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The goal of this paper is an extension of the de Broglie wave mechanics model for a single spinless particle
in an electromagnetic field. The analysis indicates that the motion of a particle separates naturally into particle
dynamics through the classical Hamilton-Jacobi equation and quantum wave behavior through a pilot or
interaction wave equation. The interaction wave equation travels at the classical particle velocity. We study
gauge invariance and interpret it in the light of the interaction wave. The Heisenberg uncertainty relations are
shown to be implicit in the interaction wave. We also develop a complex quantum-mechanical, relativistic
energy-momentum conservation expression using a complex quantum-mechanical four-vector.
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[. INTRODUCTION theories ofZitterbewegunghat are related to self-interacting
or pilot waves traveling with particld®,10]. Hall and Regi-
The goal of this paper is to study the wave-particle inter-natto have studied quantum-mechanical uncertainty using
action in quantum-mechanical systems using a modificatiofrisher information11-13.
of the de Broglie—Bohm Hamilton-Jacobi approach applied We start our analysis by reviewing Schinger’s wave
to the Schrdinger and Klein-Gordon equations in the pres-equation for a single particle of zero spin in an electromag-
ence of electromagnetic fields. Conservation of probability isnetic field. We then identify and separate the quantum-
replaced with conservation of energy momentum in the inimechanical phase into an associated classical phase plus a
teraction process. nonclassical fluctuation in phase. In the analysis we argue
The features include the derivation of an interaction wavethat instead of viewing the evolution of the probability den-
equation, reinterpreting the expression commonly used fosity equation as a primary conservation equation, we can
probability conservation as an expression for conservation aderive a better understanding by considering that the equa-
interaction energy, and the derivation of a complex quantumtion represents momentum conservation in the interaction
mechanical energy-momentum equation. However, oprocess. We therefore cast the probability conservation equa-
course, it is well known that a probability interpretation is tion into an equation for conservation of interaction energy
entirely adequate. We use the word interaction to describenomentum, which is conserved over all space. In the past,
the coupling of the particle to the measurement interaction.researchers have canceled a common factak éfom the
Over the years there have been a number of approachesgjuation representing the imaginary part of the Sdimger
used to derive and interpret the Scoftimger and Klein- equation and therefore viewed it as a probability conserva-
Gordon equations. Schiinger’s approach was based on antion equation. However, in the classical limit &s-0 this is
intuitive generalization of Hamilton-Jacobi theory. Feyn-not allowed and as a result, in the classical limit, this prob-
man’s[1] approach focused on the many-path interpretatiorability equation does not apply and the Salinger equation
of Hamilton’s principal function and path integrals. Nelson then reduces to the classical Hamilton-Jacobi equation.
developed a stochastic theory of quantum mechd@tdn In Sec. Il we subtract the classical Hamilton-Jacobi equa-
1927, de Broglie developed a pilot-wave theory where heion from a form of the Schidinger equation and thereby
proposed that a particle is guided by the quantum-develop a reduced form of Schiinger's wave equation for
mechanical wave function. This theory was later rediscov{luctuations of nonclassical energy momentum related to
ered and extended by Bohf8]. The de Broglie—Bohm ap- ZitterbewegungThe effects of the electromagnetic and other
proach is based on the assumption of a specific functionglotentials are contained in the classical Hamilton-Jacobi
form for the wave function then substituting it into the equation. Solving the Schdinger equation becomes equiva-
Schralinger and Klein-Gordon equations and separating oulent to solving the classical Hamilton-Jacobi equation and
the real and imaginary component equations for energy anthe interaction wave equation. In Appendix A we show how
probability conservatiofi3—6]. In this paper we follow this the Heisenberg uncertainty relations are contained within the
procedure, but instead decompose the Stihger and interaction wave equation. The interaction wave function is
Klein-Gordon equations into the classical Hamilton-Jacobishown to possess interaction energy, as well as energy in
equation plus a nonlinear complex interaction wave equafluctuations in the particle energy. The analysis becomes
tion. More recently there has been a revived interest irmore transparent in Sec. IV, where the interaction wave func-
hidden-variable theories and the de Broglie—Bohm approachion for the Klein-Gordon equation is derived. Here we show
Holland, Grossing, and others have performed extensive rén the last section that the Klein-Gordon equation can be
search in this are§6—8]. Barut and Hestenes developed interpreted as an equation for the conservation of complex
four-momentum. We also study the relationship of unitary
transformations of the Schdmger wave function to electro-
*Electronic address: jjarvis@boulder.nist.gov magnetic gauge transformations and the interaction wave
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function. Finally, in Sec. V we develop an expression fromcertainty in the measurement interaction. It is well known
the Klein-Gordon equation for a quantum-mechanicalthat there are problems with probability interpretations in the
energy-momentum four-vectqs,= (py+ips) and derive a Klein-Gordon equation. Although Eqgs3) and (4) are
relativistically invariant energy-momentum conservation ex-equivalent, by usingS,, conservation of four-momentum
pression that we will reproduce here: follows naturally. The equation of motion f@,, which is
equivalent to the equation of motion for probability conser-
(1) vation, is an expression for conservation of energy momen-
tum in the interaction process. In Klein-Gordon theory we
where Einstein summation is used apglis a point wise, il see that four-momentum generated fr&is the part of
rather than an expectation value of the quantum-mechanicghe total guantum-mechanical four-momentum from the in-
particle four-momentum ancps is the point-wise four- teraction process, which together with the four-momentum
momentum of the interaction process. In the classical limifrom s . the particle momentum, satisfies a balance equa-
this reduces to the classical relativistic equation. tion. yCe~ /" can be thought of as a distribution much like
All results of the paper are consistent with predictions ofihe Maxwell-Boltzmann distribution and is easily derived
the Schrdinger and Klein-Gordon equations; however thefom a maximum-entropy variational problem with a con-
|nterpretat|ons, we beheve,_are dn‘fert_ant. Althoggh based oRyraint on S, and associated Lagrange multiplier 1/\We
the de Br.oglle approach, this paper dlffer_s significantly from,,;, argue that—dS, /4t is the interaction energy at a par-
de Broglie’s theory of the double solution, where he at-iicyjar point and time. When the expectation value is taken,

