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Modified de Broglie approach applied to the Schro¨dinger and Klein-Gordon equations
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The goal of this paper is an extension of the de Broglie wave mechanics model for a single spinless particle
in an electromagnetic field. The analysis indicates that the motion of a particle separates naturally into particle
dynamics through the classical Hamilton-Jacobi equation and quantum wave behavior through a pilot or
interaction wave equation. The interaction wave equation travels at the classical particle velocity. We study
gauge invariance and interpret it in the light of the interaction wave. The Heisenberg uncertainty relations are
shown to be implicit in the interaction wave. We also develop a complex quantum-mechanical, relativistic
energy-momentum conservation expression using a complex quantum-mechanical four-vector.
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I. INTRODUCTION

The goal of this paper is to study the wave-particle int
action in quantum-mechanical systems using a modifica
of the de Broglie–Bohm Hamilton-Jacobi approach appl
to the Schro¨dinger and Klein-Gordon equations in the pre
ence of electromagnetic fields. Conservation of probability
replaced with conservation of energy momentum in the
teraction process.

The features include the derivation of an interaction wa
equation, reinterpreting the expression commonly used
probability conservation as an expression for conservatio
interaction energy, and the derivation of a complex quantu
mechanical energy-momentum equation. However,
course, it is well known that a probability interpretation
entirely adequate. We use the word interaction to desc
the coupling of the particle to the measurement interactio

Over the years there have been a number of approa
used to derive and interpret the Schro¨dinger and Klein-
Gordon equations. Schro¨dinger’s approach was based on
intuitive generalization of Hamilton-Jacobi theory. Fey
man’s @1# approach focused on the many-path interpretat
of Hamilton’s principal function and path integrals. Nelso
developed a stochastic theory of quantum mechanics@2#. In
1927, de Broglie developed a pilot-wave theory where
proposed that a particle is guided by the quantu
mechanical wave function. This theory was later redisc
ered and extended by Bohm@3#. The de Broglie–Bohm ap
proach is based on the assumption of a specific functio
form for the wave function then substituting it into th
Schrödinger and Klein-Gordon equations and separating
the real and imaginary component equations for energy
probability conservation@3–6#. In this paper we follow this
procedure, but instead decompose the Schro¨dinger and
Klein-Gordon equations into the classical Hamilton-Jac
equation plus a nonlinear complex interaction wave eq
tion. More recently there has been a revived interest
hidden-variable theories and the de Broglie–Bohm approa
Holland, Grossing, and others have performed extensive
search in this area@6–8#. Barut and Hestenes develope
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theories ofZitterbewegungthat are related to self-interactin
or pilot waves traveling with particles@9,10#. Hall and Regi-
natto have studied quantum-mechanical uncertainty us
Fisher information@11–13#.

We start our analysis by reviewing Schro¨dinger’s wave
equation for a single particle of zero spin in an electrom
netic field. We then identify and separate the quantu
mechanical phase into an associated classical phase p
nonclassical fluctuation in phase. In the analysis we ar
that instead of viewing the evolution of the probability de
sity equation as a primary conservation equation, we
derive a better understanding by considering that the eq
tion represents momentum conservation in the interac
process. We therefore cast the probability conservation eq
tion into an equation for conservation of interaction ener
momentum, which is conserved over all space. In the p
researchers have canceled a common factor of\ from the
equation representing the imaginary part of the Schro¨dinger
equation and therefore viewed it as a probability conser
tion equation. However, in the classical limit as\→0 this is
not allowed and as a result, in the classical limit, this pro
ability equation does not apply and the Schro¨dinger equation
then reduces to the classical Hamilton-Jacobi equation.

