Astrometric Detection of Terrestrial Exoplanets

Steve Unwin & Mike Shao May 17, 2007

Navigator Forum-2007: Small- and Mid-Scale Exoplanet Space Missions

Astrometry: Deep and Broad

- Astrometry (like radial velocity) is a broad technique
 - Sensitive to a wide range of masses and orbit radii
- Astrometric signal *increases* with orbital period
 - Astrometry and radial velocity are *complementary*
- Astrometry measures:
 - Masses (a key attribute of a planet)
 - Inclinations of multiple planet systems (a key diagnostic of planetary origins)
- Planet location (orbit) will greatly motivate follow-up and characterization
 - Ground based follow-up
 - Increase efficacy of TPF

Astrometry from Space

- Scientific objective:
 - Detection of Earth-like planets
 - around Sun-like Stars
 - in the Habitable Zone
 - for stars out to ~10 pc
- Measurement to meet this requires:
 ~1 µas single-measurement accuracy

Science Goals of Microarcsecond Astrometry: Deep and Broad Surveys

- Earth-like planets around Sun-like Stars and in Habitable Zone
- Planets around early type stars (O,B,A, early F)
- Planets around young stars
- Planetary Masses and Inclinations
- Truly complementary exploration of thousands of stars (planetary diversity) from RV discoveries
- Complete architecture of systems with transitdiscovered planets

Three Astrometric Planet Surveys

- Earth Analog Survey
- Broad Survey
- Young Star Survey

Earth Analog Survey

Exoplanet Discovery Space

Red curves: best, median, and worst of 69 Earth Analog Survey targets, labeled by HIPPARCOS catalog number

1 µas Habitable Planet Survey

Mass sensitivity at mid-habitable zone	1 M_{\oplus}	$2 \ \mathrm{M}_{\oplus}$	$3 \ M_{\oplus}$
# of target stars that can be surveyed using 40% of mission time	69	160	259
# of target stars that can be surveyed using 75% of mission time	101	233	360

- Design observations of each target to achieve a specified mass sensitivity
 - A pointed astrometric mission is flexibly scheduled
- Table shows three cases, optimized for 1, 2, or 3 $M\oplus$
 - Assumes five year mission duration

Broad Survey

Exoplanet Discovery Space

Red curves: best, median, and worst of 2100 Broad Survey targets, labeled by HIPPARCOS catalog number

Survey ~2100 Stars for System Architectures

- Comprehensively survey ~2100 stars to probe for terrestrial-mass planets and larger to periods of 4 – 5 years as a function of metallicity, absence/presence of debris disks, and presence in binary systems
- Mutual inclinations are essential to understanding multiple planet systems
 - only astrometry can do this
- Search for planets around stars not probed by RV
 - star types O, B, A, early F, white dwarfs

Formation and Evolution of Planetary Systems

- Probe for planets around ~200 young stars and thus provide insight into the *evolution* of planetary systems
- Radial velocity measurements of young stars are degraded by a factor of 100 or more compared to mature stars by rotation, line veiling, starspots and other sources of photospheric variability: 100-500 m/s (at best!) vs. 1 m/s
- Sensitivity and angular resolution limits of coronagraphy and interferometry preclude direct detection of Jupiters in the critical region of the "snowline", 1-10 AU
- Uniquely detect Jupiter/Saturn mass planets around stars with ages of 1-100 Myr at distances of 25-140 pc
 - Astrometric sensitivity limit is set by jitter due to starspots of a few micro arcsec, but still adequate for finding gas giants

SIM PlanetQuest

Ready to build!

SIM PlanetQuest Technology Gates: All Completed and Reviewed by 2005

Technology Gate	Description	Due Date	Complete Date	Performance
1	Next generation metrology beam launcher performance at 100 pm uncompensated cyclic error, 20 pm/mK thermal sensitivity	8/01	8/01	Exceeded objective
2	Achieve 50 dB fringe motion attenuation on STB-3 testbed (demonstrates science star tracking)	12/01	11/01	Exceeded objective
3	Demonstrate MAM Testbed performance of 150 pm over its narrow angle field of regard	7/02	9/02	Exceeded objective
4	Demonstrate Kite Testbed performance at 50 pm narrow angle, 300 pm wide angle	7/02	10/02	Exceeded objectives
5	Demonstrate MAM Testbed performance at 4000 pm wide angle	2/03	3/03	Exceeded objective
6	Benchmark MAM Testbed performance against narrow angle goal of 24 pm	8/03	9/03	Exceeded objective
7	Benchmark MAM Testbed performance against wide angle goal of 280 pm	2/04, 5/04*	6/04	Met objective
8	Demonstrate SIM instrument performance via testbed anchored predicts against science requirements	4/05	7/05	Met objective

pm = picometer mK = milliKelvin dB = decibel (50dB = factor of 300) * NASA HQ directed a scope increase (by adding a numerical goal to what had been a benchmark Gate) and provided a 3 month extension when performance fell short