tempted to use a_singularity to describe the pa_\rticle. O“fhe net interaction energy is 0, since energy momentum is
approach also deviates from Bohm's approach since ours isynserved in the interaction process.

not based on the guidance principle and instead we subtract Following Hall [13] and Feynmarf1] we break up the

classical energy from the relevant Sctiiriger and Klein-  ,,an1um phase into the classical ph&se with associated
Gordon energieg3,4]. momentumV'S;, and a nonclassical fluctuation in phaSe
with a corresponding nonclassical fluctuation in particle mo-
mentumV S;, so thatS,=S.+S;. We interpret—dS;/dt as
_the fluctuations in the energy of the particle &¥i&; as the
fluctuations in momentum of the particle. We assume fluc-
tuations originate due to the interaction measurement energy
Sand momentum. _

We will also see thatb=/CelSi—S)/" satisfies a linear

Pr( Pt —mgc?=iha,pl,

1. NONRELATIVISTIC QUANTUM THEORY

The goal of this section is to introduce our reinterpreta
tions of nonrelativistic quantum theory that we will later gen-
eralize to the relativistic Klein-Gordon equation.

The Schrdinger wave equation as expressed in Sl unit
with electromagnetic potentials and A and other potential

V is given by wave equation an8;+iS, is a complex action with the real
part related to fluctuations in the particle action &@dre-
9y 1 [h f lated to the interaction process. ThereferéS;/dt andV S
= 2_mo(i_v_ eA '(i—V —eA|yt+edy+Vi, relates to fluctuations in particle energy and momentum, and
®) —dS,/dt andV'S; relates to interaction energy and momen-

tum. The particle fluctuations and interaction momenta are
coupled.

