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Abstract 

This paper describes experiments that quantify the improvement 
that autonomous behaviors enable in the amount of user interaction 
required to navigate a robot in urban environments.  Many papers 
have discussed various ways to measure the absolute level of 
autonomy of a system; we measured the relative improvement of 
autonomous behaviors over teleoperation across multiple traverses 
of the same course. We performed four runs each on an “easy” 
course and a “hard” course, where half the runs were teleoperated 
and half used more autonomous behaviors. Statistics show 40-70% 
reductions in the amount of time the user interacts with the control 
station; however, with the behaviors tested, user attention re-
mained on the control station even when he was not interacting. 
Reducing the need for attention will require better obstacle detec-
tion and avoidance and better absolute position estimation. 
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1.  Introduction 

The usefulness of mobile robots is a strong inverse func-
tion of the amount of user interaction required to control 
them; hence, the value of autonomous behaviors is partly a 
function of how much they reduce the amount of user inter-
action required. Thus, quantifying user interaction as a func-
tion of the available robot control modes is necessary for 
measuring progress. Quantitative user interaction experi-
ments can also reveal where existing robot behaviors have 
trouble dealing with the environment, and therefore are use-
ful for prioritizing further development. 

 In this paper, we describe results of user interaction ex-
periments with a Packbot robot equipped with stereo cam-
eras, a single axis scanning LADAR, and a variety of be-
haviors ranging from teleoperation to waypoint following 
with obstacle avoidance. We counted user button clicks and 
mouse drags in a series of trials employing different behav-
iors over two courses, an “easy” course and a “hard” course.  
Two trials on each course used just teleoperation, two used 
more autonomous behaviors. We did not measure the 
amount of time the user was watching the control station (ie. 
user attention) when he was not physically interacting with 
it. This is an important additional step needed in future 
work. As we will show, however, current autonomous capa-
bilities still require considerable user attention even though 
user interaction per se may be small, because robots are 

likely to get in trouble if the user is not watching an image 
stream from the robot. 
 The rest of this paper is organized as follows. First, sec-
tion 2 reviews related prior work.  Then we describe our 
experimental setup and how we collected the data (Section 
3). The actual data collection follows this with all the atten-
dant graphs and tables (Section 4). We use these results to 
highlight key areas where more development is needed to 
reduce both user interaction and user attention. The most 
significant areas are position estimation and path planning 
capabilities that enable autonomous traverses beyond line of 
sight from the robot (Section 5) and obstacle detection and 
avoidance capabilities that can cope with negative obstacles 
and moving objects, such as cars and people (Section 6). 
 
2.  Related Work 

Goodrich, Crandall et al [1,6,7,8] have done a series of 
user interaction and attention studies. Their data lies chiefly 
in robotic simulation, which allowed them to force the 
user’s attention to another task and to quantify the effect of 
user inattention upon performance. They call this “neglect 
tolerance”. We could not afford to quantify this, because 
real robots currently face too much risk of damage from 
unseen obstacles and moving traffic when the user is not 
attending to downlinked imagery.  Goodrich, Crandall et al 
have also defined a general model of teleoperation, way-
points, and scripted waypoints in terms of interaction vs. 
performance. This is a theoretical model that closely de-
scribes the behaviors we use. Teleoperation requires con-
stant interaction whereas waypoints require more work to 
initiate, but once started can be left alone for a much longer 
period. 

Tejada [3] discussed a model for a 3-D graphical user in-
terface to use with urban search and rescue teams. Our ex-
periment did not quantify the effect of different Operator 
Control Units, since our focus was on the effect of different 
behaviors in the robot. 

Frost [4] discussed the difficulties of pure teleoperation, 
but only as general observations. No measured times to 
complete a course or accomplish an objective are given. 
This paper is particularly relevant because it describes the 
same robotic platform with which we conducted our tests. 
The autonomy used was entirely different, but the chassis 
and thus mechanical ability was the same. 



