
Communications & Content Security

Daniel Bailey

Product Manager

Embedded Systems

dbailey@ntru.com

Technical Overview
And Applications



Communications & Content Security

NTRU Public Key Cryptography

• Part I:  An Overview of NTRU
– NTRU – Fast, Small and Secure
– Why Is NTRU So Fast?
– How Fast is NTRU?
– Super Fast NTRU Key Creation
– NTRU Disposable Keys
– NTRU: Easy to Implement in Constrained Environments
– History of the NTRU Public Key Cryptosystem



Communications & Content Security

NTRU – Fast, Small and Secure

The NTRU Public-Key Cryptosystem features super fast cryptography:
• NTRU C code optimized for portability, NOT optimized for speed:

– NTRU encrypt/decrypt runs up to 475 times faster than RSA/ECC on servers 
(at RSA-1024 security level – higher levels give NTRU an even BIGGER 
advantage!)

– Encrypts 40-50 times faster than hand-optimized (for speed) RSA, ECC on 
constrained devices

– Decrypts 333 times faster than hand-optimized (for speed) RSA on 
constrained devices

The NTRU Public-Key Cryptosystem features super fast key generation:
– NTRU key generation 30-1000+ times faster than RSA, ECC
– NTRU sign/verify up to 100 times faster than RSA or ECC
– Key generation is 1-3 orders of magnitude faster than RSA, ECC

NTRU is even FASTER on 8-bit chips or DSPs:
– NTRU NEVER requires a coprocessor, even on 8-bit devices!
– Up to 2000 times  faster than RSA on DSPs



Communications & Content Security

Why is NTRU so Fast?

NTRU’s basic operation is convolution product of two vectors of small numbers:
[a0,…,aN-1] * [b0,…,bN-1]  =  [c0,…,cN-1]

With
ck =  a0bk + a1bk-1 + a2bk-2 + … + aN-2bk+2 + aN-1bk+1 .

Convolution products can be computed very rapidly using Karatsuba multiplication or 
Fast Fourier Transforms.

RSA’s basic operation is modular multiplication of big numbers:
a * b  (modulo N)      with  N=p*q.

ECC’s (elliptic curve cryptosystem) basic operation is addition of points on an elliptic 
curve :

P + Q  (modulo p)     with P and Q points on E.



Communications & Content Security

Why is NTRU so Fast? 

System Basic Operation
NTRU Convolution Product
RSA Modular Multiplication
ECC Elliptic Curve Addition

• NTRU and ECC basic operations take approximately the same time 
(basic operations for RSA are a little faster).

• How many basic operations are needed to encrypt and decrypt?

System Number of Operations Required
Encrypt Decrypt

NTRU 1 2
RSA 17 ~1,000
ECC ~160 ~160



Communications & Content Security

How Fast is NTRU on Servers? 
(RSA 1024 Level Security)

NTRU’s NERI toolkit vs. Wei Dai Toolkit (for RSA, ECC) with e=65537 (800 MHz Pentium III)

1.86 to 118513450Sigs/secVerify
11.7 to 11061242Sigs/secSign
99 to 111010869Blocks/secDecrypt
17 to 1128022727Blocks/secEncrypt

NTRU AdvantageRSA 1024NTRU 251UnitsFunction

50 to 1683450Sigs/secVerify
21 to 1571242Sigs/secSign
197 to 15510869Blocks/secDecrypt
475 to 14822727Blocks/secEncrypt

NTRU Advantage ECC 163NTRU 251UnitsFunction



Communications & Content Security

How Fast is NTRU on Constrained 
Devices?  (RSA 1024 Level Security)

NTRU’s NERI portable toolkit vs. published results (for ECC, RSA) specialized for the Palm device 
with e=65537.

6.2 to 10.53.1Sigs/secVerify
55 to 10.0362Sigs/secSign
333 to 10.03612Block/secDecrypt
42 to 10.521Blocks/secEncrypt

NTRU AdvantageRSA 1024NTRU 251UnitsFunction

6.2 to 10.53.1Sigs/secVerify
1.5 to 11.32Sigs/secSign
9 to 11.312Block/secDecrypt
52.5 to 10.421Blocks/secEncrypt

NTRU Advantage ECC 163NTRU 251UnitsFunction



Communications & Content Security

Super Fast NTRU Key Creation

Note:
• Independent ECC keys need random elliptic curves.  
• ECC key generation of independent keys is slower than RSA.
• All NTRU keys are completely independent.

