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A few assertions…

Fast design = faster designs
The best architecture determines the fastest, smallest, 
lowest latency, highest performance design
Architectural exploration is key to achieving the best 
architecture

RTL ≠ fast design
Hardware is concurrent, with shared resources
You cannot design hardware faster (generally) without 
raising the level of concurrency: especially complex 
algorithms, control logic and system composition
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Atomic transactions:

the only high-level abstraction 
for concurrency in hardware 
design

Faster design:

faster implementation, faster 
changes, fewer bugs, powerful 
parameterization

Better designs:

faster, smaller, lower latency, 
highest performance.  You 
pick!
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What is Bluespec?

Hardware design language equivalent of the advance from assembly
language to C/C++

Commensurate productivity & capability improvements over RTL, while keeping designers in 
100% control of architecture
Synthesizable language extensions (BSV) to SystemVerilog 
Bluespec Compiler (BSC) generates synthesizable Verilog and cycle-accurate models from BSV

General purpose solution
Applicable to all levels of detail – from executable spec to implementation
Applicable to all component types – datapath, control, state machines, interconnect, transactors, 
testbenches, models, …
Seamless environment unifies architecture/modeling, implementation & verification

Proven: world-class systems and semiconductor companies providing 
impressive proof points

Architectural exploration, synthesizable testbenches, RTL replacement
Processors, wireless, video, multimedia, memory controllers, …

And others (e.g. 
large microprocessor 

company, large 
computer systems 

company, large 
search company, …)

http://www.nokia.fi/
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Bluespec is the next step in hardware abstraction

BSCBSC

BSVBSV

RTL code

Synthesizer

Netlists

Bluespec high-level language (BSV)

Raises level of thinking, allowing bigger, 
more complex problems to be attacked

Eliminates tedium of low-level hardware 
control logic implementation

Enables quick and easy design changes 
to try multiple alternative implementations

Retains architectural expression for the 
QoR of hand-coded RTL

High-level 
language

Low-level 
language

Logic gates

High-level 
compiler

New 

High-level

Existing 

Low-level
Low-level 
compiler

Bluespec high-level compiler (BSC)

Quickly and correctly generates low-level 
control logic

Eliminates a large number of bugs that 
would otherwise occur in low-level logic

Supports end-user tool extensions 
through design database API
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Rapid Architectural Exploration Enables 
the Search for the Global Optimum
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Architectural exploration is the first order of optimization

RTL
Power,
area,

timing or
latency

Bluespec

Architectures

Local 
Minimum

Global
Minimum

Rapid, safe 
architectural 

changes enable a 
much wider scope of 
architectures to be 
explored for a more 

optimal solution

With limited or no 
architecture 

changes, your 
scope of 

optimization is 
limited to finding a 

local minimum

Bluespec makes it possible to find the global power, 
area, timing and latency minimums.

Bluespec makes it possible to find the global power, 
area, timing and latency minimums.
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Let’s Look at an Example

Using Bluespec for rapid FPGA 
development & high performance
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2008 MEMOCODE Codesign Contest

Speedup the sorting of
large lists of
encrypted data.

27 commercial and
research teams started the 
four week contest.

9 solutions were delivered.

Xilinx XUP
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The traditional approaches

C + 
Impulse C

C + 
HDL

C

2008 MEMOCODE Codesign Contest Results

Reference:  http://rijndael.ece.vt.edu/memocontest08/everybodywins/
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But, what if you could design so quickly and cleanly in 4 
weeks that you could:

• Put 100% in hardware
(including the complex control)

• Skip system-level simulation and jump straight to FPGA

• And, still explore architectures
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Bluespec: an unfair advantage

Two years in a row!
In 2007, Bluespec
team beat second-
place by 5X

2008 MEMOCODE Codesign Contest Results

C + 
Impulse C

C + 
HDL

C Bluespec

Reference:  http://rijndael.ece.vt.edu/memocontest08/everybodywins/

Bluespec-based team 
Kermin beat second 
place by an order of 
magnitude (>10X)
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Core Technology:
Atomic Transactions
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"I think we ultimately will see atomic 
transactions in most, if not all, languages. That's 
a bit of a guess, but I think it's a good bet.“

Burton Smith,
Technical Fellow,
Parallel Computing

Recently: for software for multi-core/multi-
threaded architectures

Very recently: HW support for
Transactional Memory in processors

For decades: in Operating Systems, Databases, 
Distributed Systems

Bluespec’s core technology: atomic transactions, the only 
high-level abstraction for HW concurrency



