United States
Department of
Agriculture
Natural
Resources Conservation
Service
In cooperation with

United States Department of Interior, Bureau of Land Management and Bureau of Indian Affairs; and the New
Mexico Agricultural
Experiment Station

Soil Survey of

 McKinley County Area, New Mexico, McKinley County and Parts of Cibola and San Juan Counties

How To Use This Soil Survey

Detailed Soil Maps

The detailed soil maps can be useful in planning the use and management of small areas.
To find information about your area of interest, locate that area on the Index to Map Sheets. Note the number of the map sheet and turn to that sheet.

Locate your area of interest on the map sheet. Note the map unit symbols that are in that area. Turn to the Contents, which lists the map units by symbol and name and shows the page where each map unit is described.

The Contents shows which table has data on a specific land use for each detailed soil map unit. Also see the Contents for sections of this publication that may address your specific needs.

MAP SHEET

This soil survey is a publication of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (formerly the Soil Conservation Service) has leadership for the Federal part of the National Cooperative Soil Survey.

Major fieldwork for this soil survey was completed in August 2000. Soil names and descriptions were approved in June 2001. Unless otherwise indicated, statements in this publication refer to conditions in the survey area in 2001. This survey was made cooperatively by the Natural Resources Conservation Service and the United States Department of Interior, Bureau of Land Management and Bureau of Indian Affairs; and the New Mexico Agricultural Experiment Station.. The survey is part of the technical assistance furnished to the Cuba, Lava, McKinley, and San Juan Soil and Water Conservation Districts.

Soil maps in this survey may be copied without permission. Enlargement of these maps, however, could cause misunderstanding of the detail of mapping. If enlarged, maps do not show the small areas of contrasting soils that could have been shown at a larger scale.

The United States Department of Agriculture (USDA) prohibits discrimination in all of its programs on the basis of race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, and marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact the USDA's TARGET Center at 202-720-2600 (voice or TDD).

To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326W, Whitten Building, 14th and Independence Avenue SW, Washington, DC 20250-9410, or call 202-720-5964 (voice or TDD). USDA is an equal opportunity provider and employer.

Cover: Red Cliffs of Entrada Sandstone along I-40 north of Continental Divide, New Mexico.

Additional information about the Nation's natural resources is available on the Natural Resources Conservation Service homepage on the World Wide Web. The address is http://www.nrcs.usda.gov.

Contents

How To Use This Soil Survey 3
Contents 5
Foreword 11
General Nature of the Area 13
History of McKinley County, New Mexico 14
Climate 15
Geology 16
Economic Resources 17
How This Survey Was Made 17
Detailed Soil Map Units 19
8-Water 20
10-Tsosie-Councelor-Blancot fine sandy loams, 1 to 3 percent slopes 20
11—Doakum-Betonnie complex, 1 to 8 percent slopes 21
12-Calladito-Elias association, 1 to 6 percent slopes 22
13-Councelor-Calladito complex, 1 to 8 percent slopes 23
14-Councelor-Eslendo-Calladito complex, 2 to 25 percent slopes 25
16-Starlake clay, 1 to 3 percent slopes 26
22-Querencia-Lavodnas association, 2 to 15 percent slopes 27
30—Orlie-Tinian complex, 1 to 6 percent slopes 28
40—Nuffel silt loam, 0 to 2 percent slopes 29
42—Suwanee clay loam, 0 to 2 percent slopes 29
44-Suwanee clay, 0 to 1 percent slopes 30
45-Nutreeah clay loam, 0 to 2 percent slopes 31
47-Conchovar clay loam, 0 to 1 percent slopes 31
49-Concho clay loam, 0 to 2 percent slopes 32
51-Kwakina loamy fine sand, 0 to 2 percent slopes 32
52-Zuniven loamy fine sand, 0 to 2 percent slopes 33
53-Hawaikuh clay loam, 0 to 2 percent slopes 34
54-Venadito clay, saline, 0 to 2 percent slopes 35
55-Sparham clay loam, 0 to 2 percent slopes 35
60—Redpen sandy clay loam, 0 to 2 percent slopes 36
100—Norkiki-Kimnoli complex, 1 to 8 percent slopes 37
110—Benally-Fruitland association, 1 to 5 percent slopes 38
111-Yelives fine sandy loam, 1 to 3 percent slopes 39
115—Razito-Shiprock complex, 3 to 8 percent slopes 40
116-Fajada-Huerfano-Benally complex, 1 to 5 percent slopes 41
118-Farb-Chipeta-Rock outcrop complex, 2 to 30 percent slopes 43
120—Doak-Shiprock complex, 1 to 8 percent slopes 44
121-Badland 45
122—Rock outcrop-Farb complex, 2 to 8 percent slopes 45
125-Sanfeco fine sandy loam, 0 to 2 percent slopes 46
130-Chipeta-Badland-Moncisco complex, 2 to 45 percent slopes 47
150-Riverwash-Escawetter association, 0 to 1 percent slopes 48
160—Escawetter-Riverwash-Razito association, 0 to 5 percent slopes 49
205-Penistaja-Tintero complex, 1 to 10 percent slopes 50
208-Marianolake fine sandy loam, 1 to 8 percent slopes 51
210-Marianolake-Skyvillage complex, 1 to 8 percent slopes 51
212—Rehobeth silty clay loam, 0 to 1 percent slopes 53
215-Viuda-Penistaja-Rock outcrop complex, 1 to 5 percent slopes 53
220-Hagerwest-Bond fine sandy loams, 1 to 8 percent slopes 54
225-Aquima-Hawaikuh silt loams, 1 to 5 percent slopes 55
230-Sparank-San Mateo-Zia complex, 0 to 3 percent slopes 57
235—Notal-Hamburn complex, 0 to 2 percent slopes 58
240-Breadsprings and Nahodish soils, 0 to 2 percent slopes 60
241-Mentmore loam, 1 to 8 percent slopes 62
242—Gish-Mentmore complex, 1 to 8 percent slopes 62
244-Buckle fine sandy loam, 1 to 8 percent slopes 64
245-Buckle-Gapmesa-Barboncito complex, 1 to 6 percent slopes 65
250—Hospah-Skyvillage-Rock outcrop complex, 2 to 35 percent slopes 66
255-Farview-Rock outcrop complex, 2 to 15 percent slopes 67
258—Eagleye-Atchee-Rock outcrop complex, 2 to 35 percent slopes 68
260-Quarries and Pits 70
261-Coal Mine Land 70
265-Uranium Mined Lands 70
270—Alesna-Rock outcrop complex, 15 to 55 percent slopes 70
275-Eldado gravelly fine sandy loam, 1 to 5 percent slopes 71
280-Azabache extremely gravelly clay loam, 2 to 8 percent slopes 71
290—Rock outcrop-Westmion-Skyvillage complex, 30 to 80 percent slopes 72
291—Rock outcrop-Eagleye-Atchee complex, 35 to 70 percent slopes 73
300-Regracic gravelly sandy clay loam, 2 to 6 percent slopes 74
305-Celavar-Atarque complex, 1 to 8 percent slopes 75
308—Fikel-Venzuni complex, 1 to 6 percent slopes 76
310—Parkelei sandy loam, 1 to 8 percent slopes 77
312—Bluewater loam, 0 to 1 percent slopes 78
315—Flugle-Fragua complex, 1 to 10 percent slopes 78
316—Royosa loamy fine sand, 1 to 15 percent slopes 79
317-Highdye-Evpark-Bryway complex, 2 to 20 percent slopes 80
320—Parkelei-Fraguni complex, 1 to 8 percent slopes 81
325-Venzuni silty clay, 1 to 3 percent slopes 82
332—Evpark-Arabrab complex, 2 to 6 percent slopes 83
335-Venadito clay, 1 to 3 percent slopes 85
336—Nuffel-Venadito complex, 1 to 3 percent slopes 85
338—Zyme-Lockerby association, 5 to 35 percent slopes 86
345—Rock outcrop-Tuces complex, 20 to 70 percent slopes 87
350-Toldohn-Vessilla-Rock outcrop complex, 8 to 35 percent slopes 88
351—Rock outcrop-Vessilla complex, 35 to 70 percent slopes 89
352—Zia sandy loam, 1 to 5 percent slopes 90
353-Mido loamy fine sand, 1 to 6 percent slopes 91
354—Knifehill loam, 1 to 5 percent slopes 91
355—Rizno-Tekapo-Rock outcrop complex, 2 to 45 percent slopes 92
357-Heshotauthla clay, 0 to 1 percent slopes 93
360—Hosta-Concho association, 0 to 5 percent slopes 94
361-Monpark silty clay, 2 to 8 percent slopes 95
365-Vessilla-Rock outcrop complex, 2 to 15 percent slopes 96
366-Bosonoak loam, 1 to 5 percent slopes 97
367-Chunkmonk very gravelly fine sandy loam, 2 to 10 percent slopes 97
368-Simitarq-Celavar sandy loams, 2 to 8 percent slopes 98
375-Todest-Shadilto complex, 2 to 8 percent slopes 99
376-Todest fine sandy loam, 2 to 8 percent slopes 100
380-Berryhill-Casamero clays, 2 to 10 percent slopes 101
385-Mcorreon-Rock outcrop complex, 10 to 40 percent slopes 102
390-Banquito very fine sandy loam, 1 to 3 percent slopes 102
395—Cabezon-Mcorreon complex, 2 to 8 percent slopes 103
400—Shoemaker-Stozuni complex, 2 to 8 percent slopes 104
403-Valnor-Techado complex, 2 to 25 percent slopes 105
404—Rock outcrop-Techado-Stozuni complex, 5 to 60 percent slopes 106
405—Fortwingate-Owlrock complex, 2 to 8 percent slopes 107
406—Polich silt loam, 0 to 3 percent slopes 108
407-Cinnadale-Heckly association, 5 to 40 percent slopes 110
408-Mirabal-Zuni complex, 1 to 40 percent slopes 111
409-Rauster-Rock outcrop complex, 5 to 35 percent slopes 112
410-Montillo-Tsoodzil complex, 5 to 35 percent slopes 112
411—Ligocki-Robolata complex, 1 to 5 percent slopes 113
412—Rock outcrop-Rionutria-Zaster association, 15 to 80 percent slopes 115
413-Morclay silty clay, 1 to 5 percent slopes 116
414-Zunalei-Corzuni loamy fine sands, 2 to 10 percent slopes 117
415-Tsoodzil-Rubble land complex, 10 to 55 percent slopes 118
416-Rock outcrop-Bluesky complex, 5 to 80 percent slopes 119
418—Asaayi-Osoridge complex, 2 to 15 percent slopes 120
419-Fortwingate-Cinnadale-Rock outcrop complex, 5 to 45 percent slopes 121
420-Seco clay loam, 1 to 5 percent slopes 122
425-Montillo-Canoneros complex, 2 to 6 percent slopes 123
430-Montillo gravelly loam, 2 to 6 percent slopes 124
435-Tsoodzil-Amcec association, 5 to 50 percent slopes 125
440-Chivato clay, 0 to 1 percent slopes 126
525—Silcat clay loam, 1 to 10 percent slopes 126
550—Bryway-Galzuni loams, 1 to 8 percent slopes 128
555-Parkelei-Evpark fine sandy loams, 2 to 8 percent slopes 129
560—Flugle-Teczuni complex, 1 to 5 percent slopes 130
561—Flugle-Plumasano association, 2 to 8 percent slopes 131
565-Plumasano-Rock outcrop complex, 15 to 40 percent slopes 132
566-Bamac extremely gravelly sandy loam, 5 to 50 percent slopes 133
575—Ramah-Pescado association, 1 to 8 percent slopes 133
Use and Management of the Soils 135
Interpretive Ratings 135
Rating Class Terms 135
Numerical Ratings 135
Prime Farmland and Farmland of Statewide and Local Importance 135
Crops and Pasture 136
Rangeland 138
Forest Productivity and Management 139
Windbreaks and Environmental Plantings 141
Recreation 142
Wildlife Habitat 143
Engineering 144
Construction Materials 147
Soil Properties 151
Engineering Index Properties 151
Physical Properties 152
Chemical Properties 153
Soil Features 154
Water Features 154
Classification of the Soils 157
Soil Series and Their Morphology 157
Alesna Series 157
Amcec Series 159
Aquima Series 160
Arabrab Series 161
Asaayi Series 162
Atarque Series 163
Atchee Series 163
Azabache Series 164
Bamac Series 165
Banquito Series 166
Barboncito Series 167
Benally Series 168
Berryhill Series 169
Betonnie Series 170
Blancot Series 171
Bluesky Series 172
Bluewater Series 172
Bond Series 174
Bosonoak Series 174
Breadsprings Series 175
Bryway Series 176
Buckle Series 177
Cabezon Series 178
Calladito Series 179
Canoneros Series 179
Casamero Series 180
Celavar Series 181
Chipeta Series 182
Chivato Series 182
Chunkmonk Series 183
Cinnadale Series 184
Concho Series 185
Conchovar Series 186
Corzuni Series 187
Councelor Series 188
Doak Series 188
Doakum Series 189
Eagleye Series 190
Eldado Series 191
Elias Series 192
Escawetter Series 193
Eslendo Series 194
Evpark Series 194
Fajada Series 195
Farb Series 196
Farview Series 197
Fikel Series 197
Flugle Series 198
Fortwingate Series 199
Fragua Series 200
Fraguni Series 201
Fruitland Series 202
Galzuni Series 202
Gapmesa Series 203
Gish Series 204
Hagerwest Series 205
Hamburn Series 206
Hawaikuh Series 207
Heckly Series 208
Heshotauthla Series 208
Highdye Series 209
Hospah Series 210
Hosta Series 211
Huerfano Series 212
Kimnoli Series 212
Knifehill Series 213
Kwakina Series 214
Lavodnas Series 215
Ligocki Series 215
Lockerby Series 216
Marianolake Series 217
Mcorreon Series 218
Mentmore Series 219
Mido Series 220
Mirabal Series 220
Moncisco Series 221
Monpark Series 222
Montillo Series 223
Morclay Series 224
Nahodish Series 225
Norkiki Series 226
Notal Series 226
Nuffel Series 227
Nutreeah Series 228
Orlie Series 229
Osoridge Series 230
Owlrock Series 231
Parkelei Series 232
Penistaja Series 232
Pescado Series 233
Plumasano Series 234
Polich Series 235
Querencia Series 236
Ramah Series 237
Rauster Series 238
Razito Series 238
Redpen Series 239
Regracic Series 240
Rehobeth Series 241
Rionutria Series 243
Rizno Series 243
Robolata Series 244
Royosa Series 245
San Mateo Series 245
Sanfeco Series 246
Seco Series 247
Shadilto Series 248
Shiprock Series 249
Shoemaker Series 250
Silcat Series 251
Simitarq Series 252
Skyvillage Series 252
Sparank Series 253
Sparham Series 254
Starlake Series 254
Stozuni Series 256
Suwanee Series 256
Techado Series 257
Teczuni Series 258
Tekapo Series 258
Tinian Series 259
Tintero Series 260
Todest Series 261
Toldohn Series 262
Tsoodzil Series 262
Tsosie Series 263
Tuces Series 264
Valnor Series 265
Venadito Series 265
Venzuni Series 266
Vessilla Series 267
Viuda Series 268
Westmion Series 268
Yelives Series 269
Zaster Series 270
Zia Series 271
Zunalei Series 271
Zuni Series 272
Zuniven Series 273
Zyme Series 274
Formation of the Soils 281
Factors of Soil Formation 281
Parent Material 281
Climate 281
Plant and Animal Life 282
Topography 282
Time 282
Landforms of the Survey Area 282
Alluvial Fans 282
Drainageways 283
Dunes 283
Escarpments 283
Fan Remnants 283
Flood Plains 284
Hills and Mountains 284
Hogbacks 285
Lava Plateaus 285
Mesas and Cuestas 285
Plateaus 285
Ridges 286
Stream Terraces 286
Valley floors 287
Valley sides 287
Volcanic Cones 287
References 289
Glossary 291
Tables 301
Table 1.-Temperature and Precipitation 302
Table 2.-Freeze Dates in Spring and Fall 305
Table 3.-Growing Season 308
Table 4.-Acreage and Proportionate Extent of the Soils 310
Table 5.-Land Capability for Irrigated Land and Yields Per Acre of Crops and Pasture 314Table 6.-Rangeland Productivity andCharacteristic Plant Communities316
Table 7.—Forest Productivity 353
Table 8a.—Forestland Management 359
Table 8b.—Forestland Management 363
Table 9a.-Recreation 369
Table 9b.-Recreation 394
Table 10a.-Building Site Development 413
Table 10b.—Building Site Development 434
Table 11a.-Sanitary Facilities 458
Table 11b.—Sanitary Facilities 483
Table 12a.-Construction Materials 501
Table 12b.-Construction Materials 520
Table 13.—Water Management 548
Table 14.-Engineering Index Properties 572
Table 15.-Physical Properties of the Soils 602
Table 16.-Chemical Properties of the Soils 625
Table 17.-Soil Features 648
Table 18.-Water Features 659
Table 19.-Classification of the Soils 679
NRCS Accessibility Statement 683

Foreword

This soil survey contains information that affects land use planning in this survey area. It contains predictions of soil behavior for selected land uses. The survey also highlights soil limitations, improvements needed to overcome the limitations, and the impact of selected land uses on the environment.