To reiterate, for purpose of analysis, we have now intro-
duced four variables: the classical phaSg the particle
phaseS;=S.+S;, where$; is the fluctuation in particle
phase and relates to fluctuations in the particle kinetic en-
ergy, andS;, which relates to the interaction.

whereeis the electromagnetic chargejs Planck’s constant,
my is the rest mass, ardlis the speed of light in vacuum. de
Broglie, Bohm, and many others have expresskdas
[3,4,13

y=1lpe'", )

where p is a probability density and, is the quantum-
mechanical phase or action. Note that we use the syt@bol
for Hamilton’s principal function. In contrast to the com-
monly used representation of the wave function, ). we

Ill. CLASSICAL HAMILTON-JACOBI EQUATION AND
THE INTERACTION WAVE EQUATION

We now show how the Schdinger wave equation can be

have found that another equivalent representation of theeparated into a classical Hamilton-Jacobi equation for clas-

sical particle energy and another wave equation for nonclas-

wave function yields a consistent theory
sical energy momentum modeling the interaction. We begin
by assuming a solution for the wave functigras a product

b= \/Ee(isq_sp)/ﬁ, (4)
) ) ) ) . of a classical particle phase component and a nonclassical
whereS, has units of action and characterizes the interactior, ;e component

in the measurement of the particle parametgysis related

to particle localization through the potential interaction, and
C is a normalization constant. In the Sctimger equation,
the connection between the representations given in Bjs.
and(4) is S,= — (#/2)In(p/C). Since—In p is an uncertainty ~where the classical pha& satisfies the classical, nonrela-
in a probability density, we conclude th8f, relates to un- tivistic Hamilton-Jacobi equation

Y=eSc/"dp=y P, (5
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39S, 1 This equation and Eq(8) are the primary results of this
Zt T om (VSc—eA)(VS.—eA)+ed+V=0. (6)  section of the paper; the rest of the section deals with inter-
0 pretation of the equation. The key idea in this part of the

This equation is assumed to completely model the classicd2Pe 1S that once t.he clasglcal ?nergy IS subtracteq from the
energy contained in Schidinger’s equation, what is left

evolution in applied electromagnetic fields. The wave func-, : i
tion = \CeSi~S/" contains effects of fluctuations of the forms a wave _equatlon that ev_olves throqgh correlations be-
tween fluctuations of the particle’s kinetic energy and the

Thteraction energy. Thé wave, which is just a phase trans-
formation of the wave function, contains energy momentum
from the interaction process on the RHS in the form of a
| ’9_‘/’: _ ﬁ_sceisc/ﬁq,ﬂheiscm‘ﬂ)_ 7) complex potential. What is notable is the combination of the
at at at interaction and the resulting fluctuations in particle kinetic
energy form a wave. Note that the evanescence of the wave
Hence, the quantum-mechanical energy can be decomposedcaused by the last term, which is the divergence of the
into classical and nonclassical components. In this paper thelassical momentum. In the absence of this term the equation
point-wise energy and momentum each have two couplediould describe a free particle. EquatiohO) is a reduced
components, one energy term relating to the particle aspectfyrm of Schralinger’'s equation and is related to Hestenes’
and one energy term for the measurement interaction. Thself-interaction and de Broglie’s concept of a pilot wave
energy at a specific point and time is complex denoting parf4,9,10. Equation(10) contains all the nonclassical contri-

ing Eq. (5) in Eq. (2) we obtain

ticle energy and interaction energy butions, and the envelope travels with a velocity equal to the
classical particle velocityY S,—eA)/m,. Note that the left-
it dy IS ih I hand side of Eq(10) contains a convective derivative or the
=7 s s T derivative with respect to a coordinate frame traveling with
ot gt gy Ot

the particle. In this approach, the classical phase is derived
S, ( S ,aS,,) 0Sq S from Eg. (6). The solution to the Schdinger or Klein-
[ — —_— | —_— | = — —_—