Bruemmer [5] used a robotic system to work in a nuclear 
disposal facility. Their work described the difficulties of a 
teleoperated system using only visual feedback for control 
information. They were forced to place cameras inside each 
room to have enough data to allow safe navigation because 
the view from the robot’s cameras was not sufficient. As a 
result of these difficulties they devised an autonomous sys-
tem to assist in control and to prevent the user from endan-
gering the robot or the environment. This is an excellent 
example of where it would be valuable to quantify the bene-
fit of new behaviors. They tried teleoperation, found it lack-
ing, created autonomy to assist, but have not yet measured 
the improvement enabled by that autonomy. 
 
3.  Experiment Setup 

The robotic platform in our experiments (“Urbie”) was an 
iRobot Packbot chassis with an electronic payload devel-
oped by JPL under the Tactical Mobile Robotics (TMR) and 
Mobile Autonomous Robot Software (MARS) programs 
sponsored by DARPA. Urbie’s sensors included a black and 
white stereo camera pair, a SICK LADAR, 3-axis accels 
and gyros, a magnetometer with pan/roll/tilt axes, and track 
encoder feedback. Robot state was maintained by a Kalman 
filter which estimated the orientation (roll/pitch/yaw) of the 
robot.  The KF orientation estimate was combined with the 
track encoder data to produce an estimate of robot x/y posi-
tion via dead reckoning. 

Behaviors used included visually designated waypoint 
following, stairclimbing, and teleoperation. An Obstacle 
Detection and Avoidance (ODOA) module could be dy-
namically incorporated via an arbiter system to make any of 
the above behaviors become Safeguarded. To use “visually 
designated waypoint following” a user selected a heading 
from the robot’s field of view and defined a desired dis-
tance; the robot would then attempt to hew to that line as 
closely as possible (while avoiding obstacles should ODOA 
be enabled). Stairclimbing allowed autonomous traverses of 
single flights of stairs. 

A single experienced user controlled the robot over each 
run. The user had feedback from one of the stereo cameras 
allowing a keyhole view of the environment from the ro-
bot’s perspective. Location of the robot’s current position 
relative to the starting position was recorded but not viewed 
during the run. 

Two courses were used: one fairly easy run taking place 
entirely on road surfaces and one comparatively hard run 
which involved driving on grass, sidewalks, and stairs as 
well as roads. Data was collected for four runs over each of 
the two courses. For each course two of the four runs used 
only teleoperation and the remaining two used autonomous 
behaviors. The hard course consisted of positive and nega-
tive obstacles, two flights of stairs and narrow pathways 
between positive and negative obstacles. The easy course 
was twice the distance but involved only paved roads with 
few obstacles. The user was familiar with each course and 

had walked them beforehand. Each course was designed as 
a navigational course rather than an exploration effort, in 
the sense that the user knew where he wanted to go and 
roughly what obstacles he would face. 

During each run all mouse clicks and drags were re-
corded and time stamped along with position. This allowed 
us to relate user interaction with the robot’s location. 
 
4.  Data and results 

For each course we will show an overhead photo as well 
as graphs of a teleoperation run and an autonomous run.  
The graphs relate user interaction to the location at which 
that interaction occurred.  The path of the robot is drawn in 
blue, and any user interactions are denoted by an ‘X’ super-
imposed on the path where the interaction took place. The 
robot’s location was recorded for every 20 cm traveled, and 
the size of the ‘X’ reflects the number of seconds the opera-
tor spent interacting with the control unit during that 20 cm 
segment.  Specifically, marker size is proportional to the 
cube root of the interaction seconds per segment.  Thus a 
point drawn 3 times the size of another point represents 9 
times as much interaction.   

The space between X’s indicates no user interaction.  
This indicates distance traveled using waypoints or stair-
climbing, where the robot was entirely autonomous. 

After discussing each course we will show combined sta-
tistics gathered over all 8 runs. 
 
4.1 Easy Course 

Fig. 1 is an overhead image of the Easy Course with the 
robot path drawn in red.  Note that the entire path is along 
paved roads. 

 

 
        Fig 1.  Overhead image of the Easy Course 
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Fig 4. Overhead image of the Hard Course 

Fig. 2 and Fig. 3 show the graphs of user interac-
tion as a function of position. Streets are overlain as 
hand-drawn lines. 