This soil survey is designed for many different users. Farmers, ranchers, foresters, and agronomists can use it to evaluate the potential of the soil and the management needed for maximum food and fiber production. Planners, community officials, engineers, developers, builders, and home buyers can use the survey to plan land use, select sites for construction, and identify special practices needed to ensure proper performance. Conservationists, teachers, students, and specialists in recreation, wildlife management, waste disposal, and pollution control can use the survey to help them understand, protect, and enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. The information in this report is intended to identify soil properties that are used in making various land use or land treatment decisions. Statements made in this report are intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are shallow to bedrock. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

These and many other soil properties that affect land use are described in this soil survey. Broad areas of soils are shown on the general soil map. The location of each soil is shown on the detailed soil maps. Each soil in the survey area is described. Information on specific uses is given for each soil. Help in using this publication and additional information are available at the local office of the Natural Resources Conservation Service or the Cooperative Extension Service.

Rosendo Trevino III
State Conservationist
Natural Resources Conservation Service

Soil Survey of McKinley County Area, New Mexico, McKinley County and Parts of Cibola and San Juan Counties

By Scott A. Zschetzsche, Natural Resources Conservation Service

Fieldwork by Scott A. Zschetzsche, Steven S. Park, Clarence E. Montoya, Clarence L. Chavez, Jon K. Melhus, and Joseph May, Natural Resources Conservation Service. Assisted by Joseph V. Chiaretti, Charles D. Hibner, Alan Johnson, Casey Latta, Woody Loftis, Kenneth F. Scheffe, Gerald Stratton, and Jesse F. Wood, Natural Resources Conservation Service temporary duty mappers. Vegetative work by Robert Abercrombie, F. George Chavez, Richard Montoya, Brenda Simpson, and David Trujillo.

United States Department of Agriculture, Natural Resources Conservation Service, in cooperation with United States Department of Interior, Bureau of Land Management and Bureau of Indian Affairs; and the New Mexico Agricultural Experiment Station

General Nature of the Area

The McKinley County soil survey covers the westcentral part of New Mexico and borders Arizona on its extreme western edge (fig. 1). This progressive survey has a land area totaling 2,862,700 acres or 4,473 square miles; $2,717,363$ acres are in McKinley County, 86,700 acres are in Cibola County; and 58,637 acres are in San Juan County. A nonprogressive soil survey known as the Zuni Mountain Area was released in July of 1967 (USDA, 1967). This earlier survey covers a part of the present survey. The present survey, however, updates this earlier survey and provides additional information and larger maps that show the soils in greater detail.

In 2000, McKinley County had a population of about 66,923; and Gallup, the largest city in the survey area, had a population of 20,120 . This area encompasses the Zuni Pueblo in the southwest part of the county and a small portion of the Navajo Reservation in the northwest.

Elevations in the survey area range from a low of about 6,100 feet in an area near the Zuni and Puerco Rivers to above 9,000 feet on Mesa Chivato north of Mt. Taylor. Most areas are at elevations of 6,300 to 8,000 feet.

Figure 1.-Location of McKinley County Area in New Mexico.

The survey area is mainly rangeland within the Colorado Plateau physiographic province. It is characterized by rough, broken terrain, including steep mountainous areas, plateaus, cuestas, and mesas intermingled with steep canyon walls, escarpments, and valleys. The survey area has been subject to volcanic activity expressed as volcanic plugs, such as Cerro Alesna, and basalt-capped plateaus and mesas, such as Mesa Chivato.

The survey area has very little surface water. The major bodies of water are Bluewater and Ramah Lakes. Major watersheds are the Rio Puerco in the western part of the area, the Chaco river in the northern part, the Rio San Jose in the eastern part, and the Zuni river in the southwestern part of the survey.

Precipitation in the survey area varies with elevation. It ranges from about 8 inches at Chaco Canyon to over 18 inches in the Zuni Mountains.

Coal mining, commercial woodcutting, tourism, and ranching are the most important enterprises in the survey area. Uranium mining was a major commercial activity until the 1980's and could see a resurgence if demand and prices strengthen. The major coal mining area is centered northwest of Gallup, and a smaller operation exists north of San Mateo. The ranches are mainly cow-calf enterprises, but some are yearling operations. The survey area has few acres of irrigated cropland and non-irrigated cropland. Parts of the Zuni Pueblo and Ramah valley are used for irrigated pasture. The main crops are alfalfa hay and winter wheat. The main factors that restrict land use for crops are short growing season, low rainfall, and inadequate irrigation.

History of McKinley County, New Mexico

Steve Lacy, geomorphologist, Natural Resources Conservation Service, prepared this section.

Paleo-Indian people were living in northwestern New Mexico over 12,000 years ago. These people lived the nomadic lifestyle of a hunting and gathering culture. Most of the evidence left behind by these people consists of Clovis, Folsom, and Eden stone points.

The Archaic period began around 6,000 to 8,000 years ago. Early in this period, the people retained the nomadic lifestyle. The climate of New Mexico began to change to warmer and dryer weather patterns. Sometime between 3,500 and 4,000 years ago, the introduction of cultivated crops from northern Mexico changed the way people lived. At first, the crops were only seasonally tended, and food gathering continued as before. By the period of 3,000 to 2,500 years ago, people were constructing food storage pits and pit
houses. They first built villages in forested settings, but eventually moved into lowland areas near river systems. Around 1,300 years ago, the populations had grown to the point that people began to occupy the open basin lands.

The Basin Classic period began with the movement into the open lowlands. The people now known as the Anasazi or Ancestral Puebloans first occupied the lower, drier elevations of northwestern and west-central New Mexico. They created small above-ground roomblocks formed from rock and adobe. Corn became the major food source, and the population grew rapidly. Pottery production was a major advance for this culture. The Chaco Culture rose with a period of massive pueblo building during a span from 900 to 1,050 years ago. Their influence covered an area of nearly 40,000 square miles. The Chaco phenomenon and the Basin Classic period ended around 850 years ago, possibly because of drought and resource depletion.

The Upland period began around 850 years ago and is distinguished by the reintroduction of pithouse villages. By 800 years ago, people had returned to building above-ground masonry pueblos. These villages were located at elevations up to 7,000 feet. Besides growing corn, people had also reverted to some hunting and gathering techniques for food acquisition. The Upland period lasted until around 700 years ago.

The Riverine period covers a time span from 700 years ago to the arrival of the Spanish in 1540. Pueblo village size increased along with a reliance on corn, beans, melons and squash. Villages were located along perennial water courses.

The Spanish presence in the McKinley County area began in 1539 when Fray Marcos de Niza and his slave, Esteban, reached the villages of Zuni. Francisco Vasquez de Coronado passed though Zuni in 1540 on his search for the fabled Cities of Cibola. By 1598, Juan de Onate led colonists into New Mexico. He spent time searching for economic mineral deposits in the Zuni Mountain region but was unsuccessful. Catholic priests established missions at the Zuni villages in 1630 and 1639.

The Navajo Indians moved into northwestern New Mexico sometime during the 16th century. The first recorded encounter was reported by Antonio de Espejo near Mount Taylor. The Navajo both traded with and raided the villages of the Pueblo people who occupied the area. Eventually, the Navajo spread westward and settled around the Colorado and Little Colorado rivers. Conflicts arose with Spanish settlers as they moved westward from the Rio Grande Valley.

Spanish land grants were given in 1767 and 1768 to

Ignacio Chavez, Felipe Tafoya, and Bartolome Fernandez. These grants were located on what would become the eastern part of McKinley County. The Cebolleta grant, issued in 1807, also occupied part of the eastern area of the future McKinley County.

American control of New Mexico began in 1846 with the commencement of the Mexican-American War. Several years after the end of the war, the United States Cavalry established Fort Wingate in 1849 to protect citizens from Indian attacks. In 1863, under the leadership of Kit Carson, the Army began a military campaign to round up the Navajo tribe and move it to a reservation at Bosque Redondo. The Navajo were kept at Bosque Redondo until 1868, when they were allowed to return to their homeland. A reservation was established, and Fort Wingate was relocated to be near the eastern boundary.

In 1880, the St. Louis and San Francisco Railroad Company began construction from Isleta to Arizona, after acquiring the land rights granted by the U.S. Congress to the bankrupt Atlantic and Pacific Railroad. Eventually, this line was acquired by the Santa Fe Railroad. The town of Gallup was established in 1881 and named after David Gallup, who was the paymaster for the railroad. The town was incorporated in 1891.

Logging in the Zuni Mountains began in the 1890's. Extensive cutting occurred from the 1900's through the 1940's. Ponderosa pine was the tree of choice for use as railroad ties. Ranching and farming have been ongoing operations since the late 1700's, but the number of people with farms and ranches increased greatly with the arrival of the American presence.

Other utilized economic resources of the area include coal, which has been mined for the railroads since the 1890's, and commercially mined since 1908. Uranium exploration boomed after 1950 when Paddy Martinez, a Navajo sheep rancher, found a strangelooking yellow rock. The development of the Ambrosia Lake district led to large-scale mining that continued until the crash of the uranium ore market in the 1980's.

McKinley County was established in 1899, when it was organized from portions of Bernalillo and Valencia counties. It was named for the 25th President of the United States, William McKinley.

Climate

Prepared by the Natural Resources Conservation Service's National Water and Climate Center, Portland, Oregon.

Climate tables are created from climate stations McGaffey 5 SE, Thoreau 5 ENE, and Zuni, New Mexico. In the narrative below, precipitation information was also obtained from the mean annual precipitation
map of New Mexico, which was developed for the NRCS using Oregon State University's PRISM climate mapping system.

Thunderstorm days, relative humidity, percent sunshine, and wind information are estimated from First Order station, Albuquerque, New Mexico.

Table 1 gives data on temperature and precipitation for the survey area as recorded at McGaffey (8,000 feet in elevation), Thoreau (7,100 feet), and Zuni (6,310 feet) in the period 1971 to 2000. Table 2shows probable dates of the first freeze in fall and the last freeze in spring. Table 3 provides data on the length of the growing season. In the narratives below the extremes are for the full period of record for each station, which is 1949 to 2000 at McGaffey and Zuni, and from 1953 to 1992 at Thoreau.

In winter, the average temperatures at McGaffey, Thoreau and Zuni are 25.5, 32.9, and 33.7 degrees F, and the average daily minimum temperatures are 10.0, 20.4 and 18.2 degrees, respectively. The lowest temperatures on record in these reporting periods are -32 at McGaffey on January 7, 1971; -20 at Thoreau on January 6, 1971; and -26 at Zuni, also on January 6, 1971.

In summer, the average temperatures are 60.7, 68.5 and 68.6 degrees at McGaffey, Thoreau and Zuni. The average daily maximum temperatures in summer are $78.0,83.9$, and 86.6 degrees, respectively. The highest temperatures ever recorded are 99 degrees at McGaffey on July 28, 1960; 99 at Thoreau on July 3, 1989; and 105 at Zuni on July 19, 1989.

Growing degree days are shown in table 1. They are equivalent to "heat units." During the month, growing degree days accumulate by the amount that the average temperature each day exceeds a base temperature (50 degrees F). The normal monthly accumulation is used to schedule single or successive plantings of a crop between the last freeze in spring and the first freeze in fall.

Average annual total precipitation across the McKinley county soil survey area is somewhat variable, depending on elevation. In general, the northern and eastern portions of the survey area receive between 8 and 10 inches annually, and the western sections receive between 10 and 14 inches. The mountainous area along the Cibola county border receives between 18 and 22 inches per year. At McGaffey the average annual precipitation is about 20.33 inches, at Thoreau it is 11.05 inches, and at Zuni it is 12.88 inches. Of these amounts, about 40 percent usually falls in the May through September frost-free period. The growing season for most crops falls within this period. The heaviest 1-day rainfalls during these periods of record were 2.60 inches at McGaffey on

August 12, 1995; 2.00 inches at Thoreau on September 16, 1984; and 2.46 inches at Zuni on September 29, 1971. Thunderstorms occur on about 41 days each year, and most occur between May and September, with more than 22 in July and August.

The average seasonal snowfall also is quite dependent on elevation and location in this survey region. At McGaffey the average annual snowfall is 49.6 inches, whereas it is 32.4 inches at Thoreau and just 9.0 inches at Zuni. The greatest snow depths at any one time during the periods of record were 30 inches at McGaffey, recorded on January 31, 1997; 17 inches at Thoreau, recorded on January 16, 1987; and 14 inches at Zuni, recorded on March 11, 1969. On average, about 40 days per year have at least 1 inch of snow on the ground at McGaffey. At Thoreau, the average is about 28 days per year; and at Zuni, the average is just 3 days per year. The heaviest 1 -day snowfalls on record were 22.0 inches at McGaffey, recorded on March 27, 1984; 15.0 inches at Thoreau, recorded on January 16,1987; and 13.0 inches at Zuni, recorded on February 11, 1963.

The average relative humidity in mid-afternoon is about 40 percent in the winter and between 15 and 20 percent in the summer. Humidity is higher at night, and the average at dawn is about 70 percent in the winter and 45 percent in the summer. The sun shines about 75 to 80 percent of the time in summer and around 65 to 70 percent in winter. The prevailing wind is from the northwest in the winter and early spring, and from the south and southeast the remainder of the year. Average wind speed is highest, around 12 miles per hour, in April.

Geology

Steve Lacy, geomorphologist, prepared this section.
The geology and geomorphology of the McKinley County area include portions of the Datil and Navajo sections of the Colorado Plateau Province. The county lies in the southeastern portion of the Colorado Plateau Province and represents an area of transition between the Plateau, Rocky Mountain, and Basin and Range Provinces. Structurally, the area includes portions of the Chaco Slope dipping into the San Juan Basin, parts of the Chuska and Zuni mountain uplifts, the Zuni Basin, and the volcanic centers found on or near Mesa Chivato, located northeast of Grants. The Continental Divide enters the county from the northeast corner and exits through the Zuni Mountains south of Thoreau. Water on the west side of the divide drains though the Colorado River basin, and water on the east side drains through the Rio Grande. The county is quite scenic and
has a varied topography and relief. The geology is mainly sedimentary rocks, but some igneous rocks can be found in the mountains and volcanic exposures.

The Datil section

Two geomorphic regions are differentiated within the Datil section of the McKinley County area. The Datil section is characterized as an area of diverse features, with those of volcanic origin being most prominent.

The Mount Taylor Volcanic Center is centered in Cibola County. It consists of an 11,301-foot volcano that towers over a lava-capped mesa. The highest elevations in the McKinley County area occur in the southeast corner on Mesa Chivato. The volcanic necks rise to elevations exceeding 8,900 feet, with one feature rising over 9,000 feet. Mesa Chivato forms the pedestal under Mount Taylor. It is the remnant of the earliest pediment developed around the volcanic cone. The pediment surfaces were covered soon after formation by flows of basalt and andesite, and are generally younger than the flows from the cone itself. The mesa tops are studded with the eroded remains of the small cones from which the later lava flows poured. Some of the cones are in good condition, whereas others are severely eroded. The Mesa Chivato cones are clustered in groups along three rough arcs concave to the west, and are composed of basalt and scoria. Examples of soils formed from these volcanic materials are the Amcec and Montillo series.

The Zuni Uplift is a 75 - to 85 -mile-long structural rise. The Zunis consist of rolling uplands with local deepening around the margins of the central core of crystalline rocks. The northern end of the Zuni Mountains has been placed within the Datil Section by Fenneman (1931). He described the Zunis as belonging to the class of "domed mountains," similar to the Black Hills, formed by upward pressure from below. These mountains are rather distinct physiographically and do not readily fit within the characteristics of either the Datil or Navajo sections. Within the McKinley County area, Precambrian-aged core rocks are exposed near Page and McGaffey, and younger sedimentary rocks occur along the mountain flanks. These sedimentary rocks consist of sandstone, shale, and limestone units that range in age from Permian to Cretaceous (280 to 65 million years before present). The older rocks are found nearer the Precambrian core, and the younger rocks occur farther to the north and west. The Mirabal series is an example of a soil formed from the older rocks of the Precambrian core. The younger Owlrock and Zaster soils formed from limestone, and the Cinnadale soils formed in sandstone.

