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Abstract.  Protein-protein interaction networks provide important clues about cell func-
tion. However, the picture offered by protein interaction alone is incomplete, because tech-
niques for determining interactions at genome scale lack details as to how they are mediated. 
Stable protein interactions are thought to be largely mediated by interactions between protein 
domains while transient interactions occur often between small globular domains and short 
protein peptides, the so called linear motifs. Recently a number of computational methods to 
predict interactions between two domains and between a domain and a (possibly modified) 
peptide have been proposed. In this chapter we review representative computational methods 
focusing on those that use high throughput protein interaction networks to uncover domain-
domain and domain-peptide interactions. 

1 Introduction 

Information that can be extracted from protein–protein interaction networks has a 
growing impact on molecular biology. It facilitates, for example, prediction of pro-
tein function (see Chapter 8) and provides insights into the organization and the 
evolution of protein interaction networks (Chapters 7 and 9). However protein inter-
action data lacks details on how these interactions are mediated. Full understanding 
of interaction details would provide a powerful weapon for studying diseases and for 
designing drug targets. The knowledge of domain interactions and protein domain 
composition can also be used for prediction of protein-protein interaction (Lander, 
Linton et al. 2001; Sprinzak and Margalit 2001; Wojcik and Schachter 2001; Deng, 
Mehta et al. 2002; Shmulevich, Dougherty et al. 2002; Nguyen and Ho 2006; 
Singhal and Resat 2007).  

There are several levels of detail for describing how protein interactions are medi-
ated: from delineating interacting domains to atomic level description of binding 
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sites (Chapters 3 and 6). On the highest level, protein interactions are thought to be 
largely mediated by interactions between domains or between a domain and a pep-
tide (Pawson and Nash 2003). Isolated interacting domains can usually fold inde-
pendently and are readily incorporated into larger multi-domain proteins.  

Domain interactions are quite versatile. Some domain-domain interactions are 
general (also called promiscuous (Riley, Lee et al. 2005)) meaning that if one pro-
tein contains one of the domains and another protein contains the other domain then 
the two proteins are highly likely to interact. However, many domain interactions, 
especially the ones involved in cell regulatory systems are highly specific where in a 
specific interaction, domains can interact or not, depending on a broader context, like 
cycle-dependent expression, localization in the cell, specific amino-acid sequence 
features, etc. For example, the interaction between Cyclin C and Pkinase is specific, 
since the corresponding domains are present in a large number of non-interacting 
protein pairs (Riley, Lee et al. 2005). Some domains interact only with other do-
mains, others interact with peptides, but some domains (e.g. PDZ) can interact with a 
domain or a peptide (Pawson and Nash 2003).  

Because of importance of the information on binding details for understanding 
protein interactions, prediction of interacting domains pairs and domain-peptide 
interactions receive a significant amount of attention in computational biology re-
search. In this chapter, we discuss representative paradigms which are based on high-
throughput protein interaction networks. 

2 Predicting domain interactions from protein interaction 
networks 

Most proteins contain two or more domains (Apic, Gough et al. 2001) and a protein 
interaction typically involves binding between two or more specific domains. Inter-
acting domain pairs are often reused within the interactome of an organism and many 
of them are evolutionarily conserved from prokaryotes to eukaryotes. The relevance 
of this observation is even more significant in view of recent reports suggesting that 
domain interactions among several organisms may be more conserved than the pro-
tein interactions themselves (Itzhaki, Akiva et al. 2006).   

In this section, we discuss methods that directly use the interaction network to 
predict domain-domain interaction. As representative methods, we selected Associa-
tion, Maximum Likelihood Estimation, Domain Pair Exclusion Analysis, Parsimoni-
ous Explanation, and an integrative method. Other approaches that also decipher 
interacting domains from protein interaction networks include support vector ma-
chines (Bock and Gough 2001) (supervised learning methods are reviewed in Chap-
ter 2), probabilistic network modeling (Gomez and Rzhetsky 2002), and lowest p-
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value method (Nye, Berzuini et al. 2005). Obviously, protein interaction network is 
by no means the only source of information that can be used to predict interacting 
domains. For example, the gene fusion method (Marcotte, Pellegrini et al. 1999), 
discussed in Chapter 4, can be applied to detect domain interactions (Ng, Zhang et al. 
2003). Similarly, Pagel and colleagues constructed a domain interaction map based 
on phylogenetic profiling (Pagel, Wong et al. 2004). More recently, Jothi and col-
leagues proposed mirror tree based approach (see Chapter 4) to identify interacting 
domain pairs  (Jothi, Cherukuri et al. 2006; Kann, Jothi et al. 2007).  