Y g i— (8) Gordon equations reduces to solving the classical Hamilton-

ot ot ot

Jacobi equation and then the interaction wave equation. Note
that® combinesS; andS;,, each of which alone, as we will
see, satisfy nonlinear differential equations, into a linear Eq.
q%O). Later, when we apply our approach to the Klein-
Gordon relativistic theory, we will develop a more general
interaction wave equation with space and time symm&yy.
andS; are conjugate variables in the sense of Heisenberg's
uncertainty relations. In Appendix A we relate various de-
where  the  brackets  denote (f)=[yfy"dV  ryatives of S,—At,Aq and derivatives ofs;—AE,Ap to
=C/[fexp(=2S,/h). This shows thaf —dS,/dt)=0 since  the derive the Heisenberg uncertainty principle. This ex-
the total energy in the interaction and observer is conserve(lj,resses the fact that the phase and magnitude of the interac-
The term—dS;/dt on the right-hand sidéRHS) of EQ.  tion wave are related.
(8) is the classical energy of the particle ar@S; /4t is the It is well known that an equation for the total quantum-
nonclassical contribution and is related to particle fluctuamechanical energy balance can be obtained by substituting

tions. The imaginary part dS,/dt is the interaction energy, Eq. (4) into Eq.(2) and taking the real part to obtaj6]
which has an expectation value 0. This is reminiscent of the

treatment of the dissipative or interaction energies in electro-

. . JS 1 h
magnetics by use of complex functions. Each of these two""9, _—_(yg _eA).(VS,—eA)+ep+V+-—V2S
energies are themselves real, but they are coupled in thedt = 2mg a a 2mg .
interaction process. The three-vector momentum in the

The energy operator in the Schiinger equation is Hermit-
ian so the expected energy must be real, which we see to
true by taking the expectation of E(B)

(Eq)=(—dSq/at), 9)

Schralinger equation is similarly decomposed into classical _ m: (12)
and nonclassical components. It is important to note that in 2mg

the Klein-Gordon analysis the momentum will be a four-

vector. Similarly, the real part of Eq(10) is the change in energy

When Eq.(5) is substituted into Eq(2), and Eq.(6) is  due to the nonclassical particle momentum fluctuations
used, we obtain a linear interaction wave equation dqr

which is cIoser related to the conceptZ)itterbewegung
IS VS.—eA)+VS]- [(VS,—eA)+ VS

[od (VS.—eA) ot 2mq
i)l —+Vh. —
ot Mo (VS.—eA)-(VS.—eA) f V2 VS, VS,
ﬁz ) ih 2m0 + zmo Zmo
=——V®——V-(VS.—eA)D. 10
2mg 2mg (VS ) (10 =0. (12
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Our interpretation of Eq(12) is that it is a nonlinear differ- Equation(17) shows that the transfer of momentum between
ential equation relating to total energy conservation of a parthe interaction and the particle is given by the projection of
ticle. The relativistic version of this equation, as derivedps onto p,. If S, has four-momentum perpendicular to the
from the Klein-Gordon equation, does not depend explicitlyparticle’s momentum or vanishes, then they are independent
on the rest mass. We will see this in Sec. IV, where theand there is no coupling or interaction. In the classical limit,
relativistic generalization of this equation is derived. asfi—0 we see thap is orthogonal top, or d,pg=d,pE
The imaginary part of Eq2) or Eq.(10) can be written as  =0. Equation(18) highlights the interaction of the particle-
momentum fluctuations and interaction energy momentum.
&—S'°+V8p- (VS;—eA) _ h V.(VS,—eA). (13 This shows that in the classical limit the interaction momen-
at Mg 2mg q tum can be decoupled from the particle momentum by taking

) _ . ) _ them into account separately, whereas in quantum theory
Equation(13) is a balance equation for the interaction energ¥ihey are coupled in a complicated way.

momentum. Since Eq¢12) and (13) are coupled, energy- |y Schradinger’s equation, the time derivative of the first

momentum cycles between the interaction energy and fluGgy, i, pd is 0 because in a nonrelativistic approximation the

tuations in particle klnetlg energy. Thls is analogous 'go th ime component of this momentum is approximatedyc,

