Go to ScienceDirect® Home Skip Main Navigation Links
 Register or Login:   Password:  
   
   
HomeBrowse JournalsBrowse Abstract DatabasesBrowse BooksBrowse Reference WorksMy ProfileAlertsHelp (Opens New Window)
 Quick Search:  within Quick Search searches abstracts, titles, keywords, and authors. Click here for more information.
Results List No Previous Document  1 of 8  Next
The Journal of Chemical Thermodynamics
Volume 36, Issue 9 , September 2004, Pages 731-742

This Document
SummaryPlus
Full Text + Links
PDF (320 K)
Actions
E-mail Article

doi:10.1016/j.jct.2004.05.003    How to Cite or Link Using DOI (Opens New Window)  
Copyright © 2004 Elsevier Ltd. All rights reserved.

Heat capacity of poly(lactic acid)*1

M. PydaCorresponding Author Contact Information, E-mail The Corresponding Author, a, b, R. C. Boppc and B. Wunderlicha, b

a Department of Chemistry, The University of Tennessee, 563 Buehler Hall, Knoxville, TN 37996-1600, USA
b Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6197, USA
c Cargill Dow LLD, Minnetonka, MN 55343, USA

Received 17 December 2003;  accepted 4 May 2004.  Available online 24 June 2004.


Abstract

The heat capacity of poly(lactic acid) (PLA) is reported from T=(5 to 600) K as obtained by differential scanning calorimetry (d.s.c.) and adiabatic calorimetry. The heat capacity of solid PLA is linked to its group vibrational spectrum and the skeletal vibrations, the latter being described by a Tarasov equation with Θ1=574 K, Θ23=52 K, and nine skeletal vibrations. The calculated and experimental heat capacities agree to ±3% between T=(5 and 300) K. The experimental heat capacity of liquid PLA can be expressed by Cp(liquid)=(120.17+0.076T) J · K−1 · mol−1 and has been compared to the ATHAS Data Bank, using contributions of other polymers with the same constituent groups. The glass transition temperature of amorphous PLA occurs at T=332.5 K with a change in heat capacity of 43.8 J · K−1 · mol−1. Depending on thermal history, semi-crystalline PLA has a melting endotherm between T=(418 and 432) K with variable heats of fusion. For 100% crystalline PLA, the heat of fusion is estimated to be (6.55 ± 0.02) kJ · mol−1 at T=480 K. With these results, the enthalpy, entropy, and Gibbs function of crystalline and amorphous PLA were obtained. For semi-crystalline samples, one can check changes of crystallinity with temperature and judge the presence of rigid-amorphous fractions.

Author Keywords: Heat capacity; Poly(lactic acid); Heats of fusion; Glass transition; Melting; Crystallinity; Rigid-amorphous fraction


Article Outline

1. Introduction
1.1. Calculation of the heat capacity of the solid state
1.2. Heat capacity of the liquid state
2. Experimental
2.1. Samples
2.2. Instrumentation and measurements
3. Results and preliminary discussion
3.1. Heat capacity of solid and liquid PLA
3.2. Quantitative thermal analysis of PLA
4. Discussion
Acknowledgements
References



Enlarge Image
(4K)
FIGURE 1. Experimental d.s.c. curves as heat flow rate plotted against temperature on heating at 20 K · min−1 of semi-crystalline PLA-L and amorphous PLA-M and PLA-H. All three samples were quickly cooled from the melt and kept isothermally at T=418.15 K (145 °C) for 15 h for development of crystallinity. The curves are shifted by an arbitrary amount for clarity.

Enlarge Image
(4K)
FIGURE 2. Experimental d.s.c. curves as heat flow rate plotted against temperature on heating at 20 K · min−1 (a) of PLA-L quenched from the melt, and (b) of semi-crystalline PLA-L after isothermal crystallization at T=418.15 K (145 °C) for 15 h, as in figure 1. The curves are shifted by an arbitrary amount for clarity.

Enlarge Image
(6K)
FIGURE 3. Heat capacities plotted against temperature by d.s.c. for PLA-L samples cooled from the melt at 10 K · min−1 and reheated with different heating rates from (30 to 0.3) K · min−1. The curves are shifted in Cp for clarity.

Enlarge Image
(4K)
FIGURE 4. Experimental heat capacities of poly(lactic acid) plotted against temperature. The low-temperature data from T=(5 to 300) K are by adiabatic calorimetry as described in [9], The high-temperature data are by standard d.s.c. for PLA-L and PLA-H from T=(300 to 520) K after being isothermally crystallized at T=418.15 K for 15 h, from data as shown in figure 2.

Enlarge Image
(10K)
FIGURE 5. Fitting of the Θ-temperatures of PLA using the recommended Cp(exp) from T=(5 to 200) K (see table 1). The minimum in small chi, Greek2 has an RMS error in Cp of ±3%.

Enlarge Image
(5K)
FIGURE 6. Experimental and calculated heat capacities of solid poly(lactic acid) plotted against temperature assuming only vibration motions according to the ATHAS (see the parameters for the calculation in table 4).

Enlarge Image
(6K)
FIGURE 7. Experimental and calculated heat capacities of solid and liquid PLA plotted against temperature, compared with experimental data on semi-crystalline PLA-L after isothermal crystallization at T=418.15 K (145 °C) for 15 h. The upper heavy solid line indicates the heat capacity of 100% amorphous PLA, as given by equation (12). The lower heavy line, the vibrational heat capacity of solid PLA (100% crystalline or glassy amorphous). The thin line represents the semi-crystalline Cp calculated from the crystallinity, known from the measured heat of fusion.

Enlarge Image
(4K)
FIGURE 8. Plot of ΔCp at Tg plotted against temperature ΔHfus for samples of PLA-L with different fractions of crystallinity. The arrow points to the extrapolated heat of fusion for a fully crystalline sample, as expected at an equilibrium melting temperature of T=480 K.

Enlarge Image
(4K)
FIGURE 9. Plot of the fractional degree of crystallinity against temperature, calculated for the samples of figure 2, using equation (13) and considering the temperature dependence of the heat capacities as given in table 1.

Enlarge Image
(5K)
FIGURE 10. Enthalpy (HHoc) Gibbs free energy (GHoc), and entropy contribution (TS) for poly(lactic acid) using the Cp(vibration) of table 2 and Cp(liquid) of equation (12).



TABLE 1. Measured and calculated heat capacities of semi-crystalline and amorphous PLA Full Size Table

TABLE 2. Number of group and skeletal modes of vibration in PLAa Full Size Table

TABLE 3. Group vibrations of COO– and CHCH3Full Size Table

TABLE 4. Results of the Θ1, Θ2, Θ3 parameter determination for PLAa Full Size Table

References

1. B. Wunderlich. Pure Appl. Chem. 67 (1995), pp. 1919–2026.

2. M. Pyda (Ed.), ATHAS Data Bank. Available from <http://web.utk.edu/~athas/databank/intro.html> (2003)

3. R. Narayan. In: M.L. Fishman, R.B. Friedman and S.J. Hung, Editors, Polymers From Agricultural Coproducts, American Chemical Society, Washington, DC (1994).

4. V.L. Hill, N. Passerini, D.Q.M. Craig, M. Vickers, J. Anwa and L.C. Feely. J. Therm. Anal. Calorim. 54 (1998), pp. 673–685.

5. D.R. Witzke, Introduction to properties engineering and prospects of polylactide polymers, UMI Dissertaion, Michigan State University, 1997

6. Y. Ikarashi, T. Tsuchiya and A. Nakamura. Biomaterials 21 (2000), pp. 1259–1267.

7. K. Hong and S. Park. Polymer 41 (2000), pp. 4567–4572.

8. V. Rosilio, M. Deyme, J.P. Benoit and G. Madelmont. Pharm. Res. 15 (1998), pp. 794–798.

9. T.G. Kulagina, B.V. Lebedev, Ye.G. Kiparisova, Ye.B. Lyndvig and I.G. Bbcrskaya. Polym. Sci. USSR 24 (1982), pp. 1702–1707.

10. W. Nernst and F.A. Lindemann. Z. Electrochem. 17 (1912), pp. 817–827.

11. R. Pan, M. Varma-Nair and B. Wunderlich. J. Thermal Anal. 35 (1989), pp. 955–966.

12. B. Wunderlich, Thermal Analysis. , Academic Press, Boston (1990).

13. B. Wunderlich. In: S.Z.D. Cheng, Editor, Handbook of Thermal Analysis and CalorimetryApplications to Polymers and Plastics vol.3, Elsevier, Amsterdam (2002).

14. J. Grebowicz, H. Suzuki and B. Wunderlich. Polymer 26 (1985), pp. 561–568.

15. S.-F. Lau and B. Wunderlich. J. Thermal Anal. 28 (1983), pp. 59–85.

16. V.V. Tarasov. Zh. Fiz. Khim. 24 (1950), pp. 111–128.

17. M. Pyda, M. Bartkowiak and B. Wunderlich. J. Thermal Anal. 51 (1998), pp. 631–656.

18. P. Debye. Ann. Physik 39 (1912), pp. 789–839.

19. B. Wunderlich and H. Bauer. Adv. Polym. Sci. 7 (1970), pp. 151–368.

20. G. Zhang and B. Wunderlich. J. Thermal Anal. 47 (1996), pp. 899–911.

21. K. Roles and B. Wunderlich. Biopolymers 31 (1991), pp. 477–487.

22. M.L. Di Lorenzo, G. Zhang, M. Pyda and B. Wunderlich. J. Polym. Sci. B 37 (1999), pp. 2093–2102.

23. M. Pyda and B. Wunderlich. Macromolecules 32 (1999), pp. 2044–2050.

24. M. Pyda. J. Polym. Sci. B 39 (2001), pp. 3038–3054.

25. M. Pyda. Macromolecules 35 (2002), pp. 4009–4016.

26. U. Gaur, M.-Y. Cao, R. Pan and B. Wunderlich. J. Thermal Anal. 31 (1986), pp. 421–445.
R. Pan, M.-Y. Cao and B. Wunderlich. J. Thermal Anal. 31 (1986), pp. 1319–1342.

27. J. Grebowicz, S.-F. Lau and B. Wunderlich. J. Polym. Sci. Polym. Symp. 71 (1984), pp. 19–37.

28. S. Lim and B. Wunderlich. Polymer 28 (1987), pp. 777–787.

29. B. Wunderlich and M. Dole. J. Polym. Sci. 24 (1957), pp. 201–213.

30. V.B.F. Mathot, Editor, Calorimelry and Thermal Analysis of Polymers, Hanser, München (1994).

31. M. Pyda, A. Boller, J. Grebowiez, H. Chuah, B.V. Lebedev and B. Wunderlich. J. Polym. Sci. B 36 (1998), pp. 2499–2511.

32. E.W. Fischer, H.J. Strzel and G. Wegner. Kolloid Z. Z. Polym. 251 (1973), pp. 980–990.

33. M. Pyda, A. Buzin, R. Bopp, B. Wunderlich, in: K.J. Kociba, B.J. Kociba, (Eds.), Proceedings of the 30th NATAS Conference in Pittsburgh, PA, vol. 30, September 23–25, 2002, pp. 463–468

34. M. Pyda, B. Wunderlich, in: M.J. Rich, (Ed.), Proceedings of the 31th NATAS Conference in Albuquerque, NM, vol. 31, September 22–24, 2003

35. C. Schick, A. Wurm and A. Mohammed. Colloid Polym. Sci. 279 (2001), pp. 800–806.


Corresponding Author Contact InformationCorresponding author. Tel.: +1-865-974-0652

*1 The submitted manuscript has been authored by a contractor of the US Government under the contract No. DE-AC05-96OR22464. Accordingly, the US Government retains a non-exclusive, royalty-free license to publish, or reproduce the published form of this contribution, or allow others to do so, for US Government purposes.



This Document
SummaryPlus
Full Text + Links
PDF (320 K)
Actions
E-mail Article
The Journal of Chemical Thermodynamics
Volume 36, Issue 9 , September 2004, Pages 731-742


Results ListNo Previous Document 1 of 8 Next
HomeBrowse JournalsBrowse Abstract DatabasesBrowse BooksBrowse Reference WorksMy ProfileAlertsHelp (Opens New Window)

Feedback  |  Terms & Conditions  |  Privacy Policy

Copyright © 2004 Elsevier B.V. All rights reserved. ScienceDirect® is a registered trademark of Elsevier B.V.
ScienceDirect - The Journal of Chemical Thermodynamics : Densities and volumetric properties of a (xylene + dimethyl sulfoxide) at temperature from (293.15 to 353.15) K
Go to ScienceDirect® Home Skip Main Navigation Links
 Register or Login:   Password:  
   
   
HomeBrowse JournalsBrowse Abstract DatabasesBrowse BooksBrowse Reference WorksMy ProfileAlertsHelp (Opens New Window)
 Quick Search:  within Quick Search searches abstracts, titles, keywords, and authors. Click here for more information.
Results List Previous  2 of 8  Next
The Journal of Chemical Thermodynamics
Volume 36, Issue 9 , September 2004, Pages 743-752

This Document
SummaryPlus
Full Text + Links
PDF (281 K)
Actions
E-mail Article

doi:10.1016/j.jct.2004.04.004    How to Cite or Link Using DOI (Opens New Window)  
Copyright © 2004 Elsevier Ltd. All rights reserved.

Densities and volumetric properties of a (xylene + dimethyl sulfoxide) at temperature from (293.15 to 353.15) K

Haijun WangCorresponding Author Contact Information, E-mail The Corresponding Author, Wei Liu1 and Jihou Huang1

School of Chemistry and Material Engineering, Southern Yangtze University, Wuxi, Jiangsu 214036, PR China

Received 10 March 2004;  accepted 16 April 2004.  Available online 17 June 2004.


Abstract

The densities of (o-xylene, or m-xylene, or p-xylene + dimethyl sulfoxide) were measured at temperatures (293.15, 303.15, 313.15, 323.15, 333.15, 343.15, 353.15) K and atmospheric pressure by means of a vibrating-tube densimeter. The excess molar volume VmE calculated from the density data provide the temperature dependence of VmE in the temperature range of (293.15 to 353.15) K. The VmE results were correlated using the fourth-order Redlich–Kister equation, with the maximum likelihood principle being applied for the determination of the adjustable parameters. Also we have calculated partial molar volume and excess partial molar volumes of two components. It was found that the VmE in the systems studied increase with rising temperature.