Atomic transactions drive rapid architectural exploration
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Two very unique, atomic-transaction-powered drivers:

Control-adaptive parameterization & 
powerful “generate” capabilities enable 
a designer to create a single 
specification that can describe a family 
of architectures

Control-adaptive parameterization & 
powerful “generate” capabilities enable 
a designer to create a single 
specification that can describe a family 
of architectures

When the specification changes or is used to 
generate a specific architecture, the detailed 
control logic is automatically rebuilt and the 
design constraints (types, connectivity, 
scheduling) are automatically rechecked so 
correct functionality is achieved much sooner

When the specification changes or is used to 
generate a specific architecture, the detailed 
control logic is automatically rebuilt and the 
design constraints (types, connectivity, 
scheduling) are automatically rechecked so 
correct functionality is achieved much sooner

+
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Hardware
is highly
concurrent
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What makes hardware so:
• Error-prone
• Brittle
• Complex
• Hard to develop, verify
• Change?
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Coordinating
all the accesses
to the shared
resources!
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Coordinating access to 
shared resources 
requires detailed, low-
level implementation of 
muxes, arbiters and 
scheduling logic.
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Bluespec generates the
arbitration & control logic
to coordinate access
to shared resources
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Which lets you think about the HW…
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…like this:
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…and this:
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…and this:



25

…and this:
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…and this:
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…NOT like this:
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Bluespec automates all of this:

(100% under your control
and without any extra logic)
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…making hardware so much:
• Less buggy
• More flexible
• More scalable
• Simpler
• More reusable
• Less costly to develop & verify
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Behavioral
Synthesis
Tool X

Source: Arvind, 2008 DAC HLS Workshop, “HLS as 
an Enabling Technology: Some Complex Examples”
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Models of:
“RISC” processor
MIPS
Itanium
PowerPC
ARM

L2 cache ctlr
Distributed cache coherence

Bus converters

DMA ctlr

Network proc
Queuing engines
Sorting queue
Arbiter
IP lookup
Debug controller

PCI Express, USB
I2C, MIPI HSI,
MIPI Unipro

Pixel processor
Waveform generator
Pong

IDCT, IFFT
DES, AES
CIECAM, Motion compensator
MPEG-4, H.264,
802.11xx, OFDM, MIMO

DDR2 ctlr
SRAM ctlr

FIR filter

OCP
AXI
AHB

APB

Atomic transactions make Bluespec general purpose, practical, 
and highly beneficial – a unique combination

Complex
Datapaths

(e.g.
processor/
controller)

Complex
Datapaths

(e.g.
processor/
controller)

ControlControl Loop/array
Algorithms
Loop/array
Algorithms

C-based
synthesis

Bluespec SystemVerilog (BSV)

System Bus

Peripheral Bus

Bus
Bridge

Memory
ControllerProcessor

DMA
Controller

DSP/
accelerators

Power
Management

Arbitration

Application
Specific

DRAM
SRAM

L2
Cache

Serial
Controller Audio Video Flash/Mem

I/F
Bus

Controller

IPs done in BSV (and with good QoR)



Bluespec Summary
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Atomic transactions:

the only high-level 
abstraction for 
concurrency in 
hardware design

Faster design:

faster 
implementation, 
faster changes, fewer 
bugs, powerful 
parameterization

Better designs:

faster, smaller, lower 
latency, highest 
performance.  You 
pick!
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Extras
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Key differences over RTL

Fully synthesizable

VHDL/Verilog/SystemVerilog/SystemCVHDL/Verilog/SystemVerilog/SystemC

Bluespec SystemVerilogBluespec SystemVerilog

Cor

Atomic transactio
in
c
•
•

rect: Concurrency and 
Communications

ns (rules) and 
terface methods simplify complex 

ontrol & concurrency:
Across multiple shared resources
Across module boundaries

Correct: Construction and 
Configurability

• Control-adaptive, extreme:
- Parameterization
- “generate” capability

• High-level types closer to spec 
• Powerful static checking & formal 
semantics
• Advanced clock management

Behavioral Structural
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Simple example with
concurrency and shared resources

0 1 2

X
(e.g. checking)

+1 -1 +1 -1
Each register can only be updated by one 

process on each clock

Process priority: 2 > 1 > 0

cond0                   cond1                  cond2

Y
(e.g. savings)

always @(posedge CLK) begin

if (!cond2 && cond1)
x <= x – 1;

else if (cond0)
x <= x + 1;

if (cond2)
y <= y – 1;

else if (cond1)
y <= y + 1;

end

Verilog
(* descending_urgency = “proc2, proc1, proc0” *)

rule proc0 (cond0);
x <= x + 1;

endrule

rule proc1 (cond1);
y <= y + 1;
x <= x – 1;

endrule

rule proc2 (cond2);
y <= y – 1;

endrule

Bluespec SystemVerilog

What’s required to verify that each is correct?
What if the priorities changed: cond1 > cond2 > cond0?
What if the processes are in different modules?
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What happens when you change the spec?