Engineering Milestones – On Track

Engineering			Complete	
Milestone	Description	Due Date	Date	Performance
Formulation	Phase			
EM-1	External Metrology Beam Launcher Brassboard (meet Qual	5/31/06	6/5/06	Exceeded
	environmental and allocated picometer performance)	3/3//00		objective
EM-2	Internal Metrology Beam Launcher Brassboard (meet Qual	4/30/06	5/3/06**	Exceeded objective
	environmental and allocated picometer performance)	4/30/00		
EM-3	Metrology Source Assembly Validation (meet Qual environmental and	6/20/06	6/28/06	Exceeded objective
	allocated performance)	0/30/00		
	Spectral Calibration Development Unit (SCDU) (demo flight-traceable		In test	
EM-4	fringe error calibration methodology and validate model of wavelength-	8/30/07		
	dependent measurement errors)			
	Instrument Communication H/W & S/W Architecture Demo (validate		3/5/07	
	SIM's multi-processor communications system using two brassboard	4/1/07		Met
Elvi-5	instrument flight computers, ring bus, and flight software version 2.0 with	4/1/07		objectives
	specific S/W functions as listed)			
Implementat	ion Phase			
EMG	Engineering Models for Metrology Fiducials (double and triple corner	0/20/2007*		
Elvi-O	cubes fully meeting SIM flight requirements)	9/30/2007		
EM-7	Metrology Source Engineering Models (optical bench; fiber splitters;			
	fiber switches; fiber distribution assembly; laser pump module: all fully	9/30/2008*		
	meeting SIM flight performance requirements per table).			
EM-8	Instrument/Mission Performance Prediction (update Tech Gate #8 using	0/30/2008*		
	latest hardware results).	9/30/2000		
EM-9	Integration of S/C FSW build-1 with phase-1 of the S/C engineering	10/1/2009*		
	model testbed (demonstrates specific S/W functions)	10/1/2000		

* Completion dates deferred indefinitely due to FY07 NASA decision to delay SIM indefinitely.

** Actual signoff by NASA HQ delayed until 12/12/06 due to requests for additional thermal testing by the TAC and EIRB boards.

Laboratory Demonstration

MicroArcsecond Metrology Testbed

- SIM science interferometer
- Pseudostar + metrology connecting pseudostar to interferometer
- Narrow-angle chopping sequence:
- $T R_1 T R_2 T R_3 T R_4$
 - Repeated twice

SIM PlanetQuest: Proven, Timely, & Synergistic

- Demonstrated sub-microarcsecond precision
 - This series of lab demos define the heart of the mission
- The SIM Project has:
 - met all Technical Milestones
 - undergone multiple reviews of mission costs
- SIM has been validated by two Decadal Reports and two roadmap studies
- SIM is ready to fly as early as 2013
- SIM could make 2013-2023 the decade of extra-solar planets
 - SIM & COROT and Kepler
 - SIM & GAIA
 - SIM & GSMT, EELT
 - SIM & TPF/Darwin

SIM & Other Missions

- SIM will complete the architecture for stars with planets identified by Kepler and CoROT
 - Kepler/CoROT ... Rocky planets
 - SIM ... Giant planets (not perfectly co-planar)
- SIM will provide high quality parallaxes (and thus angular diameters) of stars around which planets have been detected by transits
 - Resolves the current biggest uncertainty in determining planetary radii from transits
- SIM provides location of planet in sky which is critical for any follow up program including GSMT and TPF

GAIA

(charts provided by Michael Perryman, ESA)

Launch: Dec 2011 http://www.rssd.esa.int/GAIA

Gaia (ESA)

Method:

- astrometry, Hipparcos principles
- two $1.45 \times 0.5 \text{ m}^2 \text{ mirrors} + 7 \times 9 \text{ CCDs}$
- continuous 'revolving' sky scanning
- 5-year observations: 100 epochs per star

Objectives:

- distances + motions for 10⁹ stars
- originally (2000) 10 µas at 15 mag
- structure and evolution of Galaxy

... and their resulting astrometric signatures

$$\alpha = \left(\frac{M_p}{M_s}\right) \left(\frac{a_p}{d}\right)$$

 $...\alpha$ in arcsec if *a* in AU and *d* in pc

At 10 pc:Jupiter:500 μarcsec10 Earth:3 μarcsecEarth:0.3 μarcsec

Gaia: Expected Astrometric Discoveries

- Large-scale detection and physical characterisation (10µas):
 - complete census to 150–200 pc; P=2–9 yr, primarily Jupiter-type systems
 - detection of ~10,000 planetary systems (standard assumptions)
 - masses, rather than lower limits (M \times sin i), down to 10 M_{Earth} to 10 pc
 - orbits for ~1000 systems + multiple systems: relative inclinations
- Photometric events: transits of ~4000 'hot-Jupiters' possible but TBC
- Still uncertain effects of CCD radiation damage:
 - astrometric effects (CTI) classified as: charge loss + image smearing
 - current accuracies at 15 mag are around 20µas, including only charge loss
 - bright star accuracies are formally around 7 μas at 10–12 mag
 - no full characterisation of smearing versus history, charge injection, etc
 - PDR in June 2007; launch in 2011 is close to solar max (delays are good!)
- 10 nas mission concept is in Cosmic Vision (Earths at 100 pc)