During the teleoperation run the user was interact-
ing for the entire run, constantly commanding a direc-
tion. During the waypoint run the user could interact 
for brief intervals to set up a new waypoint and then 
wait.  
 Each waypoint was set to 30 meters and could only 
be selected with the current image from the robot. 
This forced the user to intervene in the curved portion 
of the first half of the path to change directions, 
whereas in the second half the user could wait for the 
30 meters to be reached before needing to interact 
again.  
 
4.2 Hard Course  
 Fig. 4 displays the overhead image of the Hard 
Course with the chief obstacles labeled. Unlike the 
Easy Course, the path is over grass, sidewalks, streets, 
and up two flights of stairs. Negative obstacles forced 
the user to pay close attention during teleoperation 
and waypoints. Cars on the street required special 
concern and attention. Several situations were too 
complex for the autonomy on board and the user had 
to manually switch to teleoperation and guide the ro-
bot over the difficult sections.  



Obstacles along the path (in the order they appear) are a 
• Tree 
• Negative obstacle (planter on the right shown as a 
small square). 
• Negative obstacle requiring traversal (curb). 
• Moving obstacles (cars) 
• Narrow pathway with a pole in the middle 
• Stairs 
 
 Fig 5. shows a sample run with only teleoperation.  No-
tice that the points of interaction become denser in the 
difficult areas near the curb, stairs and narrow pathways.  
Hand drawn on the image are two obstacles (the tree and 
planter) as well as the street edges. 
 Fig 6. illustrates the mix of autonomous behaviors and 
teleoperation used for the Hard Course.    
A few areas should be emphasized: 
• The tree was avoided autonomously using ODOA. 
• The planter was avoided by manually aborting a way-

point and selecting a new waypoint. The ODOA capa-
bility on Urbie would not have avoided this negative 
obstacle. 

Fig 5.  Teleoperation over Hard Course.   Fig 6. Autonomous and Teleoperation behaviors 

• The robot could not go down the curb because the path 
was blocked by a car (not shown in the figure); we fol-
lowed the curb, bounded by negative obstacles on ei-
ther side. 

• Once past the car, the user was forced to teleop down 
the curb, as waypoint mode drives too fast to be safe. 

• The user could not do a line of sight waypoint directly 
to the base of the stairwell; instead he used 4 way-
points, one after the other. 

• The robot avoided the pole autonomously (shown as 
small circle in the middle of the narrow pathway). 

 Recall that there was no interaction on any path segment 
where no X’s appear.  Any smooth, unblemished line was 
traveled autonomously.   
 In the Fig. 6 the stairwell took so much interaction over 
such a small distance that it appears no autonomy was used.  
In fact, waypoints were used to the base of the stairwell and 
autonomous stairclimbing was used up both flights of stairs.  
The landings required manual teleoperation to maneuver in 
such tight quarters.  Fig 7. illustrates this with a closer view 
(the robot enters from the bottom of the graph, finishes the 
run to the right). 



Fig 7.  Close-up of the stairwell. 

 

 
Easy Course Metrics 

  
Hard Course Metrics 

  

  Teleop Waypoint Teleop Waypoint 

Length (meters)  275  272  270  274  169  159  155  154 

Time of Run (seconds)  264  380  355  370  423  459  448  488 

Average Speed (m/sec)  1.24  0.72  0.76  0.74  0.40  0.35  0.35  0.32 

Percent of time user interacting  99%  92%  30%  26%  81%  79%  51%  45% 

User Interaction per meter (sec/m)  0.79  1.29  0.40  0.35  2.04  2.27  1.46  1.44 
Percent of Distance Traveled 
Autonomously   0   0  99%  99%   0   0  80%  78% 

Ave time of Autonomous Drive (sec)  0.00  0.00  14.65  18.93  0.00  0.00  9.55  13.11 
Table 1. Interaction data over all 8 runs 

the path was generally straighter on the Easy Course. 
5. The time to complete a course did not improve as a 

result of autonomy, even though the speed during 
autonomy (not shown) was higher than during teleop-
eration. 