Author Keywords: Dimethyl sulfoxide; o-Xylene; m-Xylene; p-Xylene; Binary mixture; Excess volume; Partial molar volume; Excess partial molar volume; Temperature dependence


Article Outline

1. Introduction
2. Experimental
2.1. Materials
2.2. Apparatus and procedure
3. Results
4. Discussion
5. Conclusion
References



Enlarge Image
(13K)
FIGURE 1. The excess molar volume of xo-(CH3)2C6H4 + (1−x)DMSO at atmospheric pressure against mole fraction. At T=298.15 K, square, open; T=303 K, o; T=313 K, triangle up triangle, open; T=323 K, +; T=333 K, ×; T=343 K, open diamond; T=353 K, plus sign in circle.

Enlarge Image
(13K)
FIGURE 2. The excess molar volume of xm-(CH3)2C6H4 + (1−x)DMSO at atmospheric pressure against mole fraction. At T=298.15 K, square, open; T=303 K, o; T=313 K, triangle up triangle, open; T=323 K, +; T=333 K, ×; T=343 K, open diamond; T=353 K, plus sign in circle.

Enlarge Image
(13K)
FIGURE 3. The excess molar volume of xp-(CH3)2C6H4 + (1−x)DMSO at atmospheric pressure against mole fraction. At T=298.15 K, square, open; T=303 K, o; T=313 K, triangle up triangle, open; T=323 K, +; T=333 K, ×; T=343 K, open diamond; T=353 K, plus sign in circle.



TABLE 1. Densities small rho, Greek at T=298.15 K and refractive index values nD20 of the pure components, and comparison with literature Full Size Table

TABLE 2. Excess molar volumes, densities, partial molar volumes and excess partial molar volumes of xo-C6H4(CH3)2 + (1−x)DMSO at the temperature (293.15 to 353.15 K) and atmospheric pressure Full Size Table

TABLE 3. Excess molar volumes, densities, partial molar volumes and excess partial molar volumes of xm-C6H4(CH3)2 + (1−x)DMSO at the temperature (293.15 to 353.15 K) and atmospheric pressure Full Size Table

TABLE 4. Excess molar volumes, densities, partial molar volumes and excess partial molar volumes xp-C6H4(CH3)2 + (1−x)DMSO at the temperature (293.15 to 353.15 K) and atmospheric pressure Full Size Table

TABLE 5. The least-squares parameters, standard deviations, and extremum values extremum values Full Size Table

References

1. A. Riddick, W.B. Bunger and T.K. Sakano. Organic Solvents vol. II, Wiley, New York (1986).

2. M. Takenaka, R. Tanaka and S. Murakami. J. Chem. Thermodyn. 12 (1980), pp. 849–855.

3. O. Redlich and A.T. Kister. Ind. Eng. Chem. 40 (1948), pp. 345–348.

4. W.E. Acree, Jr., Thermodynamic Properties of Non Electrolyte Solutions. , Academic Press, New York (1984).

5. M.I. Davis. Chem. Soc. Rev. 22 (1993), pp. 127–134.


Corresponding Author Contact InformationCorresponding author. Tel./fax: +86-0510-5863151

1 Present address: Department of Chemistry, Shaoxing College of Arts and Sciences, Shaoxing, Zhejiang 312000, PR China.



This Document
SummaryPlus
Full Text + Links
PDF (281 K)
Actions
E-mail Article
The Journal of Chemical Thermodynamics
Volume 36, Issue 9 , September 2004, Pages 743-752


Results ListPrevious 2 of 8 Next
HomeBrowse JournalsBrowse Abstract DatabasesBrowse BooksBrowse Reference WorksMy ProfileAlertsHelp (Opens New Window)

Feedback  |  Terms & Conditions  |  Privacy Policy

Copyright © 2004 Elsevier B.V. All rights reserved. ScienceDirect® is a registered trademark of Elsevier B.V.
ScienceDirect - The Journal of Chemical Thermodynamics : Standard molar enthalpies of formation of two crystalline bis[N-(diethylaminothiocarbonyl)benzamidinato]nickel(II) complexes
Go to ScienceDirect® Home Skip Main Navigation Links
 Register or Login:   Password:  
   
   
HomeBrowse JournalsBrowse Abstract DatabasesBrowse BooksBrowse Reference WorksMy ProfileAlertsHelp (Opens New Window)
 Quick Search:  within Quick Search searches abstracts, titles, keywords, and authors. Click here for more information.
Results List Previous  3 of 8  Next
The Journal of Chemical Thermodynamics
Volume 36, Issue 9 , September 2004, Pages 753-757

This Document
SummaryPlus
Full Text + Links
PDF (186 K)
Actions
E-mail Article

doi:10.1016/j.jct.2004.04.009    How to Cite or Link Using DOI (Opens New Window)  
Copyright © 2004 Elsevier Ltd. All rights reserved.

Standard molar enthalpies of formation of two crystalline bis[N-(diethylaminothiocarbonyl)benzamidinato]nickel(II) complexes

Manuel A. V. Ribeiro da SilvaCorresponding Author Contact Information, E-mail The Corresponding Author, Luís M. N. B. F. Santos and Bernd Schröder

Centro de Investigação em Química, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007, Porto, Portugal

Received 30 March 2004;  accepted 26 April 2004.  Available online 23 June 2004.


Abstract

The standard (po=0.1 MPa) molar enthalpies of formation of the crystalline complexes bis[N-(N″,N″-diethylaminothiocarbonyl)benzamidinato]nickel(II), {Ni(datb)2}, and bis[N-(N″,N″-diethylaminothiocarbonyl)-N-phenylbenzamidinato]nickel(II), {Ni(datpb)2}, were determined, at T=298.15 K, by high precision solution-reaction calorimetry.


Image

From the obtained results, the metal–ligand exchange enthalpies in the crystalline phase were derived. The enthalpy of a hypothetical metal–ligand exchange reaction in the crystalline phase was derived, thus allowing a discussion of the energetics of complexation in comparison with known crystal-structural parameters.

Author Keywords: Standard molar enthalpy of formation; N-(Diethylaminothiocarbonyl)benzamidines; Nickel(II)-complexes; Bis[N-(N″,N″-diethylaminothiocarbonyl)benzamidinato]nickel(II); Bis[N-(N″,N″-diethylaminothiocarbonyl)-N-phenylbenzamidinato]nickel(II); High precision solution-reaction calorimetry


Article Outline

1. Introduction
2. Experimental
2.1. Synthesis
2.2. Solution calorimetry
3. Results
4. Discussion
Acknowledgements
References



Enlarge Image
(5K)
FIGURE 1. Schematic structure of the bis[N-(diethylaminothiocarbonyl)benzamidinato]nickel(II)-complexes: (a) {Ni(datb)2}=bis[N-(N″,N″-diethylaminothiocarbonyl)benzamidinato]nickel(II); (b) {Ni(datpb)2}=bis[N-(N″,N″-diethylaminothiocarbonyl)-N-phenylbenzamidinato]nickel(II).



TABLE 1. Molar enthalpies of reaction and solution ΔiHm at T=298.15 K, for the study of the nickel(II) complexes Ni(Et2NCSNCNRPh)2 of the two N-(diethylaminothiocarbonyl)benzamidines (Et2NCSNCNHRPh (Hdatb: R=H; Hdatpb: R=Ph)), using 1,4-dioxan/HCl 4.2 mol · dm−3 (75% v/v) as calorimetric solvent Full Size Table
Solvent: 120.0 cm3 dioxan/HCl 4.2 mol · dm−3 (75% v/v).


TABLE 2. Standard (po=0.1 MPa) molar enthalpies of reaction, ΔrHmo, and enthalpies of formation in crystalline state, ΔfHmo(cr), for the crystalline complexes at T=298.15 K Full Size Table

References

1. J. Hartung, G. Weber, L. Beyer and R. Szargan. Z. Anorg. Allg. Chem. 523 (1985), pp. 153–160.

2. L. Beyer, J. Hartung and R. Köhler. J. Prakt. Chem. 333 (1991), pp. 373–388.

3. U. Abram, R. Münze, J. Hartung, L. Beyer, R. Kirmse, K. Köhler, J. Stach, H. Behm and R.T. Beursken. Inorg. Chem. 28 (1989), pp. 834–839.

4. L. Beyer, J. Hartung and R. Widera. Tetrahedron 40 (1984), pp. 405–412.

5. J. Sieler, R. Richter, L. Beyer, O. Lindqvist and L. Andersen. Z. Anorg. Allg. Chem. 515 (1984), pp. 41–50.

6. R. Richter, Habilitation Thesis, University of Leipzig, 1988

7. L.M.N.B.F. Santos, Ph.D. Thesis, University of Porto, 1995

8. S.R. Gunn. J. Chem. Thermodyn. 3 (1971), pp. 19–34.

9. M.V. Kilday and E.J. Prosen. J. Res. Natl. Bur. Stand. A 77 (1973), pp. 581–586.

10. R. Sabbah, An. Xu-wu, J.S. Chickos, M.L. Planas Leitão, M.V. Roux and L.A. Torres. Thermochim. Acta 331 (1999), pp. 93–208.

11. T. Coplen. J. Phys. Chem. Ref. Data 30 (2001), pp. 701–712.

12. F.D. Rossini. In: F.D. Rossini, Editor, Experimental Thermochemistry vol. 1, Interscience, New York (1956) (Chapter 14) .

13. J.D. Cox, D.D. Wagman and V.A. Medvedev, Editors, CODATA Key Values for Thermodynamics, Hemisphere, New York (1989).

14. M.A.V. Ribeiro da Silva and L.M.N.B.F. Santos. J. Chem. Thermodyn. 32 (2000), pp. 1327–1334.

15. The NBS Tables of Chemical Thermodynamic Properties, J. Phys. Chem. Ref. Data 11 (Suppl. 2) (1982)

16. M.A.V. Ribeiro da Silva, L.M.N.B.F. Santos, B. Schröder and L. Beyer. J. Chem. Thermodyn. 36 (2004), pp. 555–559.

17. M.A.V. Ribeiro da Silva, M.D.M.C. Ribeiro da Silva, L.C.M. Silva, F. Dietze and E. Hoyer. Thermochim. Acta 378 (2001), pp. 45–50.

18. M.A.V. Ribeiro da Silva, M.D.M.C. Ribeiro da Silva, L.C.M. Silva, J.R.B. Gomes, A.M. Damas, F. Dietze and E. Hoyer. Inorg. Chim. Acta 356 (2003), pp. 95–102.

19. M.A.V. Ribeiro da Silva, L.M.N.B.F. Santos, B. Schröder, L. Beyer and F. Dietze. J. Chem. Thermodyn. 36 (2004), pp. 627–631.

20. S. Behrendt, L. Beyer, F. Dietze, E. Kleinpeter, E. Hoyer, E. Ludwig and E. Uhlemann. Inorg. Chim. Acta 43 (1980), pp. 141–144.

21. L. Beyer, E. Hoyer, J. Liebscher and H. Hartmann. Z. Chem. 21 (1981), pp. 81–91.

22. P. Mühl, K. Gloe, F. Dietze, E. Hoyer and L. Beyer. Z. Chem. 26 (1986), pp. 81–94.

23. G. Pilcher. Pure Appl. Chem. 61 (1989), pp. 855–860.

24. J. Berkowitz, G.B. Ellison and D. Gutmann. J. Phys. Chem. 98 (1994), pp. 2744–2765.

25. P.A. MacFaul, D.D.M. Wayner and K.U. Ingold. J. Org. Chem. 62 (1997), pp. 3413–3414.

26. M. Jonsson, J. Lind, T.E. Eriksen and G. Merényi. J. Am. Chem. Soc. 116 (1994), pp. 1423–1427.

27. D.A. Pratt, G.A. DiLabio, L. Valgimigli, G.F. Pedulli and K.U. Ingold. J. Am. Chem. Soc. 124 (2002), pp. 11085–11092.


Corresponding Author Contact InformationCorresponding author. Tel.: +351-22-6082-821; fax: +351-22-6082-822



This Document
SummaryPlus
Full Text + Links
PDF (186 K)
Actions
E-mail Article
The Journal of Chemical Thermodynamics
Volume 36, Issue 9 , September 2004, Pages 753-757


Results ListPrevious 3 of 8 Next
HomeBrowse JournalsBrowse Abstract DatabasesBrowse BooksBrowse Reference WorksMy ProfileAlertsHelp (Opens New Window)

Feedback  |  Terms & Conditions  |  Privacy Policy

Copyright © 2004 Elsevier B.V. All rights reserved. ScienceDirect® is a registered trademark of Elsevier B.V.
ScienceDirect - The Journal of Chemical Thermodynamics : Densities and apparent molar volumes of HClO4(aq) and Yb(ClO4)3(aq) at elevated temperatures and pressures
Go to ScienceDirect® Home Skip Main Navigation Links
 Register or Login:   Password:  
   
   
HomeBrowse JournalsBrowse Abstract DatabasesBrowse BooksBrowse Reference WorksMy ProfileAlertsHelp (Opens New Window)
 Quick Search:  within Quick Search searches abstracts, titles, keywords, and authors. Click here for more information.
Results List Previous  4 of 8  Next
The Journal of Chemical Thermodynamics
Volume 36, Issue 9 , September 2004, Pages 759-772

This Document
SummaryPlus
Full Text + Links
PDF (285 K)
Actions
E-mail Article

doi:10.1016/j.jct.2004.01.007    How to Cite or Link Using DOI (Opens New Window)  
Copyright © 2004 Elsevier Ltd. All rights reserved.

Densities and apparent molar volumes of HClO4(aq) and Yb(ClO4)3(aq) at elevated temperatures and pressures

Andrew W. HakinCorresponding Author Contact Information, E-mail The Corresponding Author, Michael J. Lukacs and Jin Lian Liu

Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alta., Canada T1K 3M4

Received 13 November 2003;  accepted 12 January 2004.  Available online 24 June 2004.