Which is constant. The derivative in the second term in Eq.

temk;s.bI_EI_(t:{uation(;L_S) is eguti)valgn';] to thg é:ongerv?tiq? of (18) is due to mass-energy changes from the interaction and
probability equation used by Bohm and de broglie It ON€g 4 prjeq in the wave moving with the particle. The te®f
cancels a common factor @éf from Eq.(13) when one con-

s 1 bability densit originates as a weighting factor, since some of the momen-
Verts to probability density tum is in the particle and some is carried in the interaction-
ap (VS,—eA) field momentumVS;. Equations(13) and (17) are more
E'FV' P :0

(14  fundamental than Eq(14) because they are equations for
conservation of the mass-energy and extend without modifi-
cation into relativistic quantum mechanics. As we will see,

(14). In this paper we work with Eq(13) rather than Eq. the relativistic Klein-Gordon generalization amounts to re-

(14). This interaction energy acts as a source to the quanturrp-l""cmg the f'ild momentummoc with thef relativistic time
mechanical energy around the particle site. The total interacc®MPonent of an energy-momentum four-vectorc—

tion energy is 0 when the expectation over all space is taken, (1/C)(9Sq/dt+e¢+V). Therefore, we conclude a dual

In the classical limit,S, and S; are constants and—1. mterpretation o.f'Eq(ls), first as an equation fpr conserva-
Therefore in the classical limit the Scldinger equation re- tion of probablllty_ anq secon_d as an equation for mass-
duces to only a single equation, E(), and there is no ©€NErgy conservation in the interaction. However, in the
probability-conservation equation &, equation. Schralinger equation, the mass Is constant anq (EE&) IS
Even though the Schdinger equation is nonrelativistic, also fully equivalent to a conservation of probability density

for purposes of analysis we can better understandByby ~ cduation withp=Cexp(=25,/4). In the Klein-Gordon equa-

recasting it as an expression for conservation of the effectivi®" this analogy does not hold and the relativistic mass de-
energy-momentum four-vector in the interaction pends on velocity, but obeys the same equation as{Eq..
We can also reduce E(L2) to a nonlinear wave equation.

19 The real part of Eq(10) can be written as

Eﬁ(moc@)2)+V-(@)Z(Vsq—eA))zo, (15) 5

J

where ®=/p=.Ce %'" and in this classical limit, the 2Mo 5t TLVS—eA) T VS] LTS —eA)+ V5]
time component of the four-momentum is(dS,/dt+V
+e¢)/lc—myc. We interpret Eq.(15 as an equation of —(VS,—eA)-(VS,—eA)|0=7%2V?0. (19
energy-momentum conservation. For the case of constant
rest mass, we define the four-vectmy=(myc,VS;—eA).
Also, 9#=dld,=(ald,,~V), d,=dalo*=(ald, V). We

My

The imaginary part of Eq10) satisfies either Eq13) or Eq.

The wave is driven by the difference between quantum-
define the interaction-wave momentum four-vector as mechanical and classical energy. W_hen integrated over _aII
space the RHS goes to zero, indicating energy conservation
1S, over space. In the Klein-Gordon equation the analogous
psz( —c W’VS")' (16) equation does not depend explicitly on rest mass and is sym-
metric in time and space.
With these definitions, Eq15) can be written as an equation e now study Egs2) and(10) under unitary transforma--
for interaction-momentum conservation: tions such ase'®S’" and the associated electromagnetic
gauge transformations. It is well known that Maxwell’s equa-
a#(pf;@?):o (17)  tions are invariant under gauge transformations where
—A+Vyandp— ¢—dx/ot, and Schrdinger’s equation in
or the presence of an electromagnetic field is invariant to phase
translations. If we take a transformation in Ef) such that
2Pq(w)Ps=2pq-Ps=1d,Pyg - (18)  5.—S.+AS., then the freedom of the gauge makes .
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invariant to the transformation. The same gauge transforma- 22 1 52¢ 1/6S oD
tion that makes E6) invariant cancels any phase change in 127 —V2®|—ih| - —2(—° +ep+V|—
S. in Eq. (10). Therefore, when Eq5) is multiplied by an ce at c?l at ot