For methods that are based on protein-protein interaction network, some domain-
domain interactions are more difficult to discover than others. An obvious limitation 
is the number of experiments which report interactions between proteins mediated by 
a given domain pair. Additional difficulty arises when a domain pair occurs pre-
dominantly in the context of interacting proteins that have multiple potential domain 
contacts, that is, domain pairs that can potentially mediate a given interaction. In 
contrast, an interacting domain pair may have one or more witnesses, that is, inter-
acting single-domain protein pairs in which one protein contains one interacting 
domain while the second protein contains the other domain. In other words, a witness 
to a domain interaction is an interacting protein pair which, under the assumption 
that protein interaction is mediated by domain interaction, can only be explained by 
interaction between the given domains. Obviously, if an interacting domain pair has 
enough witnesses to compensate for unreliability of high throughput protein interac-
tion data, discovering such pair is trivial. To separate the trivial predictions from 
more difficult ones, Riley and colleagues (Riley, Lee et al. 2005) associate with each 
domain a measure called modularity, which is equal to the average number of do-
mains in proteins containing the given domain. A non-trivial prediction of interacting 
domain pairs would then involve at least one domain, out of the pair, with modular-
ity above some threshold (in their study 2.0). High modularity, however, does not 
exclude the possibility that a given domain pair has witnesses, and even an isolated 
occurrence of a domain in a protein with a large number of domains increases the 
modularity of the domain significantly, without necessarily making the prediction 
process more difficult. Therefore, Guimarães and colleagues (Guimaraes, Jothi et al. 
2006) adopt a more stringent partition into easy and difficult predictions. A domain-
domain interaction is considered to be difficult to predict (from the underlying pro-
tein-protein interaction network) if it does not have witnesses and otherwise it is 
considered easy. 

2.1 Association method 

Association methods detect over-represented domain pairs in interacting protein 
pairs. In particular, the method proposed by Sprinzak and Margalit scores each do-
main pair by the log ratio of the frequency of occurrences in interacting proteins to 
the frequency of independent occurrences of those domains(Sprinzak and Margalit 
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2001). That is, if Pi is the observed frequency of domain i in the interaction network 
and Pij is the observed frequency of domain pair (i, j) as a potential domain contact 
in interacting protein pairs, then 
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A similar but more sophisticated score has been used by Ng and colleagues (Ng, 
Zhang et al. 2003) in the construction of the domain interaction database InterDom. 
In their scoring formula they take into account that interactions between proteins 
with a smaller number of potential domain contacts provide a stronger evidence for 
domain interactions than interaction between multi-domain proteins, so the interac-
tions are weighted accordingly. The score is computed as: 
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where N is the number of edges in the protein-protein interaction network, #exk is the 
number of distinct experiments in the network detecting protein interaction k, nk is 
the number of potential domain contacts in protein interaction k, nk

ij is the number of 
potential domain contacts between pair (i, j) in protein interaction k, and Pi is, as 
before, the observed frequency of domain i in the proteins of the network. A simi-
larly defined score is computed from protein complexes. The full score for an inter-
action between domains includes, in addition to the two aforementioned terms, an 
additive term set to 2.0 if a domain pairs is related by fusion event (see Chapter 4), 
and 0.0 otherwise.  

2.2 Maximum Likelihood Estimation (MLE)

The main idea of the Maximum Likelihood Estimation (MLE) approach  (Deng, 
Mehta et al. 2002) is to estimate, for each domain pair, the probability of interaction 
between domains so that the likelihood of the interaction network is maximized.  An 
important feature of this method is that it allows that the false positives and false 
negatives of the high-throughput data that constitutes the protein interaction network 
be explicitly factored in. Here, protein-protein interactions and domain-domain inter-
actions are treated as random variables denoted by PAB and Dij, respectively. PAB = 1 
if proteins A and B interact, and PAB = 0 otherwise. In a similar manner, Dij = 1 if 
domains i and j interact, and Dij = 0 otherwise. 
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Under the assumption that two proteins A and B interact if and only if at least one 

of their potential domain contacts (i, j) interacts, the probability of interaction be-
tween two proteins A and B is obtained as: 
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where λij = Pr(Dij = 1) denotes the probability that domain i interacts with domain j 
and  is the set of potential domain contacts in the protein pair (A, B).  ABij PD ∈