Lying along the northern edge of the Zuni Mountains
is a group of Mesozoic-aged sedimentary rocks that have been uplifted on the flanks of the rising Zunis. The surficial geology consists of Triassic, Jurassic, and Cretaceous-aged sandstone and shale formations. Some of the Triassic and Jurassic sandstone units form impressive cliffs and bluffs, especially in the area north of Interstate 40, from east of Gallup to around Prewitt. These bluffs are high enough in elevation so that Ponderosa pine trees can be found growing on north-facing exposures, giving rise to scenic vistas. The colors of the sandstones range from buff to red to white, and were deposited in near-shore and beach environments. Cross-bedding can be observed in some of the rock outcrops. Two soils associated with this area are the Flugle and Simitarq series.

The Navajo section

Three geomorphic areas are differentiated within the Navajo section. These areas cover the western and northern sections of the county. It is mainly a country of sandstone with lesser amounts of shale. The rock units are generally not horizontal and have been subject to a great deal of erosion in an arid climate. Typical features include the mesa, cuesta, retreating escarpment, and dry washes.

The Zuni Basin lies to the west of the Zuni Mountains. The basin is somewhat flat-bottomed, and it lies between the Zuni and Defiance Uplifts. The basin is bounded by the Nutria and Defiance monoclines to the east and west, respectively. These monoclines are expressed as the hogback ridges seen near Gallup. The bedrock exposed in the basin mostly consists of Cretaceous-aged sandstones and shales, and seams of economically viable coal occur. Near the Arizona line and south of the Puerco River, there are some exposures of Jurassic and Triassic-aged sedimentary rocks. There are also extensive areas covered by Tertiary-aged alluvial and lacustrine sediments. Quaternary aged alluvium and bolson deposits are found from Zuni to the Arizona state line. Soils formed from the young Quaternary material are the Breadsprings and Nahodish series on the stream terraces of the Puerco River. Parkelei is an example of a soil that formed from the older geology on the higher landforms in the area.

The Defiance Uplift is a north-trending asymmetrical fold found mostly in eastern Arizona. It runs for nearly 100 miles and is generally 30 miles wide. The Chuska Mountains are formed on this uplift and are found in the northwest corner of the county. The Chuskas extend for 60 miles and consist of Tertiary-aged Chuska Sandstone with some exposures of Tertiary volcanics. Prominent cliffs bound most of the upland surfaces and are broken by canyons, which intrude into the
uplands. One interesting feature found in the Chuskas is the many lakes and swamps that partly fill rock basins. Most of these are not connected into the modern drainage. The lakes range in shape from nearly oval to highly irregular, and in size from less than 100 feet to more than a quarter of a mile. Water depth does not exceed 25 feet. The highest point in the range is Chuska Peak at 8,795 feet.

The Chaco Slope forms the most extensive structural feature in the McKinley County area. It is a somewhat arbitrarily defined structural subdivision of the larger San Juan Basin. It is formed by a strip of low, northerly, regional dip 110 miles in length and 30 to 40 miles in width, extending across the southern part of the San Juan Basin. The length is roughly parallel to the general strike of the slope, and the width is in the direction of the regional dip. The over-all regional dip is about 1 degree, and the structural relief is nearly 2,500 feet. Along the south side near the Zuni uplift, the dip is several degrees or more. In the northern portion, the beds are nearly horizontal. Near the contact where the Chaco Slope merges with the Central Basin, the dip again increases. The Cretaceous sediments consist of sandstones and shales and were deposited in coastal environments. The sandstones form more resistant features, whereas the shale weathers into rolling plains. Some common soils of the Chaco Slope are the Benally, Doak, and the Farb series.

Economic Resources

Economic resources found in the McKinley County area include natural gas and petroleum production, mineral and coal mining, grazing, farming and tourism. Groundwater is scarce, and this is a growing concern for the communities found within this region.

How This Survey Was Made

This survey was made to provide information about the soils and miscellaneous areas in the survey area. The information includes a description of the soils and miscellaneous areas and their location and a discussion of their suitability, limitations, and management for specified uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They dug many holes to study the soil profile, which is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed. The unconsolidated material is devoid of roots and other
living organisms and has not been changed by other biological activity.

The soils and miscellaneous areas in the survey area are in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept or model of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior
of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Map Unit Composition

Soils in this survey area were mapped at two levels of detail. The detail of mapping in an area was selected based on the area's anticipated long term use.

At the most detailed level, map units are narrowly defined. Soil boundaries are plotted and verified at closely spaced intervals. Agricultural areas in the Rio Nutria Valley, Pescado, and the Zuni River Valley were mapped at this level of detail.

Most of the survey area is used as rangeland and mapping was performed at a less detailed level. The map units in this area are broadly defined. Soil boundaries were plotted and verified at widely spaced intervals. In general, these map units are less homogeneous and contain more included areas than the more detailed map units. These units are designed primarily for planning the management of large tracts of land as rangeland. The provide general information for more development, but the information should be used with caution. Onsite investigation is essential to provide the detail needed for planning intensive land uses.

Detailed Soil Map Units

The map units delineated on the detailed soil maps in this survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions in this section, along with the maps, can be used to determine the suitability and potential of a unit for specific uses. They also can be used to plan the management needed for those uses.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. The contrasting components are mentioned in the map unit descriptions. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives the principal hazards and limitations to be considered in planning for specific uses.

Soils that have profiles that are almost alike make up a soil series. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into soil phases. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Suwanee clay, 0 to 1 percent slopes, is a phase of the Suwanee series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A complex consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Evpark-Arabrab complex, 2 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the
survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Escawetter-Riverwash-Razito Associaton, 0 to 5 percent slopes, is an example.

An undifferentiated group is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Breadsprings and Nahodish Soils, 0 to 2 percent slopes, is an undifferentiated group in this survey area.

This survey includes miscellaneous areas. Such areas have little or no soil material and support little or no vegetation. Badland is an example.

Table 4 gives the acreage and proportionate extent of each map unit. Other tables give properties of the soils and the limitations, capabilities, and potentials for many uses. The Glossary defines many of the terms used in describing the soils or miscellaneous areas.

8-Water

These areas are covered with water in most years, at least during the period that is warm enough for plants to grow. Many areas are covered thoughout the year. Delineations mapped as water in the survey area are the Rio Nutria lakes and the northwest part of Bluewater lake.

10-Tsosie-Councelor-Blancot fine sandy loams, 1 to 3 percent slopes

Map Unit Setting

MLRA: 37
Elevation: 6,400 to 6,800 feet (1,951 to 2,073 meters)
Mean annual precipitation: 9 to 10 inches (229 to 254 millimeters)
Average annual air temperature: 46 to 49 degrees F (8 to 9 degrees C)
Frost-free period: 100 to 135 days

Map Unit Composition

Tsosie and similar soils: 35 percent
Councelor and similar soils: 30 percent
Blancot and similar soils: 20 percent
Minor components: 15 percent

Component Descriptions

Tsosie soils

Geomorphic position: Stream terraces on valley floors and alluvial fans on valley sides
Parent material: Fan and stream alluvium derived from sandstone and shale
Slope: 1 to 3 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Slowest permeability: About $0.20 \mathrm{in} / \mathrm{hr}$ (moderately slow)
Available water capacity: About 9.9 inches (high)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: Rare
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Low
Calcium carbonate maximum: About 5 percent
Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 20 SAR (moderately sodic)
Ecological site: Salt Flats
Present native vegetation: alkali sacaton, galleta, big sagebrush, fourwing saltbush, blue grama, greasewood, mound saltbush, western wheatgrass
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 9N
Typical Profile:
A-0 to 2 inches; fine sandy loam
C1-2 to 7 inches; fine sandy loam
C2—7 to 13 inches; silt loam
C3-13 to 35 inches; sandy clay loam
C4-35 to 47 inches; clay loam Ck—47 to 65 inches; loam

Councelor soils

Geomorphic position: Alluvial fans on valley sides and stream terraces on valley floors
Parent material: Eolian material and fan and stream alluvium derived from sandstone
Slope: 1 to 3 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Slowest permeability: About $0.60 \mathrm{in} / \mathrm{hr}$ (moderate)
Available water capacity: About 8.5 inches (moderate)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: Rare
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Very low
Calcium carbonate maximum: About 10 percent

Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 5 SAR (slightly sodic)
Ecological site: Sandy
Present native vegetation: Indian ricegrass, blue grama, big sagebrush, bottlebrush squirreltail, sand dropseed, spike dropseed, western wheatgrass, winterfat, Mormon tea
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 4

Typical Profile:

A-0 to 2 inches; fine sandy loam
C1-2 to 20 inches; fine sandy loam
C2-20 to 47 inches; sandy loam
C3-47 to 65 inches; silt loam

Blancot soils

Geomorphic position: Fan remnants on valley sides
Parent material: Fan alluvium derived from sandstone and shale
Slope: 1 to 3 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Slowest permeability: About $0.20 \mathrm{in} / \mathrm{hr}$ (moderately slow)
Available water capacity: About 4.7 inches (low)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Medium
Calcium carbonate maximum: About 1 percent
Gypsum maximum: None
Salinity maximum: About $2 \mathrm{mmhos} / \mathrm{cm}$ (nonsaline)
Sodicity maximum: About 5 SAR (moderately sodic)
Ecological site: Loamy
Present native vegetation: big sagebrush, blue grama, Indian ricegrass, galleta, alkali sacaton, bottlebrush squirreltail, fourwing saltbush, rabbitbrush, sand dropseed, western wheatgrass, winterfat, Mormon tea
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 9N
Typical Profile:
A-0 to 3 inches; fine sandy loam
Bt1-3 to 11 inches; clay loam
Bt2-11 to 16 inches; sandy clay loam
C1-16 to 37 inches; sandy loam
C2-37 to 65 inches; loamy sand

Minor Components

Starlake and similar soils

Composition: About 7 percent
Slope: 1 to 3 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Sodic Slopes
Riverwash
Composition: About 5 percent
Riverwash consists of unstable sand and silt that is reworked by water and wind so frequently that it supports little or no vegetation. Riverwash occurs in stream channels and is subject to frequent, brief periods of flooding from high intensity storms, July to November.

Badland

Composition: About 3 percent
Badland is a miscellaneous area consisting of exposed areas of raw shale that is essentially denuded of vegetation. Seams and layers of coal and porcelenite are also included. These areas are highly dissected.

11-Doakum-Betonnie complex, 1 to 8 percent slopes

Map Unit Setting
MLRA: 37
Elevation: 6,400 to 6,900 feet (1,951 to 2,103 meters)
Mean annual precipitation: 9 to 10 inches (229 to 254 millimeters)
Average annual air temperature: 46 to 49 degrees F (8 to 9 degrees C)
Frost-free period: 100 to 135 days

Map Unit Composition

Doakum and similar soils: 60 percent
Betonnie and similar soils: 25 percent
Minor components: 15 percent

Component Descriptions

Doakum soils

Geomorphic position: Sideslopes on ridges and hills, fan remnants on valley sides, dipslopes on cuestas, and summits on mesas
Parent material: Eolian material and fan and slope alluvium derived from sandstone and shale
Slope: 1 to 5 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Slowest permeability: About 0.57 in/hr (moderate)

Available water capacity: About 8.3 inches (moderate)
Shrink-swell potential: About 1.0 LEP (low)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Very low
Calcium carbonate maximum: About 5 percent
Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 5 SAR (slightly sodic)
Ecological site: Loamy
Present native vegetation: blue grama, Indian ricegrass, big sagebrush, bottlebrush squirreltail, fourwing saltbush, galleta, sand dropseed, western wheatgrass, alkali sacaton, rabbitbrush, Mormon tea, winterfat
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 9N

Typical Profile:

A-0 to 2 inches; fine sandy loam Bt1-2 to 8 inches; sandy clay loam
Bt2-8 to 13 inches; sandy clay loam
Bt3-13 to 21 inches; sandy clay loam
Bk1-21 to 42 inches; sandy clay loam
Bk2-42 to 65 inches; sandy loam

Betonnie soils

Geomorphic position: Sideslopes on ridges and hills, fan remnants on valley sides, dipslopes on cuestas, and summits on mesas
Parent material: Eolian material and fan and slope alluvium derived from sandstone
Slope: 1 to 8 percent
Depth to restrictive feature: None within 60 inches Drainage class: Somewhat excessively drained
Slowest permeability: About $1.98 \mathrm{in} / \mathrm{hr}$ (moderately rapid)
Available water capacity: About 5.9 inches (low)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Very low
Calcium carbonate maximum: About 5 percent
Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 10 SAR (slightly sodic)
Ecological site: Sandy
Present native vegetation: Indian ricegrass, blue grama, sand dropseed, alkali sacaton, big sagebrush, bottlebrush squirreltail, fourwing
saltbush, needleandthread, spike dropseed, galleta, winterfat, Mormon tea
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 6G

Typical Profile:

A-0 to 3 inches; sandy loam
Bt1-3 to 11 inches; sandy loam
Bt2-11 to 21 inches; sandy loam
Bk1-21 to 29 inches; loamy sand
Bk2-29 to 45 inches; loamy sand
Bk3-45 to 52 inches; loamy sand
Btkb-52 to 60 inches; sandy loam

Minor Components

Badlands
Composition: About 5 percent
Badland is a miscellaneous area consisting of exposed areas of raw shale that is essentially denuded of vegetation. Seams and layers of coal and porcelenite are also included. These areas are highly dissected.

Starlake and similar soils
Composition: About 5 percent
Slope: 1 to 3 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Sodic Slopes
Calladito and similar soils
Composition: About 5 percent
Slope: 1 to 8 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Excessively drained
Ecological site: Deep Sands

12-Calladito-Elias association, 1 to 6 percent slopes

Map Unit Setting

MLRA: 37
Elevation: 6,300 to 6,800 feet (1,920 to 2,073 meters)
Mean annual precipitation: 9 to 10 inches (229 to 254 millimeters)
Average annual air temperature: 46 to 49 degrees F (8 to 9 degrees C)
Frost-free period: 100 to 135 days

Map Unit Composition

Calladito and similar soils: 55 percent

Elias and similar soils: 30 percent
Minor components: 15 percent

Component Descriptions

Calladito soils

Geomorphic position: Dunes on valley sides
Parent material: Eolian material derived from sandstone
Slope: 1 to 6 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Excessively drained
Slowest permeability: About $6.00 \mathrm{in} / \mathrm{hr}$ (rapid)
Available water capacity: About 5.2 inches (low)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Negligible
Calcium carbonate maximum: About 1 percent Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Deep Sand
Present native vegetation: Indian ricegrass, galleta, sand dropseed, blue grama, sand sagebrush, broom snakeweed, Mormon tea, needleandthread
Land capability (nonirrigated): 7e
Conservation Tree/Shrub Group: 7

Typical Profile:

A-0 to 2 inches; loamy fine sand
C1-2 to 26 inches; loamy fine sand
C2-26 to 65 inches; loamy fine sand

Elias soils

Geomorphic position: Fan remnants on valley sides
Parent material: Fan alluvium derived from sandstone and shale
Slope: 1 to 6 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Slowest permeability: About $0.06 \mathrm{in} / \mathrm{hr}$ (slow)
Available water capacity: About 5.9 inches (low)
Shrink-swell potential: About 4.5 LEP (moderate)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Medium
Calcium carbonate maximum: About 15 percent
Gypsum maximum: About 1 percent
Salinity maximum: About $8 \mathrm{mmhos} / \mathrm{cm}$ (slightly saline)
Sodicity maximum: About 30 SAR (strongly sodic)

Ecological site: Sodic Slopes
Present native vegetation: alkali sacaton, galleta, blue grama, fourwing saltbush, greasewood, mound saltbush, western wheatgrass, big sagebrush, shadscale saltbush, threeawn
Land capability (nonirrigated): 7s
Conservation Tree/Shrub Group: 10

Typical Profile:

E-0 to 1 inches; fine sandy loam
Btn1-1 to 3 inches; sandy clay loam
Btn2-3 to 10 inches; sandy clay loam
Bkn1-10 to 18 inches; loamy fine sand
Bkn2-18 to 33 inches; sandy clay loam
Bkn3-33 to 65 inches; clay loam

Minor Components

Starlake and similar soils
Composition: About 5 percent
Slope: 1 to 3 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Sodic Slopes
Blancot and similar soils
Composition: About 4 percent
Slope: 1 to 6 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Loamy
Badlands
Composition: About 3 percent
Badland is a miscellaneous area consisting of exposed areas of raw shale that is essentially denuded of vegetation. Seams and layers of coal and porcelenite are also included. These areas are highly dissected.
Tsosie and similar soils
Composition: About 3 percent
Slope: 1 to 3 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Salt Flats