arbitrary unitary transformation, all the effects are mani-

fested in a phase shift ie/Sc/" — ' (Sc*AS)/%  The arbitrary +(VS,—eA)- Vb |+ i% 1 7S, I d(ep+V)
phase in the Schdinger wave function is seen as being due ¢ 2| c?\ a2 ot

to the arbitrariness in the classical momentum and energy,

whereas the quantum behavior is contained in the interaction

wave.® is a unitary transformation af. —V-(VS,—eA) | @=0. (24)

The last term causes localization and would vanish only for
IV. INTERACTION WAVE EQUATION IN RELATIVISTIC particles in a region with no potential, that satisfy the condi-
QUANTUM THEORY tion (1/c%)3?S. /3t~ V?S,=0, in the Lorenz gauge. Equa-
In this section we present the theory of the interactionfion (24) can be written in more compact notation as
wave equation in a relativistically invariant format using the . P Ty _
Klein-Gordon equation for a spinless particle. We will see A 9ul170"®)=2pc (1.9, ®) =1A(5"P () P=0.

that in this case the analysis is symmetric in time and space (25
and the interpretations are clearer. o Note that this equation does not explicitly contain the rest
The Klein-Gordon equation in flat space-time is mass. The real part of the interaction wave equati24)
yields an energy-momentum relation
(iﬁi—eqﬁ—v)(ihi—e(f)—v)w 1 95 9S,
mOCZ at at _EW W-i—eq&-i-v +VSf'(VSC_eA)
_ 1A h - 5
=—|=-V—eA|.|-V—eA|y+tmyc y=0. 1 1 /(95
Mo\ | | +§ —? W +VS- VS
(20)
1 1(aS,\?
) o ) _ . 51505 — VS VS,
The generalized relativistic Hamilton-Jacobi equation can be [c2\ ot
written as . 5
J
+ = ——ZTS;"JFVZSF, =0. (26)
c
9Py Pi(e)— MaC?=0, (21)

In more compact notation, the energy momentum in the in-
teraction wave function satisfies a conservation wave equa-

whereg"' are the metric coefficients and we use the Einstein[ion for ®-
summation convention. The classical Hamilton-Jacobi four- '
momentum in an electromagnetic field is [(9,Sq+eA,)(d*Sq+eA")—(d,S.+eA,)(I*S+eA)]O
=1%9,0"0, (27)
B [ 1S a
Pe=(Ec/C.Pe(a) =| — c 7+e¢>+v (VSc—eA)|. where we combine® with e¢. This can be written as
3 h29,0"0 =] E—ma2c? 28
o - pp,(q)pq mgC ] ’ ( )
For the special case of flat spacetime, the relativistiovhere
Hamilton-Jacobi equation {<.6]
1/4S
S _
pq—( o\ +ep+V |, (VS eA)). (29
1 [0S, 2 (VS,—eA)-(VS,—eA) )
o2 - TeetV| - Mo —MoC This equation is nonlinear sinqe, depends or;, which
0 depends or8,. This equation is close to that derived by de
=0. (23  Broglie [4,6], but differs in interpretation. Equatiof28) in-

dicates that the difference in quantum and classical energy-
momentum drives the pulse represented@yIn the limit
The case of a general metric is presented in Appendix B. where the classical and quantum energy-momentum become
The interaction wave equation is determined by substitutequal, the RHS of Eq(28) vanishes and thefd satisfies a
ing Eq. (5) into Eq.(20) and using Eq(23) homogenous wave equation. Equati@®8) is analogous to
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that of a string embedded in an elastic medium and has sdérhis equation is analogous to E(.8), which is a balance
lutions similar to that for waves in dispersive media. Sinceequation for energy momentum added to or subtracted from
we know that® is real, the waves are damped. If the RHS ofthe particle. The Klein-Gordon equation is then equivalent to
Eq. (28) is less than zero the® becomes a propagating Egs.(23), (28), and(34) for the unknownsS;, S, andsS;.
wave function, which means the particle is not localized.