Let the random variable OAB describe the experimental observation of an interac-
tion between proteins A and B; OAB = 1 if an interaction between proteins A and B is 
observed and OAB = 0 otherwise. Denoting false positive and negative rates respec-
tively by fp and fn we have  
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The goal of the MLE method is to estimate parameters λij to maximize the likeli-
hood function L given by 
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Hence, denoting by λ the vector composed of  all λij, the likelihood L is a function 
of λ, fp, and fn. Deng and colleagues estimated fp and fn to be fp = 2.5E-4 and fn = 
0.80. The values λij are computed using expectation maximization (EM) that maxi-
mizes L. In each iteration, t, values of  are used to compute using 
equations (1) and (2), and update the parameters using the following Expectation and 
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where  is the expectation that domain pair (i, j) negotiates the interaction 
between proteins A and B, and N

)( AB
ijDE

ij is the number of protein pairs in the network that 
have (i, j) as a potential domain pair.  

2.3 Domain Pair Exclusion Analysis (DPEA) 

One limitation of the MLE method is its difficulty in detecting specific domain in-
teractions. Indeed, if the interaction between domains i and j is highly specific then 
λij is likely to be small. It has also difficulty in recovering interacting domains which 
have high modularity. To overcome these weaknesses, Riley and colleagues pro-
posed an alternative domain interaction prediction method, Domain Pairs Exclusion 
Analysis (DPEA) (Riley, Lee et al. 2005). The underlying idea behind this method is 
the assumption that the maximum likelihood score of a network is, in some sense, a 
measure of how well the probabilities assigned to putative domain interactions ex-
plain the network. Thus, if domain pair (i, j) indeed mediates some protein-protein 
interactions, then excluding such domain pair as a possible mediator (by fixing the 
parameter corresponding to λij in the MLE method to zero) should decrease the like-
lihood of interactions between these proteins. This change is measured by value Eij 
defined as: 
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where λij is the probability of interaction between domains i and j estimated in a way 
similar to the one used in the MLE method but without including the reliability of the 
protein interaction network as a component of the likelihood score. Thus, the nu-
merator is the probability that proteins A and B interact, given that domains i and j 
might interact. The denominator is the probability that proteins A and B interact, 
given that domains i and j do not interact (also estimated by the expectation maximi-
zation procedure where λij is set to zero).  

The 3,005 domain pairs with Eij at least 3.0 were considered predicted to interact 
with high-confidence. The DPEA method was able to recover significantly more 
modular interactions (Riley, Lee et al. 2005) confirmed by iPFAM than the MLE 
method.  
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2.4 Parsimonious Explanation (PE) 

The idea of recovering interacting domains by examining how well the potential 
domain contacts explain the protein interaction network has been developed further 
by Guimarães and colleagues (Guimaraes, Jothi et al. 2006). Based on the hypothesis 
that protein interactions evolved in a most parsimonious way, they proposed the 
Parsimonious Explanation (PE) method which finds a smallest weighted set of do-
main interactions that can explain the protein interaction network. This model is 
formalized as an optimization problem and solved with a Linear Programming pro-
cedure. The variables of the linear program represent the potential domain contacts 
derived from the protein interaction network, and the constraints are given by each 
protein-protein interaction (edge) in the given network as described below. Those 
variables can take real values between 0 and 1. The constraint imposed by a given 
protein interaction enforces that the values of the variables representing the potential 
domain pairs of that interaction add up to at least 1.0. The construction is illustrated 
in Figure 1.  

 
Figure 1 Construction of a Linear Program from a given protein interaction network. 

According to the parsimony principle, the objective function aims to minimize the 
overall sum of the variables xij. Formally, if PDP is the set of the potential domain 
pairs found in the protein interaction network, and PPI is the set of protein-protein 
interactions in the given network, then the linear program is given by: 
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The value assigned to the variable xij reflects the contribution of the domain pair 

(i, j) in explaining the network under the maximum parsimony principle. In the PE 
method, the false positives of the protein interaction network are modeled by per-
forming a randomization process. In particular, 1000 instances of protein interaction 
network are constructed which are sub-networks of the input network where each 
edge is maintained with probability equal to the estimated reliability of the network 
(in (Guimaraes, Jothi et al. 2006) this value was set to 0.5). For each such random-
ized network, the corresponding linear program is constructed using the procedure 
described above, and solved. The reported score, called LP-score, of a given domain 
pair (i, j), is computed by the arithmetic average of the values xij returned by these 
1000 linear programs. 