13-Councelor-Calladito complex, 1 to 8 percent slopes

Map Unit Setting

MLRA: 37
Elevation: 6,300 to 6,800 feet (1,920 to 2,073 meters)

Mean annual precipitation: 9 to 10 inches (229 to 254 millimeters)
Average annual air temperature: 46 to 49 degrees F (8 to 9 degrees C)
Frost-free period: 100 to 135 days
Map Unit Composition
Councelor and similar soils: 60 percent
Calladito and similar soils: 30 percent
Minor components: 10 percent

Component Descriptions

Councelor soils

Geomorphic position: Stream terraces on valley floors and alluvial fans on valley sides
Parent material: Eolian material and fan and stream alluvium derived from sandstone and shale
Slope: 1 to 8 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Slowest permeability: About $0.20 \mathrm{in} / \mathrm{hr}$ (moderately slow)
Available water capacity: About 8.1 inches (moderate)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: Rare
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Medium
Calcium carbonate maximum: About 5 percent
Gypsum maximum: None
Salinity maximum: About $2 \mathrm{mmhos} / \mathrm{cm}$ (nonsaline)
Sodicity maximum: About 5 SAR (slightly sodic)
Ecological site: Loamy
Present native vegetation: Indian ricegrass, blue grama, big sagebrush, bottlebrush squirreltail, sand dropseed, spike dropseed, western wheatgrass, winterfat, Mormon tea
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 4

Typical Profile:

A-0 to 2 inches; fine sandy loam
C1-2 to 15 inches; fine sandy loam
C2-15 to 19 inches; silty clay loam
C3-19 to 42 inches; loamy fine sand
C4-42 to 55 inches; loam
Btb-55 to 65 inches; loam

Calladito soils

Geomorphic position: Dunes on valley floors and on valley sides
Parent material: Eolian material derived from sandstone

Slope: 1 to 8 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Excessively drained
Slowest permeability: About $6.00 \mathrm{in} / \mathrm{hr}$ (rapid)
Available water capacity: About 4.9 inches (low)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Negligible
Calcium carbonate maximum: About 1 percent
Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Deep Sand
Present native vegetation: Indian ricegrass, galleta, sand dropseed, blue grama, sand sagebrush, broom snakeweed, Mormon tea, needleandthread
Land capability (nonirrigated): 7e
Conservation Tree/Shrub Group: 7
Typical Profile:
A-0 to 3 inches; loamy fine sand
C1-3 to 37 inches; loamy sand C2-37 to 65 inches; loamy fine sand

Minor Components

Tsosie and similar soils
Composition: About 5 percent
Slope: 1 to 3 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Salt Flats
Doakum and similar soils
Composition: About 3 percent
Slope: 1 to 8 percent
Depth to restrictive feature: None within 60 inches Drainage class: Well drained
Ecological site: Loamy
Rock outcrop
Composition: About 1 percent
Rock outcrop consists of barren or nearly barren areas of exposed sandstone and shale on ridges, ledges, and escarpments.

Starlake and similar soils
Composition: About 1 percent
Slope: 1 to 3 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Sodic Slopes

14-Councelor-Eslendo-Calladito complex, 2 to 25 percent slopes

Map Unit Setting

MLRA: 37
Elevation: 6,300 to 6,800 feet (1,920 to 2,073 meters)
Mean annual precipitation: 9 to 10 inches (229 to 254 millimeters)
Average annual air temperature: 46 to 49 degrees F (8 to 9 degrees C)
Frost-free period: 100 to 135 days

Map Unit Composition

Councelor and similar soils: 30 percent Eslendo and similar soils: 30 percent Calladito and similar soils: 25 percent Minor components: 15 percent

Component Descriptions

Councelor soils

Geomorphic position: Alluvial fans on valley sides
Parent material: Eolian material and fan alluvium derived from sandstone
Slope: 2 to 10 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Somewhat excessively drained
Slowest permeability: About $2.00 \mathrm{in} / \mathrm{hr}$ (moderately rapid)
Available water capacity: About 8.3 inches (moderate)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: Rare
Seasonal water table minimum depth: Greater than 6 feet

Runoff class: Low

Calcium carbonate maximum: About 5 percent
Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 5 SAR (slightly sodic)
Ecological site: Loamy
Present native vegetation: Indian ricegrass, blue
grama, big sagebrush, bottlebrush squirreltail, sand
dropseed, spike dropseed, western wheatgrass,
winterfat, Mormon tea
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 3

Typical Profile:

A-0 to 4 inches; fine sandy loam
C1-4 to 16 inches; fine sandy loam
C2-16 to 65 inches; fine sandy loam

Eslendo soils

Geomorphic position: Sideslopes on ridges and hills
Parent material: Slope alluvium over residuum derived from sandstone and shale
Slope: 2 to 25 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (paralithic)
Drainage class: Well drained
Slowest permeability: About $0.20 \mathrm{in} / \mathrm{hr}$ (moderately slow)
Available water capacity: About 2.1 inches (very low)
Shrink-swell potential: About 4.5 LEP (moderate)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Very high
Calcium carbonate maximum: About 10 percent
Gypsum maximum: About 1 percent
Salinity maximum: About 4 mmhos/cm (very slightly saline)
Sodicity maximum: About 5 SAR (slightly sodic)
Ecological site: Shallow
Present native vegetation: Indian ricegrass, New Mexico feathergrass, galleta, alkali sacaton, big sagebrush, blue grama, bottlebrush squirreltail, Mormon tea, fourwing saltbush, Bigelow's sagebrush, rabbitbrush, sand dropseed
Land capability (nonirrigated): 7e
Conservation Tree/Shrub Group: 10
Typical Profile:
A-0 to 2 inches; loam
C-2 to 11 inches; clay loam Cr-11 inches; shale

Calladito soils

Geomorphic position: Dunes on ridges and hills
Parent material: Eolian material derived from sandstone
Slope: 2 to 10 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Excessively drained
Slowest permeability: About $6.00 \mathrm{in} / \mathrm{hr}$ (rapid)
Available water capacity: About 4.8 inches (low)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Negligible
Calcium carbonate maximum: About 1 percent
Gypsum maximum: None

Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Deep Sand
Present native vegetation: Indian ricegrass, galleta, sand dropseed, blue grama, sand sagebrush, broom snakeweed, Mormon tea, needleandthread Land capability (nonirrigated): 7e
Conservation Tree/Shrub Group: 7
Typical Profile:
A-0 to 3 inches; loamy fine sand
C1-3 to 41 inches; loamy sand
C2-41 to 65 inches; loamy fine sand

Minor Components

Rock outcrop
Composition: About 5 percent
Rock outcrop consists of barren or nearly barren areas of exposed sandstone and shale on ridges, ledges, and escarpments.
Tsosie and similar soils
Composition: About 4 percent
Slope: 1 to 3 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Salt Flats

Badlands

Composition: About 3 percent
Badland is a miscellaneous area consisting of exposed areas of raw shale that is essentially denuded of vegetation. Seams and layers of coal and porcelenite are also included. These areas are highly dissected.
Blancot and similar soils
Composition: About 3 percent
Slope: 1 to 3 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Loamy

16-Starlake clay, 1 to 3 percent slopes

Map Unit Setting

MLRA: 37
Elevation: 6,300 to 6,700 feet (1,920 to 2,042 meters)
Mean annual precipitation: 9 to 10 inches (229 to 254 millimeters)
Average annual air temperature: 46 to 49 degrees F (8 to 9 degrees C)
Frost-free period: 100 to 135 days

Map Unit Composition

Starlake and similar soils: 85 percent
Minor components: 15 percent

Component Descriptions

Starlake soils

Geomorphic position: Stream terraces on valley floors and fan remnants on valley sides
Parent material: Fan and stream alluvium derived from sandstone and shale
Slope: 1 to 3 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Slowest permeability: About 0.03 in/hr (very slow)
Available water capacity: About 5.4 inches (low)
Shrink-swell potential: About 7.5 LEP (high)
Flooding hazard: Rare
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: High
Calcium carbonate maximum: About 15 percent
Gypsum maximum: About 1 percent
Salinity maximum: About $8 \mathrm{mmhos} / \mathrm{cm}$ (slightly saline)
Sodicity maximum: About 30 SAR (strongly sodic)
Ecological site: Sodic Slopes
Present native vegetation: alkali sacaton, galleta, blue grama, fourwing saltbush, greasewood, mound saltbush, western wheatgrass, shadscale saltbush, threeawn
Land capability (nonirrigated): 7s
Conservation Tree/Shrub Group: 10
Typical Profile:
Btn1-0 to 3 inches; clay
Btn2-3 to 12 inches; clay Btknz1-12 to 20 inches; clay loam Btknz2-20 to 54 inches; clay Btknz3-54 to 65 inches; clay loam

Minor Components

Blancot and similar soils
Composition: About 5 percent
Slope: 1 to 3 percent
Depth to restrictive feature: None within 60 inches Drainage class: Well drained Ecological site: Loamy

Tsosie and similar soils
Composition: About 4 percent
Slope: 1 to 3 percent Depth to restrictive feature: None within 60 inches Drainage class: Well drained

Ecological site: Salt Flats
Rock outcrop
Composition: About 3 percent
Rock outcrop consists of barren or nearly barren areas of exposed sandstone and shale on ridges, ledges, and escarpments.

Badlands

Composition: About 3 percent
Badland is a miscellaneous area consisting of exposed areas of raw shale that is essentially denuded of vegetation. Seams and layers of coal and porcelenite are also included. These areas are highly dissected.

22-Querencia-Lavodnas association, 2 to 15 percent slopes

Map Unit Setting

MLRA:36
Elevation: 6,600 to 7,200 feet (2,012 to 2,195 meters)
Mean annual precipitation: 10 to 13 inches (254 to 330 millimeters)
Average annual air temperature: 49 to 54 degrees F (9 to 12 degrees C)
Frost-free period: 120 to 140 days
Map Unit Composition
Querencia and similar soils: 50 percent
Lavodnas and similar soils: 35 percent
Minor components: 15 percent

Component Descriptions

Querencia soils

Geomorphic position: Drainageways and alluvial fans on valley sides
Parent material: Fan and slope alluvium derived from sandstone and shale
Slope: 2 to 10 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Slowest permeability: About $0.20 \mathrm{in} / \mathrm{hr}$ (moderately slow)
Available water capacity: About 11.7 inches (high)
Shrink-swell potential: About 4.0 LEP (moderate)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: High
Calcium carbonate maximum: About 15 percent
Gypsum maximum: About 1 percent

Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 1 SAR (slightly sodic)
Ecological site: Loamy
Present native vegetation: blue grama, western wheatgrass, galleta, alkali sacaton, bottlebrush squirreltail, fourwing saltbush, winterfat, oneseed juniper, broom snakeweed, rabbitbrush, spineless horsebrush
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 8

Typical Profile:

A-0 to 2 inches; fine sandy loam
Bw1-2 to 9 inches; clay loam
Bw2-9 to 15 inches; clay loam
Bk-15 to 65 inches; clay loam

Lavodnas soils

Geomorphic position: Sideslopes and summits on ridges and hills
Parent material: Slope alluvium derived from shale
Slope: 2 to 15 percent
Depth to restrictive feature: 10 to 20 inches to bedrock (paralithic)
Drainage class: Well drained
Slowest permeability: About $0.06 \mathrm{in} / \mathrm{hr}$ (slow)
Available water capacity: About 1.8 inches (very low)
Shrink-swell potential: About 7.5 LEP (high)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Very high
Calcium carbonate maximum: About 5 percent
Gypsum maximum: About 25 percent
Salinity maximum: About 4 mmhos/cm (very slightly saline)
Sodicity maximum: About 1 SAR (slightly sodic)
Ecological site: Shallow
Present native vegetation: winterfat, Indian ricegrass, alkali sacaton, galleta, needleandthread, blue grama, fourwing saltbush, western wheatgrass, Bigelow's sagebrush, Mormon tea, oneseed juniper, twoneedle pinyon
Land capability (nonirrigated): 7s
Conservation Tree/Shrub Group: 10
Typical Profile:
A-0 to 3 inches; loam
By1-3 to 9 inches; clay loam
By2-9 to 13 inches; clay Cr-13 inches; shale

Minor Components

Zia and similar soils

Composition: About 5 percent
Slope: 2 to 5 percent
Depth to restrictive feature: None within 60 inches Drainage class: Somewhat excessively drained Ecological site: Sandy

San Mateo and similar soils
Composition: About 5 percent
Slope: 0 to 2 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Bottomland
Hagerwest and similar soils
Composition: About 5 percent
Slope: 1 to 5 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Loamy

30-Orlie-Tinian complex, 1 to 6 percent slopes

Map Unit Setting

MLRA: 36

Elevation: 6,800 to 7,500 feet (2,073 to 2,286 meters)
Mean annual precipitation: 13 to 14 inches (330 to 356 millimeters)
Average annual air temperature: 46 to 49 degrees F (8 to 9 degrees C)
Frost-free period: 100 to 135 days

Map Unit Composition

Orlie and similar soils: 45 percent
Tinian and similar soils: 40 percent
Minor components: 15 percent

Component Descriptions

Orlie soils

Geomorphic position: Dipslopes on cuestas and summits on mesas
Parent material: Eolian material and slope alluvium derived from sandstone and shale
Slope: 1 to 5 percent
Depth to restrictive feature: None within 60 inches Drainage class: Well drained
Slowest permeability: About $0.20 \mathrm{in} / \mathrm{hr}$ (moderately slow)
Available water capacity: About 10.6 inches (high)
Shrink-swell potential: About 4.5 LEP (moderate)

Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Medium
Calcium carbonate maximum: About 10 percent
Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Loamy
Present native vegetation: western wheatgrass, Indian ricegrass, big sagebrush, blue grama, bottlebrush squirreltail, galleta, winterfat, broom snakeweed, muttongrass, rabbitbrush, spineless horsebrush, oneseed juniper, twoneedle pinyon
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 4

Typical Profile:

A-0 to 2 inches; fine sandy loam
BA-2 to 5 inches; loam
Bt-5 to 15 inches; clay loam
Bk1-15 to 36 inches; sandy clay loam
Bk2-36 to 50 inches; silty clay loam
Bk3-50 to 62 inches; clay loam

Tinian soils

Geomorphic position: Dipslopes on cuestas and summits on mesas
Parent material: Slope alluvium derived from sandstone and shale
Slope: 1 to 6 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Drainage class: Well drained
Slowest permeability: About $0.20 \mathrm{in} / \mathrm{hr}$ (moderately slow)
Available water capacity: About 4.8 inches (low)
Shrink-swell potential: About 4.5 LEP (moderate)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Medium
Calcium carbonate maximum: About 2 percent
Gypsum maximum: None
Salinity maximum: About $2 \mathrm{mmhos} / \mathrm{cm}$ (nonsaline)
Sodicity maximum: About 1 SAR (slightly sodic)
Ecological site: Loamy
Present native vegetation: western wheatgrass, Indian ricegrass, big sagebrush, blue grama, bottlebrush squirreltail, galleta, spineless horsebrush, winterfat, muttongrass, oneseed juniper, twoneedle pinyon
Land capability (nonirrigated): 6c

Conservation Tree/Shrub Group: 10

Typical Profile:
A-0 to 3 inches; very fine sandy loam
Bt1-3 to 8 inches; clay loam
Bt2-8 to 19 inches; clay
Btk-19 to 24 inches; clay loam
2R-24 inches; sandstone bedrock

Minor Components

Atarque and similar soils
Composition: About 10 percent
Slope: 1 to 6 percent
Depth to restrictive feature: 10 to 20 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Shallow Sandstone
Rock outcrop
Composition: About 5 percent
Rock outcrop consists of barren or nearly barren areas of exposed sandstone and shale on ridges, ledges, and escarpments.

