
© 2008 Authernative, Inc.
This document may be freely reproduced and distributed whole and intact including this copyright notice.

Authernative, Inc.

Authernative® Cryptographic Module

Software Version: 1.0.0

FIPS 140-2
Security Policy

Level 1 Validation

Document Version 1.1

Prepared for: Prepared by:

Authernative, Inc. Corsec Security, Inc.

201 Redwood Shores Parkway, Suite 275
Redwood City, CA 94065

10340 Democracy Lane, Suite 201
Fairfax, VA 22030

Phone: (650) 587-5263 Phone: (703) 267-6050
Fax: (650) 587-5259 Fax: (703) 267-6810

http://www.authernative.com http://www.corsec.com

Security Policy, version 1.1 May 9, 2008

Authernative® Cryptographic Module Page 2 of 25
© 2008 Authernative, Inc.

This document may be freely reproduced and distributed whole and intact including this copyright notice.

Revision History

Version Modification Date Modified By Description of Changes

0.1 2007-09-21 Xiaoyu Ruan Initial draft

0.2 2008-01-10 Xiaoyu Ruan Added ECBBlockCipher.class;
removed DESEngine.class

0.3 2008-01-23 Xiaoyu Ruan Added zeroize method;
Put CAVP numbers

0.4 2008-01-25 Xiaoyu Ruan Addressed Lab comments

0.5 2008-02-05 Xiaoyu Ruan Addressed Lab comments

1.0 2008-05-01 Xiaoyu Ruan Address CMVP comments

1.1 2008-05-09 Xiaoyu Ruan Address CMVP comments

Security Policy, version 1.1 May 9, 2008

Authernative® Cryptographic Module Page 3 of 25
© 2008 Authernative, Inc.

This document may be freely reproduced and distributed whole and intact including this copyright notice.

Table of Contents

1 INTRODUCTION ...6
1.1 PURPOSE...6
1.2 REFERENCES...6
1.3 DOCUMENT ORGANIZATION ...6

2 AUTHGUARD AND PASSENABLER..7
2.1 OVERVIEW..7
2.2 CLIENT-SERVER ENCRYPTION AND AUTHENTICATION ...8
2.3 BITVU, BYTEVU, AND BBVU...9

3 AUTHERNATIVE® CRYPTOGRAPHIC MODULE10
3.1 OVERVIEW..10
3.2 MODULE INTERFACES...10
3.3 ROLES AND SERVICES...14
3.4 PHYSICAL SECURITY ..19
3.5 OPERATIONAL ENVIRONMENT..19
3.6 CRYPTOGRAPHIC KEY MANAGEMENT..19

3.6.1 Key Generation..20
3.6.2 Key Input/Output ...20
3.6.3 Key Storage and Protection...20
3.6.4 Key Zeroization..20

3.7 EMI/EMC ..20
3.8 SELF-TESTS..21
3.9 M ITIGATION OF OTHER ATTACKS...21

4 SECURE OPERATION..22
4.1 OPERATING SYSTEM CONFIGURATION ...22
4.2 APPROVED MODE CONFIGURATION ...22
4.3 CSP ZEROIZATION..23
4.4 STATUS MONITORING...23

5 ACRONYMS..24

Security Policy, version 1.1 May 9, 2008

Authernative® Cryptographic Module Page 4 of 25
© 2008 Authernative, Inc.

This document may be freely reproduced and distributed whole and intact including this copyright notice.

Table of Figures

FIGURE 1 – COMPONENTS OF THE AUTHGUARD PRODUCT...8
FIGURE 2 – LOGICAL CRYPTOGRAPHIC BOUNDARY ...11
FIGURE 3 – LOGICAL CRYPTOGRAPHIC BOUNDARY AND INTERACTIONS WITH SURROUNDING COMPONENTS.............12
FIGURE 4 – PHYSICAL BLOCK DIAGRAM OF A STANDARD GPC ...13

Security Policy, version 1.1 May 9, 2008

Authernative® Cryptographic Module Page 5 of 25
© 2008 Authernative, Inc.

This document may be freely reproduced and distributed whole and intact including this copyright notice.

Table of Tables

TABLE 1 – BINARY FORM OF THE MODULE ..10
TABLE 2 – SECURITY LEVEL PER FIPS 140-2 SECTION...10
TABLE 3 – AUTHERNATIVE CLASSES IN AUTHCRYPTOAPI.JAR ..11
TABLE 4 – LOGICAL, PHYSICAL, AND MODULE INTERFACE MAPPING..13
TABLE 5 – CRYPTO OFFICER SERVICES..15
TABLE 6 – USER SERVICES...16
TABLE 7 – LIST OF CRYPTOGRAPHIC KEYS, CRYPTOGRAPHIC KEY COMPONENTS, AND CSPS.....................................19
TABLE 8 – ACRONYMS...24

Security Policy, version 1.1 May 9, 2008

Authernative® Cryptographic Module Page 6 of 25
© 2008 Authernative, Inc.

This document may be freely reproduced and distributed whole and intact including this copyright notice.

1 Introduction

1.1 Purpose

This document is a non-proprietary Cryptographic Module Security Policy for the Authernative® Cryptographic
Module from Authernative, Inc. This Security Policy describes how the Authernative® Cryptographic Module
meets the security requirements of FIPS 140-2 and how to run the module in a secure FIPS 140-2 mode of operation.
This policy was prepared as part of the Level 1 FIPS 140-2 validation of the Authernative® Cryptographic Module.