In Sec. III we subtract the classical Hamilton-Jacobi eq
tion from a form of the Schro¨dinger equation and thereb
develop a reduced form of Schro¨dinger’s wave equation for
fluctuations of nonclassical energy momentum related
Zitterbewegung. The effects of the electromagnetic and oth
potentials are contained in the classical Hamilton-Jac
equation. Solving the Schro¨dinger equation becomes equiv
lent to solving the classical Hamilton-Jacobi equation a
the interaction wave equation. In Appendix A we show ho
the Heisenberg uncertainty relations are contained within
interaction wave equation. The interaction wave function
shown to possess interaction energy, as well as energ
fluctuations in the particle energy. The analysis becom
more transparent in Sec. IV, where the interaction wave fu
tion for the Klein-Gordon equation is derived. Here we sho
in the last section that the Klein-Gordon equation can
interpreted as an equation for the conservation of comp
four-momentum. We also study the relationship of unita
transformations of the Schro¨dinger wave function to electro
magnetic gauge transformations and the interaction w
10-1



m
ca

x

ic

m

o
he
o
m

at
u

rs
tra

ta
n-

it
l

,
e

ol
-

th

tio

n

.

n
the

r-
en-
e

in-
um
ua-
e
d

n-

r-
en,

is

o-

uc-
ergy

l

and
n-
are

ro-

en-

e
las-
las-
gin

sical

-

J. BAKER-JARVIS AND P. KABOS PHYSICAL REVIEW A68, 042110 ~2003!
function. Finally, in Sec. V we develop an expression fro
the Klein-Gordon equation for a quantum-mechani
energy-momentum four-vectorpt5(pq1 ips) and derive a
relativistically invariant energy-momentum conservation e
pression that we will reproduce here:

pt(m)pt
m2m0

2c25 i\]mpt
m , ~1!

where Einstein summation is used andpq is a point wise,
rather than an expectation value of the quantum-mechan
particle four-momentum andps is the point-wise four-
momentum of the interaction process. In the classical li
this reduces to the classical relativistic equation.

All results of the paper are consistent with predictions
the Schro¨dinger and Klein-Gordon equations; however t
interpretations, we believe, are different. Although based
the de Broglie approach, this paper differs significantly fro
de Broglie’s theory of the double solution, where he
tempted to use a singularity to describe the particle. O
approach also deviates from Bohm’s approach since ou
not based on the guidance principle and instead we sub
classical energy from the relevant Schro¨dinger and Klein-
Gordon energies@3,4#.

II. NONRELATIVISTIC QUANTUM THEORY

The goal of this section is to introduce our reinterpre
tions of nonrelativistic quantum theory that we will later ge
eralize to the relativistic Klein-Gordon equation.

The Schro¨dinger wave equation as expressed in SI un
with electromagnetic potentialsf andA and other potentia
V is given by

i\
]c

]t
5

1

2m0
S \

i
“2eAD •S \

i
“2eADc1efc1Vc,

~2!

wheree is the electromagnetic charge,\ is Planck’s constant
m0 is the rest mass, andc is the speed of light in vacuum. d
Broglie, Bohm, and many others have expressedc as
@3,4,13#

c5AreiSq /\, ~3!

where r is a probability density andSq is the quantum-
mechanical phase or action. Note that we use the symbS
for Hamilton’s principal function. In contrast to the com
monly used representation of the wave function, Eq.~3!, we
have found that another equivalent representation of
wave function yields a consistent theory

c5ACe( iSq2Sp)/\, ~4!

whereSp has units of action and characterizes the interac
in the measurement of the particle parameters.Sp is related
to particle localization through the potential interaction, a
C is a normalization constant. In the Schro¨dinger equation,
the connection between the representations given in Eqs~3!
and~4! is Sp52(\/2)ln(r/C). Since2 ln r is an uncertainty
in a probability density, we conclude thatSp relates to un-
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certainty in the measurement interaction. It is well know
that there are problems with probability interpretations in
Klein-Gordon equation. Although Eqs.~3! and ~4! are
equivalent, by usingSp , conservation of four-momentum
follows naturally. The equation of motion forSp , which is
equivalent to the equation of motion for probability conse
vation, is an expression for conservation of energy mom
tum in the interaction process. In Klein-Gordon theory w
will see that four-momentum generated fromSp is the part of
the total quantum-mechanical four-momentum from the
teraction process, which together with the four-moment
from Sq , the particle momentum, satisfies a balance eq
tion. ACe2Sp /\ can be thought of as a distribution much lik
the Maxwell-Boltzmann distribution and is easily derive
from a maximum-entropy variational problem with a co
straint onSp and associated Lagrange multiplier 1/\. We
will argue that2]Sp /]t is the interaction energy at a pa
ticular point and time. When the expectation value is tak
the net interaction energy is 0, since energy momentum
conserved in the interaction process.