40—Nuffel silt loam, 0 to 2 percent slopes

Map Unit Setting

MLRA: 36
Elevation: 6,100 to 6,500 feet (1,859 to 1,981 meters)
Mean annual precipitation: 10 to 13 inches (254 to 330 millimeters)
Average annual air temperature: 49 to 54 degrees F (9 to 12 degrees C)
Frost-free period: 120 to 140 days

Map Unit Composition

Nuffel and similar soils: 90 percent
Minor components: 10 percent

Component Descriptions

Nuffel soils

Geomorphic position: Flood plains on valley floors
Parent material: Alluvial material derived from siltstone and shale
Slope: 0 to 2 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Slowest permeability: About $0.20 \mathrm{in} / \mathrm{hr}$ (moderately slow)
Available water capacity: About 11.8 inches (high)
Shrink-swell potential: About 1.5 LEP (low)

Flooding hazard: Frequent
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Medium
Calcium carbonate maximum: About 10 percent
Gypsum maximum: None
Salinity maximum: About $2 \mathrm{mmhos} / \mathrm{cm}$ (nonsaline)
Sodicity maximum: About 5 SAR (slightly sodic)
Ecological site: Bottomland
Present native vegetation: alkali sacaton, western wheatgrass, fourwing saltbush, blue grama, galleta, spike muhly, mat muhly, sand dropseed, spineless horsebrush
Land capability (irrigated): 4w
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 8

Typical Profile:

A-0 to 2 inches; silt loam
C1-2 to 12 inches; silty clay loam
C2-12 to 18 inches; silt loam
C3-18 to 26 inches; silty clay loam
C4-26 to 65 inches; silt loam

Minor Components

Venadito and similar soils
Composition: About 10 percent
Slope: 0 to 2 percent
Depth to restrictive feature: None within 60 inches Drainage class: Well drained
Ecological site: Clayey Bottomland

42-Suwanee clay loam, 0 to 2 percent slopes

Map Unit Setting

MLRA: 36
Elevation: 6,100 to 6,500 feet (1,859 to 1,981 meters)
Mean annual precipitation: 10 to 13 inches (254 to 330 millimeters)
Average annual air temperature: 49 to 54 degrees F (9 to 12 degrees C)
Frost-free period: 120 to 140 days

Map Unit Composition

Suwanee and similar soils: 90 percent
Minor components: 10 percent

Component Descriptions

Suwanee soils

Geomorphic position: Flood plains on valley floors

Parent material: Alluvial material derived from sandstone, siltstone and shale
Slope: 0 to 2 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Slowest permeability: About $0.20 \mathrm{in} / \mathrm{hr}$ (moderately slow)
Available water capacity: About 11.8 inches (high)
Shrink-swell potential: About 4.5 LEP (moderate)
Flooding hazard: Frequent
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Medium
Calcium carbonate maximum: About 10 percent
Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 1 SAR (slightly sodic)
Ecological site: Bottomland
Present native vegetation: alkali sacaton, western wheatgrass, fourwing saltbush, blue grama, galleta, spike muhly, mat muhly, sand dropseed, spineless horsebrush
Land capability (irrigated): 4w
Land capability (nonirrigated): 6w
Conservation Tree/Shrub Group: 8

Typical Profile:

Ap-0 to 4 inches; clay loam
C1-4 to 34 inches; clay loam
C2-34 to 48 inches; silt loam
C3-48 to 65 inches; clay loam

Minor Components

Venadito and similar soils
Composition: About 5 percent
Slope: 0 to 2 percent
Depth to restrictive feature: None within 60 inches Drainage class: Well drained
Ecological site: Clayey Bottomland
Nuffel and similar soils
Composition: About 5 percent
Slope: 0 to 2 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Bottomland

44-Suwanee clay, 0 to 1 percent slopes

Map Unit Setting

MLRA: 36
Elevation: 6,100 to 6,500 feet (1,859 to 1,981 meters)

Mean annual precipitation: 10 to 13 inches (254 to 330 millimeters)
Average annual air temperature: 49 to 54 degrees F (9 to 12 degrees C)
Frost-free period: 120 to 140 days
Map Unit Composition
Suwanee and similar soils: 90 percent
Minor components: 10 percent

Component Descriptions

Suwanee soils

Geomorphic position: Flood plains on valley floors
Parent material: Alluvial material derived from sandstone, siltstone, and shale
Slope: 0 to 1 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Slowest permeability: About 0.06 in/hr (slow)
Available water capacity: About 9.1 inches (high)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: Frequent
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Medium
Calcium carbonate maximum: About 10 percent
Gypsum maximum: None
Salinity maximum: About $2 \mathrm{mmhos} / \mathrm{cm}$ (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Clayey Bottomland
Present native vegetation: western wheatgrass, alkali sacaton, fourwing saltbush, galleta, blue grama, spike muhly, mat muhly, broom snakeweed, rabbitbrush
Land capability (irrigated): 4w
Land capability (nonirrigated): 6 w
Conservation Tree/Shrub Group: 4CK
Typical Profile:
Ap-0 to 10 inches; clay
C1-10 to 17 inches; clay
C2-17 to 30 inches; clay loam
C3-30 to 47 inches; sandy clay loam
C4-47 to 65 inches; sandy loam

Minor Components

Venadito and similar soils
Composition: About 5 percent
Slope: 0 to 2 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Clayey Bottomland

Nuffel and similar soils
Composition: About 5 percent
Slope: 0 to 2 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Bottomland

45-Nutreeah clay loam, 0 to 2 percent slopes

Map Unit Setting

MLRA: 36
Elevation: 6,600 to 7,000 feet (2,012 to 2,134 meters)
Mean annual precipitation: 13 to 16 inches (330 to 406 millimeters)
Average annual air temperature: 46 to 49 degrees F (8 to 9 degrees C)
Frost-free period: 100 to 135 days

Map Unit Composition

Nutreeah and similar soils: 90 percent Minor components: 10 percent

Component Descriptions

Nutreeah soils

Geomorphic position: Stream terraces on valley floors
Parent material: Stream alluvium derived from sandstone and shale
Slope: 0 to 2 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Moderately well drained
Slowest permeability: About $0.03 \mathrm{in} / \mathrm{hr}$ (very slow)
Available water capacity: About 9.7 inches (high)
Shrink-swell potential: About 7.5 LEP (high)
Flooding hazard: Rare
Seasonal water table minimum depth: About 42 inches Runoff class: High
Calcium carbonate maximum: About 1 percent Gypsum maximum: None
Salinity maximum: About 8 mmhos/cm (slightly saline)
Sodicity maximum: About 5 SAR (slightly sodic)
Ecological site: Clayey
Present native vegetation: western wheatgrass, needleandthread, winterfat, Indian ricegrass, big sagebrush, blue grama, bottlebrush squirreltail, galleta, pingue hymenoxys, rabbitbrush
Land capability (irrigated): 3s
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 4CK
Typical Profile:
Ap-0 to 10 inches; clay loam

Bt-10 to 16 inches; clay loam
Btk-16 to 24 inches; clay
Btz-24 to 40 inches; clay
C-40 to 65 inches; clay

Minor Components

Sparham and similar soils Composition: About 5 percent Slope: 0 to 1 percent
Depth to restrictive feature: None within 60 inches Drainage class: Well drained Ecological site: Swale

Suwanee and similar soils Composition: About 5 percent Slope: 0 to 1 percent Depth to restrictive feature: None within 60 inches Drainage class: Well drained Ecological site: Bottomland

47-Conchovar clay loam, 0 to 1 percent slopes

Map Unit Setting

MLRA: 36
Elevation: 6,600 to 6,800 feet (2,012 to 2,073 meters)
Mean annual precipitation: 13 to 16 inches (330 to 406 millimeters)
Average annual air temperature: 46 to 49 degrees F (8 to 9 degrees C)
Frost-free period: 100 to 135 days

Map Unit Composition

Conchovar and similar soils: 90 percent
Minor components: 10 percent

Component Descriptions

Conchovar soils

Geomorphic position: Drainageways and stream terraces on valley floors
Parent material: Fan and stream alluvium derived from sandstone and shale
Slope: 0 to 1 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Somewhat poorly drained
Slowest permeability: About 0.06 in/hr (very slow)
Available water capacity: About 7.9 inches (moderate)
Shrink-swell potential: About 7.5 LEP (high)
Flooding hazard: Rare
Seasonal water table minimum depth: About 45 inches Runoff class: Medium
Calcium carbonate maximum: About 1 percent

Gypsum maximum: About 1 percent
Salinity maximum: About $8 \mathrm{mmhos} / \mathrm{cm}$ (slightly saline)
Sodicity maximum: About 5 SAR (slightly sodic)
Ecological site: Salty Bottomland
Present native vegetation: alkali sacaton, western
wheatgrass, fourwing saltbush, big sagebrush, blue
grama, bottlebrush squirreltail, greasewood, inland
saltgrass, mat muhly, rabbitbrush
Land capability (irrigated): 3s
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 9W

Typical Profile:

Ap1-0 to 3 inches; clay loam
Ap2-3 to 9 inches; clay
Btz-9 to 26 inches; clay
BC-26 to 36 inches; clay
Cg-36 to 54 inches; clay
2C-54 to 65 inches; sandy clay

Minor Components

Concho and similar soils
Composition: About 10 percent
Slope: 0 to 2 percent
Depth to restrictive feature: None within 60 inches Drainage class: Well drained Ecological site: Meadow

49-Concho clay loam, 0 to 2 percent slopes

Map Unit Setting

MLRA: 36
Elevation: 6,600 to 6,800 feet (2,012 to 2,073 meters)
Mean annual precipitation: 13 to 16 inches (330 to 406 millimeters)
Average annual air temperature: 46 to 49 degrees F (8 to 9 degrees C)
Frost-free period: 100 to 135 days

Map Unit Composition

Concho and similar soils: 85 percent
Minor components: 15 percent

Component Descriptions

Concho soils

Geomorphic position: Drainageways and stream terraces on valley floors
Parent material: Fan and stream alluvium derived from sandstone and shale
Slope: 0 to 2 percent
Depth to restrictive feature: None within 60 inches

Drainage class: Well drained
Slowest permeability: About $0.06 \mathrm{in} / \mathrm{hr}$ (slow)
Available water capacity: About 11.3 inches (high)
Shrink-swell potential: About 4.5 LEP (moderate)
Flooding hazard: Rare
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Medium
Calcium carbonate maximum: About 3 percent
Gypsum maximum: None
Salinity maximum: About 4 mmhos/cm (very slightly saline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Clayey
Present native vegetation: western wheatgrass, needleandthread, winterfat, Indian ricegrass, big sagebrush, blue grama, bottlebrush squirreltail, galleta, pingue hymenoxys, rabbitbrush
Land capability (irrigated): 3c
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 4C
Typical Profile:
Ap-0 to 4 inches; clay loam Btss-4 to 28 inches; clay loam Btkss-28 to 38 inches; clay Btkz-38 to 65 inches; clay loam

Minor Components

Conchovar and similar soils Composition: About 10 percent Slope: 0 to 1 percent Depth to restrictive feature: None within 60 inches Drainage class: Well drained Ecological site: Salty Bottomland

Parkelei and similar soils
Composition: About 5 percent
Slope: 1 to 3 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Loamy

51—Kwakina loamy fine sand, 0 to 2 percent slopes

Map Unit Setting

MLRA: 36
Elevation: 6,000 to 7,300 feet (1,829 to 2,134 meters)
Mean annual precipitation: 10 to 13 inches (254 to 330 millimeters)
Average annual air temperature: 49 to 53 degrees F (9 to 12 degrees C)

Frost-free period: 120 to 140 days

Map Unit Composition

Kwakina and similar soils: 90 percent Minor components: 10 percent

Component Descriptions

Kwakina soils

Geomorphic position: Flood plains and stream terraces on valley floors and alluvial fans on valley sides
Parent material: Fan and stream alluvium derived from sandstone
Slope: 0 to 2 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Somewhat excessively drained
Slowest permeability: About $2.00 \mathrm{in} / \mathrm{hr}$ (moderately rapid)
Available water capacity: About 5.6 inches (low)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: Occasional
Seasonal water table minimum depth: Greater than 6 feet

Runoff class: Negligible

Calcium carbonate maximum: About 10 percent
Gypsum maximum: None
Salinity maximum: About $8 \mathrm{mmhos} / \mathrm{cm}$ (slightly saline)
Ecological site: Bottomland
Present native vegetation: alkali sacaton, western wheatgrass, fourwing saltbush, blue grama, galleta, spike muhly, mat muhly, sand dropseed, spineless horsebrush
Land capability (irrigated): 4e
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 5

Typical Profile:

A-0 to 7 inches; loamy fine sand
C1-7 to 11 inches; loamy fine sand
C2-11 to 23 inches; fine sand
C3-23 to 33 inches; fine sandy loam
Ck-33 to 65 inches; loamy sand

Minor Components

Dunes and similar soils Composition: About 5 percent
Dunes are loose, windblown, generally sandy material, mostly bare of vegetation. Their characteristic shape is llow mounds, ridges, or hills. They are capable of movement from place to place.

Zia and similar soils
Composition: About 5 percent

Slope: 1 to 5 percent
Depth to restrictive feature: None within 60 inches Drainage class: Well drained
Ecological site: Sandy

52-Zuniven loamy fine sand, 0 to 2 percent slopes

Map Unit Setting

MLRA: 36
Elevation: 6,200 to 6,500 feet (1,890 to 1,981 meters)
Mean annual precipitation: 10 to 13 inches (254 to 330 millimeters)
Average annual air temperature: 49 to 54 degrees F (9 to 12 degrees C)
Frost-free period: 120 to 140 days
Map Unit Composition
Zuniven and similar soils: 90 percent
Minor components: 10 percent

Component Descriptions

Zuniven soils

Geomorphic position: Flood plains on valley floors (fig. 2)
Parent material: Stream alluvium derived from sandstone and shale
Slope: 0 to 2 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Moderately well drained
Slowest permeability: About $0.20 \mathrm{in} / \mathrm{hr}$ (moderately slow)
Available water capacity: About 8.9 inches (moderate)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: Frequent
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Medium
Calcium carbonate maximum: About 3 percent
Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 5 SAR (slightly sodic)
Ecological site: Woody Riparian
Present native vegetation: cottonwood, rush, willow
Land capability (irrigated): 4w
Land capability (nonirrigated): 6 w
Conservation Tree/Shrub Group: 4
Typical Profile:
A-0 to 12 inches; loamy fine sand
C1-12 to 42 inches; silt loam
C2-42 to 65 inches; loamy fine sand

Figure 2.-Typical landscape of Zuniven loamy fine sand, 0 to 2 percent slopes, in the foreground. The mesas and steep canyon walls in the background are common landscape features in the survey area.

Minor Components

Suwanee and similar soils
Composition: About 10 percent
Slope: 0 to 2 percent
Depth to restrictive feature: None within 60 inches Drainage class: Well drained
Ecological site: Bottomland

53-Hawaikuh clay loam, 0 to 2 percent slopes

Map Unit Setting

MLRA: 36
Elevation: 6,000 to 6,900 feet (1,829 to 2,103 meters)
Mean annual precipitation: 10 to 13 inches (254 to 330 millimeters)
Average annual air temperature: 49 to 54 degrees F (9 to 12 degrees C)
Frost-free period: 120 to 140 days

Map Unit Composition

Hawaikuh and similar soils: 80 percent Minor components: 20 percent

Component Descriptions

Hawaikuh soils

Geomorphic position: Stream terraces on valley floors
Parent material: Stream alluvium derived from sandstone and shale
Slope: 0 to 2 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Slowest permeability: About $0.06 \mathrm{in} / \mathrm{hr}$ (slow)
Available water capacity: About 10.4 inches (high)
Shrink-swell potential: About 7.0 LEP (high)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Medium
Calcium carbonate maximum: About 10 percent

Gypsum maximum: None
Salinity maximum: About 4 mmhos/cm (very slightly saline)
Sodicity maximum: About 2 SAR (slightly sodic)
Ecological site: Clayey
Present native vegetation: alkali sacaton, western
wheatgrass, galleta, Indian ricegrass, blue grama, bottlebrush squirreltail, broom snakeweed, fourwing saltbush, threeawn, winterfat, mat muhly, spike muhly, oneseed juniper
Land capability (irrigated): 3e
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 4C
Typical Profile:
Ap-0 to 10 inches; clay loam
Bt-10 to 24 inches; sandy clay
Btk-24 to 32 inches; clay loam
Bk1-32 to 42 inches; clay loam
Bk2—42 to 65 inches; clay
Minor Components
Aquima and similar soils
Composition: About 10 percent
Slope: 0 to 2 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Loamy
Zia and similar soils
Composition: About 10 percent
Slope: 1 to 3 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Somewhat excessively drained Ecological site: Sandy

54-Venadito clay, saline, 0 to 2 percent slopes

Map Unit Setting

MLRA: 36
Elevation: 6,100 to 6,300 feet (1,859 to 1,920 meters)
Mean annual precipitation: 10 to 13 inches (254 to 330 millimeters)
Average annual air temperature: 49 to 53 degrees F (9 to 11 degrees C)
Frost-free period: 120 to 140 days