In addition to the LP-score, the PE method offers the so called pw_score which 
quantifies the confidence in the LP-score. The pw_score of a domain pair (i, j) is 
computed as the minimum of two measures, the p-value of domain pair (i, j), com-
puted from simulations, and a confidence estimation provided by the possible exis-
tence of witnesses. The combined witness and p-value score is expressed as: 

     ))1(),,(_min(_ ),( jiwrjivaluepscorepw −=

where r is the estimated reliability of the network and w(i,j) is the number of wit-
nesses of domain pair (i, j). 

Unlike the previously discussed methods, the Parsimonious Explanation method 
was able to detect a significant number of difficult interactions confirmed by crystal 
structures in iPFAM. 

2.5. Integrative approaches  

With the exception of the scoring function of (Ng, Zhang et al. 2003), all methods  
discussed so far were based exclusively on protein interaction data and protein do-
main composition. More recently, Lee and colleagues (Lee, Deng et al. 2006) pro-
posed a Bayesian approach that complements the protein interaction data with other 
information about domains; we call their method Integrative Bayesian (IB).   

In the IB method, the expectation of the domain pair interaction is computed sepa-
rately for each of four organisms, yeast, worm, fruit fly, and humans. The scores for 
the domain pairs are obtained using a method similar to MLE. The likelihood func-
tion is the same as the one used by the MLE method (Deng, Mehta et al. 2002), how-
ever, instead of using Pr(Dij = 1) directly to score the domain interactions, the IB 
method scores each domain pair by the expectation of the domain pair interaction 
given by 
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where, as before,  Nij is the number of protein pairs in the network that have (i, j) as a 
potential domain contact. 

The results obtained for the four networks are considered as four independent 
pieces of information and used as features in the integrative model. Two additional 
features considered are the number of times the two domains in the pair appear to-
gether, or co-exist, in one protein chain, and the information if the two domains 
belong to the same biological process as assessed by the Gene Ontology (GO) data-
base (Harris, Clark et al. 2004). The scores of all domain pairs with respect to each 
distinct feature are binned. The likelihood score of a domain pair is computed based 
on the ratio of domain pairs confirmed by crystal structures to the number of domain 
pairs not confirmed by crystal structures in the bin containing the score of  the given 
domain pair. 

It is interesting to examine how the information which is not obtained based in 
protein interaction influences the prediction of this method. To elucidate this, Lee 
and colleagues (Lee, Deng et al. 2006) performed a comparison using the domain 
pairs in iPFAM as true positives, and the remaining domain pairs as true negatives. 
The results of that comparison are reported in Figure 4 of their paper, which shows 
the relationship between the false positive rate (FP / (FP+TN)) and the sensitivity 
(TP / (TP+FN)) of the predictions based on different combinations of information.  
By this evaluation standard, the Gene Ontology terms combined with the domain co-
existence gives a better iPFAM pairs recovery than information obtained from the 
interaction networks using MLE type analysis (see also the discussion in the next 
section).  

Very recently, Wang et al (Wang, Segal et al. 2007) introduced a different inte-
grative method, InSite. In addition to the evidences used in the IB method described 
above they included Prosite (Hulo, Bairoch et al. 2006) motifs treating them in the 
same way as protein domains. Unlike previous methods, they score domain contacts 
in the context dependant manner. That is, the score of the same domain pair depends 
on the protein pair where a given domain pairs makes a potential contact. To obtain 
such score they use a method similar to the one proposed by Riley et. al (Riley, Lee 
et al. 2005) (see section 2.3 of this chapter, equation (4)). However, rather than look-
ing at the effect of disallowing all interactions between a given domain pair, they 
consider the effect of disallowing single instance of such interaction as possible 
mediator of a particular protein interaction. This allowed them to measure how well 
given domain interaction explains the given protein interaction. That is they disallow 
the domain interaction “locally” rather than “globally”. 
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2.6 Evaluation of domain-domain interaction prediction methods 

Due to a low coverage of experimentally confirmed domain-domain interactions, 
evaluation of the accuracy of genome scale methods to predict domain-domain and 
domain-peptide interactions poses a formidable challenge. One method used to 
evaluate the quality of predictions is by estimating how accurately one can recon-
struct the protein interaction network based on the assigned domain-domain interac-
tion scores (Deng, Mehta et al. 2002).  However the quality of prediction of protein-
protein interaction is not necessarily a good measure of correct prediction of domain-
domain interaction. While domain pairs that make non-specific interactions are good 
predictors of protein interactions, the specific domain interactions are not.  