Following Hall @13# and Feynman@1# we break up the
quantum phase into the classical phaseSc , with associated
momentum“Sc , and a nonclassical fluctuation in phaseSf
with a corresponding nonclassical fluctuation in particle m
mentum“Sf , so thatSq5Sc1Sf . We interpret2]Sf /]t as
the fluctuations in the energy of the particle and“Sf as the
fluctuations in momentum of the particle. We assume fl
tuations originate due to the interaction measurement en
and momentum.

We will also see thatF5ACe( iSf2Sp)/\ satisfies a linear
wave equation andSf1 iSp is a complex action with the rea
part related to fluctuations in the particle action andSp re-
lated to the interaction process. Therefore2]Sf /]t and“Sf
relates to fluctuations in particle energy and momentum,
2]Sp /]t and“Sp relates to interaction energy and mome
tum. The particle fluctuations and interaction momenta
coupled.

To reiterate, for purpose of analysis, we have now int
duced four variables: the classical phaseSc , the particle
phaseSq5Sc1Sf , where Sf is the fluctuation in particle
phase and relates to fluctuations in the particle kinetic
ergy, andSp , which relates to the interaction.

III. CLASSICAL HAMILTON-JACOBI EQUATION AND
THE INTERACTION WAVE EQUATION

We now show how the Schro¨dinger wave equation can b
separated into a classical Hamilton-Jacobi equation for c
sical particle energy and another wave equation for nonc
sical energy momentum modeling the interaction. We be
by assuming a solution for the wave functionc as a product
of a classical particle phase component and a nonclas
wave component

c5eiSc /\F5ccF, ~5!

where the classical phaseSc satisfies the classical, nonrela
tivistic Hamilton-Jacobi equation
0-2
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]Sc

]t
1

1

2m0
~“Sc2eA!•~“Sc2eA!1ef1V50. ~6!

This equation is assumed to completely model the class
evolution in applied electromagnetic fields. The wave fun
tion F5ACe( iSf2Sp)/\ contains effects of fluctuations of th
particle and the interaction in the measurement process.
ing Eq. ~5! in Eq. ~2! we obtain

i\
]c

]t
52

]Sc

]t
eiSc /\F1 i\eiSc /\

]F

]t
. ~7!

Hence, the quantum-mechanical energy can be decomp
into classical and nonclassical components. In this paper
point-wise energy and momentum each have two coup
components, one energy term relating to the particle asp
and one energy term for the measurement interaction.
energy at a specific point and time is complex denoting p
ticle energy and interaction energy

Eq5
i\

c

]c

]t
52

]Sc

]t
1

i\

c* c

]F

]t
F*

[2
]Sc

]t
1S 2

]Sf

]t
2 i

]Sp

]t D52
]Sq

]t
2 i

]Sp

]t
. ~8!

The energy operator in the Schro¨dinger equation is Hermit-
ian so the expected energy must be real, which we see t
true by taking the expectation of Eq.~8!

^Eq&5^2]Sq /]t&, ~9!

where the brackets denote ^ f &5*c f c* dV
5C* f exp(22Sp /\). This shows that̂ 2]Sp /]t&50 since
the total energy in the interaction and observer is conser

The term2]Sc /]t on the right-hand side~RHS! of Eq.
~8! is the classical energy of the particle and2]Sf /]t is the
nonclassical contribution and is related to particle fluct
tions. The imaginary part2]Sp /]t is the interaction energy
which has an expectation value 0. This is reminiscent of
treatment of the dissipative or interaction energies in elec
magnetics by use of complex functions. Each of these
energies are themselves real, but they are coupled in
interaction process. The three-vector momentum in
Schrödinger equation is similarly decomposed into classi
and nonclassical components. It is important to note tha
the Klein-Gordon analysis the momentum will be a fou
vector.