FIPS 140-2 (Federal Information Processing Standards Publication 140-2 – Security Requirements for
Cryptographic Modules) details the U.S. and Canadian government requirements for cryptographic modules. More
information about the FIPS 140-2 standard and validation program is available on the National Institute of Standards
and Technology (NIST) Cryptographic Module Validation Program (CMVP) website at:
http://csrc.nist.gov/groups/STM/index.html.

In this document, the Authernative® Cryptographic Module is referred to as “the module”. The application
represents Authernative’s software products, such as AuthGuard, linked with the cryptographic methods provided by
the Authernative® Cryptographic Module.

1.2 References

This document deals only with the operations and capabilities of the module in the technical terms of a FIPS 140-2
cryptographic module security policy. More information is available on the module from the following sources:

• The Authernative website (http://www.authernative.com/) contains information on the full line of products
from Authernative.

• The CMVP website (http://csrc.nist.gov/groups/STM/index.html) contains contact information for answers
to technical or sales-related questions for the module.

1.3 Document Organization

The Security Policy document is one document in a FIPS 140-2 submission package. In addition to this document,
the Submission Package contains:

• Vendor Evidence
• Finite State Machine
• Other supporting documentation as additional references

This Security Policy and the other validation submission documentation have been produced by Corsec Security,
Inc. under contract to Authernative. With the exception of this Non-Proprietary Security Policy, the FIPS 140-2
Validation Documentation is proprietary to Authernative and is releasable only under appropriate non-disclosure
agreements. For access to these documents, please contact Authernative.

Security Policy, version 1.1 May 9, 2008

Authernative® Cryptographic Module Page 7 of 25
© 2008 Authernative, Inc.

This document may be freely reproduced and distributed whole and intact including this copyright notice.

2 AuthGuard and PassEnabler
Authernative, Inc. is a software company that develops, markets, and sells enterprise and consumer level security
solutions. Authernative’s granted and pending U.S. and International patents in the area of private and secure
financial transactions, authentication algorithms, protocols, and encryption schemes are the foundation for the
company technology and commercial product offerings. Authernative provides integrated security solutions for
identity management, strong authentication to access network resources, and efficient authorization, administration
and auditing control.

Authernative approaches security as a complex system having scientific, technological, engineering, marketing, and
social components. The company believes that only a harmonized mixture of these components implemented in
security products and backed with excellent services can bring long-lasting success and customer satisfaction.

Authernative currently sells two separate and complementary products: AuthGuard® and PassEnabler®. Both
AuthGuard and PassEnabler are applications that use the Authernative Cryptographic Module. However, AuthGuard
and PassEnabler are not being validated for FIPS compliance because all their security-relevant functions are
provided by the Authernative Cryptographic Module.

2.1 Overview

AuthGuard is an authentication product. It provides an authentication server that supports and manages multiple
authentication options. Those options allow AuthGuard to offer multifactor authentication, strong authentication, or
layered authentication services. PassEnabler allows administrators to define what resources authorized users have
access to and provides a secure authorization, administration, auditing, and web single-sign-on engine. PassEnabler
is integrated with AuthGuard. PassEnabler enables corporate identity and access management using the
authentication capabilities of AuthGuard. AuthGuard and PassEnabler can be used either separately or together as
complementary tools within a tool suite.

The AuthGuard product is implemented using five components (as depicted in Figure 1):

• AuthGuard Server
• Administrative Utility
• Configuration Utility
• Licensing
• AuthGuard Client

The central component is the AuthGuard Server, which provides authentication services in a networked
environment. Users attempting to access various systems are redirected to the AuthGuard Server. This provides
them with a Graphical User Interface (GUI) to perform authentication. The GUI is provided by downloading the
AuthGuard Client to a browser. The AuthGuard Client GUI changes depending on what forms of authentication are
being performed, and communicates with the AuthGuard® Server.

Authernative has developed two utilities to manage the AuthGuard product. The first utility is the Administrative
Utility, which provides an administrative console for management of the AuthGuard Server. The Administrative
Utility provides a GUI to tweak roughly fifty options and features of the configuration of the AuthGuard Server,
setting the user permissions and authentication. An administrator uses the Administrative Utility to initially
configure the system. The second utility is the Configuration Utility, which is a desktop configuration tool that gives
the administrator the ability to perform user account provisioning, manage roles, create users, and perform auditing.
The Configuration Utility also allows auditing to be performed on users and administrator activities on the network
from data in the AuthGuard Server’s logs. The product allows a user to view network resources and to define
resources that are placed under AuthGuard’s authentication control.

Security Policy, version 1.1 May 9, 2008

Authernative® Cryptographic Module Page 8 of 25
© 2008 Authernative, Inc.

This document may be freely reproduced and distributed whole and intact including this copyright notice.

Figure 1 – Components of the AuthGuard Product

2.2 Client-Server Encryption and Authentication

Communications between the AuthGuard Server and the AuthGuard Client are encrypted using the Advanced
Encryption Standard (AES) algorithm. The AuthGuard Server is implemented as a Java servlet within an Apache
Tomcat container, and contains all required security functionality. The AuthGuard Client is distributed as a Java
applet by the AuthGuard Server. The applet is loaded into a user’s browser. The Client then provides the complete
user GUI and performs the encryption operations enabling secure communications with the AuthGuard Server.
Furthermore, the applet provides interfaces appropriate to the administrator-selected authentication methods and
guides the user through authentication to the AuthGuard Server and access to resources.