An alternative method for assessing predictions was proposed by Nye et al. (Nye, 
Berzuini et al. 2005). The basic idea is to test if in each pair of interacting proteins, 
the domain pair with the highest score is correctly predicted as the domain pair me-
diating the interaction. The test set contains only interacting protein pairs with multi-
ple potential domain contacts and at least one domain pair that is known to interact 
(e.g. based on the information from the iPFAM database). Guimarães and colleagues 
(Guimaraes, Jothi et al. 2006) used this method applied to 1780 protein interactions 
to compare the performances of  several domain-domain prediction methods. In that 
assessment, the Association and the MLE methods achieved a positive predictive 
value (PPV = TP/(TP+FP)) around 11%, far below the 27% obtained if a potential 
domain contact had been chosen at random for each protein pair in the set. The 
DPEA and the PE methods achieved PPV values of 43% and 75%, respectively. That 
comparison used the Expectation Maximization scores of Riley and colleagues 
(Riley, Lee et al. 2005). Since, unlike the other methods compared, the IB method 
excludes PFAM-B as possible interacting domains, and its predictions were made 
based on a different data set, IB was not included in the above comparison. However, 
in a similar estimation including only 456 protein interactions whose potential do-
main contacts all have IB score above 0.0, the performance of the IB method is simi-
lar to that of PE approach (Guimaraes and Przytycka (unpublished data)). The InSite 
method has been published when this review was virtually completed. It uses a dif-
ferent data set and the scores for the domain pairs were not made available at this 
time so could not be included in the comparison.  

Another method often used to evaluate the quality of domain interaction predic-
tions estimates how well a given method recovers known domain-domain interac-
tions. In this approach, known domain interactions (e.g. domain interactions from 
iPFAM (Finn, Mistry et al. 2006), 3DID (Stein, Russell et al. 2005) or CBM 
(Shoemaker, Panchenko et al. 2006) ) are considered as true positive and all other 
domain pairs as true negatives.  Under this assumption one can make false positive 
rate versus true positive rate (or similar) plots. Indeed, if a method is successful, then 
the corresponding curve should demonstrate a performance clearly better than ex-
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pected by chance. Among the methods discussed, the highest percentage of iPFAM 
domains in the top 50 predicted interactions has the InSite method (Wang, Segal et 
al. 2007).  However, the number of experimentally confirmed domain-domain inter-
actions is very small relatively to the number of estimated domain-domain interac-
tions. According to a recent study involving E. coli, yeast, worm, fly, and human 
data, conducted by Itzhaki and colleagues (Itzhaki, Akiva et al. 2006), the percentage 
of protein-protein interactions to which high-confidence domain-domain interactions 
from iPFAM  or 3DID could be mapped is no more than 20% for any of the organ-
isms. Therefore, any domain-domain prediction method that undertakes the task of 
explaining protein interactions through domain-domain interactions is expected to 
correctly recover domain pairs that are not in those high-confidence databases yet.  

Riley et al. bypassed the above problem by selecting a set of true positives among 
known interacting domain pairs and a set of true negatives (of a similar size) as a set 
containing domain pairs which belong to interacting protein pairs but do not interact 
(as confirmed based on available crystal structures of protein complexes). Under this 
assumption, they tested how many of such true positives and true negatives have 
been correctly predicted. Using this criterion they estimated that the DPEA method 
has the specificity of 97% and the sensitivity of 6% (Riley, Lee et al. 2005). 

Finally, while evaluating domain interaction prediction methods one has to be 
careful to avoid circularity. Due to a greater interest in some specific domains or 
functional roles, it is quite possible for some methods to be trained on one type of 
data and then be evaluated on data that is indirectly related to the one used for train-
ing, bringing up opportunity for an artificially inflated performance. Methods that 
use functional annotation data in particular risk for such circularity (Zhang, Wong et 
al. 2004; Suthram, Shlomi et al. 2006).  