• NTRU key creation is lightning fast
• All NTRU keys are fully independent

3.98  to 1111.54.42  ms163ECC GF(p)

505  to 11.8560  ms1024RSA

9001.11  ms1757NTRU

NTRU AdvantageKey Pairs/ SecondCreate Key PairKey Size

Timing at 800MHz.  NTRU uses NERI5.6 toolkit.  RSA and ECC use Crypto++ package.



Communications & Content Security

NTRU Disposable Keys
A New Public Key Paradigm

• NTRU’s fast key creation enables new public key paradigms

– Content Protection
• Encrypt audio and video with a different key for every few seconds of 

content
– eCommerce / mCommerce

• Use independent keys for every transaction
– E-mail

• Master Key/Disposable Key Protocol saves storage and increases 
security



Communications & Content Security

Easy to Implement in Constrained 
Environments

• NTRU is:
– Easy to program
– Easy to build into hardware
– Ideal for Digital Signal Processors (DSPs)

• NTRU Requires:
– Less memory (RAM) in software
– Less storage in software
– Fewer gates in hardware

• NTRU easily fits into:
– Low power smart cards
– Handheld devices
– Cellular telephones
– Set top boxes … without sacrificing speed!



Communications & Content Security

History of NTRU

• Developed by team of cryptographer/mathematicians
– J. Hoffstein, J. Pipher, J. Silverman (1994-1996)

• Presented by J. Hoffstein at CRYPTO ’96
• Immediate feedback from top cryptographers (Coppersmith, 

Hastad, Odlyzko, Shamir,…) used to set appropriate security 
parameters

• Ongoing research by experts in lattices and cryptography (Phong, 
Stern, Schnorr, …) reaffirms NTRU’s security

• New IEEE P1363.1 standard based on NTRU
• New CEES Efficient Embedded Security Standard based on NTRU



Communications & Content Security

NTRU Public-Key Cryptography

• Part II:  How NTRU Works
– NTRU Multiplication
– Small Polynomials and Polynomials Mod q
– NTRU Public Parameters
– NTRU Key Creation
– NTRU Encryption
– NTRU Decryption
– Why Does NTRU Work?
– NSS Key Creation
– NSS Signing/Verifying
– NSS Encoding/Masking
– Why does NSS Work?



Communications & Content Security

NTRU Multiplication

NTRU uses polynomials   a0+a1x+a2x2+…+aN-1xN-1

Always multiply NTRU polynomials using the extra rule

xN = 1.

Example with N=4 (Extra Rule: x4 = 1)

(x3+2x-1)*(3x3-x2+x+2) = 3x6-x5+7x4-3x3+3x2+3x-2
= 3x2-x + 7 - 3x3+3x2+3x-2
= -3x3+6x2+2x+5



Communications & Content Security

NTRU Multiplication

The product of
f(x) = a0+a1x+a2x2+…+aN-1xN-1 and   
g(x) = b0+b1x+b2x2+…+bN-1xN-1

Is
h(x) = f(x)*g(x) = c0+c1x+c2x2+…+cN-1xN-1

With
ck = a0bk + a1bk-1 + a2bk-2 + … + aN-1bk+1.

• The coefficient vector of the product h(x) = f(x)*g(x) is the 
convolution product of the coefficient vectors of f(x) and g(x). 

• The convolution product can be computed very rapidly using Fast 
Fourier Transforms or Karatsuba multiplication in approximately 
N*log(N) steps.



Communications & Content Security

NTRU uses polynomials whose coefficients are all –1, 0, or 1, where the 
number of 1’s and –1’s may be specified. We will call these small 
polynomials, since they have small coefficients.

The coefficients of NTRU polynomials may be reduced modulo a number 
q. That means that the coefficients are replaced with their remainders after 
being divided by q.

Example.
5x3 - 11x2 + 4x + 6  =  -x3 + x2 + x   (mod 3)

Small Polynomials and Polynomials 
Mod q



Communications & Content Security

NTRU Public Parameters

The NTRU Public Key Cryptosystem depends on three public parameters:
N, p, q

Typical values for these parameters, with approximate equivalent RSA 
security levels, are:

RSA LevelNTRU

40962563503

20481283347

10241283251

(bits)qpN



Communications & Content Security

NTRU Key Creation

Bob chooses two small polynomials f(x) and g(x).
Bob computes inverses for f(x) modulo p and modulo q. This means that 
Bob computes polynomials F1(x) and F2(x) so that

F1(x)*f(x) = 1 (mod p)     and     F2(x)*f(x) = 1 (mod q).