Equation(28) is equivalent to the energy-momentum con- V. CONSERVATION OF FOUR-MOMENTUM AT
servation equation: SPACETIME POINTS
Pagu)Ph = MHC? = Ps(uy PE = Pr(yuy PY + 2Pf () PE — Py PE If we combine Egs(30) and (35) into a single complex
expression, we can write an energy-momentum conservation
=—hJ &”Sp, (30) . LS . .
u equation, analogous to the relativistic relation, in terms of a
h total complex quantum-mechanical momentum at specific
where spacetimes positiong = (py+ips):
19S 2.2_;
pi=| - a_tfvsf) (31) Pi(u) Pt — Mo =ifd,pf . (36)

This is the exact extension of the relativistic momentum con-
Equation(30) is a balance equation for energy momentumservation to quantum systems. This equation is equivalent to
added or subtracted from the interaction wave equation. Wehe Klein-Gordon equation and reduces to the classical rela-

can rewrite this equation as tivistic expressionp,- pc=m(2)c2 as 1—0 and pg,p;—0.
9 916 Note that Eq.(36) requires onlypg or ps, p., andps. The
Pi()Pf + 2pf(mpé‘:ﬁ2 “@ =Am?2c2. (32  complex form of the momentum expresses the fact that the

particle momentum and interaction momentum are coupled

5. ) ] in the interaction process and must be expressed as two
Am? is what de Broglie called the square of equivalent masgoupled equations. Note that the only place wHewmppears

[4]. The problem is thaAm? can be positive or negative and gypjicit is on the RHS of Eq(36). Also note that unlike in
therefore it is not useful to treat it as a mass. This is a resulfye de Broglie theory, here the rest mass is always constant.
of the nonlinear coupling betweepy and ps. In the last Similarly, the nonrelativistic version, equivalent to the

section of the paper we will derive a complete relationshipschralinger equation, can be written in terms of the 3-vector
for the mass-energy using a complex momentum that doeg);m of P, Wherep,=VS—eA andp,=VS,:

not have this nonphysical nature.
In the classical limit the RHS of E¢32) goes to zero, and A(Sy+iSp) .

there is no difference between the quantum-mechanical and Pe-Pit2mg ot +V|=1aV.-py. (37

classical energies. If Eq32) is multiplied by ®2 and inte-

grated over space, we obtain a balance equation between

guantum and classical energy momentum. As a simple, ide-

alized example that modef,, we assume thakm is con- We have modified the de Broglie approach to quantum
stant, S, (ikz=fiwt) and then Eq(28) satisfies the disper- theory by separating the Scldiager equation into two
sion relation {w)%/c*—(#k)?/c*=Am?. In this example, coupled partial differential equations, one for classical phase
the energy is+dS,/dt==*hw and momentunVS,=%k. (particlelike and the other for the interactiowavelike.

As expected, Eq(27), unlike the nonrelativistic case in Eq. The interaction wave equation envelope composed of non-
(19) has time and space symmetry. classical energy travels with the velocity of the classical par-
The relativistic version of Eq(13), is ticle. Solving the Schidinger or Klein-Gordon equations re-
duces to solving the associated classical Hamilton-Jacobi
equation and the interaction wave equation. The Klein-
Gordon equation was also separated into classical and non-
classical equations. The interaction wave function for the
Klein-Gordon equation does not depend on the rest mass

explicitly. The conservation of momentum in the Klein-
Gordon equation is given by E¢34), and the conservation
(33)  of energy is given by Eq(32). The Heisenberg uncertainty
relations are contained implicitly in the interaction wave
The RHS of Eq(393) is the interaction-energy source of the function. Since the energy and momentum are partitioned
wave. We can express E3) compactly as into particle and wave components at specific space-time
a2 points, the energy and momentum are represented as com-
Iu(Pg®7)=0 (34 plex quantities. The real part relates to particle energy-
momentum and the imaginary part to the interaction momen-
or tum. This is analogous to the partitioning of energy in
~ electromagnetic fields into interaction-field energy and dissi-
2pq-Ps=19,Pq=13,0"S=hV -pg. (39  pative energy. We defined a complex guantum-mechanical