When Eq.~5! is substituted into Eq.~2!, and Eq.~6! is
used, we obtain a linear interaction wave equation forF,
which is closely related to the concept ofZitterbewegung:

i\F]F

]t
1“F•

~“Sc2eA!

m0
G

52
\2

2m0
“

2F2
i\

2m0
“•~“Sc2eA!F. ~10!
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This equation and Eq.~8! are the primary results of this
section of the paper; the rest of the section deals with in
pretation of the equation. The key idea in this part of t
paper is that once the classical energy is subtracted from
energy contained in Schro¨dinger’s equation, what is lef
forms a wave equation that evolves through correlations
tween fluctuations of the particle’s kinetic energy and t
interaction energy. TheF wave, which is just a phase trans
formation of the wave function, contains energy moment
from the interaction process on the RHS in the form o
complex potential. What is notable is the combination of t
interaction and the resulting fluctuations in particle kine
energy form a wave. Note that the evanescence of the w
is caused by the last term, which is the divergence of
classical momentum. In the absence of this term the equa
would describe a free particle. Equation~10! is a reduced
form of Schrödinger’s equation and is related to Hesten
self-interaction and de Broglie’s concept of a pilot wa
@4,9,10#. Equation~10! contains all the nonclassical contr
butions, and the envelope travels with a velocity equal to
classical particle velocity (“Sc2eA)/m0. Note that the left-
hand side of Eq.~10! contains a convective derivative or th
derivative with respect to a coordinate frame traveling w
the particle. In this approach, the classical phase is der
from Eq. ~6!. The solution to the Schro¨dinger or Klein-
Gordon equations reduces to solving the classical Hamilt
Jacobi equation and then the interaction wave equation. N
thatF combinesSf andSp , each of which alone, as we wil
see, satisfy nonlinear differential equations, into a linear
~10!. Later, when we apply our approach to the Klei
Gordon relativistic theory, we will develop a more gene
interaction wave equation with space and time symmetry.Sp
and Sf are conjugate variables in the sense of Heisenbe
uncertainty relations. In Appendix A we relate various d
rivatives of Sp↔Dt,Dq and derivatives ofSf↔DE,Dp to
the derive the Heisenberg uncertainty principle. This e
presses the fact that the phase and magnitude of the inte
tion wave are related.

It is well known that an equation for the total quantum
mechanical energy balance can be obtained by substitu
Eq. ~4! into Eq. ~2! and taking the real part to obtain@3#

]Sq

]t
1

1

2m0
~“Sq2eA!•~“Sq2eA!1ef1V1

\

2m0
“

2Sp

2
“Sp•“Sp

2m0
50. ~11!

Similarly, the real part of Eq.~10! is the change in energy
due to the nonclassical particle momentum fluctuations

]Sf

]t
1

@~“Sc2eA!1“Sf #•@~“Sc2eA!1“Sf #

2m0

2
~“Sc2eA!•~“Sc2eA!

2m0
1

\

2m0
“

2Sp2
“Sp•“Sp

2m0

50. ~12!
0-3
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Our interpretation of Eq.~12! is that it is a nonlinear differ-
ential equation relating to total energy conservation of a p
ticle. The relativistic version of this equation, as deriv
from the Klein-Gordon equation, does not depend explic
on the rest mass. We will see this in Sec. IV, where
relativistic generalization of this equation is derived.

The imaginary part of Eq.~2! or Eq.~10! can be written as

]Sp

]t
1“Sp•

~“Sq2eA!

m0
5

\

2m0
“•~“Sq2eA!. ~13!

Equation~13! is a balance equation for the interaction ener
momentum. Since Eqs.~12! and ~13! are coupled, energy
momentum cycles between the interaction energy and fl
tuations in particle kinetic energy. This is analogous to
energy and the nonreactive energy in electromagnetic
tems. Equation~13! is equivalent to the conservation o
probability equation used by Bohm and de Broglie if o
cancels a common factor of\ from Eq. ~13! when one con-
verts to probability density

]r

]t
1“•S r

~“Sq2eA!

m0
D50. ~14!

The imaginary part of Eq.~10! satisfies either Eq.~13! or Eq.
~14!. In this paper we work with Eq.~13! rather than Eq.
~14!. This interaction energy acts as a source to the quant
mechanical energy around the particle site. The total inte
tion energy is 0 when the expectation over all space is tak
In the classical limit,Sp and Sf are constants andF→1.
Therefore in the classical limit the Schro¨dinger equation re-
duces to only a single equation, Eq.~6!, and there is no
probability-conservation equation orSp equation.