SIM and GAIA Mission Comparison

	SIM	GAIA
Narrow Angle single- visit accuracy goal	1 µarcsec	~70 µarcsec
Wide angle end-of- mission absolute accuracy goal	4 µarcsec	10 - 300 µarcsec
Operation mode	Pointed observations of science targets plus reference grid	All-sky scanning survey
Other functionality	Interferometric imaging (selected sources)	Concurrent photometry, radial velocity
GO program	Yes	No
Limiting magnitude	V ~20	V = ~20
Bright limit	V = -1.4	V = +6
Phase/Launch	B/2013 ?	B/2011

Astrometric Planet Hunter

Astrometric Planet Hunter

- Objective:
 - Exoplanet discovery and characterization
 - Detection of *terrestrial* exoplanets
- Mission concept:
 - Precision optical astrometry to detect reflex motion of planet
- Instrument performance:
 - Single measurement in the microarcsecond range
- Mission capability:
 - Capable of finding Earth-mass planets in the Habitable Zone around an F, G or K star
 - Definitive planet mass measurements
 - Solar system architectures

Rationale and Approach for Astrometric Planet Hunter

- NASA budget constraints leading to more emphasis on small and mid-scale missions
- Goal is to develop a probe-scale planet-search mission
- Mission will have a very focused science goal: finding planets around relatively bright stars
- Approach:
 - Make effective use of completed SIM technology at the component and subsystem level
 - Reduces risk by using years of SIM expertise and experience
 - Instrument architecture, mission design, mission operations will be sized to minimize cost for the science
 - Enhances the effectiveness of smaller TPF missions by vetting potential target stars and providing full orbital parameters for interesting targets
- Status:
 - Currently under study complete by July 2007

SIM Predicted Performance Exceeds NRC Goals

THE DECADE OF DISCOVERY IN

ASTRONOMY AND ASTROPHYSICS		Wide-Angle Astrometry		Narrow-Angle Astrometry				
	Concept	Require- ment (μas)	Goal (µas)	Require- ment (µas)	Goal (µas)	Magni- tude Limit (V)	Null- ing?	Synthesis Imaging?
	1991 AASC (AIM)	30	3	-	-	20	No	No
Astronomy and Astrophysics in the New Millennium	2001 AASC (SIM)	10	4	3	1	20	Yes	Full UV plane from 1 to 10 m
	2002 CAA Assess- ment	30	4	3	1	20	No	10 m baseline only (plus rotation)
	Current Perform- ance	2.4 µas		0.8 µas		20	No	9 m baseline only (plus rotation)

Star Spots

- "Spots" produce both astrometric and RV biases.
- For G2 star a 10⁻³ spot will create bias of
 - 0.25 µas with no modeling
 - 1m/s RV with no modeling

SIM will Find Jupiters Orbiting Young Stars

1990 & 2000 Decadal Reviews Endorse SIM

NATIONAL RESEARCH COUNCIL

Executive Summary Introduction The Formation of Stars and Planet The Instrumental Challenge The Space Infrared Interferometer Technology Challenges for a Space Infrored Interferometer Supporting Ground-Based Programs **Supporting Space Missions** Additional Astrophysics with a Space Infrared Interferometer The Road Map and Recommendation References Appendices Acronyms 0 A Road Map for the Exploration of Neighboring Planetary Systems (ExNPS)

National Research Council

Astronomy and Astrophysics in the New Millennium

GL229 B - click to view spectral characterization

Gaia: Planet Motions

Narrow angle astrometry 1 µas (single visit)

<u>Global astrometry</u> (5 yr mission)

- 4 µas position (reference to QSOs)
- 2.5 µas/yr proper motion
- 4 µas parallax

SIM & Unique Astrophysics

SIM's Reach Extends Across our Entire Galaxy to do "Precision Astrophysics"

What makes SIM unique:

- Extreme astrometric precision
 - 4 µas (microarcsec) positions
 - 4 µas/yr proper motions
 - 1 µas differential positions
- Ability to observe faint targets
 - V <~ 20
- Flexible scheduling
 - optimize for specific science objectives

SIM: Unique Astrophysics

- Masses of stars
 - Accurate dynamical masses for neutron stars and black holes - no more rough estimates
- The Galaxy and star clusters
 - Ages of globular clusters; ages and evolution of open clusters
 - Mass distribution of dark matter through microlensing and tidal tails
- Nearby galaxies
 - Mass distribution, including dark matter, of the Local Group - directly measure galaxy motions
- Cosmology
 - Unambiguous geometric distances to nearby galaxies; calibrate standard candles
 - $\rm H_{o}$ to 2% strongly constrain the equation of state of dark energy