 
 

 A quick aside is necessary to explain Fig 7 properly.  
Only the first half of the first flight of stairs was traveled 
autonomously because a power fluctuation caused by the 
extreme driving conditions caused the communication link 
to be dropped.  The user did not resume the stairclimbing 
behavior but simply teleoperated to the next flight.   
 A second oddity is that the second flight of stairs appears 
longer than the first, which is a result of extreme track slip-
page.  Recall that the robot’s orientation estimate was com-
bined with the track encoder data (which is unreliable on 
stairs) to produce an estimate of robot x/y position via dead 
reckoning.   
 At the top of the second flight of stairs the robot traveled 
through a doorway inside the building using teleoperation. 
 
4.3 Quantitative Measures 
 Table 1 the sum of all quantitative measurements over 
the 8 runs (with 4 runs per course).  Attention should be 
directed to five areas in particular.   
1. Percent of time user interacting is not 100% during 

teleop runs because the user had to pause occasionally 
to observe the surroundings, during which time he is 
not actually issuing any commands to the robot.   

2. During the first teleop run on the Easy Course the user 
drove very aggressively and a little unsafely.  The 
speed during this run is higher than the other 3 over the 
Easy Course.  The user also never stopped to get his 
bearings during that run. 

3. The user was forced to use teleoperation over the Hard 
Course during a few difficult segments.  The Percent of 
Distance Traveled Autonomously was below 100% 
during those runs as a result. 

4. The average time of autonomous segments on the Easy 
Course was longer than on the Hard Course because 



5. Autonomous Traverses Beyond Line of Sight 
One interesting result is that autonomy did not reduce the 

overall time of the run even though the velocity during the 
autonomous waypoints was usually higher than a human 
driver would have been comfortable with in teleoperation. 
The setup time and piece by piece selection of waypoints 
took up the remaining time; each waypoint could only be 
selected from the robot’s current field of view, which only 
allows short traverses before being occluded by obstacles. 

The overall interaction time could have been much re-
duced if the user was able to select a series of waypoints at a 
time instead of waiting for the robot to finish each leg be-
fore commanding the next. Alternatively, the user could 
have selected a single goal, far in the distance, and trusted 
the robot get there autonomously. We call the first ability 
Scripted Waypoints and the second ability Single Point 
Goal Selection. 

 
5.1 Scripted Waypoints 

The challenge with scripted waypoints is knowing the ab-
solute position of the robot in a global reference frame. The 
problem is really twofold: a) how does the user know where 
he wants to go before the robot can see it and b) translating 
this point to a coordinate frame the robot can use to navigate 
to. 

The first part of the problem can be solved by providing 
the user with an overhead image or map of the terrain. In 
theory the user would be able to select points on the over-
head image on the fly and have the robot drive from one to 
the next. 

The second part of the problem is translating the points 
that the user clicks on in an overhead image to a reference 
frame the robot can use to autonomously navigate to. The 
predominant global localization method is using GPS with a 
known relation between GPS coordinates and the overhead 
image. 

In general, obtaining GPS data in a dense urban setting 
can be difficult, at times impossible. The buildings to either 
side of the robot prevent the acquisition of enough satellites 
to provide meaningful data. In other types of terrain with 
significant sky coverage, GPS is a viable option and not to 
be discounted, but in many urban environments GPS avail-
ability can not be assumed. 

An attractive alternative is to use the buildings them-
selves as landmarks to help localize the robot. Recent work 
at JPL has shown that it is possible to use vision algorithms 
to extract features from onboard imagery, to match those 
features to known buildings derived from the overhead im-
age, and thereby to estimate the position of the robot in the 
global reference frame. This option is under ongoing devel-
opment in the MARS program and would be a great boon to 
autonomous capabilities for terrain types where GPS is un-
available. 

This option has the additional benefit of being viable 
within buildings, where GPS is nearly guaranteed to fail. 

The feature template could be a rough blueprint of the site 
or a sequence of pictures taken by hand during some recon-
naissance run a priori. In either case the robot could con-
tinue to calculate its position in an absolute reference frame, 
allowing better state estimation and bounding absolute er-
ror. 
 