Even though the Schro¨dinger equation is nonrelativistic
for purposes of analysis we can better understand Eq.~13! by
recasting it as an expression for conservation of the effec
energy-momentum four-vector in the interaction

1

c

]

]t
~m0cQ2!1“•„Q2~“Sq2eA!…50, ~15!

where Q5Ar5ACe2Sp /\ and in this classical limit, the
time component of the four-momentum is2(]Sq /]t1V
1ef)/c→m0c. We interpret Eq.~15! as an equation o
energy-momentum conservation. For the case of cons
rest mass, we define the four-vectorpq5(m0c,“Sq2eA).
Also, ]m[]/]m5(]/]m ,2“), ]m[]/]m5(]/]m ,“). We
define the interaction-wave momentum four-vector as

ps5S 2
1

c

]Sp

]t
,“SpD . ~16!

With these definitions, Eq.~15! can be written as an equatio
for interaction-momentum conservation:

]m~pq
mQ2!50 ~17!

or

2pq(m)ps
m[2pq•ps5\]mpq

m . ~18!
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Equation~17! shows that the transfer of momentum betwe
the interaction and the particle is given by the projection
ps onto pq . If Sp has four-momentum perpendicular to th
particle’s momentum or vanishes, then they are independ
and there is no coupling or interaction. In the classical lim
as\→0 we see thatps is orthogonal topq or ]mpq

m5]mpc
m

50. Equation~18! highlights the interaction of the particle
momentum fluctuations and interaction energy momentu
This shows that in the classical limit the interaction mome
tum can be decoupled from the particle momentum by tak
them into account separately, whereas in quantum the
they are coupled in a complicated way.

In Schrödinger’s equation, the time derivative of the fir
term inpq

0 is 0 because in a nonrelativistic approximation t
time component of this momentum is approximatelym0c,
which is constant. The derivative in the second term in E
~18! is due to mass-energy changes from the interaction
is carried in the wave moving with the particle. The termQ2

originates as a weighting factor, since some of the mom
tum is in the particle and some is carried in the interactio
field momentum“Sp . Equations~13! and ~17! are more
fundamental than Eq.~14! because they are equations f
conservation of the mass-energy and extend without mo
cation into relativistic quantum mechanics. As we will se
the relativistic Klein-Gordon generalization amounts to
placing the field momentumm0c with the relativistic time
component of an energy-momentum four-vector,m0c→
2(1/c)(]Sq /]t1ef1V). Therefore, we conclude a dua
interpretation of Eq.~13!, first as an equation for conserva
tion of probability and second as an equation for ma
energy conservation in the interaction. However, in t
Schrödinger equation, the mass is constant and Eq.~15! is
also fully equivalent to a conservation of probability dens
equation withr5Cexp(22Sp /\). In the Klein-Gordon equa-
tion this analogy does not hold and the relativistic mass
pends on velocity, but obeys the same equation as Eq.~17!.

We can also reduce Eq.~12! to a nonlinear wave equation
The real part of Eq.~10! can be written as

F2m0

]Sf

]t
1@~“Sc2eA!1“Sf #•@~“Sc2eA!1“Sf #

2~“Sc2eA!•~“Sc2eA!GQ5\2¹2Q. ~19!

The wave is driven by the difference between quantu
mechanical and classical energy. When integrated over
space the RHS goes to zero, indicating energy conserva
over space. In the Klein-Gordon equation the analog
equation does not depend explicitly on rest mass and is s
metric in time and space.

We now study Eqs.~2! and~10! under unitary transforma
tions such aseiDSc /\ and the associated electromagne
gauge transformations. It is well known that Maxwell’s equ
tions are invariant under gauge transformations whereA
→A1“x andf→f2]x/]t, and Schro¨dinger’s equation in
the presence of an electromagnetic field is invariant to ph
translations. If we take a transformation in Eq.~5! such that
Sc→Sc1DSc , then the freedom of the gauge makes Eq.~6!
0-4
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invariant to the transformation. The same gauge transfor
tion that makes Eq.~6! invariant cancels any phase change
Sc in Eq. ~10!. Therefore, when Eq.~5! is multiplied by an
arbitrary unitary transformation, all the effects are ma
fested in a phase shift ineiSc /\→ei (Sc1DSc)/\. The arbitrary
phase in the Schro¨dinger wave function is seen as being d
to the arbitrariness in the classical momentum and ene
whereas the quantum behavior is contained in the interac
wave.F is a unitary transformation ofc.