Abstract

Relative densities have been measured for acidified aqueous solutions of ytterbium perchlorate {Yb(ClO4)3} at approximately T=(348.15, 373.15, 398.15, and 423.15) K and p=(10.0, 20.0, and 30.0) MPa over the concentration range 0.01624less-than-or-equals, slantm2/(mol · kg−1less-than-or-equals, slant 0.2531 using an optically coupled vibrating tube densimeter (OCVTD). Experimental apparent molar volumes have been calculated from the density measurements, and apparent molar volumes for the aqueous perchlorate salt have been calculated using Young's rule. The application of Young's rule requires apparent molar volumes for aqueous perchloric acid (HClO4) solutions over extended temperature and pressure ranges. These values were calculated from densities for aqueous HClO4 solutions that were measured using the OCVTD at the same temperatures and pressures as those used to investigate the density surface of the acidified aqueous Yb(ClO4)3 solutions.

The temperature, pressure, and composition surfaces of the apparent molar volumes for Yb(ClO4)3(aq) and HClO4(aq) have been modelled using Pitzer ion-interaction equations. Apparent molar volumes at infinite dilution obtained from these models have been compared to those which can be calculated using the semi-empirical Helgeson, Kirkham, and Flowers equations of state. Values for the apparent molar volume at infinite dilution of the ytterbium trivalent cation have also been calculated using simple additivity principles.

Author Keywords: Densities; Elevated temperature and pressure; Perchloric acid; Ytterbium perchlorate


Article Outline

1. Introduction
2. Experimental
3. Apparent molar volumes
4. Single ion volumes
Acknowledgements
References



Enlarge Image
(6K)
FIGURE 1. A plot of the residuals obtained from the fit of equations ((6), (7) and (8)) to calculated apparent molar volumes against concentration for HClO4(aq). o, residuals calculated using Vsmall phi, Greek,3 values reported in this study; •, residuals calculated using Vsmall phi, Greek,3 values reported in [9].

Enlarge Image
(7K)
FIGURE 2. A plot of the residuals obtained from the fit of equations (10), ((12), (13) and (14)) to calculated apparent molar volumes against concentration for Yb(ClO4)3(aq). o, residuals calculated using Vsmall phi, Greek,2 values reported in this study; •, residuals calculated using Vsmall phi, Greek,2 values reported in [2].

Enlarge Image
(15K)
FIGURE 3. (a) A plot of apparent molar volume at infinite dilution, Vsmall phi, Greek,3infinity, for HClO4(aq) against temperature at p=0.1 MPa. Solid line calculated using equations reported in [4], dashed line calculated using equation (7). (b) A plot of apparent molar volume at infinite dilution, Vsmall phi, Greek,3infinity, for HClO4(aq) against temperature at p=10 MPa. Solid line calculated using equations reported in [4], dashed line calculated using equation (7). (c) A plot of apparent molar volume at infinite dilution, Vsmall phi, Greek,3infinity, for HClO4(aq) against temperature at p=20 MPa. Solid line calculated using equations reported in [4], dashed line calculated using equation (7). (d) A plot of apparent molar volume at infinite dilution, Vsmall phi, Greek,3infinity, for HClO4(aq) against temperature at p=30 MPa. Solid line calculated using equations reported in [4], dashed line calculated using equation (7).

Enlarge Image
(15K)
FIGURE 4. (a) A plot of apparent molar volume at infinite dilution, Vsmall phi, Greek,2infinity, for Yb(ClO4)3(aq) against temperature at p=0.1 MPa. Solid line calculated using equations reported in [4], dashed line calculated using equation (12). (b) A plot of apparent molar volume at infinite dilution, Vsmall phi, Greek,2infinity, for Yb(ClO4)3(aq) against temperature at p=10 MPa. Solid line calculated using equations reported in [4], dashed line calculated using equation (12). (c) A plot of apparent molar volume at infinite dilution, Vsmall phi, Greek,2infinity, for Yb(ClO4)3(aq) against temperature at p=20 MPa. Solid line calculated using equations reported in [4], dashed line calculated using equation (12). (d) A plot of apparent molar volume at infinite dilution, Vsmall phi, Greek,2infinity, for Yb(ClO4)3(aq) against temperature at p=30 MPa. Solid line calculated using equations reported in [4], dashed line calculated using equation (12).



TABLE 1. The densities of pure water, small rho, Greek1, the concentration dependence of relative densities, small rho, Greek3small rho, Greek1, apparent molar volumes of aqueous solutions of perchloric acid, Vsmall phi, Greek,3, and the uncertainties in apparent molar volumes, small delta, GreekVsmall phi, Greek,3, at approximately T=348.15 K and p=(10, 20 and 30) MPa Full Size Table

TABLE 2. The densities of pure water, small rho, Greek1, the concentration dependence of relative densities, small rho, Greek3small rho, Greek1, apparent molar volumes of aqueous solutions of perchloric acid, Vsmall phi, Greek,3, and the uncertainties in apparent molar volumes, small delta, GreekVsmall phi, Greek,3, at approximately T=373.15 K and p=(10, 20 and 30) MPa Full Size Table

TABLE 3. The densities of pure water, small rho, Greek1, the concentration dependence of relative densities, small rho, Greek3small rho, Greek1, apparent molar volumes of aqueous solutions of perchloric acid, Vsmall phi, Greek,3, and the uncertainties in apparent molar volumes, small delta, GreekVsmall phi, Greek,3, at approximately T=398.15 K and p=(10, 20 and 30) MPa Full Size Table

TABLE 4. The densities of pure water, small rho, Greek1, the concentration dependence of relative densities, small rho, Greek3small rho, Greek1, apparent molar volumes of aqueous solutions of perchloric acid, Vsmall phi, Greek,3, and the uncertainties in apparent molar volumes, small delta, GreekVsmall phi, Greek,3, at approximately T=423.15 K and p=(10 and 20) MPa Full Size Table

TABLE 5. Estimates of fitting parameters to equations ((6), (7) and (8)) which model the temperature and pressure dependences of Vsmall phi, Greek,3 values for aqueous solutions of perchloric acid Full Size Table

TABLE 6. The density of pure water, small rho, Greek1, the concentration dependences of relative densities, small rho, Greekexptsmall rho, Greek1, experimental apparent molar volumes, Vsmall phi, Greek,expt, apparent molar volumes of Yb(ClO4)3(aq) solutions, Vsmall phi, Greek,2, and their uncertainties, small delta, GreekVsmall phi, Greek,2, at approximately T=348.15 K and p=(10, 20 and 30) MPa Full Size Table

TABLE 7. The density of pure water, small rho, Greek1, the concentration dependences of relative densities, small rho, Greekexptsmall rho, Greek1, experimental apparent molar volumes, Vsmall phi, Greek,expt, apparent molar volumes of Yb(ClO4)3(aq) solutions, Vsmall phi, Greek,2, and their uncertainties, small delta, GreekVsmall phi, Greek,2, at approximately T=373.15 K and p=(10, 20 and 30) MPa Full Size Table

TABLE 8. The density of pure water, small rho, Greek1, the concentration dependences of relative densities, small rho, Greekexptsmall rho, Greek1, experimental apparent molar volumes, Vsmall phi, Greek,expt, apparent molar volumes of Yb(ClO4)3(aq) solutions, Vsmall phi, Greek,2, and their uncertainties, small delta, GreekVsmall phi, Greek,2, at approximately T=398.15 K and p=(10, 20 and 30) MPa Full Size Table

TABLE 9. The density of pure water, small rho, Greek1, the concentration dependences of relative densities, small rho, Greekexptsmall rho, Greek1, experimental apparent molar volumes, Vsmall phi, Greek,expt, apparent molar volumes of Yb(ClO4)3(aq) solutions, Vsmall phi, Greek,2, and their uncertainties, small delta, GreekVsmall phi, Greek,2, at approximately T=423.15 K and p=(10 and 20) MPa Full Size Table

TABLE 10. Estimates of the fitting parameters to equations (10), ((12), (13) and (14)) which model the temperature and pressure dependences of Vsmall phi, Greek,2 values for Yb(ClO4)3(aq) solutions Full Size Table

TABLE 11. Estimates of values for Vsmall phi, Greekinfinity{Yb3+(aq)} obtained from equation (15) at selected temperatures and pressures Full Size Table

References

1. R.A. Marriott, A.W. Hakin and J.A. Rard. J. Chem. Thermodyn. 33 (2001), pp. 643–687.

2. A.W. Hakin, M.J. Lukacs, J.L. Liu, K. Erickson and A. Madhavji. J. Chem. Thermodyn. 35 (2003), pp. 775–802.

3. A.W. Hakin, M.J. Lukacs, J.L. Liu and K. Erickson. J. Chem. Thermodyn. 35 (2003), pp. 1861–1895.

4. C. Xiao, P.R. Tremaine and J.M. Simonson. J. Chem. Eng. Data 41 (1996), pp. 1075–1078.

5. C. Xiao, J.M. Simonson and P.R. Tremaine. J. Chem. Thermodyn. 31 (1999), pp. 1055–1065.

6. E.L. Shock and H.C. Helgeson. Geochim. Cosmochim. Acta 52 (1988), pp. 2009–2036.

7. T.F. Young and M.B. Smith. J. Phys. Chem. 58 (1954), pp. 716–724.

8. J.K. Hovey, L.G. Hepler and P.R. Tremaine. Thermochim. Acta 126 (1988), pp. 245–253.

9. T.M. Herrington, A.D. Pethybridge and M.G. Roffey. J. Chem. Eng. Data 30 (1985), pp. 264–267.

10. R.J. Lemire, A.B. Campbell and P. Pan. Thermochim. Acta 286 (1996), pp. 225–231.

11. J.K Hovey, Ph.D. Thesis, The University of Alberta, Canada, 1988

12. K.S. Pitzer. In: Activity Coefficients in Electrolyte Solutions (second ed.), CRC Press, Boca Raton (1991).

13. H.C. Helgeson, D.H. Kirkham and G.C. Flowers. Am. J. Sci. 281 (1981), pp. 1249–1516.

14. J.C. Tanger and H.C. Helgeson. Am. J. Sci. 288 (1988), pp. 19–98.

15. J.M. Simonson, C.S. Oakes and R.J. Bodnar. J. Chem. Thermodyn. 26 (1994), pp. 345–359.

16. D.A. Skoog, D.M. West, F.J. Holler and S.R. Crouch. In: Analytical Chemistry: An Introduction (seventh ed.), Saunders College Publishing Harcourt Inc. (2000), p. 742.

17. A.W. Hakin, D.C. Daisley, L. Delgado, J.L. Liu, R.A. Marriott, J.L. Marty and G. Tompkins. J. Chem. Thermodyn. 30 (1998), pp. 583–606.

18. D.G. Archer. J. Phys. Chem. Ref. Data 21 (1992), pp. 793–829.

19. P.G. Hill. J. Phys. Chem. Ref. Data 19 (1990), pp. 1233–1274.

20. D.G. Archer and P. Wang. J. Phys. Chem. Ref. Data 19 (1990), pp. 371–411.

21. C. Xiao and P.R. Tremaine. J. Chem. Thermodyn. 29 (1997), pp. 827–852.

22. J.W. Johnson and D. Norton. Am. J. Sci. 291 (1991), pp. 541–648.

23. B.B. Owen and S.R. Brinkley. Chem. Rev. 29 (1941), p. 461.

24. M.J. Lukacs, MSc Thesis, The University of Lethbridge, Alberta, Canada, 2003


Corresponding Author Contact InformationCorresponding author. Tel.: +1-403-329-2083; fax: +1-403-329-2057



This Document
SummaryPlus
Full Text + Links
PDF (285 K)
Actions
E-mail Article
The Journal of Chemical Thermodynamics
Volume 36, Issue 9 , September 2004, Pages 759-772


Results ListPrevious 4 of 8 Next
HomeBrowse JournalsBrowse Abstract DatabasesBrowse BooksBrowse Reference WorksMy ProfileAlertsHelp (Opens New Window)

Feedback  |  Terms & Conditions  |  Privacy Policy

Copyright © 2004 Elsevier B.V. All rights reserved. ScienceDirect® is a registered trademark of Elsevier B.V.
ScienceDirect - The Journal of Chemical Thermodynamics : Apparent molar heat capacities and apparent molar volumes of Pr(ClO4)3(aq), Gd(ClO4)3(aq), Ho(ClO4)3(aq), and Tm(ClO4)3(aq) at T=(288.15, 298.15, 313.15, and 328.15) K and p=0.1 MPa
Go to ScienceDirect® Home Skip Main Navigation Links
 Register or Login:   Password:  
   
   
HomeBrowse JournalsBrowse Abstract DatabasesBrowse BooksBrowse Reference WorksMy ProfileAlertsHelp (Opens New Window)
 Quick Search:  within Quick Search searches abstracts, titles, keywords, and authors. Click here for more information.
Results List Previous  5 of 8  Next
The Journal of Chemical Thermodynamics
Volume 36, Issue 9 , September 2004, Pages 773-786

This Document
SummaryPlus
Full Text + Links
PDF (314 K)
Actions
E-mail Article

doi:10.1016/j.jct.2004.02.004    How to Cite or Link Using DOI (Opens New Window)  
Copyright © 2004 Elsevier Ltd. All rights reserved.

Apparent molar heat capacities and apparent molar volumes of Pr(ClO4)3(aq), Gd(ClO4)3(aq), Ho(ClO4)3(aq), and Tm(ClO4)3(aq) at T=(288.15, 298.15, 313.15, and 328.15) K and p=0.1 MPa

Andrew W. HakinCorresponding Author Contact Information, E-mail The Corresponding Author, Jin Lian Liu, Kristy Erickson and Julie-Vanessa Munoz

Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alta., Canada T1K 3M4

Received 29 October 2003;  accepted 3 February 2004.  Available online 24 June 2004.