Map Unit Composition

Venadito and similar soils: 90 percent
Minor components: 10 percent

Component Descriptions

Venadito soils

Geomorphic position: Swales, depressions, stream terraces, and flood plains on valley floors
Parent material: Stream alluvium derived from shale Slope: 0 to 2 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Moderately well drained
Slowest permeability: About $0.06 \mathrm{in} / \mathrm{hr}$ (very slow)
Available water capacity: About 6.2 inches (moderate)
Shrink-swell potential: About 7.5 LEP (high)
Flooding hazard: Occasional
Seasonal water table minimum depth: About 48 inches
Runoff class: High
Calcium carbonate maximum: About 10 percent
Gypsum maximum: About 2 percent
Salinity maximum: About 8 mmhos/cm (moderately saline)
Sodicity maximum: About 10 SAR (slightly sodic)
Ecological site: Clayey Bottomland
Present native vegetation: alkali sacaton, western wheatgrass, fourwing saltbush, blue grama, greasewood, inland saltgrass, mat muhly
Land capability (irrigated): 4w
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 4CC
Typical Profile:
Ap-0 to 5 inches; clay
BCssz1-5 to 29 inches; clay
BCssz2—29 to 40 inches; sandy clay Bz-40 to 65 inches; clay

Minor Components

Suwanee and similar soils
Composition: About 10 percent
Slope: 0 to 2 percent
Depth to restrictive feature: None within 60 inches Drainage class: Well drained Ecological site: Bottomland

55-Sparham clay loam, 0 to 2 percent slopes

Map Unit Setting

MLRA: 36
Elevation: 6,600 to 6,800 feet (2,012 to 2,073 meters)
Mean annual precipitation: 14 to 16 inches (356 to 406 millimeters)
Average annual air temperature: 46 to 49 degrees F (8 to 9 degrees C)

Frost-free period: 100 to 135 days

Map Unit Composition
Sparham and similar soils: 95 percent Minor components: 5 percent

Component Descriptions

Sparham soils

Geomorphic position: Flood plains on valley floors
Parent material: Stream alluvium derived from sandstone and shale
Slope: 0 to 2 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Slowest permeability: About 0.03 in/hr (very slow)
Available water capacity: About 9.2 inches (high)
Shrink-swell potential: About 7.5 LEP (high)
Flooding hazard: Frequent
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Low
Calcium carbonate maximum: About 5 percent
Gypsum maximum: About 1 percent
Salinity maximum: About 4 mmhos/cm (very slightly saline)
Sodicity maximum: About 5 SAR (slightly sodic)
Ecological site: Swale
Present native vegetation: western wheatgrass, blue grama, big sagebrush, muttongrass, rabbitbrush, broom snakeweed, sedge
Land capability (irrigated): 4w
Land capability (nonirrigated): 6w
Conservation Tree/Shrub Group: 4CC

Typical Profile:

A-0 to 2 inches; clay loam
C1-2 to 14 inches; clay
C2-14 to 18 inches; sandy clay loam
C3-18 to 27 inches; clay
C4-27 to 31 inches; sandy clay loam
Cz-31 to 65 inches; clay

Minor Components

Nutreeah and similar soils
Composition: About 5 percent
Slope: 0 to 2 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Meadow

60—Redpen sandy clay loam, 0 to 2 percent slopes

Map Unit Setting

MLRA: 36
Elevation: 6,000 to 6,500 feet (1,829 to 1,981 meters)
Mean annual precipitation: 10 to 13 inches (254 to 330 millimeters)
Average annual air temperature: 49 to 54 degrees F (9 to 12 degrees C)
Frost-free period: 120 to 140 days

Map Unit Composition

Redpen and similar soils: 90 percent
Minor components: 10 percent

Component Descriptions

Redpen soils

Geomorphic position: Fan remnants on valley sides
Parent material: Eolian and fan alluvium derived from sandstone and shale
Slope: 0 to 2 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Slowest permeability: About $0.20 \mathrm{in} / \mathrm{hr}$ (moderately slow)
Available water capacity: About 9.2 inches (high)
Shrink-swell potential: About 4.5 LEP (moderate)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Low
Calcium carbonate maximum: About 10 percent
Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 1 SAR (slightly sodic)
Ecological site: Loamy
Present native vegetation: blue grama, western wheatgrass, Indian ricegrass, galleta, bottlebrush squirreltail, fourwing saltbush, winterfat, sand dropseed, oneseed juniper, rabbitbrush
Land capability (irrigated): 3e
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 8
Typical Profile:
Ap-0 to 4 inches; sandy clay loam
Btk-4 to 24 inches; sandy clay loam Bk1-24 to 52 inches; sandy clay loam

Bk2—52 to 65 inches; clay loam

Minor Components

Tintero and similar soils
Composition: About 5 percent
Slope: 1 to 2 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Somewhat excessively drained Ecological site: Sandy

Hawaikuh and similar soils
Composition: About 3 percent
Slope: 0 to 2 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Clayey
Monpark and similar soils
Composition: About 2 percent
Slope: 0 to 2 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (paralithic)
Drainage class: Well drained
Ecological site: Clayey

100—Norkiki-Kimnoli complex, 1 to 8 percent slopes

Map Unit Setting

MLRA: 37
Elevation: 6,000 to 6,800 feet (1,829 to 2,073 meters)
Mean annual precipitation: 7 to 9 inches (178 to 229 millimeters)
Average annual air temperature: 50 to 55 degrees F (10 to 13 degrees C)
Frost-free period: 130 to 150 days

Map Unit Composition

Norkiki and similar soils: 45 percent
Kimnoli and similar soils: 40 percent
Minor components: 15 percent
Component Descriptions

Norkiki soils

Geomorphic position: Dipslopes on cuestas and summits on mesas, ridges, and hills
Parent material: Eolian material and slope alluvium derived from sandstone and shale
Slope: 1 to 8 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)

Drainage class: Well drained
Slowest permeability: About $0.60 \mathrm{in} / \mathrm{hr}$ (moderate)
Available water capacity: About 3.8 inches (low)
Shrink-swell potential: About 4.0 LEP (moderate)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Medium
Calcium carbonate maximum: About 10 percent
Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: None
Ecological site: Sandy Loam Upland 5-8 P.z.
Present native vegetation: Indian ricegrass, galleta, Bigelow's sagebrush, New Mexico feathergrass, alkali sacaton, blue grama, Mormon tea, rabbitbrush, black grama, fourwing saltbush, shadscale saltbush, narrowleaf yucca, sand dropseed
Land capability (nonirrigated): 7c
Conservation Tree/Shrub Group: 10

Typical Profile:

A-0 to 3 inches; loamy sand Bt1-3 to 13 inches; sandy clay loam Bt2—13 to 19 inches; sandy loam Btk-19 to 28 inches; sandy clay loam 2R-28 inches; sandstone bedrock

Kimnoli soils

Geomorphic position: Dipslopes on cuestas and summits on mesas, ridges, and hills
Parent material: Eolian material and slope alluvium derived from sandstone and shale
Slope: 1 to 6 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)
Drainage class: Well drained
Slowest permeability: About $0.60 \mathrm{in} / \mathrm{hr}$ (moderate)
Available water capacity: About 1.9 inches (very low)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: High
Calcium carbonate maximum: About 15 percent
Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 5 SAR (slightly sodic)
Ecological site: Sandstone Upland 5-8" P.z.
Present native vegetation: Indian ricegrass, Bigelow's sagebrush, galleta, New Mexico feathergrass, black grama, blue grama, fourwing saltbush,

Mormon tea, sand dropseed, shadscale saltbush, sideoats grama, narrowleaf yucca Land capability (nonirrigated): 7s
Conservation Tree/Shrub Group: 10

Typical Profile:

A-0 to 2 inches; fine sandy loam
Bt-2 to 7 inches; sandy loam
Btk-7 to 14 inches; sandy clay loam
2R-14 inches; sandstone bedrock

Minor Components

Rock outcrop

Composition: About 5 percent
Rock outcrop consists of barren or nearly barren areas of exposed sandstone and shale on ridges, ledges, and escarpments.
Fajada and similar soils
Composition: About 5 percent
Slope: 1 to 5 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (paralithic)
Drainage class: Well drained
Ecological site: Loamy Upland (sodic)
Shiprock and similar soils
Composition: About 5 percent
Slope: 1 to 8 percent
Depth to restrictive feature: None within 60 inches Drainage class: Somewhat excessively drained
Ecological site: Sandy Upland
Small transverse dunes that formed perpendicular to the prevailing winds. These dunes are generally less than 15 feet wide and 200 feet long.

110-Benally-Fruitland association, 1 to 5 percent slopes

Map Unit Setting

MLRA:37
Elevation: 5,800 to 6,800 feet (1,768 to 2,073 meters)
Mean annual precipitation: 7 to 9 inches (178 to 229 millimeters)
Average annual air temperature: 50 to 55 degrees F (10 to 13 degrees C)
Frost-free period: 130 to 150 days

Map Unit Composition

Benally and similar soils: 60 percent
Fruitland and similar soils: 25 percent
Minor components: 15 percent

Component Descriptions

Benally soils

Geomorphic position: Stream terraces on valley floors
Parent material: Stream alluvium derived from sandstone and shale
Slope: 1 to 5 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Slowest permeability: About $0.20 \mathrm{in} / \mathrm{hr}$ (moderately slow)
Available water capacity: About 8.2 inches (moderate)
Shrink-Swell potential: About 4.5 LEP (moderate)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Medium
Calcium carbonate maximum: About 10 percent
Gypsum maximum: About 1 percent
Salinity maximum: About $4 \mathrm{mmhos} / \mathrm{cm}$ (very slightly saline)
Sodicity maximum: About 30 SAR (strongly sodic)
Ecological site: Loamy Upland (sodic) 5-8" P.z.
Present native vegetation: alkali sacaton, mound saltbush, galleta, Indian ricegrass, blue grama, sand dropseed, shadscale saltbush
Land capability (nonirrigated): 7c
Conservation Tree/Shrub Group: 10
Typical Profile:
$\mathrm{E}-0$ to 2 inches; sandy clay loam Btn-2 to 9 inches; sandy clay loam Btkn-9 to 25 inches; sandy clay loam Bz-25 to 65 inches; sandy clay loam

Fruitland soils

Geomorphic position: Stream terraces on valley floors
Parent material: Eolian material and stream alluvium derived from sandstone
Slope: 1 to 5 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Somewhat excessively drained
Slowest permeability: About $1.98 \mathrm{in} / \mathrm{hr}$ (moderately rapid)
Available water capacity: About 6.5 inches (moderate)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Very low
Calcium carbonate maximum: About 10 percent Gypsum maximum: None
Salinity maximum: About $2 \mathrm{mmhos} / \mathrm{cm}$ (nonsaline)
Sodicity maximum: About 10 SAR (slightly sodic)
Ecological site: Sandy Upland 5-8" P.z.

Present native vegetation: Indian ricegrass, blue grama, galleta, fourwing saltbush, winterfat, bottlebrush squirreltail, sand dropseed, broom snakeweed, rabbitbrush, sandhill muhly
Land capability (nonirrigated): 7c
Conservation Tree/Shrub Group: 5
Typical Profile:
A-0 to 3 inches; loamy fine sand
C1-3 to 10 inches; loamy fine sand
C2-10 to 19 inches; loamy fine sand
Ck1-19 to 29 inches; loamy fine sand
Ck2-29 to 65 inches; fine sandy loam

Minor Components

Huerfano and similar soils
Composition: About 5 percent
Slope: 1 to 5 percent
Depth to restrictive feature: 10 to 20 inches to bedrock (paralithic)
Drainage class: Well drained
Ecological site: Loamy Upland (sodic)
Fajada and similar soils
Composition: About 5 percent
Slope: 1 to 5 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (paralithic)
Drainage class: Well drained Ecological site: Loamy Upland (sodic)

Razito and similar soils
Composition: About 5 percent
Slope: 1 to 8 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Excessively drained
Ecological site: Sandy Upland
Small transverse dunes that formed perpendicular to the prevailing winds. These dunes are generally less than 15 feet wide and 200 feet long.

111-Yelives fine sandy loam, 1 to 3 percent slopes

Map Unit Setting

MLRA: 37
Elevation: 5,400 to 6,100 feet (1,646 to 1,859 meters)
Mean annual precipitation: 7 to 9 inches (178 to 229 millimeters)
Average annual air temperature: 50 to 55 degrees F (10 to 13 degrees C)
Frost-free period: 130 to 150 days

Map Unit Composition

Yelives and similar soils: 85 percent Minor components: 15 percent

Component Descriptions

Yelives soils

Geomorphic position: Alluvial fans on valley sides and flood plains on valley floors
Parent material: Fan and stream alluvium derived from sandstone and shale
Slope: 1 to 3 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Somewhat excessively drained
Slowest permeability: About $0.57 \mathrm{in} / \mathrm{hr}$ (moderate)
Available water capacity: About 7.6 inches (moderate)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: Rare
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Low
Calcium carbonate maximum: About 5 percent
Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 2 SAR (slightly sodic)
Ecological site: Loamy Upland 5-8" P.z.
Present native vegetation: blue grama, western wheatgrass, Indian ricegrass, fourwing saltbush, sand dropseed, needleandthread, spike dropseed, winterfat, galleta, ring muhly, rabbitbrush, sand sagebrush, spineless horsebrush
Land capability (nonirrigated): 7c
Conservation Tree/Shrub Group: 4
Typical Profile:
A-0 to 2 inches; fine sandy loam
Ck1-2 to 12 inches; fine sandy loam
Ck2-12 to 30 inches; loam
C1-30 to 41 inches; loam
C2-41 to 56 inches; loamy fine sand C3-56 to 80 inches; loamy fine sand

Minor Components

Hamburn and similar soils Composition: About 6 percent Slope: 1 to 3 percent Depth to restrictive feature: None within 60 inches Drainage class: Well drained Ecological site: Saline Bottom

Notal and similar soils
Composition: About 5 percent
Slope: 1 to 3 percent
Depth to restrictive feature: None within 60 inches

Drainage class: Well drained
Ecological site: Clay Loam Terrace (sodic)
Benally and similar soils
Composition: About 4 percent
Slope: 1 to 3 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Loamy Upland (sodic)

115-Razito-Shiprock complex, 3 to 8 percent slopes

Map Unit Setting

MLRA: 37
Elevation: 5,800 to 6,800 feet (1,768 to 2,073 meters)
Mean annual precipitation: 7 to 9 inches (178 to 229 millimeters)
Average annual air temperature: 50 to 55 degrees F (10 to 13 degrees C)
Frost-free period: 130 to 150 days

Map Unit Composition

Razito and similar soils: 45 percent
Shiprock and similar soils: 40 percent
Minor components: 15 percent

Component Descriptions

Razito soils

Geomorphic position: Dunes on valley sides, mesas, and cuestas
Parent material: Eolian material derived from sandstone
Slope: 3 to 8 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Excessively drained
Slowest permeability: About $6.00 \mathrm{in} / \mathrm{hr}$ (rapid)
Available water capacity: About 4.1 inches (low)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Negligible
Calcium carbonate maximum: About 5 percent Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 5 SAR (slightly sodic)
Ecological site: Sandy Upland 5-8" P.z.
Present native vegetation: Indian ricegrass, Mormon tea, blue grama, galleta, sand dropseed, sandhill muhly, spike dropseed, broom snakeweed,
fourwing saltbush, giant dropseed, needleandthread, rabbitbrush, winterfat Land capability (nonirrigated): 7c
Conservation Tree/Shrub Group: 7

Typical Profile:

A-0 to 4 inches; loamy sand
C-4 to 34 inches; loamy sand Ck-34 to 65 inches; loamy sand

Shiprock soils

Geomorphic position: Fan remnants on valley sides, summits on mesas, and dipslopes on cuestas
Parent material: Eolian material and fan and slope alluvium derived from sandstone
Slope: 3 to 6 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Somewhat excessively drained
Slowest permeability: About $2.00 \mathrm{in} / \mathrm{hr}$ (moderately rapid)
Available water capacity: About 8.3 inches (moderate)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Very low
Calcium carbonate maximum: About 10 percent
Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 5 SAR (moderately sodic)
Ecological site: Sandy Loam Upland 5-8 P.z.
Present native vegetation: Indian ricegrass, blue grama, galleta, fourwing saltbush, winterfat, bottlebrush squirreltail, sand dropseed, broom snakeweed, rabbitbrush, sandhill muhly
Land capability (nonirrigated): 7c
Conservation Tree/Shrub Group: 3
Typical Profile:
A-0 to 3 inches; fine sandy loam
$\mathrm{Bt}-3$ to 15 inches; fine sandy loam
Bk1-15 to 37 inches; fine sandy loam
Bk2-37 to 60 inches; fine sandy loam

Minor Components

Doak and similar soils
Composition: About 7 percent
Slope: 3 to 8 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Loamy Upland
Benally and similar soils
Composition: About 5 percent

Slope: 3 to 5 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Loamy Upland (sodic)
Farb and similar soils
Composition: About 3 percent
Slope: 3 to 8 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)
Drainage class: Somewhat excessively drained
Ecological site: Sandstone Upland