Network users encounter the AuthGuard Server when they bring up a browser and request access to an authenticated
resource. These requests are redirected by the resource to the AuthGuard Server if the request has not yet been
authenticated. Optionally, users can point directly to an AuthGuard Server to begin authentication steps. Once
contacted, the AuthGuard Server sends back the Client applet to the user along with a Session Random Key (SRK),
which can be either an AES or a triple Data Encryption Standard (DES) key.

The SRKs are used to initialize secure sessions, and are created by the AuthGuard Server. When the servlet for the
AuthGuard Server is initialized, it starts generating a new store of SRKs destined for future use. The SRKs are
placed in an array that is constantly updated by the Server, and SRKs created by the Server are assigned a lifetime.
After an SRK has expired, it will not be used to secure a new connection. Each SRK is associated with an array of
Data Random Keys (DRKs), which is created for a particular session. The array of DRKs is erased if the SRK is
erased. The Server can be configured to create a specific number of SRKs, and will then update them periodically.
For an individual session, a single unused SRK is selected, and then sent to the client in the clear encoded as an
array of bytes in a Java class. The SRK is then used by the Client to initiate the session between the Client and the
Server. The Client first obtains a username from the GUI, and sends this to the server encrypted with the SRK. The
Server receives this and decrypts the username.

After the exchange of a username and SRK, the Server selects a DRK from the array associated with the SRK, and
sends it to the Client encrypted with the SRK. The encrypted bits are additionally byte-veiled, or bit-veiled as
described in the next subsection. At this point, the Client retrieves the DRK, and displays a GUI to the user to collect
password information. Meanwhile, the Client hashes the DRK, encrypts the hash with the DRK, and sends the result
back to the Server to indicate that the DRK was successfully received and decrypted. The Server checks that this is
correct by computing the same value.

At this point, the Server and Client have exchanged an SRK, DRK, and username but have not authenticated either
side, or exchanged a key not subject to man-in-the-middle attacks. Now, the Server selects a second DRK (DRK2)
from the DRK array. The server then retrieves the user’s password information from its database. The Server then
encrypts DRK2 with DRK and bit-veils, byte-veils, or both into a conversion array using values from a Random
Number Generator (RNG) seeded with the user’s password information. This is transmitted to the Client who can
then use the same password information to reconstruct DRK2.

Security Policy, version 1.1 May 9, 2008

Authernative® Cryptographic Module Page 9 of 25
© 2008 Authernative, Inc.

This document may be freely reproduced and distributed whole and intact including this copyright notice.

The Client then hashes DRK2, hides it in a conversion array using the password information, encrypts the
conversion array with DRK2, and sends it back to the server to indicate he has DRK2. This step performs Client
authentication based on possession of the user’s password information, and shares DRK2 with both sides. The same
step is then performed by the Server to authenticate the Server to the Client using DRK2 and the Server password.
The Server sends a hash of DRK2 in a conversion array using the Server password to seed the RNG for bit- or byte-
veiling, and encrypting the array with DRK2. The Client already has the Server password and uses it to authenticate
the Server. At this point client have performed mutual authentication, and share a session encryption key.

User password information can be a simple password, or can use Authernative’s passline (a chosen pattern in a
grid), pass-step (an out-of-band challenge sent to email or phone to be entered), crossline (a challenge embedded in
a grid), or passfield (image, colors, and a grid). Each of these processes allows the user to select secret password
information, all or part of which can be provided in response to challenges.

The authentication step of exchanging a DRK using password information for the bit- and byte-veiling can be
iterated as often as desired to provide a DRK3, DRK4, etc. Security can be layered to use multiple authentication
steps, where different password information forms are employed. For example, a user could employ both a simple
password and use passline. The password would be used for DRK2, and then passline would be used for DRK3, and
that exchange would also depend upon DRK2. At this point, the DRK are not used by AuthGuard for secure data
encryption, and are simply treated as a byproduct of the authentication. Other products may in the future use the
DRKs for secure content exchange, but they are currently used only for authentication.

2.3 BitVU, ByteVU, and BBVU

Authernative has secured three patents on the processes described above, with claims in the patents that cover the
use of a conversion array, key generation, and bit- and byte-veiling. The process of “Bit-Veil-Unveil (BitVU), Byte-
Veil-Unveil (ByteVU), and Byte-Bit-Veil-Unveil (BBVU)” mentioned above are the subject of the patents, and are
integral to the authentication process. The BitVU and ByteVU processes take an array of random data and
effectively hide or intersperse message data within the array. The array of random data with the interspersed
messages is referred to as a conversion array, and may be further encrypted before transmission within the
AuthGuard schemes described. The locations of the message data within the conversion array are determined by a
deterministic RNG seeded with a secret value. Two parties that share this secret value can both use the same RNG to
compute the locations of the data within the conversion array. The process of ByteVU involves generating a
conversion array, and “veiling” individual bytes of the message data by sparsely distributing them through the
conversion array. The process of BitVU does the same, but on a bit-wise basis.

Security Policy, version 1.1 May 9, 2008

Authernative® Cryptographic Module Page 10 of 25
© 2008 Authernative, Inc.

This document may be freely reproduced and distributed whole and intact including this copyright notice.

3 Authernative® Cryptographic Module

3.1 Overview

The module was developed and tested on Microsoft Windows XP (Service Package 2) with Sun Java Runtime
Environment (JRE) 1.5. The module can run on any Java Virtual Machine (JVM) regardless of operating system
(OS) and computer architecture. The minimum version of the JRE supported by the module is 1.5.

Logically the module is a single Java ARchival (JAR), AuthCryptoApi.jar. Table 1 shows the OS and name of the
binary file.