Abstract

Acidified aqueous solutions of Pr(ClO4)3(aq), Gd(ClO4)3(aq), Ho(ClO4)3(aq), and Tm(ClO4)3(aq) were prepared from the corresponding oxides by dissolution in dilute perchloric acid. Once characterized with respect to trivalent metal cation and acid content, the relative densities of the solutions were measured at T=(288.15, 298.15, 313.15, and 328.15) K and p=0.1 MPa using a Sodev O2D vibrating tube densimeter. The relative massic heat capacities of the aqueous systems were also determined, under the same temperature and pressure conditions, using a Picker Flow Microcalorimeter. All measurements were made on solutions containing rare earth salt in the concentration range 0.01 less-than-or-equals, slant m/(mol · kg−1less-than-or-equals, slant 0.2. Relative densities and relative massic heat capacities were used to calculate the apparent molar volumes and apparent molar heat capacities of the acidified salt solutions from which the apparent molar properties of the aqueous salt solutions were extracted by the application of Young's Rule. The concentration dependences of the isothermal apparent molar volumes and heat capacities of each aqueous salt solution were modelled using Pitzer ion-interaction equations. These models produced estimates of apparent molar volumes and apparent molar heat capacities at infinite dilution for each set of isothermal Vsmall phi, Greek,2 and Cpsmall phi, Greek,2 values. In addition, the temperature and concentration dependences of the apparent molar volumes and apparent molar heat capacities of the aqueous rare earth perchlorate salt solutions were modelled using modified Pitzer ion-interaction equations. The latter equations utilized the Helgeson, Kirkham, and Flowers equations of state to model the temperature dependences (at p=0.1 MPa) of apparent molar volumes and apparent molar heat capacities at infinite dilution. The results of the latter models were compared to those previously published in the literature.

Apparent molar volumes and apparent heat capacities at infinite dilution for the trivalent metal cations Pr3+(aq), Gd3+(aq), Ho3+(aq), and Tm3+(aq) were calculated using the conventions V2o(H+(aq)) ≡ 0 and Cp2o(H+(aq)) ≡ 0 and have been compared to other values reported in the literature.

Author Keywords: Apparent molar volume; Apparent molar heat capacity; Density; Massic heat capacity; Rare-earth(III) perchlorates; Aqueous solutions


Article Outline

1. Introduction
2. Experimental
3. Results
4. Discussion
Acknowledgements
References



Enlarge Image
(5K)
FIGURE 1. A plot of apparent molar volume, Vsmall phi, Greek,2, against the square root of the ionic strength, I1/2, for aqueous solutions of Gd(ClO4)3 at T=(298.15, 313.15, and 328.15) K. •, Reference [6]; +, reference [15]; Δ, reference [16]; o, this study.

Enlarge Image
(6K)
FIGURE 2. A plot of {Vsmall phi, Greek,2−6·(AV/b)·ln(1+b·I1/2)+small omega, GreekQ} against ionic strength for aqueous solutions of Pr(ClO4)3. •, T=288.15 K; o, T=298.15 K; blacksquare sq bullet, filled, T=313.15 K; square, open, T=328.15 K. The solid lines represent the model fit of equations (6), ((8), (9) and (10)) to the experimental data.

Enlarge Image
(8K)
FIGURE 3. (a) A plot of apparent molar volume, Cpsmall phi, Greek,2, against the square root of the ionic strength, I1/2, for aqueous solutions of Gd(ClO4)3 at T=(298.15 and 328.15) K. •, reference [6]; o, this study. (b) A plot of apparent heat capacity, Cpsmall phi, Greek,2, against the square root of the ionic strength, I1/2, for aqueous solutions of Gd(ClO4)3 at T=(313.15) K. •, reference [6]; o, this study.

Enlarge Image
(5K)
FIGURE 4. A plot of {Cpsmall phi, Greek,2−6·(AJ/b)·ln(1+b·I1/2)−small omega, GreekTX} against ionic strength for aqueous solutions of Pr(ClO4)3. •, T=288.15 K; o, T=298.15 K; blacksquare sq bullet, filled, T=313.15 K; square, open, T=328.15 K. The solid lines represent the model fit of equations ((11), (12), (13) and (14)) to the experimental data.

Enlarge Image
(5K)
FIGURE 5. Plots of apparent molar volume at infinite dilution, V2o, against ionic radii, r, for aqueous rare earth perchlorate salts at T=(288.15, 298.15, 313.15, and 328.15) K.

Enlarge Image
(5K)
FIGURE 6. Plots of apparent molar heat capacity at infinite dilution, Cp2o, against ionic radii, r, for aqueous rare earth perchlorate salts at T=(288.15, 298.15, 313.15, and 328.15) K.

Enlarge Image
(4K)
FIGURE 7. A plot of V2o against temperature for solutions of Gd(ClO4)3(aq); •, values from [6]; o, values from table 5; (a) HKF equation using parameters obtained from [22]; (b) HKF model represented by equation (8).

Enlarge Image
(4K)
FIGURE 8. A plot of the intrinsic and solvation contributions to V2o against temperature for Ho(ClO4)3(aq); (a), the intrinsic contribution (small upsilon, Greek1 & small upsilon, Greek2 terms of equation (8)); (b) HKF model represented by equation (8); (c) the solvation contribution (−small omega, GreekQ term of equation (8)); o, experimental V2o values reported in table 5.

Enlarge Image
(4K)
FIGURE 9. A plot of the intrinsic and solvation contributions to Cp2o against temperature for Ho(ClO4)3(aq); (a), the intrinsic contribution (c1 & c2 terms of equation (12)); (b) HKF model represented by equation (12); (c) the solvation contribution (small omega, GreekTX term of equation (12)); o, experimental Cp2o reported in table 5.



TABLE 1. The concentration dependences of relative densities, relative heat capacities, apparent molar volumes and apparent molar heat capacities for acidified aqueous solutions Pr(ClO4)3 at T=(288.15, 298.15, 313.15, and 328.15) K Full Size Table

TABLE 2. The concentration dependences of relative densities, relative heat capacities, apparent molar volumes and apparent molar heat capacities for acidified aqueous solutions Gd(ClO4)3 at T=(288.15, 298.15, 313.15, and 328.15) K Full Size Table

TABLE 3. The concentration dependences of relative densities, relative heat capacities, apparent molar volumes and apparent molar heat capacities for acidified aqueous solutions Ho(ClO4)3 at T=(288.15, 298.15, 313.15, and 328.15) K Full Size Table

TABLE 4. The concentration dependences of relative densities, relative heat capacities, apparent molar volumes and apparent molar heat capacities for acidified aqueous solutions Tm(ClO4)3 at T=(288.15, 298.15, 313.15, and 328.15) K Full Size Table

TABLE 5. Estimates of parameters to the Pitzer ion interaction model equations, shown as equations ((6) and (11)) within the text, for aqueous solutions of Pr(ClO4)3, Gd(ClO4)3, Ho(ClO4)3, and Tm(ClO4)3 at T=(288.15, 298.15, 313.15, and 328.15) K and p=0.1 MPa Full Size Table

TABLE 6. Comparison of calculated V2o values with those previously reported in the literature for aqueous solutions of Pr(ClO4)3, Gd(ClO4)3, Ho(ClO4)3, and Tm(ClO4)3 at selected temperatures and p=0.1 MPa Full Size Table

TABLE 7. Estimates of parameters to equations ((8), (9) and (10)) which model the temperature dependences of Vsmall phi, Greek,2 values for aqueous solutions of Pr(ClO4)3, Gd(ClO4)3, Ho(ClO4)3, and Tm(ClO4)3 at p=0.1 MPa Full Size Table

TABLE 8. Comparison of calculated Cp2o values with those previously reported in the literature for aqueous solutions of Pr(ClO4)3, Gd(ClO4)3, Ho(ClO4)3, and Tm(ClO4)3 at selected temperatures and p=0.1 MPa Full Size Table

TABLE 9. Estimates of parameters to equations ((12), (13) and (14)) which model the temperature dependences of Cpsmall phi, Greek,2 values for aqueous solutions of Pr(ClO4)3, Gd(ClO4)3, Ho(ClO4)3, and Tm(ClO4)3 at p=0.1 MPa Full Size Table

TABLE 10. A comparison of literature and calculated V2o(R3+(aq)) and Cp2o(R3+(aq)) values for R3+(aq)=(Pr3+(aq), Gd3+(aq), Ho3+(aq), and Tm3+(aq)) at T=(288.15, 298.15, 313.15, and 328.15) K and p=0.1 MPa Full Size Table

References

1. J.-L. Sabot and P. Maestro. In: (fourth ed.),M. Howe-Grant, Editor, Kirk-Othmer Encyclopedia of Chemical Technology vol. 14, Wiley-Interscience, New York (1995), pp. 1091–1115.

2. A.G.M. Barrett, D.C. Braddock, J.P. Henschke and E.R. Walker. J. Chem. Soc. Perkin Trans. 1 (1999), pp. 873–878.

3. R.A. Marriott, A.W. Hakin and J.A. Rard. J. Chem. Thermodyn. 33 (2001), pp. 643–687.

4. A.W. Hakin, M.J. Lukacs, J.L. Liu, K. Erickson and A. Madhavji. J. Chem. Thermodyn. 35 (2003), pp. 775–802.

5. A.W. Hakin, M.J. Lukacs, J.L. Liu and K. Erickson. J. Chem. Thermodyn. 35 (2003), pp. 1861–1895.

6. C. Xiao and P.R. Tremaine. J. Chem. Thermodyn. 28 (1996), pp. 43–66.

7. Z. Chen and C. Detellier. J. Solution Chem. 21 (1992), pp. 941–952.

8. D.A. Skoog, D.M. West, F.J. Holler and S.R. Crouch. In: Analytical Chemistry: An Introduction (seventh ed.), Saunders College Publishing, Harcourt Inc. (2000), p. 742.

9. Handbook of Chemistry and Physics, 41st ed., Chemical Rubber Publishing Co., Cleveland, OH, 1959–1960, p. 2132

10. G.S. Kell. J. Chem. Eng. Data 12 (1967), pp. 66–69.

11. J.E. Desnoyers, C. De Vissier, G. Perron and P. Picker. J. Solution Chem. 5 (1976), pp. 605–616.

12. H.F. Stimson. Am. J. Phys. 23 (1955), pp. 614–622.

13. T.F. Young and M.B. Smith. J. Phys. Chem. 58 (1954), pp. 716–724.

14. J.K. Hovey, Ph.D. Thesis, The University of Alberta, Canada, 1988

15. F.H. Spedding, P.F. Cullen and A. Habenschuss. J. Phys. Chem. 78 (1974), pp. 1106–1110.

16. F.H. Spedding, L.E. Shiers, M.A. Brown, J.L. Derer, D.L. Swanson and A. Habenschuss. J. Chem. Eng. Data 20 (1975), pp. 81–88.

17. K.S. Pitzer, Activity Coefficients in Electrolyte Solutions. (second ed.), CRC Press, Boca Raton (1991).

18. D.G. Archer and P. Wang. J. Phys. Chem. Ref. Data 19 (1990), pp. 371–411.

19. J.C. Tanger and H.C. Helgeson. Am. J. Sci. 288 (1988), pp. 19–98.

20. F.H. Spedding, J.L. Baker and J.P. Walters. J. Chem. Eng. Data 20 (1975), pp. 189–195.

21. C. Xiao and P.R. Tremaine. J. Chem. Thermodyn. 29 (1997), pp. 827–852.

22. E.L. Shock and H.C. Helgeson. Geochim. Cosmochim. Acta 52 (1988), pp. 2009–2036.

23. F.J. Waller, A.G.M. Barrett, D.C. Braddock and D. Ramprasad. Chem. Commun. (1997), pp. 613–614.


Corresponding Author Contact InformationCorresponding author. Tel.: +1-403-329-2083; fax: +1-403-329-2057



This Document
SummaryPlus
Full Text + Links
PDF (314 K)
Actions
E-mail Article
The Journal of Chemical Thermodynamics
Volume 36, Issue 9 , September 2004, Pages 773-786


Results ListPrevious 5 of 8 Next
HomeBrowse JournalsBrowse Abstract DatabasesBrowse BooksBrowse Reference WorksMy ProfileAlertsHelp (Opens New Window)

Feedback  |  Terms & Conditions  |  Privacy Policy

Copyright © 2004 Elsevier B.V. All rights reserved. ScienceDirect® is a registered trademark of Elsevier B.V.
ScienceDirect - The Journal of Chemical Thermodynamics : Molar heat capacity and thermodynamic properties of 1-cyclohexene-1,2-dicarboxylic anhydride [C8H8O3]
Go to ScienceDirect® Home Skip Main Navigation Links
 Register or Login:   Password:  
   
   
HomeBrowse JournalsBrowse Abstract DatabasesBrowse BooksBrowse Reference WorksMy ProfileAlertsHelp (Opens New Window)
 Quick Search:  within Quick Search searches abstracts, titles, keywords, and authors. Click here for more information.
Results List Previous  6 of 8  Next
The Journal of Chemical Thermodynamics
Volume 36, Issue 9 , September 2004, Pages 787-792

This Document
SummaryPlus
Full Text + Links
PDF (212 K)
Actions
E-mail Article

doi:10.1016/j.jct.2004.05.008    How to Cite or Link Using DOI (Opens New Window)  
Copyright © 2004 Elsevier Ltd. All rights reserved.

Molar heat capacity and thermodynamic properties of 1-cyclohexene-1,2-dicarboxylic anhydride [C8H8O3]

Xue-Chuan Lv, Zhi-Cheng TanCorresponding Author Contact Information, E-mail The Corresponding Author, E-mail The Corresponding Author, You-Ying Di, Quan Shi, Li-Xian Sun and Tao Zhang

Thermochemistry Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

Received 16 April 2004;  accepted 25 May 2004.  Available online 2 July 2004.


Abstract

The molar heat capacity Cp,m of 1-cyclohexene-1,2-dicarboxylic anhydride was measured in the temperature range from T=(80 to 360) K with a small sample automated adiabatic calorimeter. The melting point Tm, the molar enthalpy ΔfusHm and the entropy ΔfusSm of fusion for the compound were determined to be (343.46 ± 0.24) K, (11.88 ± 0.02) kJ · mol−1 and (34.60 ± 0.06) J · K−1 · mol−1, respectively. The thermodynamic functions [H(T)H(298.15)] and [S(T)S(298.15)] were derived in the temperature range from T=(80 to 360) K with temperature interval of 5 K. The mass fraction purity of the sample used in the adiabatic calorimetric study was determined to be 0.9928 by using the fractional melting technique. The thermal stability of the compound was investigated by differential scanning calorimeter (DSC) and thermogravimetric (TG) technique, and the process of the mass-loss of the sample was due to the evaporation, instead of its thermal decomposition.