3 Predicting Domain-Peptide interactions from protein interaction 
networks 

The methods to predict domain-domain interactions described in the previous sec-
tion rely on the assumption that protein interactions are mediated by domain-domain 
interactions. This assumption is well supported for stable protein complexes. How-
ever much of the signaling, trafficking, and targeting is mediated by reversible inter-
actions between small globular domains and short protein peptides, the so called 
linear motifs. One of the best studied examples is the SH3 domain which binds to 
Proline reach motif PxxP (where x represents any arbitrary amino-acid). A linear 
motif may, but does not have to be part of a globular domain. In fact, most of such 
motifs are not (Puntervoll, Linding et al. 2003; Neduva, Linding et al. 2005). Fur-
thermore, domain-peptide interactions are often very specific, that is homologous 
domains often bind to different (although related) linear motifs. For example, PxxP  
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is the canonical binding motif for the SH3 domain while a motif for a subclass is 
often more specific (Toro, Thore et al. 2001). One of the first computational prob-
lems considered in the context of domain–peptide binding is that of identifying linear 
motifs that are recognized by a given binding domain (Reiss and Schwikowski 2004; 
Ferraro, Via et al. 2006; Lehrach, Husmeier et al. 2006). In these approaches ex-
perimentally determined SH3 domain-peptide interactions serve as a training set for 
discovering binding motifs of SH3 domains. 

Recently it has been recognized that high throughput interaction networks also 
provide valuable resource in prediction of protein-peptide interactions. In this section 
we discuss briefly two methods that take advantage of this information.  

3.1 Discovering domain-peptide interactions from protein interaction 
networks 

The short length of linear motifs makes their reliable discovery computationally 
challenging. Recently, several related approaches have been developed that find 
statistically over-represented motifs in non-homologous sequences with a common 
property, for example that bind to a certain kinase or phosphatase (Neduva, Linding 
et al. 2005; Davey, Shields et al. 2006). We describe here the method of Neduva et 
al., since this method combines discovery of liner motifs with prediction of direct 
domain-peptide interaction based on high throughput protein interaction networks.  

In the work of Neduva and colleagues (Neduva, Linding et al. 2005) the putative 
linear motifs are identified as sequence fragments observed sufficiently often in 
protein sequences after removing globular domains (identified as PFAM-A do-
mains), trans-membrane segments, coiled-coils, collagen regions, and signal pep-
tides. Furthermore, homologous sequences were also identified and removed. This 
preprocessing reduces the probability of detecting motifs shared due to evolutionary 
relationship or sequence motifs associated with structural motifs such as β-turns. In 
that approach, all non-overlapping motifs of 3-8 residues are identified using pro-
gram TEIRESIAS (Rigoutsos and Floratos 1998). Common motifs are required, in 
particular, to agree perfectly on at least two positions and to occur in at least tree 
sequences in the set. The neighbors of each protein in the network are examined for 
occurrences of such common motifs. A common motif observed to be overrepre-
sented among the interacting partners of a given protein is predicted to be the bind-
ing motif.  

In addition to finding binding motifs of individual proteins, Neduva et al. also 
searched for the more general binding motifs of homology domains. To do this, they 
merged sets of binding partners of proteins containing a common domain. Such 
merged “domain sets” were then analyzed in the same manner as described above for 
individual proteins. 
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The analysis of the results obtained with this method is quite revealing. Despite 

the fact that the data in the protein-protein interaction networks is error-prone, the 
results were quite accurate, although the number of confidently predicted motifs was 
relatively small (11 in yeast, 26 in fly, 27 worm, and 112 in human). In all organisms 
under study, many of the known motifs were missed, as demonstrated by inspection, 
due to too few sequences with the correct motif to reach significance. The better 
results for the human network are attributed to the better quality of the data in hand-
curated human interactions (Peri, Navarro et al. 2003) used in the study. The domain 
set approach was, in some instances, successful in detecting less specific motifs. For 
example, in the fly network the SH3 motif has been only identified on this level 
since there was not enough data to detect the more specific binding motifs. The au-
thors have been able to confirm experimentally some of the predicted motifs. 