IV. INTERACTION WAVE EQUATION IN RELATIVISTIC
QUANTUM THEORY

In this section we present the theory of the interact
wave equation in a relativistically invariant format using t
Klein-Gordon equation for a spinless particle. We will s
that in this case the analysis is symmetric in time and sp
and the interpretations are clearer.

The Klein-Gordon equation in flat space-time is

1

m0c2 S i\
]

]t
2ef2VD S i\

]

]t
2ef2VDc

5
1

m0
S \

i
“2eAD •S \

i
“2eADc1m0c2c50.

~20!

The generalized relativistic Hamilton-Jacobi equation can
written as

gklpk(c)pl (c)2m0
2c250, ~21!

wheregkl are the metric coefficients and we use the Einst
summation convention. The classical Hamilton-Jacobi fo
momentum in an electromagnetic field is

pc5~Ec /c,pc(3)!5S 2
1

c S ]Sc

]t
1ef1VD ,~“Sc2eA! D .

~22!

For the special case of flat spacetime, the relativis
Hamilton-Jacobi equation is@16#

1

m0c2 S ]Sc

]t
1ef1VD 2

2
~“Sc2eA!•~“Sc2eA!

m0
2m0c2

50. ~23!

The case of a general metric is presented in Appendix B
The interaction wave equation is determined by substi

ing Eq. ~5! into Eq. ~20! and using Eq.~23!
04211
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2 F 1

c2

]2F

]t2
2¹2FG2 i\F2

1

c2 S ]Sc

]t
1ef1VD ]F

]t

1~“Sc2eA!•“FG1
i\

2 F 1

c2 S ]2Sc

]t2
1

]~ef1V!

]t D
2“•~“Sc2eA!GF50. ~24!

The last term causes localization and would vanish only
particles in a region with no potential, that satisfy the con
tion (1/c2)]2Sc /]t22¹2Sc50, in the Lorenz gauge. Equa
tion ~24! can be written in more compact notation as

i\]m~ i\]mF!22pc
m~ i\]mF!2 i\~]mpm(c)!F50.

~25!

Note that this equation does not explicitly contain the r
mass. The real part of the interaction wave equation~24!
yields an energy-momentum relation

2
1

c2

]Sf

]t S ]Sc

]t
1ef1VD1“Sf•~“Sc2eA!

1
1

2 F2
1

c2 S ]Sf

]t D 2

1“Sf•“Sf G
1

1

2 F 1

c2 S ]Sp

]t D 2

2“Sp•“SpG
1

\

2 F2
1

c2

]2Sp

]t2
1¹2SpG50. ~26!

In more compact notation, the energy momentum in the
teraction wave function satisfies a conservation wave eq
tion for Q:

@~]mSq1eAm!~]mSq1eAm!2~]mSc1eAm!~]mSc1eAm!#Q

5\2]m]mQ, ~27!

where we combinedV with ef. This can be written as

\2]m]mQ5@pm(q)pq
m2m0

2c2#Q, ~28!

where

pq5S 2
1

c S ]Sq

]t
1ef1VD ,~“Sq2eA! D . ~29!

This equation is nonlinear sincepq depends onSf , which
depends onSp . This equation is close to that derived by d
Broglie @4,6#, but differs in interpretation. Equation~28! in-
dicates that the difference in quantum and classical ene
momentum drives the pulse represented byQ. In the limit
where the classical and quantum energy-momentum bec
equal, the RHS of Eq.~28! vanishes and thenQ satisfies a
homogenous wave equation. Equation~28! is analogous to
0-5
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that of a string embedded in an elastic medium and has
lutions similar to that for waves in dispersive media. Sin
we know thatQ is real, the waves are damped. If the RHS
Eq. ~28! is less than zero thenQ becomes a propagatin
wave function, which means the particle is not localized.