Author Keywords: 1-Cyclohexene-1,2-dicarboxylic anhydride; Adiabatic calorimeter; Low-temperature heat capacity; Purity determination; Thermal analysis


Article Outline

1. Introduction
2. Experimental
2.1. Sample
2.2. Adiabatic calorimetry
2.3. DSC and TG technique
3. Results and discussion
3.1. Molar heat capacity and thermodynamic functions
3.2. The purity determination of 3,4,5,6-THPA
3.3. The results of DSC and TG analysis
Acknowledgements
References



Enlarge Image
(8K)
FIGURE 1. Experimental molar heat-capacity plotted against temperature for the sample 3,4,5,6-THPA. The "blacksquare sq bullet, filled" represents the first series of heat capacity measurement; "o", the second series of heat-capacity measurement and "triangle up triangle, open", the third series of heat-capacity measurement.

Enlarge Image
(6K)
FIGURE 2. Plot of melting temperature against reciprocal mass fraction melted for 3,4,5,6-THPA.

Enlarge Image
(4K)
FIGURE 3. DSC curve of 3,4,5,6-THPA.

Enlarge Image
(4K)
FIGURE 4. TG-DTG curve of 3,4,5,6-THPA.



TABLE 1. Experimental molar heat capacities of 3,4,5,6-THPA (M=152.16 g · mol−1) (R=8.314427 J · mol−1 · K−1)a Full Size Table

TABLE 2. The results of melting obtained from three series of heat capacity measurements of the sample Full Size Table

TABLE 3. The thermodynamic functions of 3,4,5,6-THPA (R=8.314427 J · mol−1 · K−1)a Full Size Table

TABLE 4. The experimental results of melting fractions and equilibrium temperatures of 3,4,5,6-THPA [F=q/(ΔHm·n)] Full Size Table

References

1. G. Lubin, Handbook of Composites. , Van Nostrand Reinhold, New York (1982) pp. 57–88 .

2. D.J. Liaw. J. Polym. Sci. A 63 (1997), pp. 895–899.

3. P. Guerrero, K. De la Caba, A. Valea, M.A. Corcuera and L. Mondragon. Polymer 37 (1996), pp. 2195–2200.

4. Z.-C. Tan, G.-Y. Sun, Y. Sun et al.. J. Therm. Anal. 45 (1995), pp. 59–67.

5. Z.-C. Tan, G.-Y. Sun, Y.-J. Song, L. Wang, J.-R. Han, Y.-S. Liu et al.. Thermochim. Acta 252–253 (2000), pp. 247–253.

6. Z.-C. Tan, L.-X. Sun, S.-H. Meng, L. Li, P. Yu, B.-P. Liu and J.-B. Zhang. J. Chem. Thermodyn. 34 (2002), pp. 1417–1429.

7. Y.-Y. Di, Z.-C. Tan, X.-H. Sun, M.-H. Wang et al.. J. Chem. Thermodyn. 36 (2004), pp. 79–86.

8. D.G. Archer. J. Phys. Chem. Ref. Data 22 (1993), pp. 1441–1452.

9. Z.-C. Tan, J. Ye, A. Yin, S. Chen and W. Wang. Kexue Tongbao 32 (1987), pp. 240–246.

10. E.J. Ouinn. J. Am. Chem. Soc. 49 (1972), p. 2704.

11. Z.Y. Zhang, M. Frenkel, K.N. Marsh, R.C. Wilhoit, L. Bornstein. Thermodynamic Properties of Organic Compounds and their Mixtures, group IV, vol. 8, subvol. A, Springer, Berlin, 1995, pp. 7–9

12. J.M. Peter and N.T. Barry. J. Phys. Chem. Ref. Data 28 6 (1999), pp. 1713–1852.


Corresponding Author Contact InformationCorresponding author. Fax: +86-411-469-1570



This Document
SummaryPlus
Full Text + Links
PDF (212 K)
Actions
E-mail Article
The Journal of Chemical Thermodynamics
Volume 36, Issue 9 , September 2004, Pages 787-792


Results ListPrevious 6 of 8 Next
HomeBrowse JournalsBrowse Abstract DatabasesBrowse BooksBrowse Reference WorksMy ProfileAlertsHelp (Opens New Window)

Feedback  |  Terms & Conditions  |  Privacy Policy

Copyright © 2004 Elsevier B.V. All rights reserved. ScienceDirect® is a registered trademark of Elsevier B.V.
ScienceDirect - The Journal of Chemical Thermodynamics : Thermodynamic evaluation and optimization of the (MgCl2 + CaCl2 + MnCl2 + FeCl2 + CoCl2 + NiCl2) system
Go to ScienceDirect® Home Skip Main Navigation Links
 Register or Login:   Password:  
   
   
HomeBrowse JournalsBrowse Abstract DatabasesBrowse BooksBrowse Reference WorksMy ProfileAlertsHelp (Opens New Window)
 Quick Search:  within Quick Search searches abstracts, titles, keywords, and authors. Click here for more information.
Results List Previous  7 of 8  Next
The Journal of Chemical Thermodynamics
Volume 36, Issue 9 , September 2004, Pages 793-808

This Document
SummaryPlus
Full Text + Links
PDF (478 K)
Actions
E-mail Article

doi:10.1016/j.jct.2004.05.004    How to Cite or Link Using DOI (Opens New Window)  
Copyright © 2004 Elsevier Ltd. All rights reserved.

Thermodynamic evaluation and optimization of the (MgCl2 + CaCl2 + MnCl2 + FeCl2 + CoCl2 + NiCl2) system

Christian RobelinCorresponding Author Contact Information, E-mail The Corresponding Author, Patrice Chartrand and Arthur D. Pelton

Centre for Research in Computational Thermochemistry (CRCT), Ecole Polytechnique, C.P. 6079, Succursale "Downtown", Montreal Que., Canada H3C 3A7

Available online 11 June 2004.


Abstract

A complete critical evaluation of all available phase diagram and thermodynamic data has been performed for all condensed phases of the (MgCl2 + CaCl2 + MnCl2 + FeCl2 + CoCl2 + NiCl2) system, and optimized model parameters have been found. The model parameters obtained for the binary subsystems can be used to predict thermodynamic properties and phase equilibria for the multicomponent system. The Modified Quasichemical Model was used for the molten salt phase, and the (MgCl2 + MnCl2 + FeCl2 + CoCl2 + NiCl2) solid solution was modeled using a cationic substitutional model with an ideal entropy and an excess Gibbs free energy expressed as a polynomial in the component mole fractions. This is the first of two articles on the optimization of the (NaCl + KCl + MgCl2 + CaCl2 + MnCl2 + FeCl2 + CoCl2 + NiCl2) system.

Author Keywords: Molten chlorides; Transition metal chlorides; Hot corrosion; Thermodynamic modeling; Thermodynamic database


Article Outline

1. Introduction
2. Thermodynamic data for the pure compounds
3. Thermodynamic model for the liquid phase
4. Thermodynamic model for the solid solution
5. Binary systems
5.1. The (MgCl2 + CaCl2) system
5.2. The (MgCl2 + MnCl2) system
5.3. The (FeCl2 + MgCl2) system
5.4. The (CoCl2 + MgCl2) system
5.5. The (CaCl2 + MnCl2) system
5.6. The (FeCl2 + CaCl2) system
5.7. The (CaCl2 + CoCl2) system
5.8. The (FeCl2 + MnCl2) system
5.9. The (CoCl2 + MnCl2) system
5.10. The (FeCl2 + CoCl2) system
5.11. Binary systems involving NiCl2
5.11.1. The (CaCl2 + NiCl2) system
5.11.2. The (CoCl2 + NiCl2) system
5.11.3. The (MnCl2 + NiCl2) system
5.11.4. The (FeCl2 + NiCl2) system
5.11.5. The (MgCl2 + NiCl2) system
6. Multicomponent systems
6.1. The (FeCl2 + MgCl2 + MnCl2) system
6.2. The (CaCl2 + MgCl2 + MnCl2) system
7. Discussion
8. Conclusions
Acknowledgements
References



Enlarge Image
(6K)
FIGURE 1. Calculated (MgCl2 + CaCl2) phase diagram, temperature versus mole fraction of CaCl2.

Enlarge Image
(7K)
FIGURE 2. Calculated (MgCl2 + MnCl2) phase diagram, temperature versus mole fraction of MnCl2. •, Sandonnini [18] (liquidus); Δ, Il'ichev and Vladimirova [19] (liquidus); square, open, Korzhukov et al. [20].

Enlarge Image
(5K)
FIGURE 3. Calculated enthalpy of mixing of the (MgCl2 + MnCl2) liquid versus the mole fraction of MnCl2 at 810 °C. Experimental data (•) from Papatheodorou and Kleppa [21].

Enlarge Image
(7K)
FIGURE 4. Calculated (FeCl2 + MgCl2) phase diagram, temperature versus mole fraction of MgCl2. Δ, Il'ichev and Vladimirova [19] (liquidus); •, Ferrari and Carugati [22] (liquidus); square, open, Korzhukov et al. [23].

Enlarge Image
(6K)
FIGURE 5. Calculated enthalpy of mixing of the (FeCl2 + MgCl2) liquid versus the mole fraction of MgCl2 at 810 °C. Experimental data (•) from Papatheodorou and Kleppa [21].

Enlarge Image
(6K)
FIGURE 6. Calculated activity of FeCl2 (relative to liquid standard state) in the (FeCl2 + MgCl2) liquid versus the mole fraction of MgCl2 at 810 °C. Experimental data (•) from Burylev and Gershunina [24]. (Thin line is ideal activity line)

Enlarge Image
(6K)
FIGURE 7. Calculated (CoCl2 + MgCl2) phase diagram, temperature versus mole fraction of MgCl2. Experimental data (•) from Ferrari and Inganni [10] (liquidus).

Enlarge Image
(6K)
FIGURE 8. Calculated enthalpy of mixing of the (CoCl2 + MgCl2) liquid versus the mole fraction of MgCl2 at 810 °C. Experimental data (•) from Papatheodorou and Kleppa [21].

Enlarge Image
(6K)
FIGURE 9. Calculated (CaCl2 + MnCl2) phase diagram, temperature versus mole fraction of MnCl2. •, Ferrari and Inganni [11]; Δ, Il'ichev and Vladimirova [19]; square, open, Sandonnini [25].

Enlarge Image
(5K)
FIGURE 10. Calculated enthalpy of mixing of the (CaCl2 + MnCl2) liquid versus the mole fraction of MnCl2 at 810 °C. Experimental data (•) from Papatheodorou and Kleppa [21].

Enlarge Image
(6K)
FIGURE 11. Calculated (FeCl2 + CaCl2) phase diagram, temperature versus mole fraction of CaCl2. Experimental data (•) from Ferrari and Inganni [11].

Enlarge Image
(6K)
FIGURE 12. Calculated enthalpy of mixing of the (FeCl2 + CaCl2) liquid versus the mole fraction of CaCl2 at 810 °C. Experimental data (•) from Papatheodorou and Kleppa [21].

Enlarge Image
(6K)
FIGURE 13. Calculated activity of FeCl2 (relative to liquid standard state) in the (FeCl2 + CaCl2) liquid versus the mole fraction of CaCl2 at 727 °C and 810 °C. •, Burylev and Gershunina [24] (810 °C); square, open, Ernst et al. [26] (727 °C). (Thin line is ideal activity line)

Enlarge Image
(6K)
FIGURE 14. Calculated (CaCl2 + CoCl2) phase diagram, temperature versus mole fraction of CoCl2. Experimental data (•) from Ferrari and Inganni [11].

Enlarge Image
(5K)
FIGURE 15. Calculated enthalpy of mixing of the (CaCl2 + CoCl2) liquid versus the mole fraction of CoCl2 at 810 °C. Experimental data (•) from Papatheodorou and Kleppa [21].

Enlarge Image
(5K)
FIGURE 16. Calculated (FeCl2 + MnCl2) phase diagram, temperature versus mole fraction of MnCl2. Experimental data (•) from Ferrari et al. [12] (liquidus).

Enlarge Image
(6K)
FIGURE 17. Calculated (CoCl2 + MnCl2) phase diagram, temperature versus mole fraction of MnCl2. Experimental data (•) from Ferrari and Inganni [10].

Enlarge Image
(6K)
FIGURE 18. Calculated enthalpy of mixing of the (CoCl2 + MnCl2) liquid versus the mole fraction of MnCl2 at 810 °C. Experimental data (•) from Papatheodorou and Kleppa [21].

Enlarge Image
(6K)
FIGURE 19. Calculated (FeCl2 + CoCl2) phase diagram, temperature versus mole fraction of CoCl2. Experimental data (•) from Ferrari et al. [12] (liquidus).

Enlarge Image
(6K)
FIGURE 20. Calculated enthalpy of mixing of the (FeCl2 + CoCl2) liquid versus the mole fraction of CoCl2 at 810 °C. Experimental data (•) from Papatheodorou and Kleppa [21].

Enlarge Image
(7K)
FIGURE 21. Calculated (CaCl2 + NiCl2) phase diagram, temperature versus mole fraction of NiCl2. Experimental data (•) from Tsemekhman et al. [29].

Enlarge Image
(8K)
FIGURE 22. Calculated (CoCl2 + NiCl2) phase diagram, temperature versus mole fraction of NiCl2. circle, open, Bol'shakov et al. [13]; •, Korzhukov and Khomyakov [14]; Δ, Moskalenko [31].

Enlarge Image
(7K)
FIGURE 23. Calculated (MnCl2 + NiCl2) phase diagram, temperature versus mole fraction of NiCl2. Experimental data (•) from Korzhukov and Khomyakov [32].

