
Rapid Architectural Exploration:
Using Faster Design to Implement Faster

Designs (Faster!)

MAPLD September 15, 2008

A few assertions…

Fast design = faster designs
The best architecture determines the fastest, smallest,
lowest latency, highest performance design
Architectural exploration is key to achieving the best
architecture

RTL ≠ fast design
Hardware is concurrent, with shared resources
You cannot design hardware faster (generally) without
raising the level of concurrency: especially complex
algorithms, control logic and system composition

2

Atomic transactions:

the only high-level abstraction
for concurrency in hardware
design

Faster design:

faster implementation, faster
changes, fewer bugs, powerful
parameterization

Better designs:

faster, smaller, lower latency,
highest performance. You
pick!

3

What is Bluespec?

Hardware design language equivalent of the advance from assembly
language to C/C++

Commensurate productivity & capability improvements over RTL, while keeping designers in
100% control of architecture
Synthesizable language extensions (BSV) to SystemVerilog
Bluespec Compiler (BSC) generates synthesizable Verilog and cycle-accurate models from BSV

General purpose solution
Applicable to all levels of detail – from executable spec to implementation
Applicable to all component types – datapath, control, state machines, interconnect, transactors,
testbenches, models, …
Seamless environment unifies architecture/modeling, implementation & verification

Proven: world-class systems and semiconductor companies providing
impressive proof points

Architectural exploration, synthesizable testbenches, RTL replacement
Processors, wireless, video, multimedia, memory controllers, …

And others (e.g.
large microprocessor

company, large
computer systems

company, large
search company, …)

http://www.nokia.fi/

4

Bluespec is the next step in hardware abstraction

BSCBSC

BSVBSV

RTL code

Synthesizer

Netlists

Bluespec high-level language (BSV)

Raises level of thinking, allowing bigger,
more complex problems to be attacked

Eliminates tedium of low-level hardware
control logic implementation

Enables quick and easy design changes
to try multiple alternative implementations

Retains architectural expression for the
QoR of hand-coded RTL

High-level
language

Low-level
language

Logic gates

High-level
compiler

New

High-level

Existing

Low-level
Low-level
compiler

Bluespec high-level compiler (BSC)

Quickly and correctly generates low-level
control logic

Eliminates a large number of bugs that
would otherwise occur in low-level logic

Supports end-user tool extensions
through design database API

5

Rapid Architectural Exploration Enables
the Search for the Global Optimum

6

Architectural exploration is the first order of optimization

RTL
Power,
area,

timing or
latency

Bluespec

Architectures

Local
Minimum

Global
Minimum

Rapid, safe
architectural

changes enable a
much wider scope of
architectures to be
explored for a more

optimal solution

With limited or no
architecture

changes, your
scope of

optimization is
limited to finding a

local minimum

Bluespec makes it possible to find the global power,
area, timing and latency minimums.

Bluespec makes it possible to find the global power,
area, timing and latency minimums.

7

Let’s Look at an Example

Using Bluespec for rapid FPGA
development & high performance

8

2008 MEMOCODE Codesign Contest

Speedup the sorting of
large lists of
encrypted data.

27 commercial and
research teams started the
four week contest.

9 solutions were delivered.

Xilinx XUP

9

The traditional approaches

C +
Impulse C

C +
HDL

C

2008 MEMOCODE Codesign Contest Results

Reference: http://rijndael.ece.vt.edu/memocontest08/everybodywins/

10

But, what if you could design so quickly and cleanly in 4
weeks that you could:

• Put 100% in hardware
(including the complex control)

• Skip system-level simulation and jump straight to FPGA

• And, still explore architectures

11

Bluespec: an unfair advantage

Two years in a row!
In 2007, Bluespec
team beat second-
place by 5X

2008 MEMOCODE Codesign Contest Results

C +
Impulse C

C +
HDL

C Bluespec

Reference: http://rijndael.ece.vt.edu/memocontest08/everybodywins/

Bluespec-based team
Kermin beat second
place by an order of
magnitude (>10X)

12

Core Technology:
Atomic Transactions

13

"I think we ultimately will see atomic
transactions in most, if not all, languages. That's
a bit of a guess, but I think it's a good bet.“

Burton Smith,
Technical Fellow,
Parallel Computing

Recently: for software for multi-core/multi-
threaded architectures

Very recently: HW support for
Transactional Memory in processors

For decades: in Operating Systems, Databases,
Distributed Systems

Bluespec’s core technology: atomic transactions, the only
high-level abstraction for HW concurrency

Atomic transactions drive rapid architectural exploration

14

Two very unique, atomic-transaction-powered drivers:

Control-adaptive parameterization &
powerful “generate” capabilities enable
a designer to create a single
specification that can describe a family
of architectures

Control-adaptive parameterization &
powerful “generate” capabilities enable
a designer to create a single
specification that can describe a family
of architectures

When the specification changes or is used to
generate a specific architecture, the detailed
control logic is automatically rebuilt and the
design constraints (types, connectivity,
scheduling) are automatically rechecked so
correct functionality is achieved much sooner

When the specification changes or is used to
generate a specific architecture, the detailed
control logic is automatically rebuilt and the
design constraints (types, connectivity,
scheduling) are automatically rechecked so
correct functionality is achieved much sooner

+

15

Hardware
is highly
concurrent

16

What makes hardware so:
• Error-prone
• Brittle
• Complex
• Hard to develop, verify
• Change?

17

Coordinating
all the accesses
to the shared
resources!

18

19

Coordinating access to
shared resources
requires detailed, low-
level implementation of
muxes, arbiters and
scheduling logic.

20

Bluespec generates the
arbitration & control logic
to coordinate access
to shared resources

21

Which lets you think about the HW…

22

…like this:

23

…and this:

24

…and this:

25

…and this:

26

…and this:

27

…NOT like this:

28

Bluespec automates all of this:

(100% under your control
and without any extra logic)

29

…making hardware so much:
• Less buggy
• More flexible
• More scalable
• Simpler
• More reusable
• Less costly to develop & verify

30

Behavioral
Synthesis
Tool X

Source: Arvind, 2008 DAC HLS Workshop, “HLS as
an Enabling Technology: Some Complex Examples”

31

Models of:
“RISC” processor
MIPS
Itanium
PowerPC
ARM

L2 cache ctlr
Distributed cache coherence

Bus converters

DMA ctlr

Network proc
Queuing engines
Sorting queue
Arbiter
IP lookup
Debug controller

PCI Express, USB
I2C, MIPI HSI,
MIPI Unipro

Pixel processor
Waveform generator
Pong

IDCT, IFFT
DES, AES
CIECAM, Motion compensator
MPEG-4, H.264,
802.11xx, OFDM, MIMO

DDR2 ctlr
SRAM ctlr

FIR filter

OCP
AXI
AHB

APB

Atomic transactions make Bluespec general purpose, practical,
and highly beneficial – a unique combination

Complex
Datapaths

(e.g.
processor/
controller)

Complex
Datapaths

(e.g.
processor/
controller)

ControlControl Loop/array
Algorithms
Loop/array
Algorithms

C-based
synthesis

Bluespec SystemVerilog (BSV)

System Bus

Peripheral Bus

Bus
Bridge

Memory
ControllerProcessor

DMA
Controller

DSP/
accelerators

Power
Management

Arbitration

Application
Specific

DRAM
SRAM

L2
Cache

Serial
Controller Audio Video Flash/Mem

I/F
Bus

Controller

IPs done in BSV (and with good QoR)

Bluespec Summary

32

Atomic transactions:

the only high-level
abstraction for
concurrency in
hardware design

Faster design:

faster
implementation,
faster changes, fewer
bugs, powerful
parameterization

Better designs:

faster, smaller, lower
latency, highest
performance. You
pick!

33

Extras

34

Key differences over RTL

Fully synthesizable

VHDL/Verilog/SystemVerilog/SystemCVHDL/Verilog/SystemVerilog/SystemC

Bluespec SystemVerilogBluespec SystemVerilog

Cor

Atomic transactio
in
c
•
•

rect: Concurrency and
Communications

ns (rules) and
terface methods simplify complex

ontrol & concurrency:
Across multiple shared resources
Across module boundaries

Correct: Construction and
Configurability

• Control-adaptive, extreme:
- Parameterization
- “generate” capability

• High-level types closer to spec
• Powerful static checking & formal
semantics
• Advanced clock management

Behavioral Structural

35

Simple example with
concurrency and shared resources

0 1 2

X
(e.g. checking)

+1 -1 +1 -1
Each register can only be updated by one

process on each clock

Process priority: 2 > 1 > 0

cond0 cond1 cond2

Y
(e.g. savings)

always @(posedge CLK) begin

if (!cond2 && cond1)
x <= x – 1;

else if (cond0)
x <= x + 1;

if (cond2)
y <= y – 1;

else if (cond1)
y <= y + 1;

end

Verilog
(* descending_urgency = “proc2, proc1, proc0” *)

rule proc0 (cond0);
x <= x + 1;

endrule

rule proc1 (cond1);
y <= y + 1;
x <= x – 1;

endrule

rule proc2 (cond2);
y <= y – 1;

endrule

Bluespec SystemVerilog

What’s required to verify that each is correct?
What if the priorities changed: cond1 > cond2 > cond0?
What if the processes are in different modules?