0
1

2

x y

+1

-1 +1

-1

cond0                   cond1                  cond2

3+2 -2

cond3

Process priority: 2 > 3 > 1 > 0

always @(posedge CLK) begin
if ((cond2 && cond0) ||

(cond0 && !cond1 && 
!cond3))

x <= x + 1;
else if (cond3 && !cond2)
x <= x + 2;

else if (cond1 && !cond2)
x <= x - 1

if (cond2) 
y <= y - 1;

else if (cond3)
y <= y - 2;

else if (cond1)
y <= y + 1;

end

Verilog
(* descending_urgency = "proc2, proc3, proc1, proc0" *)

rule proc0 (cond0);
x <= x + 1;

endrule

rule proc1 (cond1);
y <= y + 1;
x <= x - 1;

endrule

rule proc2 (cond2);
y <= y - 1;

endrule

rule proc3 (cond3);
y <= y - 2;
x <= x + 2;

endrule

Bluespec SystemVerilog

Hand-written RTL:
Complexity due to:

State-centric (for synthesizability)
Scheduling clutter

Brittle to change

BSV:
Functional correctness follows 
directly from rule semantics

Executable spec (operation-centric)

Automatic handling of shared 
resource mux logic

Same hardware as the RTL

Changes are rapid and much safer!
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AH
B 

IF
C

TLM
2 IFC

<TLM2_REQ
cmd: WRITE
mode: WRAP
size: 73
data: ’h00AC
addr: ’h0FA4

thread: 21
...>

<TLM2_DATA
data: ’h02AF

thread: 21
...>

_REQ
d: WRITE
e: INCR
e: 1
a: ’h00BC
r: ’h0001
d: 18

<TLM2
dat

threa
...>

Designers interact with simple
Get/Put transactional I/Fs

High-level
data type

transactions

4’b0010 4’b0000 4’b0111

2’b002’b11 2’b01 2’b11
8’b01011101

3’b101

32’h045C32’h0450 32’h0454 32’h0458 

Standard bus 
protocols, AMBA®
AXI® & AHB and 

OCP, abstracted to…

…high-level 
transactions &

data types

Bluespec AzureIP™
for Bus Fabrics

Master
XActor
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Abstract Connections
using advanced overloading

Allows quick and easy assembling of systems

interface CacheIfc;
interface Server#(Req_t, Resp_t)  ipc;
interface Client#(Req_t, Resp_t)   icm;

endinterface

module mkTopLevel (…)
// instantiate subsystems
Client #(Req_t, Resp_t)         p  <- mkProcessor;
Cache_Ifc #(Req_t, Resp_t)  c  <- mkCache;
Server #(Req_t, Resp_t)        m <- mkMem;

//  instantiate connects
mkConnection (p, c.ipc); // Server connection
mkConnection (c.icm, m); // Client connection

endmodule

mkCache

getput

client

getput
server

client
get put

mkMem

mkProcessor

server

get put

overloaded module 
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Implementation with
rapid micro-architectural exploration

7 different micro-architectural 
implementations were created and 
explored within 5 days – and 
parameterized from a single design

Control logic was automatically 
adapted and scheduled by the tool to 
support each approach – without 
impacting the adjacent blocks

802.11a Design
(by IFFT block type)

Area
(um^2)

Symbol 
Latency
(cycles)

Throughput
(clks/ 

symbol)

Min frequency 
required (MHz)

Average 
Power
(mW)

Combinational 4.91 10 4 1.0 3.99
Pipelined 5.25 12 4 1.0 4.92

Folded - 16 radix4 3.97 12 4 1.0 7.27
Folded - 8 radix4 3.69 15 6 1.5 10.9
Folded - 4 radix4 2.45 21 12 3.0 14.4
Folded - 2 radix4 1.84 33 24 6.0 21.1
Folded - 1 radix4 1.52 57 48 12.0 34.6 Original designer

intuition

Optimal power

802.11a WiFi Transmitter
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