boundary was parallel to a symmetry direction in the simple 
cubic lattice. The appropriate choice of the lattice temperature for the Potts model simulations 
was found to be k
re
correct estimation of the inter
to
initial boundary was relatively smooth, while the boundary developed steps during the 
interaction with the precipitate. The increase in boundary roughness resulted in a decrease in the 
driving force and an increase in the boundary mobility that resulted in an inaccurate estimate of 
the drag force and the velocity response.  
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