Table 1 – Binary Form of the Module

When Operating System Binary File Name

Development Windows XP with Sun JRE 1.5 AuthCryptoApi.jar

Runtime Any JVM with JRE 1.5 or later regardless of
OS and computer architecture

AuthCryptoApi.jar

The module is stored on the hard disk and is loaded in memory when a client application calls cryptographic
services exported by the module. As of this writing, the client application is AuthGuard. However, Authernative
may develop more applications making use of the module in the future.

When operating in the Approved mode of operation, the Authernative® Cryptographic Module is validated at FIPS
140-2 section levels shown in Table 1. Note that in Table 2, EMI and EMC mean Electromagnetic Interference and
Electromagnetic Compatibility, respectively, and N/A indicates “Not Applicable”.

Table 2 – Security Level per FIPS 140-2 Section

Section Section Title Level

1 Cryptographic Module Specification 1

2 Cryptographic Module Ports and Interfaces 1

3 Roles, Services, and Authentication 1

4 Finite State Model 1

5 Physical Security N/A

6 Operational Environment 1

7 Cryptographic Key Management 1

8 EMI/EMC 1

9 Self-Tests 1

10 Design Assurance 1

11 Mitigation of Other Attacks N/A

3.2 Module Interfaces

The module, AuthCryptoApi.jar, provides client applications with a set of cryptographic services in the form of
Application Programming Interface (API) calls. Figure 2 shows the logical cryptographic boundary for the module.
The module is a JAR file that consists of 42 java classes. Out of the 42 classes, 29 are Bouncy Castle classes that
implement underlying cryptographic algorithms. Bouncy Castle is an open-source Java library available at

Security Policy, version 1.1 May 9, 2008

Authernative® Cryptographic Module Page 11 of 25
© 2008 Authernative, Inc.

This document may be freely reproduced and distributed whole and intact including this copyright notice.

http://www.bouncycastle.org/. The Bouncy Castle classes do not have public methods. The other 13 classes,
developed by Authernative, implement public methods of the module. The JAR file manifest, MANIFEST.MF,
contains the signature of the JAR (used in the power-up integrity test).

Figure 2 – Logical Cryptographic Boundary

The descriptions of the Authernative classes are described in Table 3 – Authernative Classes in AuthCryptoApi.jar.
A complete list of exported methods is available in the module’s API reference manual.

Table 3 – Authernative Classes in AuthCryptoApi.jar

Class Description

AuthApiException.class
The class implements the exception thrown when and if there is an error state in
the API.

AuthApiStatus.class The class implements methods that report configurations and status of the API.

AuthCryptoApi.class
This is the core API class and contains all the public methods. This class simply
collects the interfaces into a single object. Most of the functions of the module
are implemented by the other classes.

Base64.class The class implements the base64 encoding and decoding methods.

ConversionArray.class
The class implements Authernative’s patented BitVU, ByteVU, and BBVU
technology. See Section 2.3 of this document for a description of this technique.

CryptoFunctions.class The class contains all the cryptographic functions realized by the module.

KeyGen$KeyThread.class
The class is a subclass of the KeyGen class. This class implements the
mechanism of generating a new key every 60 seconds.

KeyGen.class The class implements key generation methods.

LicParams.class The class stores the licensing information of the module.

RCConst.class
The class contains all the return codes for the API errors for use with the
AuthApiException class.

Security Policy, version 1.1 May 9, 2008

Authernative® Cryptographic Module Page 12 of 25
© 2008 Authernative, Inc.

This document may be freely reproduced and distributed whole and intact including this copyright notice.

Class Description

SecureRNG.class
The class implements the American National Standards Institute (ANSI) X9.31
Appendix A.2.4 RNG.

AuthCipher.class
This is an Authernative wrapper class to enhance usability for all of the Bouncy
Castle cipher functionality.

AuthDigest.class This is an Authernative wrapper class to enhance usability for all of the Bouncy
Castle digest functionality.

The module’s interactions with surrounding components, including Central Processing Unit (CPU), hard disk,
memory, client application, and the OS are demonstrated in Figure 3.

Figure 3 – Logical Cryptographic Boundary and Inter actions with Surrounding Components

The module is validated for use on the platforms listed in the second column of Table 1. In addition to the binaries,
the physical device consists of the integrated circuits of the motherboard, the CPU, Random Access Memory
(RAM), Read-Only Memory (ROM), computer case, keyboard, mouse, video interfaces, expansion cards, and other
hardware components included in the computer such as hard disk, floppy disk, Compact Disc ROM (CD-ROM)
drive, power supply, and fans. The physical cryptographic boundary of the module is the opaque hard metal and
plastic enclosure of the server running the module. The block diagram for a standard general-purpose computer

Security Policy, version 1.1 May 9, 2008

Authernative® Cryptographic Module Page 13 of 25
© 2008 Authernative, Inc.

This document may be freely reproduced and distributed whole and intact including this copyright notice.

(GPC) is shown in Figure 4. Note that in this figure, I/O means Input/Output, BIOS stands for Basic Input/Output
System, PCI stands for Peripheral Component Interconnect, ISA stands for Instruction Set Architecture, and IDE
represents Integrated Drive Electronics.

Figure 4 – Physical Block Diagram of a Standard GPC

All of these physical ports are separated into logical interfaces defined by FIPS 140-2, as described in Table 3.