5.2 Single Point Goal Selection 

An autonomous behavior above and beyond scripted 
waypoints would be a single waypoint, very distant, with 
enough path planning ability on board to get there without 
further advice. The two greatest challenges to do this are a 
sophisticated path planner and a very accurate state estima-
tor. 

The path planner would have to be capable of escaping 
cul-de-sacs, navigating narrow path ways and capable of 
broad goal definitions. 

Even with a perfect path planner, accurate position in the 
global reference frame is still needed. GPS could provide 
this global frame, but as we discussed it may not be avail-
able. Without a global position sensor, any state estimator, 
such as the Kalman Filter we used on our robot, will drift 
over time.  Although usually very accurate, our filter did not 
tolerate climbing stairs or driving off of curbs very well. 
The sudden acceleration and deceleration, as well as ex-
treme track slippage and skidding, brought about a slight 
error in pose every time. Compounded over another 50 me-
ters of travel this slight error would grow to several meters 
of error in the pose estimate. As discussed in 5.1, matching 
vision sensor data to a prior map obtained from overhead 
imagery is a promising approach to this problem. 
 
6. User Attention 

The user looked at the robot feedback during the entire 
course of each run. He never looked directly at the robot, 
but neither could he look away from the screen to do any-
thing else. In any real application, this is a critical flaw. The 
main reason that constant attention was needed was that the 
robot’s current ODOA capability was not adequate to keep 
it out of trouble that could damage the robot or terminate the 
mission. The main types of trouble that could be encoun-
tered were negative obstacles and moving objects. 

 
6.1 Negative Obstacles 

Urban settings are rife with negative obstacles: planters, 
stairs, curbs, and walkway edges. Rails that prevent humans 
from walking off pathways are often placed too high to be 
spotted by ODOA and allow the robot to travel without re-
sistance into a crevasse. Some negative obstacles such as 
curbs are traversable, but only at low speeds. Although 
negative obstacle detection has been addressed for years for 
cross-country navigation, even there the problem is not 
completely solved, and we have not yet integrated such ca-
pabilities into Urbie. Moreover, the urban domain has 



unique characteristics that could profit from algorithms de-
signed specifically for it. 

The inability of our autonomous system to guard against 
negative obstacles forced a great amount of vigilance on the 
part of the user. Referencing back to the Hard Course, the 
site of greatest interaction besides stair climbing was driv-
ing off the curb slow enough to be safe. The autonomous 
behaviors could not identify the ledge as dangerous, so the 
user was forced to manually switch to teleoperation and 
drive off slowly. Only when safely down could the user 
switch back into an autonomous mode. 
 
6.2 Moving Obstacles 

Since much of the navigation was on roads, the user 
needed to keep an eye on the traffic during autonomous 
drives. The robot could drive directly into the path of a car, 
not being able to calculate that the car was in fact in motion. 
There has been work on moving object detection with 
LADAR and with stereo vision [9,10]; incorporating this 
into obstacle avoidance algorithms is a critical next step. 
Street driving is the easiest of all autonomous traverses: 
relatively straight, on a solid surface, with few holes or cliff 
edges, and the few obstacles that exist are large (cars, 
trucks). This is where autonomy can shine, but without 
some form of moving object ODOA, the best autonomy will 
be able to aspire to is fewer user interactions, with no hope 
of reducing user attention. 
 
7. Conclusions 

We did a series of experiments to quantify the effect of 
our system’s autonomy upon the amount of user interaction 
required. We did this to gain insight into where the system 
would need to improve to reduce the strain on the user. 

We found that great amounts of improvement could be 
achieved with the ability to command traverses effectively 
beyond the current field of view. On simple terrain this 
could lead to almost zero interaction necessary for hundreds 
of meters at time-- although for complicated terrain this 
would require a very clever path planner and state estima-
tion accuracy beyond what is currently available. Reducing 
attention on top of interaction would require a robust nega-
tive and moving obstacle detection behavior. 
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