Equation~28! is equivalent to the energy-momentum co
servation equation:

pq(m)pq
m2m0

2c22ps(m)ps
m5pf (m)pf

m12pf (m)pc
m2ps(m)ps

m

52\]m]mSp , ~30!

where

pf5S 2
1

c

]Sf

]t
,“Sf D . ~31!

Equation~30! is a balance equation for energy momentu
added or subtracted from the interaction wave equation.
can rewrite this equation as

pf (m)pf
m12pf (m)pc

m5\2
]m]mQ

Q
[Dm2c2. ~32!

Dm2 is what de Broglie called the square of equivalent m
@4#. The problem is thatDm2 can be positive or negative an
therefore it is not useful to treat it as a mass. This is a re
of the nonlinear coupling betweenpf and ps . In the last
section of the paper we will derive a complete relations
for the mass-energy using a complex momentum that d
not have this nonphysical nature.

In the classical limit the RHS of Eq.~32! goes to zero, and
there is no difference between the quantum-mechanical
classical energies. If Eq.~32! is multiplied by Q2 and inte-
grated over space, we obtain a balance equation betw
quantum and classical energy momentum. As a simple,
alized example that modelsSp , we assume thatDm is con-
stant,Sp}(\kz6\vt) and then Eq.~28! satisfies the disper
sion relation (\v)2/c42(\k)2/c25Dm2. In this example,
the energy is7]Sp /]t56\v and momentum“Sp5\k.
As expected, Eq.~27!, unlike the nonrelativistic case in Eq
~19! has time and space symmetry.

The relativistic version of Eq.~13!, is

2
1

c2 S ]Sq

]t
1ef1VD ]Sp

]t
1~“Sq2eA!•“Sp

52
\

2 F 1

c2

]

]t S ]Sq

]t
1ef1VD2“•~“Sq2eA!G .

~33!

The RHS of Eq.~33! is the interaction-energy source of th
wave. We can express Eq.~33! compactly as

]m~pq
mQ2!50 ~34!

or

2pq•ps5\]mpq
m5\]m]mSq[\“̃•pq . ~35!
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This equation is analogous to Eq.~18!, which is a balance
equation for energy momentum added to or subtracted f
the particle. The Klein-Gordon equation is then equivalen
Eqs.~23!, ~28!, and~34! for the unknownsSc , Sf , andSp .

V. CONSERVATION OF FOUR-MOMENTUM AT
SPACETIME POINTS

If we combine Eqs.~30! and ~35! into a single complex
expression, we can write an energy-momentum conserva
equation, analogous to the relativistic relation, in terms o
total complex quantum-mechanical momentum at spec
spacetimes positionspt5(pq1 ips):

pt(m)pt
m2m0

2c25 i\]mpt
m . ~36!

This is the exact extension of the relativistic momentum c
servation to quantum systems. This equation is equivalen
the Klein-Gordon equation and reduces to the classical r
tivistic expressionpc•pc5m0

2c2 as \→0 and ps ,pf→0.
Note that Eq.~36! requires onlypq or pf , pc , andps . The
complex form of the momentum expresses the fact that
particle momentum and interaction momentum are coup
in the interaction process and must be expressed as
coupled equations. Note that the only place where\ appears
explicit is on the RHS of Eq.~36!. Also note that unlike in
the de Broglie theory, here the rest mass is always cons

Similarly, the nonrelativistic version, equivalent to th
Schrödinger equation, can be written in terms of the 3-vec
form of pt , wherepq5“S2eA andps5“Sp :

pt•pt12m0S ]~Sq1 iSp!

]t
1VD5 i\“•pt . ~37!