Enlarge Image
(4K)
FIGURE 24. Calculated enthalpy of mixing for MnCl2(liquid) + NiCl2(solid)=(liquid solution) versus the mole fraction of NiCl2 at 810 °C. Experimental data (•) from Papatheodorou and Kleppa [33].

Enlarge Image
(8K)
FIGURE 25. Calculated (FeCl2 + NiCl2) phase diagram, temperature versus mole fraction of NiCl2. Experimental data (•) from Korzhukov and Khomyakov [34].

Enlarge Image
(7K)
FIGURE 26. Calculated (MgCl2 + NiCl2) phase diagram, temperature versus mole fraction of NiCl2. Experimental data (•) from Safonov and Mireev [35].

Enlarge Image
(6K)
FIGURE 27. Calculated section of the (FeCl2 + MgCl2 + MnCl2) phase diagram at constant mass ratio FeCl2/(FeCl2 + MnCl2) of 0.25, temperature versus mass fraction of MgCl2. Experimental data (•) from Il'ichev and Vladimirova [19] (liquidus).

Enlarge Image
(6K)
FIGURE 28. Calculated section of the (FeCl2 + MgCl2 + MnCl2) phase diagram at constant mass ratio FeCl2/(FeCl2 + MnCl2) of 0.50, temperature versus mass fraction of MgCl2. Experimental data (•) from Il'ichev and Vladimirova [19] (liquidus).

Enlarge Image
(5K)
FIGURE 29. Calculated section of the (FeCl2 + MgCl2 + MnCl2) phase diagram at constant mass ratio FeCl2/(FeCl2 + MnCl2) of 0.75, temperature versus mass fraction of MgCl2. Experimental data (•) from Il'ichev and Vladimirova [19] (liquidus).

Enlarge Image
(7K)
FIGURE 30. Calculated section of the (CaCl2 + MgCl2 + MnCl2) phase diagram at constant MnCl2 mass fraction of 0.10, temperature versus mass fraction of MgCl2. Experimental data (•) from Il'ichev and Vladimirova [19].

Enlarge Image
(7K)
FIGURE 31. Calculated section of the (CaCl2 + MgCl2 + MnCl2) phase diagram at constant MnCl2 mass fraction of 0.20, temperature versus mass fraction of MgCl2. Experimental data (•) from Il'ichev and Vladimirova [19].

Enlarge Image
(7K)
FIGURE 32. Calculated section of the (CaCl2 + MgCl2 + MnCl2) phase diagram at constant MnCl2 mass fraction of 0.30, temperature versus mass fraction of MgCl2. Experimental data (•) from Il'ichev and Vladimirova [19].

Enlarge Image
(7K)
FIGURE 33. Calculated section of the (CaCl2 + MgCl2 + MnCl2) phase diagram at constant MnCl2 mass fraction of 0.40, temperature versus mass fraction of MgCl2. Experimental data (•) from Il'ichev and Vladimirova [19].

Enlarge Image
(6K)
FIGURE 34. Calculated section of the (CaCl2 + MgCl2 + MnCl2) phase diagram at constant MnCl2 mass fraction of 0.50, temperature versus mass fraction of MgCl2. Experimental data (•) from Il'ichev and Vladimirova [19].

Enlarge Image
(7K)
FIGURE 35. Calculated section of the (CaCl2 + MgCl2 + MnCl2) phase diagram at constant mass ratio MgCl2/(MgCl2 + CaCl2) of 0.33, temperature versus mass fraction of MnCl2. Experimental data (•) from Il'ichev and Vladimirova [19].

Enlarge Image
(7K)
FIGURE 36. Calculated section of the (CaCl2 + MgCl2 + MnCl2) phase diagram at constant mass ratio MgCl2/(MgCl2 + CaCl2) of 0.50, temperature versus mass fraction of MnCl2. Experimental data (•) from Il'ichev and Vladimirova [19].

Enlarge Image
(7K)
FIGURE 37. Calculated section of the (CaCl2 + MgCl2 + MnCl2) phase diagram at constant mass ratio MgCl2/(MgCl2 + CaCl2) of 0.67, temperature versus mass fraction of MnCl2. Experimental data (•) from Il'ichev and Vladimirova [19].

Enlarge Image
(11K)
FIGURE 38. Calculated liquidus projection of the (CaCl2 + MgCl2 + MnCl2) system.

Enlarge Image
(8K)
FIGURE 39. Predicted liquidus projection of the (FeCl2 + MnCl2 + CoCl2) system.

Enlarge Image
(10K)
FIGURE 40. Predicted liquidus projection of the (FeCl2 + CoCl2 + NiCl2) system.

Enlarge Image
(10K)
FIGURE 41. Predicted liquidus projection of the (MnCl2 + CoCl2 + NiCl2) system.

Enlarge Image
(10K)
FIGURE 42. Predicted liquidus projection of the (FeCl2 + MnCl2 + NiCl2) system.

Enlarge Image
(9K)
FIGURE 43. Calculated phase diagram for a solid alloy consisting of mass fractions of 0.80 Fe, 0.10 Ni, 0.05 Mn and 0.05 Co, exposed to chlorine.



TABLE 1. Thermodynamic properties of compounds Full Size Table

TABLE 2. Ionic radii (in nm) [16] of cations for a coordination number of 6 (octahedral geometry) Full Size Table

References

1. A.D. Pelton, S.A. Degterov, G. Eriksson, C. Robelin and Y. Dessureault. Metall. Mater. Trans. 31B (2000), pp. 651–659.

2. A.D. Pelton and P. Chartrand. Metall. Mater. Trans. 32A (2001), pp. 1355–1360.

3. P. Chartrand and A.D. Pelton. Can. Metall. Quart. 39 4 (2000), pp. 405–420.

4. P. Chartrand and A.D. Pelton. Metall. Mater. Trans. 32A (2001), pp. 1361–1383.

5. P. Chartrand and A.D. Pelton. Can. Metall. Quart. 40 1 (2001), pp. 13–32.

6. H. Flood and J. Urnes. Z. Elektrochem. 59 (1955), p. 834.

7. A.D. Pelton and W.T. Thompson. Can. J. Chem. 48 10 (1970), pp. 1585–1597.

8. M.W. Chase, Jr., C.A. Davies, J.R. Downey, Jr., D.J. Frurip, R.A. McDonald, A.N. Syverud, in: JANAF Thermochemical Tables, 3rd ed., J. Phys. Chem. Ref. Data 14 (1) 1985

9. I. Barin, Thermochemical Data of Pure Substances. , VCH, Weinheim, Basel (Switzerland), Cambridge, New York (1989).

10. A. Ferrari and A. Inganni. Atti della Reale Accad. dei Lincei 6 8 (1928), p. 238.

11. A. Ferrari and A. Inganni. Atti della Reale Accad. dei Lincei 6 10 (1929), p. 253.

12. A. Ferrari, A. Celeri and F. Giorgi. Atti della Reale Accad. dei Lincei 6 9 (1929), p. 782.

13. K.A. Bol'shakov, P.I. Fedorov and G.D. Agashkina. Russ. J. Inorg. Chem. 3 8 (1958), pp. 235–241.

14. N.G. Korzhukov and K.G. Khomyakov. Vestn. Mosk. Univ., Ser. II 21 5 (1966), pp. 53–56.

15. J.P. Coughlin. J. Am. Chem. Soc. 73 (1951), p. 5314.

16. R.D. Shannon. Acta Crystallogr. 32A (1976), pp. 751–767.

17. P. Chartrand and A.D. Pelton. J. Phase Equil. 21 2 (2000), pp. 141–147.

18. C. Sandonnini. Atti della Reale Accad. dei Lincei 5 21 (1912), p. 634.

19. V.A. Il'ichev and A.M. Vladimirova. Titan i Ego Splavy, Akad. Nauk SSSR, Inst. Met. 5 (1961), pp. 148–166.

20. N.G. Korzhukov, M.I. Ozerova, K.G. Khomyakov and L.D. Onikienko. Vestn. Mosk. Univ. 4 (1965), pp. 59–60.

21. G.N. Papatheodorou and O.J. Kleppa. J. Chem. Phys. 51 10 (1969), pp. 4624–4632.

22. A. Ferrari and M. Carugati. Atti della Reale Accad. dei Lincei 6 8 (1928), p. 306.

23. N.G. Korzhukov, M.I. Ozerova, K.G. Khomyakov and L.D. Onikienko. Russ. J. Inorg. Chem. 11 1 (1966), pp. 110–111.

24. B.P. Burylev and V.Ya. Gershunina. Fiz. Khim. Elektrokhim. Rasplavl. Tverd. Elektrolitov 1 (1979), pp. 108–110.

25. C. Sandonnini. Atti della Reale Accad. dei Lincei 5 20 (1911), p. 496.

26. W. Ernst, H. Flood and T. Nervik. Z. Anorg. Allg. Chem. 363 (1968), pp. 89–104.

27. I. Barin, O. Knacke and O. Kubaschewski, Thermochemical Properties of Inorganic Substances (Supplement). , Springer-Verlag, Berlin (1977).

28. I. Barin, O. Knacke and O. Kubaschewski, Thermochemical Properties of Inorganic Substances. , Springer-Verlag, Berlin (1973).

29. L.Sh. Tsemekhman, M.A. Nemoitin and S.E. Vaisburd. J. Appl. Chem. USSR 42 6 (1969), pp. 1321–1322.

30. H. Schaefer. Z. Anorg. Allg. Chem. 278 (1955), p. 300.

31. L.G. Moskalenko. Tsvetn. Met. 30 12 (1957), pp. 39–40.

32. N.G. Korzhukov and K.G. Khomyakov. Russ. J. Inorg. Chem. 12 3 (1967), pp. 413–414.

33. G.N. Papatheodorou and O.J. Kleppa. J. Inorg. Nucl. Chem. 32 (1970), pp. 889–900.

34. N.G. Korzhukov and K.G. Khomyakov. Vestn. Mosk. Univ., Ser. Khim. 4 (1966), pp. 68–71.

35. V.V. Safonov and V.A. Mireev. Russ. J. Inorg. Chem. 31 2 (1986), pp. 306–307.

36. A.D. Pelton, C.W. Bale, W.T. Thompson: F*A*C*T (Facility for the Analysis of Chemical Thermodynamics), Ecole Polytechnique, Montreal, 2004. Available from Image


Corresponding Author Contact InformationCorresponding author. Tel.: +1-514-340-4711x4304; fax: +1-514-340-5840



This Document
SummaryPlus
Full Text + Links
PDF (478 K)
Actions
E-mail Article
The Journal of Chemical Thermodynamics
Volume 36, Issue 9 , September 2004, Pages 793-808


Results ListPrevious 7 of 8 Next
HomeBrowse JournalsBrowse Abstract DatabasesBrowse BooksBrowse Reference WorksMy ProfileAlertsHelp (Opens New Window)

Feedback  |  Terms & Conditions  |  Privacy Policy

Copyright © 2004 Elsevier B.V. All rights reserved. ScienceDirect® is a registered trademark of Elsevier B.V.
ScienceDirect - The Journal of Chemical Thermodynamics : Thermodynamic evaluation and optimization of the (NaCl + KCl + MgCl2 + CaCl2 + MnCl2 + FeCl2 + CoCl2 + NiCl2) system
Go to ScienceDirect® Home Skip Main Navigation Links
 Register or Login:   Password:  
   
   
HomeBrowse JournalsBrowse Abstract DatabasesBrowse BooksBrowse Reference WorksMy ProfileAlertsHelp (Opens New Window)
 Quick Search:  within Quick Search searches abstracts, titles, keywords, and authors. Click here for more information.
Results List Previous  8 of 8  No Next Document
The Journal of Chemical Thermodynamics
Volume 36, Issue 9 , September 2004, Pages 809-828

This Document
SummaryPlus
Full Text + Links
PDF (609 K)
Actions
E-mail Article

doi:10.1016/j.jct.2004.05.005    How to Cite or Link Using DOI (Opens New Window)  
Copyright © 2004 Elsevier Ltd. All rights reserved.

Thermodynamic evaluation and optimization of the (NaCl + KCl + MgCl2 + CaCl2 + MnCl2 + FeCl2 + CoCl2 + NiCl2) system

Christian RobelinCorresponding Author Contact Information, E-mail The Corresponding Author, Patrice Chartrand and Arthur D. Pelton

Centre for Research in Computational Thermochemistry (CRCT), Ecole Polytechnique, C.P. 6079, Succursale "Downtown", Montreal, Que., Canada H3C 3A7

Received 20 October 2003;  Revised 30 April 2004;  accepted 4 May 2004.  Available online 7 July 2004.


Abstract

A complete critical evaluation of all available phase diagram and thermodynamic data has been performed for all condensed phases of the (NaCl + KCl + MgCl2 + CaCl2 + MnCl2 + FeCl2 + CoCl2 + NiCl2) system, and optimized model parameters have been found. The (MgCl2 + CaCl2 + MnCl2 + FeCl2 + CoCl2 + NiCl2) subsystem has been critically evaluated in a previous article. The model parameters obtained for the binary subsystems can be used to predict thermodynamic properties and phase equilibria for the multicomponent system. The Modified Quasichemical Model was used for the molten salt phase, and the (MgCl2 + MnCl2 + FeCl2 + CoCl2 + NiCl2) solid solution was modeled using a cationic substitutional model with an ideal entropy and an excess Gibbs free energy expressed as a polynomial in the component mole fractions. Finally, the (Na,K)(Mg,Ca,Mn,Fe,Co,Ni)Cl3 and the (Na,K)2(Mg,Mn,Fe,Co,Ni)Cl4 solid solutions were modeled using the Compound Energy Formalism.