VI. DISCUSSION

1

S,
—Jdiep+V
CZ

ot

oS,
W'F(Vsq_eA) : VSp

f

= 2 ii<ﬁ+e¢+v

= 7t\ ot —V.(VS,—eA)|.
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momentum and wrote the Klein-Gordon equation as avariance subject to constraifts3—15. Following Hall[13],

momentum-conservation equation that reduces to the classite define\/5g? by using the associated Fisher length

cal relativistic form ash— 0. This equation shows how the

Eotal momentum is rglated t8,, the divergence of momen- Jo i< AL

um, and the classical energy. Whereas classical energy-

momentum conservation can be expressed as a single equa-

tion, in quantum mechanics an additional relation for thewhereAq? is the position variance. We define an uncertainty

interaction itself is needed to balance the energy momentunin time in terms of the expectation value of the second de-
rivative of S, as follows

(A5)
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APPENDIX A: UNCERTAINTY EVOLUTION

In this section we relate the interaction wave to the 5E=<—§>sAE. (A7)
Heisenberg uncertainty relations. In this process we show
how the uncertainty relations are related to Eif).

We begin by investigating the relationship of the total
guantum-mechanical kinetic energy to the nonclassical ki- 3
netic energy. The expectation of the quantum-mechanical ki- AEAt=6Edt= 5 (A8)
netic energy is

For minimum uncertainty we require

5 For an energy eigenstateE — 0, and we see from EqA6)
(—.—Vzp*—eAw*)> and from the faclVZSp—>O that 6t —oo.
I If we define the uncertainty in particle kinetic energy as

1 h
<qu>zz—mo (i—V:ﬁ—eAlp ’

:<[(VSC_eA)+VSf]'[(VSC_eA)+VSf]> AT op? Ap2 A0
2mq 2mg~ 2mg’ (A9)
M_ (A1) where 8p=/8p?, we can obtain the momentum uncertainty
2mg relationship
We note that the quantum-mechanical kinetic energy con- ﬁ

tains both the particle’s classical and fluctuating kinetic en- ApAg=dpég= 7 (A10)

ergy and the interaction-field energy. Therefore this kinetic
energy contains classical and quantum contributions to phas#e see that Eq(10) is an equation for the evolution of

and energy. coupled uncertainties in energy and momentum. We Agte
~ The kinetic energy in the interaction wave is the nonclas-and AE respectively refer to fluctuations in the particle mo-
sical energy mentum and energy anilq and At refer to the fluctuations

in the pilot-wave. The coupling in the uncertainty relation-
_((VS.—eA)-(VS.—eA)) ships is an expression of the interaction.

2mg

(AT)=(Tqs) (A2)

APPENDIX B: GENERALIZED-METRIC EQUATIONS
We begin by multiplying Eq(10) by ®* and then inte-

grate over space. After a number of simple manipulations we For a general metrig', we have the generalized interac-

obtain tion wave equatiori25),
sESt— 1 5q2=((AT)5q2—ﬁ—2 St (A3) m (ihN—gg!a®) — 29" py() (i1, P)
2 8mg V=0
We define the variancéq? in terms of the square of the ih " 3
pilot-wave momentum \/_—gak( V=997 Pi(0) ®=0, (B1)
1 4 whereg is the determinant ofy; .
5_(:12_ F= ﬁwsp' VSp), (Ad) Equation(36) is

: . . : 1
whereF is the Fisher information calculated from the prob- Kl —m2c2+ih (N —aa (B2
ability densityp. Minimizing F is known to yield the largest 9" PuoPicy 0 V—g =997 Pi)- (B2)
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