

Rapid Architectural Exploration: Using Faster Design to Implement Faster Designs (Faster!)

A few assertions...

- Fast design = faster designs
 - The best architecture determines the fastest, smallest, lowest latency, highest performance design
 - Architectural exploration is key to achieving the best architecture
- □ RTL ≠ fast design
 - Hardware is concurrent, with shared resources
 - You cannot design hardware faster (generally) without raising the level of concurrency: especially complex algorithms, control logic and system composition

What is Bluespec?

- Hardware design language equivalent of the advance from assembly language to C/C++
 - Commensurate productivity & capability improvements over RTL, while keeping designers in 100% control of architecture
 - Synthesizable language extensions (BSV) to SystemVerilog
 - Bluespec Compiler (BSC) generates synthesizable Verilog and cycle-accurate models from BSV

General purpose solution

- Applicable to all levels of detail from executable spec to implementation
- Applicable to all component types datapath, control, state machines, interconnect, transactors, testbenches, models, ...
- Seamless environment unifies architecture/modeling, implementation & verification

Proven: world-class systems and semiconductor companies providing impressive proof points

- Architectural exploration, synthesizable testbenches, RTL replacement
- Processors, wireless, video, multimedia, memory controllers, ...

Connecting People

TEXAS INSTRUMENTS

And others (e.g. large microprocessor company, large computer systems company, large search company, ...)

Bluespec is the next step in hardware abstraction

Bluespec high-level language (BSV)

Raises level of thinking, allowing bigger, more complex problems to be attacked

Eliminates tedium of low-level hardware control logic implementation

Enables quick and easy design changes to try multiple alternative implementations

Retains architectural expression for the QoR of hand-coded RTL

Bluespec high-level compiler (BSC)

Quickly and correctly generates low-level control logic

Eliminates a large number of bugs that would otherwise occur in low-level logic

Supports end-user tool extensions through design database API

Rapid Architectural Exploration Enables the Search for the Global Optimum

Architectural exploration is the first order of optimization

Let's Look at an Example

Using Bluespec for rapid FPGA development & high performance

2008 MEMOCODE Codesign Contest

AC97

codec

. High-speed expansion connector

compatible with Digilent boards

9 solutions were delivered.

Xilinx XUP

Buttons, switches

and LEDs

323332332

Low-speed expansion connector

compatible with Digilent boards

RS-232

serial port

The traditional approaches

2008 MEMOCODE Codesign Contest Results

Normalized Speedup

But, what if you could design so quickly and cleanly in 4 weeks that you could:

- Put 100% in hardware (including the complex control)
- Skip system-level simulation and jump straight to FPGA
- And, still explore architectures

Bluespec: an unfair advantage

2008 MEMOCODE Codesign Contest Results

Normalized Speedup

Core Technology: Atomic Transactions

Bluespec's core technology: atomic transactions, the only high-level abstraction for HW concurrency

For decades: in Operating Systems, Databases, Distributed Systems

Recently: for software for multi-core/multithreaded architectures

"I think we ultimately will see <u>atomic</u> <u>transactions in most, if not all, languages</u>. That's a bit of a guess, but I think it's a good bet."

Burton Smith, Technical Fellow, Parallel Computing

Very recently: HW support for Transactional Memory in processors

Atomic transactions drive rapid architectural exploration

Two very unique, atomic-transaction-powered drivers:

Hardware is highly concurrent

What makes hardware so:

- Error-prone
- Brittle
- Complex
- Hard to develop, verify
- Change?

$\boldsymbol{\succ}$		
$\boldsymbol{\succ}$		
$\mathbf{\Sigma}$		
$\boldsymbol{\Sigma}$		

Coordinating all the accesses to the shared resources!

Coordinating access to shared resources requires detailed, lowlevel implementation of muxes, arbiters and scheduling logic.

Bluespec generates the arbitration & control logic to coordinate access to shared resources

bluespec

...making hardware so much:

- Less buggy
- More flexible
- More scalable
- Simpler
- More reusable
- Less costly to develop & verify

Source: Arvind, 2008 DAC HLS Workshop, "HLS as an Enabling Technology: Some Complex Examples"

Atomic transactions make Bluespec general purpose, practical, and highly beneficial – a unique combination

IPs done in BSV (and with good QoR)

Bluespec Summary

Atomic transactions:

the only high-level abstraction for concurrency in hardware design Faster design:

faster
 implementation,
 faster changes, fewer
 bugs, powerful
 parameterization

Better designs:

faster, smaller, lower latency, highest performance. You pick!

Extras

Key differences over RTL

Simple example with concurrency and shared resources

What's required to verify that each is correct? What if the priorities changed: cond1 > cond2 > cond0? What if the processes are in different modules?

bluespec

36

end

Bluespec AzurelP[™] for Bus Fabrics

Standard bus protocols, AMBA® AXI® & AHB and OCP, abstracted to...

AHB IFC

Abstract *Connections* using advanced overloading

Allows quick and easy assembling of systems

interface Cachelfc; interface Server#(Req_t, Resp_t) ipc; interface Client#(Req_t, Resp_t) icm; endinterface

module mkTopLevel (...)
// instantiate subsystems
Client #(Req_t, Resp_t) p <- mkProcessor;
Cache_lfc #(Req_t, Resp_t) c <- mkCache;
Server #(Req_t, Resp_t) m <- mkMem;</pre>

// instantiate connects

mkConnection (p, c.ipc); // Server connection
mkConnection (c.icm, m); // Client connection
endmodule

overloaded module

Implementation with rapid micro-architectural exploration

7 different micro-architectural implementations were created and explored <u>within 5 days</u> – <u>and</u> <u>parameterized</u> from a single design

Control logic was automatically adapted and scheduled by the tool to support each approach – without impacting the adjacent blocks

802.11	a WiFi	Transm	nitter
--------	--------	--------	--------

(k	802.11a Design by IFFT block type)	Area (um^2)	Symbol Latency (cycles)	Throughput (clks/ symbol)	Min frequency required (MHz)	Average Power (mW)
	Combinational	4.91	10	4	1.0	3.99
	Pipelined	5.25	12	4	1.0	4.92
	Folded - 16 radix4	3.97	12	4	1.0	7.27
	Folded - 8 radix4	3.69	15	6	1.5	10.9
	Folded - 4 radix4	2.45	21	12	3.0	14.4
	Folded - 2 radix4	1.84	33	24	6.0	21.1
	Folded - 1 radix4	1.52	57	48	12.0	34.6

Optimal power

Original designer intuition

bluespec