Author Keywords: Molten chlorides; Transition metal chlorides; Hot corrosion; Thermodynamic modeling; Thermodynamic database


Article Outline

1. Introduction
2. Thermodynamic data for the pure compounds
3. Thermodynamic model for the liquid phase
4. Thermodynamic model for the solid solutions
5. Binary mixtures of divalent metal chlorides with NaCl
5.1. The (NaCl + MnCl2) system
5.2. The (NaCl + FeCl2) system
5.3. The (NaCl + CoCl2) system
5.4. The (NaCl + NiCl2) system
6. Binary mixtures of divalent metal chlorides with KCl
6.1. The (KCl + MnCl2) system
6.2. The (KCl + FeCl2) system
6.3. The (KCl + CoCl2) system
6.4. The (KCl + NiCl2) system
7. Ternary systems (NaCl + KCl + MCl2) with M=Mg, Ca, Mn, Fe, Co and Ni
7.1. The (NaCl + KCl + MnCl2) system
7.2. The (NaCl + KCl + FeCl2) system
7.3. The (NaCl + KCl + CoCl2) system
7.4. The (NaCl + KCl + NiCl2) system
8. Other ternary and quaternary systems
8.1. The (NaCl + MgCl2 + FeCl2) system
8.2. The (NaCl + CaCl2 + FeCl2) system
8.3. The (KCl + CaCl2 + FeCl2) system
8.4. The (NaCl + CoCl2 + NiCl2) system
8.5. The (KCl + CoCl2 + NiCl2) system
8.6. The (KCl + MgCl2 + NiCl2) and (NaCl + KCl + MgCl2 + NiCl2) systems
8.7. The (NaCl + MgCl2 + CaCl2 + MnCl2) system
9. Multicomponent system (NaCl + KCl + MgCl2 + CaCl2 + MnCl2 + FeCl2 + CoCl2 + NiCl2)
10. Conclusions
Acknowledgements
References



Enlarge Image
(8K)
FIGURE 1. Calculated enthalpy of mixing of the (KCl + MCl2) binary liquids (M=Mg, Ca, Mn, Fe, Co, Ni) versus the mole fraction of MCl2. Østvold [7]: •, CaCl2 (810 °C). Kleppa and McCarty [8]: o, MgCl2 (800 °C). Papatheodorou and Kleppa [9]: blacktriangle up tri, filled, MnCl2 (810 °C); triangledown down triangle, open, FeCl2 (810 °C); square, open, CoCl2 (810 °C). Dotted curve: NiCl2 (810 °C).

Enlarge Image
(10K)
FIGURE 2. Calculated entropy of mixing of the (KCl + MCl2) binary liquids (M=Mg, Ca, Mn, Fe, Co, Ni) versus the mole fraction of MCl2.

Enlarge Image
(9K)
FIGURE 3. Calculated enthalpy of mixing of the (NaCl + MCl2) binary liquids (M=Mg, Ca, Mn, Fe, Co, Ni) versus the mole fraction of MCl2 at 810 °C. Østvold [7]: •, CaCl2. Kleppa and McCarty [8]: o, MgCl2. Papatheodorou and Kleppa [9]: triangle up triangle, open, MnCl2; triangledown down triangle, open, FeCl2; square, open, CoCl2. Dotted curve: NiCl2.

Enlarge Image
(9K)
FIGURE 4. Calculated entropy of mixing of the (NaCl + MCl2) binary liquids (M=Mg, Ca, Mn, Fe, Co, Ni) versus the mole fraction of MCl2 at 810 °C.

Enlarge Image
(10K)
FIGURE 5. Calculated (NaCl + MnCl2) phase diagram, temperature versus mole fraction of MnCl2. o, Sandonnini and Scarpa [16]; triangledown down triangle, open, Safonov et al. [17]; +, Yakovleva et al. [18]; triangle up triangle, open, Seifert and Koknat [19]; square, open, Seifert and Flohr [20].

Enlarge Image
(6K)
FIGURE 6. Calculated activity of NaCl (relative to liquid standard state) in the (NaCl + MnCl2) liquid versus the mole fraction of MnCl2 at 612 °C and 812 °C. Experimental data from Østvold [25]: square, open, 612 °C; •, 812 °C.

Enlarge Image
(8K)
FIGURE 7. Calculated (NaCl + FeCl2) phase diagram, temperature versus mole fraction of FeCl2. o, Ionov et al. [26]; square, open, Galitskii et al. [27].

Enlarge Image
(5K)
FIGURE 8. Calculated activity coefficient of FeCl2 (relative to liquid standard state) in the (NaCl + FeCl2) liquid versus the mole fraction of FeCl2 at 820 °C and 920 °C. Experimental data from Kuhnl and Besenbruch [29]: o, 820 °C; •, 920 °C.

Enlarge Image
(8K)
FIGURE 9. Calculated (NaCl + CoCl2) phase diagram, temperature versus mole fraction of CoCl2. o, Bol'shakov et al. [30]; •, Seifert and Thiel [31] (smoothed data).

Enlarge Image
(7K)
FIGURE 10. Calculated activity of NaCl (relative to liquid standard state) in the (NaCl + CoCl2) liquid versus the mole fraction of CoCl2 between 610 °C and 816 °C. Experimental data from Dutt and Østvold [32]: square, open, 610 °C; triangle up triangle, open, 710 °C; triangledown down triangle, open, 725 °C; o, 816 °C.

Enlarge Image
(6K)
FIGURE 11. Calculated Henrian activity coefficient of CoCl2 (relative to liquid standard state) in the (NaCl + CoCl2) (869 °C), (KCl + CoCl2) (861 °C) and ([NaCl + KCl(1:1)] + CoCl2) (759 °C) liquids versus the mole fraction of CoCl2. Experimental data from Tumidajski and Flengas [33]: •, (NaCl + CoCl2) (869 °C); o, (KCl + CoCl2) (861 °C); blacksquare sq bullet, filled, ([NaCl + KCl(1:1)] + CoCl2) (759 °C).

Enlarge Image
(7K)
FIGURE 12. Calculated (NaCl + NiCl2) phase diagram, temperature versus mole fraction of NiCl2. square, open, Bol'shakov et al. [30]; •, Fedoseev [34].

Enlarge Image
(6K)
FIGURE 13. Calculated enthalpy of mixing for ACl(liquid) + NiCl2(solid)=(liquid solution) versus the mole fraction of NiCl2 at 810 °C (A=Na, K). Experimental data from Papatheodorou and Kleppa [36]: •, (NaCl + NiCl2); o, (KCl + NiCl2).

Enlarge Image
(5K)
FIGURE 14. Calculated activity coefficient of NiCl2 (relative to solid standard state) in the (NaCl + NiCl2) liquid versus the mole fraction of NiCl2 at 800 °C and 900 °C. Tumidajski and Flengas [33]: square, open, 884 °C. Hamby and Scott [37]: •, 800 °C; triangle up triangle, open, 900 °C.

Enlarge Image
(5K)
FIGURE 15. Calculated emf of the cell Ni(s)/(NaCl + NiCl2) (x[NiCl2]=0.1589)/small beta, Greek-alumina/(NaCl + NiCl2)(l)/Ni(s) versus the mole fraction of NiCl2. Experimental data from Roumieu and Pelton [38]: o, 800 °C; square, open, 900 °C; triangle up triangle, open, 1000 °C.

Enlarge Image
(9K)
FIGURE 16. Calculated (KCl + MnCl2) phase diagram, temperature versus mole fraction of MnCl2 (the transition at 386 °C is not calculated). o, Sandonnini and Scarpa [16]; triangle up triangle, open, Safonov et al. [17]; +, Yakovleva et al. [18]; square, open, Seifert and Koknat [19]; triangledown down triangle, open, Natsvlishvili and Bergman [41].

Enlarge Image
(6K)
FIGURE 17. Calculated activity of KCl (relative to liquid standard state) in the (KCl + MnCl2) liquid versus the mole fraction of MnCl2 between 690 °C and 790 °C. Experimental data from Østvold [25]: triangle up triangle, open, 690 °C; square, open, 710 °C; •, 790 °C.

Enlarge Image
(10K)
FIGURE 18. Calculated (KCl + FeCl2) phase diagram, temperature versus mole fraction of FeCl2 (the transitions at 266 °C and 303 °C are not calculated). o, Ionov et al. [26]; triangle up triangle, open, Galitskii et al. [27]; square, open, Pinch and Hirshon [44].

Enlarge Image
(7K)
FIGURE 19. Calculated activity coefficient of FeCl2 (relative to liquid standard state) in the (KCl + FeCl2) liquid versus the mole fraction of FeCl2 between 727 °C and 920 °C. Kuhnl and Besenbruch [29]: square, open, 820 °C; blacksquare sq bullet, filled, 920 °C. Ernst et al. [45]: +, 727 °C; triangle up triangle, open, 777 °C. Josiak [46]: o, 700 °C.

Enlarge Image
(7K)
FIGURE 20. Calculated (KCl + CoCl2) phase diagram, temperature versus mole fraction of CoCl2 (the transition at 124 °C is not calculated). Experimental data (•) from Seifert [47].

Enlarge Image
(6K)
FIGURE 21. Calculated activity of KCl (relative to liquid standard state) in the (KCl + CoCl2) liquid versus the mole fraction of CoCl2 at 717 °C and 790 °C. Experimental data from Dutt and Østvold [32]: triangle up triangle, open, 709 °C; square, open, 717 °C; •, 790 °C.

Enlarge Image
(8K)
FIGURE 22. Calculated (KCl + NiCl2) phase diagram, temperature versus mole fraction of NiCl2 (the transitions at 287 °C and 480 °C are not calculated). •, Seifert and Thiel [31]; square, open, Belyaev et al. [50]; triangle up triangle, open, Bazhenov et al. [51] (smoothed data).

Enlarge Image
(5K)
FIGURE 23. Calculated activity coefficient of NiCl2 (relative to solid standard state) in the (KCl + NiCl2) liquid versus the mole fraction of NiCl2 between 800 °C and 900 °C. Tumidajski and Flengas [33]: square, open, 820 °C. Hamby and Scott [37]: •, 800 °C; triangle up triangle, open, 900 °C.

Enlarge Image
(11K)
FIGURE 24. Calculated liquidus projection of the (NaCl + KCl + MnCl2) system.

Enlarge Image
(9K)
FIGURE 25. Calculated section of the (NaCl + KCl + MnCl2) phase diagram at constant molar ratio KCl/(KCl + MnCl2) of 0.35, temperature versus mole fraction of NaCl. Notations: A, MnCl2; B, Na6MnCl8; C, Na2MnCl4; D, Na9Mn11Cl31; E, Na2Mn3Cl8; F, KMnCl3. Experimental data (•) from Safonov et al. [17].

Enlarge Image
(8K)
FIGURE 26. Calculated (KMnCl3 + NaCl) section of the (NaCl + KCl + MnCl2) phase diagram, temperature versus mole fraction of NaCl. Experimental data (•) from Safonov et al. [17].

Enlarge Image
(10K)
FIGURE 27. Calculated section of the (NaCl + KCl + MnCl2) phase diagram at constant molar ratio KCl/(KCl + MnCl2) of 0.65, temperature versus mole fraction of NaCl. Notations: F, KMnCl3; G, K3Mn2Cl7; H, K4MnCl6. Experimental data (•) from Safonov et al. [17].

Enlarge Image
(9K)
FIGURE 28. Calculated section of the (NaCl + KCl + MnCl2) phase diagram at constant 50 mol% KCl, temperature versus mole fraction of NaCl. Notations: F, KMnCl3; G, K3Mn2Cl7; H, K4MnCl6. Experimental data (•) from Safonov et al. [17].

Enlarge Image
(7K)
FIGURE 29. Calculated section of the (NaCl + KCl + MnCl2) phase diagram at constant 50 mol% MnCl2, temperature versus mole fraction of NaCl. Notations: C, Na2MnCl4; D, Na9Mn11Cl31; E, Na2Mn3Cl8; F, KMnCl3. Experimental data (•) from Safonov et al. [17].

Enlarge Image
(10K)
FIGURE 30. Calculated liquidus projection of the (NaCl + KCl + FeCl2) system (the very small field of crystallization of Na2FeCl4 is not visible on the scale of the diagram).

Enlarge Image
(7K)
FIGURE 31. Calculated liquidus temperatures of (NaCl + KCl + FeCl2) mixtures versus the molar ratio xKCl/(xNaCl + xKCl) at constant mole fractions of FeCl2 of 0.1, 0.2, 0.3, 0.4 and 0.6. Experimental data from Tronina et al. [55]: o, 0.1; •, 0.2; square, open, 0.3; triangle up triangle, open, 0.4; blacktriangledown dn tri, filled, 0.6.

Enlarge Image
(8K)
FIGURE 32. Calculated (NaCl + KFeCl3) section of the (NaCl + KCl + FeCl2) phase diagram, temperature versus mole fraction of KFeCl3. Experimental data (•) from Tronina et al. [55].

Enlarge Image
(6K)
FIGURE 33. Calculated activity coefficient of FeCl2 (relative to liquid standard state) in the (NaCl + KCl + FeCl2) liquid versus the mole fraction of FeCl2 at constant molar ratio NaCl/(NaCl + KCl) of 0.232 and 0.768, at 820 °C and 920 °C. Experimental data from Kuhnl and Besenbruch [29]: blacksquare sq bullet, filled, 0.232 (820 °C); •, 0.768 (820 °C); square, open, 0.232 (920 °C); o, 0.768 (920 °C).

Enlarge Image
(5K)
FIGURE 34. Calculated activity coefficient of NiCl2 (relative to solid standard state) in the (NaCl + KCl + NiCl2) liquid versus the mole fraction of NiCl2 at constant molar ratio NaCl/(NaCl + KCl) of 0.5, at 700 °C and 800 °C. Tumidajski and Flengas [33]: square, open, 762 °C. Hamby and Scott [37]: •, 700 °C; triangle up triangle, open, 800 °C.

Enlarge Image
(5K)
FIGURE 35. Calculated activity coefficient of FeCl2 (relative to liquid standard state) in the (NaCl + MgCl2 + FeCl2) liquid versus the mole fraction of FeCl2 at constant molar ratio NaCl/(NaCl + MgCl2) of 0.5, at 820 °C and 920 °C. Experimental data from Kuhnl and Besenbruch [29]: o, 820 °C; triangle up triangle, open, 920 °C.