Table 4 – Logical, Physical, and Module Interface M apping

Logical
Interface Physical Port Mapping Module Mapping

Data
Input

Keyboard, mouse, CD-ROM, floppy disk,
and serial/USB/parallel/network ports

Arguments for API calls that contain data to be used
or processed by the module

Data
Output

Hard Disk, floppy disk, monitor, and
serial/USB/parallel/network ports

Arguments for API calls that contain module
response data to be used or processed by the caller

Control
Input

Keyboard, CD-ROM, floppy disk, mouse,
and serial/USB/parallel/network port

API calls

Status
Output

Hard disk, floppy disk, monitor, and
serial/USB/parallel/network ports

Arguments for API calls, return value, error message

Security Policy, version 1.1 May 9, 2008

Authernative® Cryptographic Module Page 14 of 25
© 2008 Authernative, Inc.

This document may be freely reproduced and distributed whole and intact including this copyright notice.

3.3 Roles and Services

The operators of the module can assume two roles as required by FIPS 140-2: a Crypto Officer role and a User role.
The operator of the module assumes either of the roles based on the operations performed. The operator is not
required to authenticate to the module before accessing services.

The module provides an API for client applications. Table 5 – Crypto Officer Services shows the public methods
that are run by the Crypto Officer role. The method name is shown in the first column (“Service”). Its function is
described in the second column (“Description”). Each method exported by the module is an individual Crypto
Officer service. User services (see Table 6 – User Services) are also available to the Crypto Officer role.

Table 6 – User Services shows the public methods that are run by the User role. Similar to Table 5 – Crypto Officer
Services, the method name is shown in the first column (“Service”). Its function is described in the second column
(“Description”). Each method exported by the module is an individual User service. User services are also available
to the Crypto Officer role.

The Critical Security Parameters (CSPs) mentioned in the rightmost columns correspond to the ones listed in Table
7 – List of Cryptographic Keys, Cryptographic Key Components, and CSPs.

Security Policy, version 1.1 May 9, 2008

Authernative® Cryptographic Module Page 15 of 25
© 2008 Authernative, Inc.

This document may be freely reproduced and distributed whole and intact including this copyright notice.

Table 5 – Crypto Officer Services

Service Description Input Output CSP and Type of Access

Installation To install the module Command Status None

Uninstallation To uninstall the module Command Status All CSPs – overwrite

AuthCryptoApi The API’s only constructor.
The instance of the API will
be defined by the
parameters that are passed
in

Crypto type, hash
type, crypto
mode, key size,
padding scheme

Status None

getInstance This method is provided for
singleton use of the API

Crypto type, hash
type, crypto
mode, key size,
padding scheme

Status, the instance of
AutghCryptoApi

None

printByteArray Prints out a byte array in
hexadecimal notation

Text string, byte
array

Status, the printout None

printByteArray Prints out a byte array in
hexadecimal notation

Byte array Status, the printout None

hexStrToByteArray Converts a hexadecimal
string into a byte array

Hexadecimal
string

Status, byte array None

checkLicense Checks the license License string
from application,
client information

Status None

getStatus Gets information and
configuration about the API

None Status, API object information
and configuration

None

setSeed Sets the seed, date/time
(DT) value, and Triple DES
key to random numbers
(generated by the non-
Approved RNG) for the
ANSI X9.31 RNG

None Status ANSI X9.31 RNG seed for key generation methods –
write, overwrite
ANSI X9.31 RNG DT value for key generation methods –
write, overwrite
ANSI X9.31 RNG Triple DES key for key generation
methods – write, overwrite

setSeed Sets the Triple DES key to
specified values for the
ANSI X9.31 RNG

Triple DES key Status ANSI X9.31 RNG Triple DES key for key generation
methods – write, overwrite

Security Policy, version 1.1 May 9, 2008

Authernative® Cryptographic Module Page 16 of 25
© 2008 Authernative, Inc.

This document may be freely reproduced and distributed whole and intact including this copyright notice.

Service Description Input Output CSP and Type of Access

setSeed Sets the seed, DT value,
and Triple DES key to
specified values for the
ANSI X9.31 RNG

Seed, Triple DES
key, DT value

Status ANSI X9.31 RNG seed for key generation methods –
write, overwrite
ANSI X9.31 RNG DT value for key generation methods –
write, overwrite
ANSI X9.31 RNG Triple DES key for key generation
methods – write, overwrite

nextInt Generates a random
number

None Status, random number ANSI X9.31 RNG seed for key generation methods –
read
ANSI X9.31 RNG DT value for key generation methods –
read
ANSI X9.31 RNG Triple DES key for key generation
methods – read

nextInt Generates a random
number between zero and
the specified integer

An integer (range
of the random
number)

Status, random number ANSI X9.31 RNG seed for key generation methods –
read
ANSI X9.31 RNG DT value for key generation methods –
read
ANSI X9.31 RNG Triple DES key for key generation
methods – read

nextBytes Generates a random
number array

Pointer to a byte
array

Status, random number array ANSI X9.31 RNG seed for key generation methods –
read
ANSI X9.31 RNG DT value for key generation methods –
read
ANSI X9.31 RNG Triple DES key for key generation
methods – read

zeroize Zeroizes CSPs None Status All CSPs in HashMap and filesystem – overwrite

Table 6 – User Services

Service Description Input Output CSP and Type of Access

setNumberOfKeys Sets the maximum number of keys
that the key generator will create
before restarting at zero

Number of keys Status None

setPersistence Sets the way the keys will be saved
for the key generator

Mode (save in keys in file
system or memory)

Status None

setPath Sets the location that the keys will
be saved to the file system

Path of the file system Status None

Security Policy, version 1.1 May 9, 2008

Authernative® Cryptographic Module Page 17 of 25
© 2008 Authernative, Inc.