 

3.2 Utilizing protein interaction network in discovering phosphorylation 
networks 

Signal transduction is the primary means by which cells respond to external stim-
uli such as nutrients, growth factors, and stress. The dynamics of cell signaling path-
ways is, in large extend, governed by reversible phosphorylation (Krebs and Beavo 
1979)  of specific substrates performed by protein kinases.  Thousands of in vivo 
phosphorylation sites have been discovered by targeted biochemical studies and, 
more recently, through  spectrometry (Hjerrild, Stensballe et al. 2004). However our 
understanding of phosphorylation-dependent signaling networks remains incomplete. 
In particular, despite advances in in-vitro experiments  (Ptacek, Devgan et al. 2005) 
it is not fully known which protein kinases are responsible for the phosphorylation of 
many known phosphorylation sites.  

There are several computational approaches towards mapping phosphorylation 
sites to corresponding kinases which are based on identifying consensus sequence 
motifs recognized by specific kinases (Obenauer, Cantley et al. 2003; Hjerrild, 
Stensballe et al. 2004). However, these motifs alone are often insufficient for a 
unique identification of the kinases responsible for the phosphorylation of the corre-
sponding sites. Specificity of kinase activity is also achieved through cellular local-
ization, cell-cycle specific co-expression, binding to scaffold proteins, etc. Such 
information, termed by Linding et al. “contextual” (Linding, Jensen et al. 2007), if 
available, should also be used to enhance the accuracy of prediction of phosphoryla-
tion networks. Along these lines, a recent approach, NetworKIN, combines the motif 
based and contextual approach into one two-step algorithm.  

During the first step on the NetworKIN algorithm, an experimentally deter-
mined phosphorylation site is mapped to a protein sequence. Then the protein family 
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that is likely to be responsible for the phosphorylation of the site is predicted based 
on the consensus motif approach. This is done by applying a neural network machine 
learning approach to obtain position specific scoring matrices (PSSMs) (Obenauer, 
Cantley et al. 2003; Hjerrild, Stensballe et al. 2004) describing biding motifs of all 
kinase families under study. Once the family (or families) of kinases whose members 
can potentially phosphorylate a given site is identified, the candidate proteins that 
could be responsible for the phosphorylation of the site are identified by BLAST 
search. 

 In the second stage, the set of candidate kinases in narrowed down using con-
textual information. The contextual information is obtained from the STRING data-
base (von Mering, Jensen et al. 2007). This data base integrates information from 
curated pathways, co-occurrence in abstracts of scientific articles, physical protein 
interactions, co-expression, and predicted interaction based on genomic context 
(gene fusion, gene neighborhood, and phylogenetic profiles). All scoring schemas for 
all evidences were benchmarked and calibrated on signaling and metabolic pathways 
from KEGG database (Kanehisa, Goto et al. 2006) resulting in probabilistic scores 
for all evidence types. Additionally, association from orthologous protein in other 
organisms were included using a Bayesian scoring scheme to combine the evidence. 
The resulting probabilistic association network is used to find kinases that are 
proximal to the substrate (the protein containing the given phosphorylation site). 
Namely, for every candidate kinase, the Floyd-Warshall algorithm (Cormen, Leiser-
son et al. 2001) is used to compute the most likely path connecting this kinase to the 
substrate. A set of kinases with the best paths are predicted as responsible for the 
phosphorylation. 

The work of Linding et al. demonstrated that the network-based contextual in-
formation has a tremendous impact on the prediction accuracy of phosphorylation. 
The authors estimated that 80% of the predictive power of their approach comes 
from the contextual information.  

4 Conclusions and future directions 

In this chapter we focused exclusively on the methods to predict domain-domain 
and domain-peptide interactions that use, in a significant way, high-throughput pro-
tein interaction networks. Within this group of methods we selected a set (by no 
means exhaustive) of representative approaches. We demonstrated that, despite the 
fact that high-throughput interactions are inherently noisy, they provide extremely 
valuable resource for predicting domain and peptide interactions. The noise in the 
high-throughput protein interaction data dictates, however, that the methods that are 
based exclusively on the network information are only capable of predicting interac-
tions occurring multiple times.  
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An important and not completely resolved problem is the issue of evaluation of 

prediction methods. A standard way to assess such methods is to test how well they 
predict known interactions. Yet, the set of currently known interactions is not only 
very limited but since PDB data is well known to be biased  (Brenner, Chothia et al. 
1997; Gerstein 1998; Peng K 2004; Mestres 2005; Xie and Bourne 2005) such biases 
are also likely to be inherited by iPFAM. For example, in the context of domain-
domain interactions, the crystal structures favor stable and well studied protein com-
plexes. Therefore, an important issue in prediction methods is an experimental vali-
dation of new predicted interactions. 
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