Enlarge Image
(8K)
FIGURE 36. Calculated activity coefficient of FeCl2 (relative to liquid standard state) in the (KCl + CaCl2 + FeCl2) liquid versus the mole fraction of FeCl2 at constant molar ratio CaCl2/(KCl + CaCl2) of 0.2 and 0.5. Ernst et al. [45]: •, 0.2 (627 °C); blacksquare sq bullet, filled, 0.2 (727 °C); triangle up triangle, open, 0.2 (777 °C); +, 0.5 (627 °C); square, open, 0.5 (727 °C); triangledown down triangle, open, 0.5 (777 °C). Kuhnl et al. [56]: blacktriangle up tri, filled, 0.5 (820 °C); lozenge, 0.5 (920 °C).

Enlarge Image
(9K)
FIGURE 37. Calculated liquidus projection of the (NaCl + CoCl2 + NiCl2) system.

Enlarge Image
(8K)
FIGURE 38. Calculated section of the (NaCl + CoCl2 + NiCl2) phase diagram at constant NaCl mass fraction of 0.24, temperature versus mass fraction of NiCl2. Experimental data (•) from Bol'shakov et al. [57].

Enlarge Image
(9K)
FIGURE 39. Calculated section of the (NaCl + CoCl2 + NiCl2) phase diagram at constant NaCl mass fraction of 0.35, temperature versus mass fraction of NiCl2. Experimental data (•) from Bol'shakov et al. [57].

Enlarge Image
(7K)
FIGURE 40. Calculated section of the (NaCl + CoCl2 + NiCl2) phase diagram at constant NaCl mass fraction of 0.73, temperature versus mass fraction of NiCl2. Experimental data (•) from Bol'shakov et al. [57].

Enlarge Image
(10K)
FIGURE 41. Calculated section of the (NaCl + CoCl2 + NiCl2) phase diagram at constant mass ratio NiCl2/(CoCl2 + NiCl2) of 0.25, temperature versus mass fraction of NaCl. Experimental data (•) from Bol'shakov et al. [57].

Enlarge Image
(9K)
FIGURE 42. Calculated section of the (NaCl + CoCl2 + NiCl2) phase diagram at constant mass ratio NiCl2/(CoCl2 + NiCl2) of 0.50, temperature versus mass fraction of NaCl. Experimental data (•) from Bol'shakov et al. [57].

Enlarge Image
(9K)
FIGURE 43. Calculated section of the (NaCl + CoCl2 + NiCl2) phase diagram at constant mass ratio NiCl2/(CoCl2 + NiCl2) of 0.75, temperature versus mass fraction of NaCl. Experimental data (•) from Bol'shakov et al. [57].

Enlarge Image
(6K)
FIGURE 44. Calculated activity coefficient of NiCl2 (relative to solid standard state) in the (KCl + CoCl2 + NiCl2) liquid versus the molar ratio x(NiCl2)/[x(CoCl2) + x(NiCl2)] at constant mole fractions of KCl of 0.5, 0.75 and 0.9. Experimental data from Tumidajski and Pickles [58]: triangle up triangle, open, 0.5 (692 °C); square, open, 0.75 (647 °C); •, 0.9 (797 °C).

Enlarge Image
(5K)
FIGURE 45. Calculated activity coefficient of NiCl2 (relative to solid standard state) versus the mole fraction of NiCl2 at 475 °C in ternary (KCl + MgCl2 + NiCl2) melts at constant molar ratio KCl/MgCl2=67.5/32.5, and in quaternary (NaCl + KCl + MgCl2 + NiCl2) melts at constant molar ratio NaCl/KCl/MgCl2=30/20/50. Experimental data from Jindal [59]: •, KCl/MgCl2=67.5/32.5; o, NaCl/KCl/MgCl2=30/20/50.

Enlarge Image
(8K)
FIGURE 46. Calculated section of the (NaCl + MgCl2 + CaCl2 + MnCl2) phase diagram at constant mass ratio MgCl2/CaCl2/MnCl2=60/30/10, temperature versus mass fraction of NaCl. Notations: A, (MgCl2 + MnCl2)(ss); B, (CaCl2 + MgCl2)(ss); C, (NaCl + CaCl2)(ss); D, Na(Mg,Ca,Mn)Cl3(ss); E, Na2(Mg,Mn)Cl4(ss). Experimental data (•) from Il'ichev and Vladimirova [60].

Enlarge Image
(8K)
FIGURE 47. Calculated section of the (NaCl + MgCl2 + CaCl2 + MnCl2) phase diagram at constant mass ratio MgCl2/CaCl2/MnCl2=1/1/1, temperature versus mass fraction of NaCl. Notations: A, (MgCl2 + MnCl2)(ss); B, (CaCl2 + MgCl2)(ss); C, (NaCl + CaCl2)(ss); D, Na(Mg,Ca,Mn)Cl3(ss); E, Na2(Mg,Mn)Cl4(ss). Experimental data (•) from Il'ichev and Vladimirova [60].



TABLE 1. Thermodynamic properties of solid compounds optimized in the present study Full Size Table

TABLE 2. Calculated ternary invariant points of the liquidus projection of the (NaCl + KCl + MnCl2) system Full Size Table

TABLE 3. Gibbs free energies of metastable solid compounds assessed in the present study Full Size Table

References

1. C. Robelin, P. Chartrand, A.D. Pelton, J. Chem. Thermodyn. (this issue)

2. A.D. Pelton, S.A. Degterov, G. Eriksson, C. Robelin and Y. Dessureault. Metall. Mater. Trans. 31B (2000), pp. 651–659.

3. A.D. Pelton and P. Chartrand. Metall. Mater. Trans. 32A (2001), pp. 1355–1360.

4. P. Chartrand and A.D. Pelton. Can. Metall. Quart. 39 4 (2000), pp. 405–420.

5. P. Chartrand and A.D. Pelton. Metall. Mater. Trans. 32A (2001), pp. 1361–1383.

6. P. Chartrand and A.D. Pelton. Can. Metall. Quart. 40 1 (2001), pp. 13–32.

7. T. Østvold, Ph.D. Thesis, Inst. Phys. Chem., University of Trondheim, 1971

8. O.J. Kleppa and F.G. McCarty. J. Phys. Chem. 70 4 (1966), pp. 1249–1255.

9. G.N. Papatheodorou and O.J. Kleppa. J. Inorg. Nucl. Chem. 33 (1971), pp. 1249–1278.

10. H. Flood and J. Urnes. Z. Elektrochem. 59 (1955), p. 834.

11. A.D. Pelton and W.T. Thompson. Can. J. Chem. 48 10 (1970), pp. 1585–1597.

12. A.D. Pelton. Can. J. Chem. 49 24 (1971), pp. 3919–3934.

13. F. Kohler. Monatsh. Chem. 91 (1960), p. 738.

14. G.W. Toop. Trans. AIME 233 (1965), pp. 850–854.

15. J. Sangster and A.D. Pelton. J. Phys. Chem. Ref. Data 16 3 (1987), pp. 509–561.

16. C. Sandonnini and G. Scarpa. Atti della Reale Accad. dei Lincei 5 22 (1913), p. 163.

17. V.V. Safonov, B.G. Korshunov and L.N. Taranyuk. Russ. J. Inorg. Chem. 13 7 (1968), pp. 1014–1017.

18. R.N. Yakovleva, I.I. Kozhina, I.V. Krivousova and I.V. Vasilkova. Vestn. Lening. Univ., Fiz. Khim. 3 (1970), pp. 87–92.

19. H.J. Seifert and F.W. Koknat. Z. Anorg. Allg. Chem. 341 (1965), pp. 269–280.

20. H.J. Seifert and G. Flohr. Z. Anorg. Allg. Chem. 436 (1977), pp. 244–252.

21. H.J. Seifert. Eur. J. Solid State Inorg. Chem. 25 (1988), pp. 463–470.

22. J. Goodyear, S.A.O. Ali and G.A. Steigmann. Acta Crystallogr. 27B (1971), p. 1672.

23. C.J.J. van Loon and D.J.W. Ijdo. Acta Crystallogr. 31B (1975), p. 770.

24. C.J.J. van Loon and G.C. Verschoor. Acta Crystallogr. 29B (1973), p. 1224.

25. T. Østvold. Acta Chem. Scand. 26 7 (1972), pp. 2788–2798.

26. V.I. Ionov, I.S. Morozov and B.G. Korshunov. Russ. J. Inorg. Chem. 5 6 (1960), pp. 602–605.

27. N.V. Galitskii, V.I. Borodin and A.I. Lystsov. Sov. Prog. Chem. 32 7 (1966), pp. 532–533.

28. K.T. Adendorff and M.M. Thackeray. J. Electrochem. Soc. 135 9 (1988), pp. 2121–2123.

29. H. Kühnl and G. Besenbruch. Z. Anorg. Allg. Chem. 345 (1966), pp. 294–305.

30. K.A. Bol'shakov, P.I. Fedorov and G.D. Agashkina. Russ. J. Inorg. Chem. 2 5 (1957), pp. 203–208.

31. H.J. Seifert and G. Thiel. J. Therm. Anal. 25 (1982), pp. 291–298.

32. Y. Dutt and T. Østvold. Acta Chem. Scand. 26 7 (1972), pp. 2743–2751.

33. P.J. Tumidajski and S.N. Flengas. J. Electrochem. Soc. 137 9 (1990), pp. 2717–2726.

34. I.Ya. Fedoseev. Trudy Voron. Gosudarstv. Univ., Nauchn. soobsh. i avt. 28 (1953), p. 23.

35. E.S. Gryzlova, V.V. Chernyshov, M.Yu. Nakhshin, I.N. Lepeshkov and B.S. Smirnov. Russ. J. Inorg. Chem. 34 6 (1989), pp. 889–891.

36. G.N. Papatheodorou and O.J. Kleppa. J. Inorg. Nucl. Chem. 32 (1970), pp. 889–900.

37. D.C. Hamby and A.B. Scott. J. Electrochem. Soc. 115 7 (1968), pp. 704–712.

38. R. Roumieu and A.D. Pelton. J. Electrochem. Soc. 128 1 (1981), pp. 50–55.

39. I. Barin, O. Knacke and O. Kubaschewski. In: Thermochemical Properties of Inorganic Substances, Springer-Verlag, Berlin (1973).

40. M.W. Chase Jr., C.A. Davies, J.R. Downey Jr., D.J. Frurip, R.A. McDonald, A.N. Syverud, in: JANAF Thermochemical Tables, third ed., J. Phys. Chem. Ref. Data, vol. 14 (1) 1985

41. E.R. Natsvlishvili and A.G. Bergman. Zh. Obshch. Khim. 9 (1939), p. 642.

42. H.J. Seifert and J. Uebach. J. Solid State Chem. 59 (1985), pp. 86–94.

43. A. Horowitz, M. Amit, J. Makovsky, L. Bendor and Z.H. Kalman. J. Solid State Chem. 43 (1982), p. 107.

44. H.L. Pinch and J.M. Hirshon. J. Am. Chem. Soc. 79 (1957), pp. 6149–6150.

45. W. Ernst, H. Flood and T. Nervik. Z. Anorg. Allg. Chem. 363 (1968), pp. 89–104.

46. J. Josiak. Roczn. Chem., Annal. Soc. Chim. Polon. 44 (1970), pp. 1875–1882.

47. H.J. Seifert. Z. Anorg. Allg. Chem. 307 (1961), pp. 137–144.

48. H.J. Seifert. Thermochim. Acta 20 (1977), pp. 31–36.

49. H.J. Seifert, H. Fink, G. Thiel and J. Uebach. Z. Anorg. Allg. Chem. 520 (1985), pp. 151–159.

50. I.N. Belyaev, D.S. Lesnykh and I.G. Eikhenbaum. Russ. J. Inorg. Chem. 15 3 (1970), pp. 430–431.

51. V.M. Bazhenov, S.P. Raspopin and Yu.F. Chervinskii. Russ. J. Inorg. Chem. 29 12 (1984), p. 1814.

52. D. Visser, G.C. Verschoor and D.J.W. Ijdo. Acta Crystallogr. 36B (1980), pp. 28–34.

53. J.W. Weenk, F.R.J. Koekoek and G.H.J. Broers. J. Chem. Thermodyn. 7 (1975), pp. 473–478.

54. I. Barin, O. Knacke and O. Kubaschewski, Thermochemical Properties of Inorganic Substances (Supplement). , Springer-Verlag, Berlin (1977).

55. E.M. Tronina, I.V. Vasilkova, M.P. Susarev and E.K. Smirnova. Vestn. Lening. Univ. 10 (1969), pp. 83–87.

56. H. Kühnl, M. Wittner and W. Simon. Electrochim. Acta 24 (1979), pp. 55–60.

57. K.A. Bol'shakov, P.I. Fedorov and G.D. Agashkina. Russ. J. Inorg. Chem. 3 8 (1958), pp. 235–241.

58. P.J. Tumidajski and C.A. Pickles. Can. J. Chem. 73 (1995), pp. 1596–1599.

59. H.L. Jindal. Electrochim. Acta 19 (1974), pp. 441–443.

60. V.A. Il'ichev and A.M. Vladimirova. Titan i Ego Splavy, Akad. Nauk SSSR, Inst. Met. 5 (1961), pp. 148–166.

61. B. Sundman and J. Ågren. J. Phys. Chem. Solids 42 (1981), pp. 297–301.

62. A.D. Pelton, C.W. Bale, W.T. Thompson: F*A*C*T (Facility for the Analysis of Chemical Thermodynamics), Ecole Polytechnique, Montreal, 2004. Available from http://www.crct.polymtl.ca


Corresponding Author Contact InformationCorresponding author. Tel.: +1-514-340-4711x4304; fax: +1-514-340-5840



This Document
SummaryPlus
Full Text + Links
PDF (609 K)
Actions
E-mail Article
The Journal of Chemical Thermodynamics
Volume 36, Issue 9 , September 2004, Pages 809-828


Results ListPrevious 8 of 8 No Next Document
HomeBrowse JournalsBrowse Abstract DatabasesBrowse BooksBrowse Reference WorksMy ProfileAlertsHelp (Opens New Window)

Feedback  |  Terms & Conditions  |  Privacy Policy

Copyright © 2004 Elsevier B.V. All rights reserved. ScienceDirect® is a registered trademark of Elsevier B.V.