Chemical Imaging of Compound Semiconductors

ATP National Meeting

Photonics Manufacturing November 15-16, 1999

> Patrick J. Treado President

Chemicon Inc. 7301 Penn Ave. Pittsburgh, PA 15208 (412) 241-7335 (412) 241-7311 (FAX) treado@chemimage.com www.chemimage.com

Chemical Imaging for Semiconductor Metrology (CHISM) Program Joint venture of ChemIcon Inc. & II-VI Incorporated					
Problem:	Compound semiconductors challenging to manufacture. Crystal growth & device processing defects hard to measure during manufacturing. Defective devices identified downstream. Yields low/costs high – impediment to market potential. • silicon carbide (SiC) – (\$50M '01) • silicon germanium (SiGe) – (\$1.8B '05) • Gallium arsenide (GaAs) – (\$2B '00) • gallium nitride (GaN) – (\$3B '06) • cadmium zinc telluride (CdZnTe) – (\$10B '08) • mercury cadmium telluride (HgCdTe) (\$250M '01)				
Need:	Metrology technology for non-destructive assessment of semiconductor material defects that limit device performance at various stages in the fabrication process.				
Solution:	 High throughput screening system based on chemical imaging. Infrared (IR) Automated polarized light Photoluminescence Raman scattering 				

Accessible Semiconductor Properties						
Semiconductor Property	PL	Optica Raman	l Method IR	PLM		
<i>Band</i> Gap Band offset	÷		•			
Free Carrier Concentration Mobility Scattering time Resistivity		÷	÷			
Lattice Alloy composition Orientation Crystallinity Stress	•		•	÷		
Impurity and Defect Presence and type Concentration	•	•	•			
<i>Microstructure</i> Layer thickness Surface behavior Interface behavior Layer-by-layer behavior	:	÷		÷		

Project Plan

Year 1 – R&D

- Construct prototype chemical imaging instruments
- · Apply chemical imaging to compound semiconductors
- Develop CHISM control software
- Develop CHISM specification

Year 2 - Engineering

- Extend CHISM to IR
- Construct engineering prototype
- Develop data reduction and analysis software

Year 3 - Testing

• Test in manufacturing environment

<section-header><text><text><text>

Summary

- Need for improved metrology in compound semiconductor manufacturing
- Controlling device composition and structure, and screening for material defects at early manufacturing stages will improve yields and reduce the cost of semiconductors.
- Chemical imaging transforms conventional spectroscopic techniques into high throughput screening tools.
- Chemical imaging demonstrated applicability to Si, SiC, SiGe, GaN, GaAs & CdZnTe.
- · Broadly applicable to compound semiconductors.
- Chemical image processing combines multivariate statistical analysis and digital image processing - necessary to extract the maximum amount of information from multidimensional data.
- Quantitative chemical imaging demonstrated for the first time.