VI. DISCUSSION

We have modified the de Broglie approach to quant
theory by separating the Schro¨dinger equation into two
coupled partial differential equations, one for classical ph
~particlelike! and the other for the interaction~wavelike!.
The interaction wave equation envelope composed of n
classical energy travels with the velocity of the classical p
ticle. Solving the Schro¨dinger or Klein-Gordon equations re
duces to solving the associated classical Hamilton-Jac
equation and the interaction wave equation. The Kle
Gordon equation was also separated into classical and
classical equations. The interaction wave function for
Klein-Gordon equation does not depend on the rest m
explicitly. The conservation of momentum in the Klein
Gordon equation is given by Eq.~34!, and the conservation
of energy is given by Eq.~32!. The Heisenberg uncertaint
relations are contained implicitly in the interaction wa
function. Since the energy and momentum are partition
into particle and wave components at specific space-t
points, the energy and momentum are represented as c
plex quantities. The real part relates to particle ener
momentum and the imaginary part to the interaction mom
tum. This is analogous to the partitioning of energy
electromagnetic fields into interaction-field energy and dis
pative energy. We defined a complex quantum-mechan
0-6
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momentum and wrote the Klein-Gordon equation as
momentum-conservation equation that reduces to the cla
cal relativistic form as\→0. This equation shows how th
total momentum is related toSp , the divergence of momen
tum, and the classical energy. Whereas classical ene
momentum conservation can be expressed as a single e
tion, in quantum mechanics an additional relation for t
interaction itself is needed to balance the energy moment
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APPENDIX A: UNCERTAINTY EVOLUTION

In this section we relate the interaction wave to t
Heisenberg uncertainty relations. In this process we sh
how the uncertainty relations are related to Eq.~10!.

We begin by investigating the relationship of the to
quantum-mechanical kinetic energy to the nonclassical
netic energy. The expectation of the quantum-mechanica
netic energy is

^Tqs&5
1

2m0
K S \

i
“c2eAc D •S 2

\

i
“c* 2eAc* D L

5 K @~“Sc2eA!1“Sf #•@~“Sc2eA!1“Sf #

2m0
L

1
^“Sp•“Sp&

2m0
. ~A1!

We note that the quantum-mechanical kinetic energy c
tains both the particle’s classical and fluctuating kinetic
ergy and the interaction-field energy. Therefore this kine
energy contains classical and quantum contributions to ph
and energy.

The kinetic energy in the interaction wave is the noncl
sical energy

^DT &5^Tqs&2
^~“Sc2eA!•~“Sc2eA!&

2m0
. ~A2!

We begin by multiplying Eq.~10! by F* and then inte-
grate over space. After a number of simple manipulations
obtain

S dEdt2
\

2D dq25S ^DT &dq22
\2

8m0
D dt. ~A3!

We define the variancedq2 in terms of the square of th
pilot-wave momentum

1

dq2
5F5

4

\2
^“Sp•“Sp&, ~A4!

whereF is the Fisher information calculated from the pro
ability densityr. Minimizing F is known to yield the larges
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variance subject to constraints@13–15#. Following Hall @13#,
we defineAdq2 by using the associated Fisher length

Adq25
1

AF
<ADq2, ~A5!

whereDq2 is the position variance. We define an uncertain
in time in terms of the expectation value of the second
rivative of Sp as follows

dt5U 2m0

^¹2Sp&
U<Dt ~A6!

and the particle energy uncertainty as

dE5 K 2
]Sf

]t L <DE. ~A7!

For minimum uncertainty we require

DEDt>dEdt5
\

2
. ~A8!

For an energy eigenstateDE→0, and we see from Eq.~A6!
and from the fact¹2Sp→0 thatdt→`.

If we define the uncertainty in particle kinetic energy a

DT5
dp2

2m0
>

Dp2

2m0
, ~A9!

wheredp5Adp2, we can obtain the momentum uncertain
relationship

DpDq>dpdq5
\

2
. ~A10!

We see that Eq.~10! is an equation for the evolution o
coupled uncertainties in energy and momentum. We noteDp
andDE respectively refer to fluctuations in the particle m
mentum and energy andDq andDt refer to the fluctuations
in the pilot-wave. The coupling in the uncertainty relatio
ships is an expression of the interaction.

APPENDIX B: GENERALIZED-METRIC EQUATIONS

For a general metricgkl, we have the generalized intera
tion wave equation~25!,

i\

A2g
]k~ i\A2ggkl] lF!22gklpk(c)~ i\] lF!

2
i\

A2g
]k~A2ggklpl (c)!F50, ~B1!

whereg is the determinant ofgkl .
Equation~36! is

gklpk(t)pl (t)5m0
2c21 i\

1

A2g
]k~A2ggklpl (t)!. ~B2!
0-7
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