This document may be freely reproduced and distributed whole and intact including this copyright notice.

Service Description Input Output CSP and Type of Access

getSecretKey Creates and returns a Java secret
key (javax.crypto.SecretKey)

None Status, a secret key
(javax.crypto.SecretKey)

AES key or Triple DES key for caller use
– write, read

getRawKey Creates and returns a Java secret
key (byte array)

None Status, a secret key
(byte array)

AES key or Triple DES key for caller use
– write, read

startKeyGen Starts a thread that will perform key
generation and save the keys.
Keys will be generated every 60
seconds

None Status Triple DES key for veiling and unveiling
methods – write

stopKeyGen Stops the key generation None Status Triple DES key for veiling and unveiling
methods – overwrite

getSecretKeyFromRepos Gets a key
(javax.crypto.SecretKey) from the
repository that is created by the
startKeyGen method call

Index to the repository Status, a secret key
(javax.crypto.SecretKey)

Triple DES key for veiling and unveiling
methods – read

getRawKeyFromRepos Gets a key (byte array) from the
repository that is created by the
startKeyGen method call

Index to the repository Status, a secret key
(byte array)

Triple DES key for veiling and unveiling
methods – read

setSecretKey Sets the secret key (byte array) to
be used in crypto operations

Secret key Status AES key or Triple DES key for encryption
and decryption methods – write, overwrite

setSecretKey Sets the secret key
(javax.crypto.SecretKey) to be
used in crypto operations

Secret key Status AES key or Triple DES key for encryption
and decryption methods – write, overwrite

setIV Sets the initialization vector if
crypto uses CBC mode

Initialization vector Status None

updateHash Updates the current message for
hashing

Byte array added to the
message

Status None

hashValue Performs the final hashing for
message

Byte array added to the
message before the final
hashing is done

Status, hash value None

updateEncrypted Updates the current plaintext for
encryption

Byte array added to the
plaintext to be encrypted

Status None

Security Policy, version 1.1 May 9, 2008

Authernative® Cryptographic Module Page 18 of 25
© 2008 Authernative, Inc.

This document may be freely reproduced and distributed whole and intact including this copyright notice.

Service Description Input Output CSP and Type of Access

encryptValue Performs the final encryption for
the plaintext

Byte array added to the
plaintext before the final
encryption is done

Status, ciphertext AES key or Triple DES key for encryption
and decryption methods – read

decryptValue Decrypts ciphertext Plaintext Status, plaintext AES key or Triple DES key for encryption
and decryption methods – read

encryptValue Encrypts plaintext with specified
secret key (javax.crypto.SecretKey)

Plaintext, secret key
(javax.crypto.SecretKey)

Status, ciphertext AES key or Triple DES key for encryption
and decryption methods – read

decryptValue Decrypts ciphertext with specified
secret key (javax.crypto.SecretKey)

Ciphertext, secret key
(javax.crypto.SecretKey)

Status, plaintext AES key or Triple DES key for encryption
and decryption methods – read

encryptValue Encrypts plaintext with specified
secret key (byte array)

Plaintext, secret key (byte
array)

Status, ciphertext AES key or Triple DES key for encryption
and decryption methods – read

decryptValue Decrypts ciphertext with specified
secret key (byte array)

Ciphertext, secret key
(byte array)

Status, plaintext AES key or Triple DES key for encryption
and decryption methods – read

encode Performs Base64 encoding on
bytes

Bytes to be encoded Encoded bytes None

encode Performs Base64 encoding on
strings

Strings to be encoded Encoded string None

decode Performs Base64 decoding on
bytes

Bytes to be decoded Decoded bytes None

decode Performs Base64 decoding on
strings

Strings to be decoded Decoded string None

veilData Hides bits, bytes, or bits and bytes
in a larger array

Mode (bit, byte, or bit and
byte), byte array to be
hidden, Triple DES key for
the ANSI X9.31 RNG

Conversion array with
hidden byte array

Triple DES key for veiling and unveiling
methods – write, read

unveilData Extracts the data from conversion
array

Mode (bit, byte, or bit and
byte), conversion array,
Triple DES key for the
ANSI X9.31 RNG

Original byte array Triple DES key for veiling and unveiling
methods – write, read

Security Policy, version 1.1 May 9, 2008

Authernative® Cryptographic Module Page 19 of 25
© 2008 Authernative, Inc.

This document may be freely reproduced and distributed whole and intact including this copyright notice.

3.4 Physical Security

The Authernative® Cryptographic Module is a multi-chip standalone module. The physical security requirements do
not apply to this module, since it is purely a software module and does not implement any physical security
mechanisms.

3.5 Operational Environment

The module was tested and validated on general-purpose Microsoft Windows XP with Service Package 2 with Sun
JRE 1.5. The module can run on any JVM regardless of OS and computer architecture. The minimum version of the
JRE supported by the module is 1.5. The module must be configured in single user mode as per the instructions
provided in Section 4.1 of this document. Recommended configuration changes for the supported OS can also be
found in Section 4.1.

3.6 Cryptographic Key Management
The module implements the following FIPS-approved algorithms in the Approved mode of operation.