116-Fajada-Huerfano-Benally complex, 1 to 5 percent slopes

Map Unit Setting

MLRA: 37
Elevation: 5,800 to 6,800 feet (1,768 to 2,073 meters)
Mean annual precipitation: 7 to 9 inches (178 to 229 millimeters)
Average annual air temperature: 50 to 55 degrees F (10 to 13 degrees C)
Frost-free period: 130 to 150 days

Map Unit Composition

Fajada and similar soils: 30 percent
Huerfano and similar soils: 30 percent
Benally and similar soils: 25 percent
Minor components: 15 percent

Component Descriptions

Fajada soils

Geomorphic position: Erosional terraces on dipslopes on cuestas and valley floors (fig. 3)
Parent material: Alluvial material derived from sandstone and shale
Slope: 1 to 5 percent
Surface fragments: About 20 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (paralithic)
Drainage class: Well drained
Slowest permeability: About $0.06 \mathrm{in} / \mathrm{hr}$ (slow)
Available water capacity: About 2.3 inches (very low)
Shrink-swell potential: About 4.5 LEP (moderate)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: High
Calcium carbonate maximum: About 15 percent

Gypsum maximum: About 2 percent
Salinity maximum: About 16 mmhos/cm (moderately saline)
Sodicity maximum: About 40 SAR (strongly sodic)
Ecological site: Loamy Upland (sodic) 5-8" P.z.
Present native vegetation: alkali sacaton, mound saltbush, saltbush, galleta, Indian ricegrass, blue grama, sand dropseed, shadscale saltbush
Land capability (nonirrigated): 7s
Conservation Tree/Shrub Group: 10

Typical Profile:

E-0 to 2 inches; gravelly sandy clay loam Btkn1-2 to 6 inches; clay loam Btkn2-6 to 12 inches; sandy clay loam Btknz-12 to 16 inches; sandy clay loam Bkyz-16 to 28 inches; clay loam 2Cr-28 inches; shale

Huerfano soils

Geomorphic position: Erosional terraces on dipslopes on cuestas and valley floors
Parent material: Alluvial material derived from sandstone and shale
Slope: 1 to 5 percent
Surface fragments: About 10 percent
Depth to restrictive feature: 10 to 20 inches to bedrock (paralithic)
Drainage class: Well drained
Slowest permeability: About $0.06 \mathrm{in} / \mathrm{hr}$ (slow)
Available water capacity: About 1.6 inches (very low)
Shrink-swell potential: About 4.5 LEP (moderate)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: High
Calcium carbonate maximum: About 10 percent
Gypsum maximum: About 2 percent
Salinity maximum: About 16 mmhos/cm (moderately saline)
Sodicity maximum: About 40 SAR (strongly sodic)
Ecological site: Loamy Upland (sodic) 5-8" P.z.
Present native vegetation: alkali sacaton, mound saltbush, galleta, Indian ricegrass, blue grama, sand dropseed, shadscale saltbush
Land capability (nonirrigated): 7s
Conservation Tree/Shrub Group: 10

Typical Profile:
A—0 to 2 inches; loam
Btk-2 to 17 inches; clay loam
Cr-17 inches; shale

Benally soils

Geomorphic position: Stream terraces on valley floors
Parent material: Stream alluvium derived from sandstone and shale
Slope: 1 to 3 percent
Depth to restrictive feature: 40 to 60 inches to bedrock (paralithic)
Drainage class: Well drained
Slowest permeability: About $0.20 \mathrm{in} / \mathrm{hr}$ (moderately slow)
Available water capacity: About 3.6 inches (low)
Shrink-swell potential: About 4.5 LEP (moderate) Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Medium
Calcium carbonate maximum: About 10 percent
Gypsum maximum: About 1 percent
Salinity maximum: About $8 \mathrm{mmhos} / \mathrm{cm}$ (slightly saline)
Sodicity maximum: About 30 SAR (strongly sodic)
Ecological site: Loamy Upland (sodic) 5-8" P.z.
Present native vegetation: alkali sacaton, mound
saltbush, galleta, Indian ricegrass, blue grama,
sand dropseed, shadscale saltbush
Land capability (nonirrigated): 7c
Conservation Tree/Shrub Group: 9N

Typical Profile:
A-0 to 2 inches; sandy clay loam
Btn-2 to 18 inches; sandy clay loam
Btkn-18 to 45 inches; sandy clay loam
$\mathrm{Cr}-45$ inches; shale

Minor Components

Rock outcrop
Composition: About 5 percent
Rock outcrop consists of barren or nearly barren areas of exposed sandstone and shale on ridges, ledges, and escarpments.

Razito and similar soils
Composition: About 5 percent
Slope: 1 to 5 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Excessively drained
Ecological site: Sandy Upland
Farb and similar soils
Composition: About 5 percent
Slope: 1 to 5 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)
Drainage class: Somewhat excessively drained
Ecological site: Sandstone Upland

Figure 3.-Typical landscape of Fajada-Huerfano-Benally complex, 1 to 5 percent slopes. These sodium-affected soils are common on this landscape.

Small transverse dunes that formed perpendicular to the prevailing winds. These dunes are generally less than 15 feet wide and 200 feet long.

118-Farb-Chipeta-Rock outcrop complex, 2 to 30 percent slopes

Map Unit Setting

MLRA: 37
Elevation: 5,800 to 6,800 feet (1,768 to 2,073 meters)
Mean annual precipitation: 7 to 9 inches (178 to 229 millimeters)
Average annual air temperature: 50 to 55 degrees F (10 to 13 degrees C)
Frost-free period: 130 to 150 days
Map Unit Composition
Farb and similar soils: 35 percent
Chipeta and similar soils: 30 percent
Rock outcrop: 25 percent
Minor components: 10 percent

Component Descriptions

Farb soils

Geomorphic position: Summits on hills and ridges and structural benches on escarpments
Parent material: Eolian material over residuum derived from sandstone
Slope: 2 to 15 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)
Drainage class: Somewhat excessively drained
Slowest permeability: About $2.00 \mathrm{in} / \mathrm{hr}$ (moderately rapid)
Available water capacity: About 1.1 inches (very low)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Medium
Calcium carbonate maximum: About 5 percent Gypsum maximum: None
Salinity maximum: About $2 \mathrm{mmhos} / \mathrm{cm}$ (nonsaline)
Sodicity maximum: About 2 SAR (slightly sodic)
Ecological site: Sandstone Upland 5-8" P.z.
Present native vegetation: Indian ricegrass, Bigelow's sagebrush, galleta, New Mexico feathergrass, black grama, blue grama, Mormon tea, fourwing saltbush, sand dropseed, shadscale saltbush, sideoats grama, narrowleaf yucca
Land capability (nonirrigated): 7s
Conservation Tree/Shrub Group: 10

Typical Profile:
A-0 to 2 inches; sandy loam
C-2 to 9 inches; sandy loam
2R-9 inches; sandstone bedrock

Chipeta soils

Geomorphic position: Escarpments on cuestas and mesas
Parent material: Slope alluvium and colluvium over residuum derived from shale
Slope: 5 to 30 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (paralithic)
Drainage class: Well drained
Slowest permeability: About $0.06 \mathrm{in} / \mathrm{hr}$ (slow)
Available water capacity: About 1.7 inches (very low)
Shrink-swell potential: About 4.5 LEP (moderate)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Very high
Calcium carbonate maximum: About 10 percent
Gypsum maximum: About 10 percent
Salinity maximum: About $16 \mathrm{mmhos} / \mathrm{cm}$ (moderately saline)
Sodicity maximum: About 13 SAR (moderately sodic)
Ecological site: Breaks 5-8" P.z.
Present native vegetation: mat saltbush, galleta, Native American pipeweed, bottlebrush squirreltail, bud sagebrush
Land capability (nonirrigated): 7e
Conservation Tree/Shrub Group: 10
Typical Profile:
A-0 to 2 inches; silty clay
Cyz-2 to 12 inches; clay
Cr-12 inches; shale

Rock outcrop

Rock outcrop consists of barren or nearly barren areas of exposed sandstone and shale on ridges, ledges, and escarpments.

Minor Components

Badlands Composition: About 5 percent
Badland is a miscellaneous area consisting of exposed areas of raw shale that is essentially denuded of vegetation. Seams and layers of coal and porcelenite are also included. These areas are highly dissected.

Razito and similar soils Composition: About 5 percent

Slope: 2 to 8 percent
Depth to restrictive feature: None within 60 inches Drainage class: Excessively drained Ecological site: Sandy Upland

120—Doak-Shiprock complex, 1 to 8 percent slopes

Map Unit Setting

MLRA:37
Elevation: 5,800 to 6,800 feet (1,768 to 2,073 meters)
Mean annual precipitation: 7 to 9 inches (178 to 229 millimeters)
Average annual air temperature: 50 to 55 degrees F (10 to 13 degrees C)
Frost-free period: 130 to 150 days
Map Unit Composition
Doak and similar soils: 55 percent
Shiprock and similar soils: 30 percent
Minor components: 15 percent

Component Descriptions

Doak soils

Geomorphic position: Fan remnants on valley sides, dipslopes on cuestas, and summits on mesas
Parent material: Eolian material and fan and slope alluvium derived from sandstone and shale
Slope: 1 to 5 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Slowest permeability: About $0.60 \mathrm{in} / \mathrm{hr}$ (moderate)
Available water capacity: About 8.3 inches (moderate)
Shrink-swell potential: About 4.0 LEP (moderate)

Flooding hazard: None

Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Low
Calcium carbonate maximum: About 10 percent Gypsum maximum: None
Salinity maximum: About $2 \mathrm{mmhos} / \mathrm{cm}$ (nonsaline)
Sodicity maximum: About 5 SAR (slightly sodic)
Ecological site: Loamy Upland 5-8" P.z.
Present native vegetation: galleta, Indian ricegrass, fourwing saltbush, alkali sacaton, black grama, blue grama, bottlebrush squirreltail, rabbitbrush, winterfat, sand dropseed
Land capability (nonirrigated): 7c
Conservation Tree/Shrub Group: 4

Typical Profile:
A-0 to 2 inches; fine sandy loam
Bt-2 to 8 inches; sandy clay loam
Btk-8 to 12 inches; sandy clay loam
Bk1-12 to 40 inches; sandy clay loam
Bk2-40 to 65 inches; sandy loam

Shiprock soils

Geomorphic position: Fan remnants on valley sides, dipslopes on cuestas, and summits on mesas
Parent material: Eolian material and fan and slope alluvium derived from sandstone
Slope: 1 to 8 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Somewhat excessively drained
Slowest permeability: About $2.00 \mathrm{in} / \mathrm{hr}$ (moderately rapid)
Available water capacity: About 8.1 inches (moderate)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Low
Calcium carbonate maximum: About 10 percent Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 5 SAR (moderately sodic)
Ecological site: Sandy Loam Upland 5-8 P.z.
Present native vegetation: Indian ricegrass, blue grama, galleta, fourwing saltbush, winterfat, bottlebrush squirreltail, sand dropseed, broom snakeweed, rabbitbrush, sandhill muhly
Land capability (nonirrigated): 7c
Conservation Tree/Shrub Group: 3

Typical Profile:

A-0 to 4 inches; loamy fine sand Bt-4 to 18 inches; fine sandy loam Bk1-18 to 37 inches; fine sandy loam Bk2-37 to 65 inches; fine sandy loam

Minor Components

Razito and similar soils
Composition: About 5 percent
Slope: 1 to 8 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Excessively drained Ecological site: Sandy Upland

Norkiki and similar soils
Composition: About 4 percent

Slope: 1 to 5 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Sandstone Upland
Huerfano and similar soils
Composition: About 3 percent
Slope: 1 to 5 percent
Depth to restrictive feature: 10 to 20 inches to bedrock (paralithic)
Drainage class: Well drained
Ecological site: Loamy Upland (sodic)
Kimnoli and similar soils
Composition: About 3 percent
Slope: 1 to 5 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Sandstone Upland

121-Badland

Map Unit Composition

Badland: 95 percent
Minor components: 5 percent

Component Descriptions

Badland

Badland is a miscellaneous area consisting of exposed areas of raw shale that is essentially denuded of vegetation. Seams and layers of coal and porcelenite are also included in some areas. These areas are highly dissected.

Geomorphic position: Ridges, hills, and escarpments
Parent material: Unweathered to slightly weathered shale
Slope: 1 to 50 percent
Depth to restrictive feature: 0 to 2 inches to bedrock (paralithic)
Drainage class: Somewhat excessively drained
Available water capacity: About 0.2 inches (very low)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Very high
Calcium carbonate maximum: About 5 percent
Gypsum maximum: About 5 percent
Salinity maximum: About 4 mmhos/cm (very slightly saline)

Sodicity maximum: About 10 SAR (slightly sodic)
Land capability (nonirrigated): 8

Minor Components

Rock outcrop Composition: About 5 percent
Rock outcrop consists of barren or nearly barren areas of exposed sandstone and shale on ridges, ledges, and escarpments.

122—Rock outcrop-Farb complex, 2 to 8 percent slopes

Map Unit Setting

MLRA: 37
Elevation: 6,600 to 6,800 feet (2,012 to 2,073 meters)
Mean annual precipitation: 7 to 9 inches (178 to 229 millimeters)
Average annual air temperature: 50 to 55 degrees F (10 to 13 degrees C)
Frost-free period: 130 to 150 days

Map Unit Composition

Rock outcrop: 45 percent
Farb and similar soils: 45 percent
Minor components: 10 percent

Component Descriptions

Rock outcrop

Rock outcrop consists of barren or nearly barren areas of exposed sandstone and shale on ridges, ledges, and escarpments.

Farb soils

Geomorphic position: Escarpments on cuestas and mesas
Parent material: Eolian material over residuum derived from sandstone
Slope: 2 to 8 percent
Surface fragments: About 55 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)
Drainage class: Somewhat excessively drained
Slowest permeability: About $2.00 \mathrm{in} / \mathrm{hr}$ (moderately rapid)
Available water capacity: About 0.5 inches (very low) Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet

Runoff class: Very high
Calcium carbonate maximum: About 10 percent Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 5 SAR (slightly sodic)
Ecological site: Sandstone Upland 5-8" P.z.
Present native vegetation: Indian ricegrass, Bigelow's sagebrush, galleta, New Mexico feathergrass, black grama, blue grama, fourwing saltbush, Mormon tea, sand dropseed, shadscale saltbush, sideoats grama, narrowleaf yucca
Land capability (nonirrigated): 7s
Conservation Tree/Shrub Group: 10

Typical Profile:

A-0 to 2 inches; very gravelly sandy loam
C-2 to 5 inches; sandy loam
R—5 inches; sandstone bedrock

Minor Components

Chipeta and similar soils
Composition: About 10 percent
Slope: 2 to 8 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (paralithic) Drainage class: Well drained Ecological site: Breaks

125-Sanfeco fine sandy loam, 0 to 2 percent slopes

Map Unit Setting

MLRA: 37
Elevation: 6,400 to 6,800 feet (1,951 to 2,073 meters)
Mean annual precipitation: 7 to 9 inches (178 to 229 millimeters)
Average annual air temperature: 50 to 55 degrees F (10 to 13 degrees C)
Frost-free period: 130 to 150 days

Map Unit Composition

Sanfeco and similar soils: 75 percent
Minor components: 25 percent

Component Descriptions

Sanfeco soils

Geomorphic position: Stream terraces on valley floors
Parent material: Stream alluvium derived from sandstone and shale
Slope: 0 to 2 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained

Slowest permeability: About 0.06 in/hr (slow)
Available water capacity: About 7.7 inches (moderate)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: Rare
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: High
Calcium carbonate maximum: About 15 percent
Gypsum maximum: None
Salinity maximum: About 4 mmhos/cm (very slightly saline)
Sodicity maximum: About 5 SAR (slightly sodic)
Ecological site: Loamy Terrace 5-8" P.z.
Present native vegetation: Indian ricegrass, fourwing saltbush, galleta, alkali sacaton, blue grama, bottlebrush squirreltail, sand dropseed, broom snakeweed, globemallow
Land capability (nonirrigated): 7c
Conservation Tree/Shrub Group: 4K
Typical Profile:
A-0 to 2 inches; fine sandy loam
Bt-2 to 10 inches; clay loam
Btk1-10 to 27 inches; clay Btk2—27 to 35 inches; sandy clay Btk3-35 to 39 inches; sandy clay loam Bk-39 to 65 inches; loamy sand

Minor Components

Notal and similar soils
Composition: About 10 percent
Slope: 0 to 2 percent
Depth to restrictive feature: None within 60 inches Drainage class: Well drained Ecological site: Clay Loam Terrace

Hamburn and similar soils Composition: About 10 percent
Slope: 0 to 2 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Saline Bottom
Doak and similar soils
Composition: About 5 percent
Slope: 1 to 2 percent
Depth to restrictive feature: None within 60 inches Drainage class: Well drained
Ecological site: Loamy Upland

Small transverse dunes that formed perpendicular to the prevailing winds. These dunes are generally less than 15 feet wide and 200 feet long.