Finding these inverses is very fast using the Euclidean algorithm.
Bob computes the product

h(x) = p*F2(x)*g(x)  (mod q).

Bob’s Private Key: the pair  f(x)  and  F1(x)
Bob’s Public Key: the polynomial  h(x)



Communications & Content Security

NTRU Encryption

Alice’s plaintext is a polynomial

m(x)   modulo p.

Alice randomly chooses a small polynomial  r(x).

Alice uses Bob’s public key h(x) to compute

e(x) = r(x)*h(x) + m(x)   (mod p).

Alice’s encrypted message:  e(x)



Communications & Content Security

NTRU Decryption

Bob uses his private key f(x) and Alice’s ciphertext e(x) to compute

a(x) = f(x)*e(x)   (mod q).

Bob chooses the coefficients of a(x) to lie between -q/2 and q/2.

Bob uses the other part of his private key F1(x) to compute

b(x) = F1(x)*a(x)  (mod p).

The polynomial  b(x)  is equal to Alice’s plaintext message  m(x).



Communications & Content Security

Why Does NTRU Work?

a = f * e (mod q)      f is Bob’s private key
= f * (r*h + m) (mod q)      r is the message blinding value
= f * (r*p*g*F2 + m) (mod q)      p*g*F2 is Bob’s public key
= p*r*g + f*m (mod q)      since   f*F2 = 1 (mod q).

All of the polynomials r, g, f, m are small, so the polynomial

p*r*g + f*m

will have coefficients between -q/2 and q/2. Therefore the polynomial 
a(x) is  exactly equal to p*r*g + f*m. Then

F1*a = F1*(p*r*g + f*m) = F1*f*m = m   (mod p)

because  F1*f = 1 (mod p).



Communications & Content Security

NSS Key Creation

Bob chooses two small polynomials f(x) and g(x).
Bob computes inverses for f(x) modulo p and modulo q. This means that 
Bob computes polynomials F1(x) and F2(x) so that

F1(x)*f(x) = 1 (mod p)     and     F2(x)*f(x) = 1 (mod q).

Finding these inverses is very fast using the Euclidean algorithm.
Bob computes the product

h(x) = p*F2(x)*g(x)  (mod q).

Bob’s Private Key: the polynomial f(x)
Bob’s Public Key: the polynomial  h(x)



Communications & Content Security

NSS Signing/Verifying

First, use a hash function to produce a message digest m(x) 
from a document D.

Construct a small polynomial w(x) that encodes m(x) mod p.

The signature is s(x) = f(x)*w(x) (mod q).

To verify the signature, compute

t = h(x)*s(x) = g(x)*w(x)   (mod q),

and verify that

1) s(x) and t(x) look like products of small polynomials
2) s(x) and t(x) are tied to m(x) mod p.



Communications & Content Security

NSS Encoding/Masking

Choose private key polynomials f(x) and g(x) in the form
f(x) = u(x) + pF(x) and g(x) = u(x) + pG(x)

where u(x), F(x) and G(x) are random small polynomials.

The polynomial w(x) used in the signature s(x) = f(x)*w(x) (mod q) is 
called the encoding/masking polynomial. It does two things:

w(x) encodes information about m(x) mod p;
w(x) masks f(x) and g(x) within s(x) and t(x), making it

difficult for an attacker to extract information.

The encoding/masking polynomial w(x) is constructed as:

1) Choose small polynomials w1(x) and w2(x)
2) w2(x) random, and w1(x) chosen to conceal mod q reductions.
3) Compute w0(x) = (u(x)-1*m(x) mod p) + (u(x)-1 *w1(x) mod p).
4) Set w(x) = w0(x) + pw2(x).



Communications & Content Security

Why Does NSS Work?
s = f * w (mod q)

= (u + pF) * (w0 + pw2) (mod q)
= u*w0 + pu*w2 + pF*w (mod q)

t = g * w = h * s (mod q)
= (u + pG) * (w0 + pw2) (mod q)
= u*w0 + pu*w2 + pG*w (mod q)

All of the polynomials u, G, F, m are small, and

u*w0 = u*(u(x)-1*m + u(x)-1*w1) = m + w1   (mod p).

Mod p, the ith coefficient of s and t is the ith coefficient of m, unless
1) the ith coefficient of m has been altered, or
2) the ith coefficient of f*w or g*w has been reduced mod q

This mod p correlation ties the signature s(x) to the digest m(x).