• SHA-1, SHA-256, SHA-384, SHA-512 (certificate #725). SHA means Secure Hash Algorithm.
• HMAC-SHA-1 (certificate #375). HMAC means Keyed-Hash Message Authentication Code.
• Triple DES: 112 and 168 bits, in ECB and CBC modes (certificate #629). ECB and CBC mean Electronic

Codebook and Cipher Block Chaining, respectively.
• AES: 128, 192, and 256 bits, in ECB and CBC modes (certificate #697)
• ANSI X9.31 Appendix A.2.4 RNG with 2-key Triple DES (certificate #408)

In the Approved mode of operation, the module uses a non-Approved RNG to seed the ANSI X9.31 RNG. This non-
Approved RNG is the SecureRandom class provided by the JRE and is not implemented by the module itself. The
non-Approved RNG is outside the cryptographic boundary of the module and is used by the module only for seeding
the ANSI X9.31 RNG. In the non-Approved mode of operation, the module supports MD5.

The module supports the following CSPs in the Approved mode of operation:

Table 7 – List of Cryptographic Keys, Cryptographic Key Components, and CSPs

Key Key Type Generation / Input Output Storage Zeroization Use

Triple DES key for
caller use

Triple DES
symmetric
keys

Generated by ANSI
X9.31 RNG

In
plaintext

1. Plaintext in
volatile
memory;
2. Plaintext in
filesystem

Zeroized when
the zeroize
method is called

Use is at the
discretion of
the caller

AES key for caller
use

AES
symmetric
key

Generated by ANSI
X9.31 RNG

In
plaintext

1. Plaintext in
volatile
memory;
2. Plaintext in
filesystem

Zeroized when
the zeroize
method is called

Use is at the
discretion of
the caller

Triple DES key for
encryption and
decryption
methods

Triple DES
symmetric
keys

Input by caller in
plaintext

Never Plaintext in
volatile
memory

Zeroized after
encryption or
decryption is done

Encrypt
plaintext or
decrypt
ciphertext

AES key for
encryption and
decryption
methods

AES
symmetric
key

Input by caller in
plaintext

Never Plaintext in
volatile
memory

Zeroized after
encryption or
decryption is done

Encrypt
plaintext or
decrypt
ciphertext

Security Policy, version 1.1 May 9, 2008

Authernative® Cryptographic Module Page 20 of 25
© 2008 Authernative, Inc.

This document may be freely reproduced and distributed whole and intact including this copyright notice.

Key Key Type Generation / Input Output Storage Zeroization Use

Triple DES key for
veiling and
unveiling methods

Triple DES
symmetric
keys

Input by caller in
plaintext

Never Plaintext in
volatile
memory

Zeroized after
veiling or
unveiling is done

Veil or unveil
data

ANSI X9.31 RNG
DT value for key
generation
methods

Date/time
variable

1. Generated
internally by
retrieving system
date/time value
2. Input by caller in
plaintext

Never Plaintext in
volatile
memory

Zeroized when
new DT value is
generated

Generate keys

ANSI X9.31 RNG
Triple DES key for
key generation
methods

Triple DES
symmetric
keys

1. Generated using
the non-Approved
RNG
2. Input by caller in
plaintext

Never Plaintext in
volatile
memory

Zeroized when
new Triple DES
key is generated

Generate keys

ANSI X9.31 RNG
seed for key
generation
methods

Seed 1. Generated using
the non-Approved
RNG
2. Input by caller in
plaintext

Never Plaintext in
volatile
memory

Zeroized when
new seed is
generated

Generate keys

Software integrity
test key

512-bit
HMAC-
SHA-1 key

Hardcoded Never Plaintext in
nonvolatile
memory

Zeroized when
the module is
uninstalled

Used in
software
integrity test

3.6.1 Key Generation

The module uses an ANSI X9.31 RNG with 2-key Triple DES to generate cryptographic keys. This RNG is a FIPS-
Approved RNG as specified in Annex C to FIPS 140-2.

3.6.2 Key Input/Output

Symmetric keys are input to and output from the module in plaintext. The module does not use asymmetric-key
cryptography.

3.6.3 Key Storage and Protection

Keys and other CSPs are stored in volatile memory or file system in plaintext. All key data resides in internally
allocated data structures and can only be output using the module’s defined API. The OS and JRE protect memory
and process space from unauthorized access.

3.6.4 Key Zeroization

Generally speaking, CSPs resides in internal data structures that are cleaned up by JVM’s garbage collector. Java
handles memory in unpredictable ways that are transparent to the user. The Crypto Officer may manually invoke the
zeroization of keys stored in HashMap and filesystem by calling the zeroize method.

3.7 EMI/EMC

Although the module consists entirely of software, the FIPS 140-2 platform is a server that has been tested for and
meets applicable Federal Communications Commission (FCC) EMI and EMC requirements for business use as
defined in Subpart B of FCC Part 15.

Security Policy, version 1.1 May 9, 2008

Authernative® Cryptographic Module Page 21 of 25
© 2008 Authernative, Inc.

This document may be freely reproduced and distributed whole and intact including this copyright notice.

3.8 Self-Tests

The power-up self-tests are triggered by instantiation of an object of the AuthCryptoApi class. The Authernative®
Cryptographic Module performs the following power-up self-tests:

• Software integrity test using HMAC-SHA-1
• Known Answer Test (KAT) on 2-key Triple DES in ECB mode
• KAT on 128-bit AES in ECB mode
• KATs on SHA-1, SHA-256, SHA-384, and SHA-512
• KAT on ANSI X9.31 RNG

The module implements the following conditional self-tests.

• Continuous test for the ANSI X9.31 RNG
• Continuous test for the non-Approved RNG

If the self-tests fail, an exception will be thrown on the failure. The application is then alerted that the self-tests
failed, and the module will not load and will enter an error state. When in the error state, execution of the module is
halted and data output from the module is inhibited.