36

What happens when you change the spec?

0
1

2

x y

+1

-1 +1

-1

cond0 cond1 cond2

3+2 -2

cond3

Process priority: 2 > 3 > 1 > 0

always @(posedge CLK) begin
if ((cond2 && cond0) ||

(cond0 && !cond1 &&
!cond3))

x <= x + 1;
else if (cond3 && !cond2)
x <= x + 2;

else if (cond1 && !cond2)
x <= x - 1

if (cond2)
y <= y - 1;

else if (cond3)
y <= y - 2;

else if (cond1)
y <= y + 1;

end

Verilog
(* descending_urgency = "proc2, proc3, proc1, proc0" *)

rule proc0 (cond0);
x <= x + 1;

endrule

rule proc1 (cond1);
y <= y + 1;
x <= x - 1;

endrule

rule proc2 (cond2);
y <= y - 1;

endrule

rule proc3 (cond3);
y <= y - 2;
x <= x + 2;

endrule

Bluespec SystemVerilog

Hand-written RTL:
Complexity due to:

State-centric (for synthesizability)
Scheduling clutter

Brittle to change

BSV:
Functional correctness follows
directly from rule semantics

Executable spec (operation-centric)

Automatic handling of shared
resource mux logic

Same hardware as the RTL

Changes are rapid and much safer!

37

AH
B

IF
C

TLM
2 IFC

<TLM2_REQ
cmd: WRITE
mode: WRAP
size: 73
data: ’h00AC
addr: ’h0FA4

thread: 21
...>

<TLM2_DATA
data: ’h02AF

thread: 21
...>

_REQ
d: WRITE
e: INCR
e: 1
a: ’h00BC
r: ’h0001
d: 18

<TLM2
dat

threa
...>

Designers interact with simple
Get/Put transactional I/Fs

High-level
data type

transactions

4’b0010 4’b0000 4’b0111

2’b002’b11 2’b01 2’b11
8’b01011101

3’b101

32’h045C32’h0450 32’h0454 32’h0458

Standard bus
protocols, AMBA®
AXI® & AHB and

OCP, abstracted to…

…high-level
transactions &

data types

Bluespec AzureIP™
for Bus Fabrics

Master
XActor

38

Abstract Connections
using advanced overloading

Allows quick and easy assembling of systems

interface CacheIfc;
interface Server#(Req_t, Resp_t) ipc;
interface Client#(Req_t, Resp_t) icm;

endinterface

module mkTopLevel (…)
// instantiate subsystems
Client #(Req_t, Resp_t) p <- mkProcessor;
Cache_Ifc #(Req_t, Resp_t) c <- mkCache;
Server #(Req_t, Resp_t) m <- mkMem;

// instantiate connects
mkConnection (p, c.ipc); // Server connection
mkConnection (c.icm, m); // Client connection

endmodule

mkCache

getput

client

getput
server

client
get put

mkMem

mkProcessor

server

get put

overloaded module

39

Implementation with
rapid micro-architectural exploration

7 different micro-architectural
implementations were created and
explored within 5 days – and
parameterized from a single design

Control logic was automatically
adapted and scheduled by the tool to
support each approach – without
impacting the adjacent blocks

802.11a Design
(by IFFT block type)

Area
(um^2)

Symbol
Latency
(cycles)

Throughput
(clks/

symbol)

Min frequency
required (MHz)

Average
Power
(mW)

Combinational 4.91 10 4 1.0 3.99
Pipelined 5.25 12 4 1.0 4.92

Folded - 16 radix4 3.97 12 4 1.0 7.27
Folded - 8 radix4 3.69 15 6 1.5 10.9
Folded - 4 radix4 2.45 21 12 3.0 14.4
Folded - 2 radix4 1.84 33 24 6.0 21.1
Folded - 1 radix4 1.52 57 48 12.0 34.6 Original designer

intuition

Optimal power

802.11a WiFi Transmitter

	A few assertions…
	What is Bluespec?
	Bluespec is the next step in hardware abstraction
	Architectural exploration is the first order of optimization
	2008 MEMOCODE Codesign Contest
	The traditional approaches
	Bluespec: an unfair advantage
	Bluespec’s core technology: atomic transactions, the only high-level abstraction for HW concurrency
	Atomic transactions drive rapid architectural exploration
	Atomic transactions make Bluespec general purpose, practical, and highly beneficial – a unique combination
	Bluespec Summary
	Key differences over RTL
	Simple example with�concurrency and shared resources
	What happens when you change the spec?�
	Abstract Connections�using advanced overloading
	Implementation with�rapid micro-architectural exploration