Communications & Content Security

NTRU Public Key Cryptography

• Part III:  Security
– The NTRU/NSS Hard Problem
– NTRU versus ECC – Speed and Security
– Lattices and the Short Vector Problem
– Brief History of Lattice Problems
– NTRU Lattices and Testing NTRU Security
– Security Comparison – Time to Break



Communications & Content Security

The NTRU/NSS Hard Problem

The hard problem underlying NTRU and NSS is the 

Short Vector Problem

in lattices of high dimension

Index calculusDiscrete logarithmDH

Pollard rhoElliptic curve discrete logECC

Number field sieveInteger factorizationRSA

LLL lattice reductionShort vector problemNTRU

Best Solution MethodHard ProblemSystem

Best Known Methods to Break:
• NTRU and ECC are exponential (very slow)
• RSA and DH are subexponential (faster)



Communications & Content Security

NTRU versus ECC – Speed and Security

To improve the speed of ECC, people use a special elliptic curve.

ECC Using One Special Elliptic Curve
Advantage – improved speed 

(but NTRU is still much faster!)
Disadvantage -- possibly decreased security

ECC Using Many (Random) Elliptic Curves
Advantage -- probable increased security
Disadvantage -- very slow

The NTRU Advantage
• Every NTRU key has its own random lattice.
• NTRU keys are always completely independent.



Communications & Content Security

Lattices and the Short Vector Problem

Take a collection of vectors
V1 = [a1,…,an]    … Vn = [c1,…,cn].

A lattice L of dimension n is the set of all linear combinations
L = { z1V1+…+znVn :  z1,…,zn are integers}.

• The Shortest Vector Problem (SVP) is to find the shortest nonzero 
vector in the lattice L.

• The Closest Vector Problem (CVP) is to find the vector in the lattice 
L that is closest to a given vector W.

• If the dimension n of the lattice is large, both SVP and CVP are very 
difficult to solve.

• The hard problems underlying NTRU are the SVP and the CVP.



Communications & Content Security

Brief History of Lattice Problems

• Lattices, SVP, and CVP have been extensively studied for more than 
100 years (Hermite 1870s, Minkowski 1890s,…).

• Best computational tool was developed by Lenstra, Lenstra, and
Lovasz (LLL algorithm) in early 1970s.

• Improvements to LLL are due to Schnorr, Euchner, Horner, others in 
1980s.

• Algorithms to find small vectors in lattices have been extensively 
studied because they have applications to many areas outside of 
cryptography, including physics, combinatorics, number theory, 
computer algebra,…. 

• Contrast this with integer factorization (RSA) and elliptic curve 
discrete logarithms (ECC), where the only applications are to 
cryptography.



Communications & Content Security

402424291757Key Length (bits)

1006694502Lattice Dimension

503347251N

• The NTRU lattice has dimension 2N.
• The NTRU (public) key has length approximately  N*log(N/2) bits.

• Earlier lattice based cryptosystems (knapsack type, Ajtai-Dwork,
Goldreich-Goldwasser-Halevi) had dimension N and key length 
approximately N2 bits. 

• Earlier systems were impractical for lattices of dimension 500 to 1000 
and insecure for lattices of dimension 100 to 200.

• NTRU is practical and secure using lattices of dimension 500 to 1000.

NTRU Lattices and Testing NTRU 
Security



Communications & Content Security

Computing NTRU Security Levels

NTRU Log Time To Break

6.0

7.0

8.0

9.0

10.0

11.0

12.0

60 65 70 75 80 85 90 95 100

N (Lattice Dimension/2)

Lo
g(

Ti
m

e)
  (

se
co

nd
s)



Communications & Content Security

Extrapolation Line:   

Log(T) = 0.174*N – 5.598

Coefficient of Correlation: 0.958

Extrapolated Breaking Time:    
N = 251
Log(T) = 37.694
T =  3.48*1016 seconds  =  4.4*1011 MIPS-years

[Conversion at 400 MHz:   T seconds ≈ 1.27*10-5*T MIPS-years]

Computing NTRU Security Levels



Communications & Content Security

NTRU Security:  Time to Break

>  10334024NTRU 503
(RSA 4096 Security Level)

>  10212429NTRU 347
(RSA 2048 Security Level)

> 10111757NTRU 251

(RSA 1024 Security Level)

Processing Time 
(MIPS-Years)

Block/Public Key Size 
(Bits)

Cryptographic System



Communications & Content Security

Daniel Bailey

Product Manager

Embedded Systems

dbailey@ntru.com

Technical Overview
And Applications