3.9 Mitigation of Other Attacks

This section is not applicable. No claim is made that the module mitigates against any attacks beyond the FIPS 140-
2 level 1 requirements for this validation.

Security Policy, version 1.1 May 9, 2008

Authernative® Cryptographic Module Page 22 of 25
© 2008 Authernative, Inc.

This document may be freely reproduced and distributed whole and intact including this copyright notice.

4 Secure Operation
The Authernative® Cryptographic Module meets Level 1 requirements for FIPS 140-2. The subsections below
describe how to place and keep the module in the Approved mode of operation.

4.1 Operating System Configuration

The user of the module is a software application. FIPS 140-2 mandates that a cryptographic module be limited to a
single user at a time. A single instantiation of the Authernative® Cryptographic Module shall only be accessed by
one client application, which is the User of this instantiation of the Authernative® Cryptographic Module.

For enhanced security, it is recommended that the Crypto Officer configure the OS to disallow remote login.

To configure Windows XP to disallow remote login, the Crypto Officer should ensure that all remote guest accounts
are disabled in order to ensure that only one human operator can log into Windows XP at a time. The services that
need to be turned off for Windows XP are

• Fast-user switching (irrelevant if server is a domain member)
• Terminal services
• Remote registry service
• Secondary logon service
• Telnet service
• Remote desktop and remote assistance service

Once Windows XP has been configured to disable remote login, the Crypto Officer can use the system
“Administrator” account to install software, uninstall software, and administer the module.

A CMVP public document, Frequently Asked Questions for the Cryptographic Module Validation Program1, gives
instructions in Section 5.3 for configuring various Unix-based operating systems for single user mode.

4.2 Approved Mode Configuration

The Authernative® Cryptographic Module itself is not an end-user product. It is provided to the end-users as part of
the application (e.g., AuthGuard). The module is installed during installation of the application. The installation
procedure is described in the installation manual for the application.

In order to access functions of the module, the application has to execute the constructor of class AuthCryptoApi by
instantiating an object of class AuthCryptoApi. The constructor of class AuthCryptoApi is:

public AuthSecurityApi(int crpytoType, int hashType, int codeBook, int keySize, int padding)

If the value passed in to the argument int hashType is SHA (integer value 1, 2, 3, or 4), then the module is operating
in the Approved mode of operation. If the value passed in to the argument int hashType is MD5 (integer value 0),
then the module is operating in the non-Approved mode of operation.

The constructor of class AuthCryptoApi performs all required power-up self-tests. If all power-up self-tests are
passed, then an internal flag will be set to true. All other public methods of the module check this internal flag and
ensure it is true before performing any other functions.

1 Available at http://csrc.nist.gov/groups/STM/cmvp/documents/CMVPFAQ.pdf.

Security Policy, version 1.1 May 9, 2008

Authernative® Cryptographic Module Page 23 of 25
© 2008 Authernative, Inc.

This document may be freely reproduced and distributed whole and intact including this copyright notice.

Notice that the Approved mode configuration described above is transparent to an operator. The configuration is
performed by the client application.

4.3 CSP Zeroization

The Crypto Officer should zeroize CSPs when they are no longer needed. See Section 3.6.4 of this document for
details on CSP zeroization.

4.4 Status Monitoring

The module’s cryptographic functionality and security services are provided via the application. The module is not
meant to be used without an associated application. End-user instructions and guidance are provided in the user
manual and technical support documents of the application software. Although end-users do not have privileges to
modify configurations of the module, they should make sure that the Approved mode of operation is enforced in the
application, thereby ensuring that the proper cryptographic protection is provided.

Security Policy, version 1.1 May 9, 2008

Authernative® Cryptographic Module Page 24 of 25
© 2008 Authernative, Inc.

This document may be freely reproduced and distributed whole and intact including this copyright notice.

5 Acronyms
Table 8 – Acronyms

Acronym Definition

AES Advanced Encryption Standard

ANSI American National Standards Institute

API Application Programming Interface

BBVU Byte-Bit-Veil-Unveil

BIOS Basic Input/Output System

BitVU Bit-Veil-Unveil

ByteVU Byte-Veil-Unveil

CBC Cipher Block Chaining

CD-ROM Compact Disc Read-Only Memory

CMVP Cryptographic Module Validation Program

CPU Central Processing Unit

CSP Critical Security Parameter

DES Data Encryption Standard

DRK Data Random Key

DT Date/Time

ECB Electronic Codebook

EMC Electromagnetic Compatibility

EMI Electromagnetic Interference

FCC Federal Communications Commission

FIPS Federal Information Processing Standard

GPC General-Purpose Computer

GUI Graphical User Interface

HDD Hard Drive

HMAC Keyed-Hash Message Authentication Code

IDE Integrated Drive Electronics

IEEE Institute of Electrical and Electronics Engineers

I/O Input/Output

IR Infrared

ISA Instruction Set Architecture

JAR Java ARchival

JRE Java Runtime Environment

JVM Java Virtual Machine

KAT Known Answer Test

Security Policy, version 1.1 May 9, 2008

Authernative® Cryptographic Module Page 25 of 25
© 2008 Authernative, Inc.

This document may be freely reproduced and distributed whole and intact including this copyright notice.

Acronym Definition

MAC Message Authentication Code

N/A Not Applicable

OS Operating System

PCI Peripheral Component Interconnect

RAM Random Access Memory

RNG Random Number Generator

ROM Read Only Memory

SHA Secure Hash Algorithm

SRK Session Random Key

UART Universal Asynchronous Receiver/Transmitter

USB Universal Serial Bus