130-Chipeta-Badland-Moncisco complex, 2 to 45 percent slopes

Map Unit Setting

MLRA: 37
Elevation: 5,800 to 6,300 feet (1,768 to 1,920 meters)
Mean annual precipitation: 7 to 9 inches (178 to 229 millimeters)
Average annual air temperature: 50 to 55 degrees F (10 to 13 degrees C)
Frost-free period: 130 to 150 days

Map Unit Composition

Chipeta and similar soils: 40 percent Badland and similar soils: 30 percent Moncisco and similar soils: 15 percent Minor components: 15 percent

Component Descriptions

Chipeta soils

Geomorphic position: Sideslopes on ridges and hills
Parent material: Slope alluvium and colluvium over residuum derived from shale
Slope: 5 to 35 percent
Surface fragments: About 45 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (paralithic)
Drainage class: Well drained
Slowest permeability: About $0.06 \mathrm{in} / \mathrm{hr}$ (slow)
Available water capacity: About 1.0 inches (very low)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Very high
Calcium carbonate maximum: About 5 percent
Gypsum maximum: About 5 percent
Salinity maximum: About 4 mmhos/cm (very slightly saline)
Sodicity maximum: About 2 SAR (slightly sodic)
Ecological site: Breaks 5-8" P.z.
Present native vegetation: mat saltbush, galleta, Native American pipeweed, bottlebrush squirreltail, bud sagebrush
Land capability (nonirrigated): 7s
Conservation Tree/Shrub Group: 10

Typical Profile:

A-0 to 3 inches; very gravelly silt loam Cy-3 to 6 inches; clay Cr1-6 to 14 inches; weathered bedrock Cr2-14 inches; shale

Badland

Badland is a miscellaneous area consisting of exposed areas of raw shale that is essentially denuded of vegetation. Seams and layers of coal and porcelenite are also included. These areas are highly dissected.
Geomorphic position: Hills and ridges
Slope: 0 to 50 percent
Depth to restrictive feature: 1 to 2 inches to bedrock (paralithic)
Drainage class: Somewhat excessively drained
Available water capacity: About 0.2 inches (very low)
Shrink-swell potential: About 7.0 LEP (high)
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Very high
Calcium carbonate maximum: About 5 percent
Gypsum maximum: About 5 percent
Salinity maximum: About 4 mmhos/cm (moderately saline)
Sodicity maximum: About 10 SAR (moderately sodic)
Land capability (nonirrigated): 8

Moncisco soils

Geomorphic position: Summits of ridges and hills
Parent material: Eolian material from sandstone over residuum derived from porcelanite
Slope: 2 to 45 percent
Surface fragments: About 70 percent
Depth to restrictive feature: 10 to 20 inches to abrupt textural change
Drainage class: Excessively drained
Slowest permeability: About $0.57 \mathrm{in} / \mathrm{hr}$ (moderate)
Available water capacity: About 0.5 inches (very low)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: High
Calcium carbonate maximum: About 20 percent
Gypsum maximum: About 1 percent
Salinity maximum: About $8 \mathrm{mmhos} / \mathrm{cm}$ (slightly saline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Porcelanite Hills 5-8" P.z.
Present native vegetation: alkali sacaton, shadscale saltbush, galleta, Indian ricegrass, bottlebrush squirreltail, mound saltbush
Land capability (nonirrigated): 7s
Conservation Tree/Shrub Group: 10

Typical Profile:

A-0 to 3 inches; extremely channery sandy clay loam Bk-3 to 13 inches; extremely channery sandy loam

Bcky-13 to 27 inches; fragmental material
C1-27 to 39 inches; fragmental material
C2-39 to 59 inches; fragmental material

Minor Components

Farb and similar soils
Composition: About 10 percent
Slope: 2 to 15 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)
Drainage class: Somewhat excessively drained
Ecological site: Sandstone Upland
Fajada and similar soils
Composition: About 4 percent
Slope: 2 to 5 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (paralithic)
Drainage class: Well drained
Ecological site: Loamy Upland (sodic)

150-Riverwash-Escawetter association, 0 to 1 percent slopes

Map Unit Setting
MLRA: 36
Elevation: 6,100 to 6,900 feet (1,859 to 1,981 meters)
Mean annual precipitation: 10 to 13 inches (254 to 330 millimeters)
Average annual air temperature: 46 to 49 degrees F (8 to 9 degrees C)
Frost-free period: 100 to 135 days

Map Unit Composition

Riverwash: 65 percent
Escawetter and similar soils: 25 percent
Minor components: 10 percent

Component Descriptions

Riverwash

Riverwash consists of unstable sand and silt that is reworked by water and wind so frequently that it supports little or no vegetation. Riverwash occurs in stream channels and is subject to frequent, brief periods of flooding from high intensity storms, July to September.

Geomorphic position: Stream channels
Parent material: Alluvium from mixed sources Slope: 0 to 1 percent
Depth to restrictive feature: None within 60 inches

Drainage class: Moderately well drained
Slowest permeability: About $20.00 \mathrm{in} / \mathrm{hr}$ (very rapid)
Available water capacity: About 1.2 inches (very low)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: Frequent
Seasonal water table minimum depth: about 40 inches
Runoff class: Very high
Calcium carbonate maximum: None
Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 2 SAR (slightly sodic)
Land capability (nonirrigated): 8
Typical Profile:
C1-0 to 10 inches; extremely stony sand C2-10 to 80 inches; stratified coarse sand

Escawetter soils

Geomorphic position: Flood plains on valley floors
Parent material: Stream alluvium derived from sandstone and shale
Slope: 0 to 1 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Moderately well drained
Slowest permeability: About $5.95 \mathrm{in} / \mathrm{hr}$ (rapid)
Available water capacity: About 4.2 inches (low)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: Frequent
Seasonal water table minimum depth: About 40 inches
Runoff class: Negligible
Calcium carbonate maximum: About 2 percent
Gypsum maximum: None
Salinity maximum: About 4 mmhos/cm (very slightly saline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Sandy Bottomland (subirrigated)
Present native vegetation: alkali sacaton, inland saltgrass, Indian ricegrass, saltcedar, sand dropseed, western wheatgrass, Russian olive, bottlebrush squirreltail
Land capability (nonirrigated): 7c
Conservation Tree/Shrub Group: 7
Typical Profile:
AC-0 to 2 inches; loamy fine sand
C1-2 to 8 inches; stratified loamy fine sand
C2-8 to 25 inches; fine sand
C3-25 to 32 inches; stratified silt loam
C4-32 to 48 inches; fine sand C5-48 to 65 inches; fine sand

Minor Components

Escavada and similar soils
Composition: About 10 percent

Slope: 0 to 1 percent
Depth to restrictive feature: None within 60 inches Drainage class: Well drained Ecological site: Sandy Bottomland

160—Escawetter-Riverwash-Razito association, 0 to 5 percent slopes

Map Unit Setting

MLRA: 37
Elevation: 5,500 to 5,800 feet (1,676 to 1,768 meters)
Mean annual precipitation: 7 to 9 inches (178 to 229 millimeters)
Average annual air temperature: 50 to 55 degrees F (10 to 13 degrees C)
Frost-free period: 130 to 150 days

Map Unit Composition

Escawetter and similar soils: 40 percent
Riverwash: 35 percent
Razito and similar soils: 15 percent
Minor components: 10 percent

Component Descriptions

Escawetter soils

Geomorphic position: Flood plains on valley floors
Parent material: Stream alluvium derived from sandstone and shale
Slope: 0 to 1 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Moderately well drained
Slowest permeability: About $5.95 \mathrm{in} / \mathrm{hr}$ (rapid)
Available water capacity: About 3.6 inches (low)
Shrink-swell potential: About 1.0 LEP (low)
Flooding hazard: Frequent
Seasonal water table minimum depth: About 40 inches
Runoff class: Negligible
Calcium carbonate maximum: About 5 percent
Gypsum maximum: About 1 percent
Salinity maximum: About 4 mmhos/cm (very slightly saline)
Sodicity maximum: About 5 SAR (slightly sodic)
Ecological site: Sandy Bottom (subirrigated) 5-8" P.z.
Present native vegetation: alkali sacaton, inland saltgrass, Indian ricegrass, saltcedar, sand dropseed, western wheatgrass, Russian olive, bottlebrush squirreltail
Land capability (nonirrigated): 7c
Conservation Tree/Shrub Group: 7
Typical Profile:
C1-0 to 1 inches; fine sand

C2—1 to 7 inches; fine sand
C3-7 to 16 inches; stratified very fine sand and silt
C4-16 to 22 inches; stratified very fine sand and silt
C5-22 to 52 inches; fine sand
C6—52 to 70 inches; coarse sand

Riverwash

Riverwash consists of unstable sand and silt that is reworked by water and wind so frequently that it supports little or no vegetation. Riverwash occurs in stream channels and is subject to frequent, brief periods of flooding from high intensity storms, July to September.

Geomorphic position: Flood plains on valley floors
Parent material: Alluvium from mixed sources
Slope: 0 to 1 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Moderately well drained
Slowest permeability: About $5.95 \mathrm{in} / \mathrm{hr}$ (rapid)
Available water capacity: About 2.4 inches (very low)
Shrink-swell potential: About 0.0 LEP (low)
Flooding hazard: Very Frequent
Seasonal water table minimum depth: About 40 inches Runoff class: Very high
Calcium carbonate maximum: About 5 percent Gypsum maximum: About 1 percent
Salinity maximum: About 4 mmhos/cm (very slightly saline)
Sodicity maximum: About 5 SAR (slightly sodic)
Land capability (nonirrigated): 8

Razito soils

Geomorphic position: Dunes on valley floors
Parent material: Eolian material derived from sandstone
Slope: 1 to 5 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Excessively drained
Slowest permeability: About $5.95 \mathrm{in} / \mathrm{hr}$ (rapid)
Available water capacity: About 3.5 inches (low)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Very low
Calcium carbonate maximum: About 1 percent
Gypsum maximum: About 1 percent
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 2 SAR (slightly sodic)
Ecological site: Sandy Upland 5-8" P.z.
Present native vegetation: Indian ricegrass, Mormon
tea, blue grama, galleta, sand dropseed, sandhill muhly, spike dropseed, broom snakeweed, fourwing saltbush, giant dropseed, needleandthread, rabbitbrush, winterfat Land capability (nonirrigated): 7c
Conservation Tree/Shrub Group: 7
Typical Profile:
AC-0 to 1 inches; fine sand
C-1 to 70 inches; stratified fine sand

Minor Components

Escavada and similar soils

Composition: About 10 percent
Slope: 0 to 1 percent
Depth to restrictive feature: None within 60 inches Drainage class: Well drained Ecological site: Sandy Bottomland

205-Penistaja-Tintero complex, 1 to 10 percent slopes

Map Unit Setting
MLRA: 36
Elevation: 6,200 to 7,100 feet (1,890 to 2,164 meters)
Mean annual precipitation: 10 to 13 inches (254 to 330 millimeters)
Average annual air temperature: 49 to 53 degrees F (9 to 12 degrees C)
Frost-free period: 120 to 140 days

Map Unit Composition
Penistaja and similar soils: 45 percent
Tintero and similar soils: 40 percent
Minor components: 15 percent

Component Descriptions

Penistaja soils

Geomorphic position: Fan remnants on valley sides, dipslopes on cuestas, and summits on mesas
Parent material: Eolian material and fan and slope alluvium derived from sandstone and shale
Slope: 1 to 5 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Slowest permeability: About $0.60 \mathrm{in} / \mathrm{hr}$ (moderate)
Available water capacity: About 8.4 inches (moderate)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet

Runoff class: Low
Calcium carbonate maximum: About 10 percent
Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Loamy
Present native vegetation: blue grama, western wheatgrass, Indian ricegrass, galleta, bottlebrush squirreltail, fourwing saltbush, winterfat, sand dropseed, oneseed juniper, spineless horsebrush, rabbitbrush
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 4
Typical Profile:
A-0 to 3 inches; sandy loam
Bt-3 to 19 inches; sandy clay loam
Bk—19 to 65 inches; sandy loam

Tintero soils

Geomorphic position: Fan remnants on valley sides, dipslopes on cuestas, and summits on mesas
Parent material: Eolian material and fan and slope alluvium derived from sandstone
Slope: 1 to 10 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Somewhat excessively drained
Slowest permeability: About $2.00 \mathrm{in} / \mathrm{hr}$ (moderately rapid)
Available water capacity: About 7.8 inches (moderate)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Low
Calcium carbonate maximum: About 10 percent
Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 1 SAR (slightly sodic)
Ecological site: Sandy
Present native vegetation: blue grama, western wheatgrass, Indian ricegrass, fourwing saltbush, sand dropseed, spike dropseed, winterfat, galleta, ring muhly, oneseed juniper, rabbitbrush, sand sagebrush, spineless horsebrush
Land capability (nonirrigated): 7e
Conservation Tree/Shrub Group: 3

Typical Profile:

A-0 to 4 inches; fine sandy loam Bt-4 to 16 inches; fine sandy loam Bk1-16 to 48 inches; fine sandy loam Bk2—48 to 65 inches; loamy fine sand

Minor Components

Hagerwest and similar soils
Composition: About 5 percent
Slope: 1 to 5 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Loamy
Bond and similar soils
Composition: About 5 percent
Slope: 1 to 5 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Shallow Sandstone
Sparank and similar soils
Composition: About 5 percent
Slope: 0 to 5 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained Ecological site: Clayey Bottomland

208-Marianolake fine sandy loam, 1 to 8 percent slopes

Map Unit Setting

MLRA: 36
Elevation: 6,200 to 7,300 feet (1,890 to 2,225 meters)
Mean annual precipitation: 10 to 13 inches (254 to 330 millimeters)
Average annual air temperature: 49 to 54 degrees F (9 to 12 degrees C)
Frost-free period: 120 to 140 days
Map Unit Composition
Marianolake and similar soils: 85 percent
Minor components: 15 percent

Component Descriptions

Marianolake soils

Geomorphic position: Drainageways and fan remnants on valley sides
Parent material: Fan and slope alluvium derived from sandstone and shale
Slope: 1 to 8 percent
Depth to restrictive feature: None within 60 inches Drainage class: Well drained

Slowest permeability: About $0.20 \mathrm{in} / \mathrm{hr}$ (moderately slow)
Available water capacity: About 8.0 inches (moderate)
Shrink-swell potential: About 2.0 LEP (low)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Medium
Calcium carbonate maximum: About 5 percent
Gypsum maximum: About 1 percent
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 1 SAR (slightly sodic)
Ecological site: Loamy
Present native vegetation: blue grama, western wheatgrass, Indian ricegrass, galleta, bottlebrush squirreltail, fourwing saltbush, winterfat, sand dropseed, oneseed juniper, spineless horsebrush, rabbitbrush
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 4
Typical Profile:
A-0 to 2 inches; fine sandy loam
Bt1-2 to 8 inches; loam
Bt2-8 to 14 inches; clay loam Bt3-14 to 24 inches; fine sandy loam Bk-24 to 39 inches; fine sandy loam C-39 to 70 inches; loamy sand

Minor Components

Zia and similar soils
Composition: About 10 percent
Slope: 1 to 8 percent
Depth to restrictive feature: None within 60 inches Drainage class: Somewhat excessively drained Ecological site: Sandy

Nahodish and similar soils
Composition: About 5 percent
Slope: 1 to 3 percent
Depth to restrictive feature: None within 60 inches Drainage class: Well drained
Ecological site: Salty Bottomland

210-Marianolake-Skyvillage complex, 1 to 8 percent slopes

Map Unit Setting

MLRA: 36
Elevation: 6,400 to 7,000 feet (1,951 to 2,134 meters)
Mean annual precipitation: 10 to 13 inches (254 to 330 millimeters)

Average annual air temperature: 49 to 54 degrees F (9
to 12 degrees C)
Frost-free period: 120 to 140 days
Map Unit Composition
Marianolake and similar soils: 50 percent
Skyvillage and similar soils: 30 percent
Minor components: 20 percent

Component Descriptions

Marianolake soils

Geomorphic position: Fan remnants on valley sides, summits on mesas, and dipslopes on cuestas
Parent material: Fan and slope alluvium derived from sandstone and shale
Slope: 1 to 8 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Slowest permeability: About $0.20 \mathrm{in} / \mathrm{hr}$ (moderately slow)
Available water capacity: About 10.5 inches (high)
Shrink-swell potential: About 4.5 LEP (moderate)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Medium
Calcium carbonate maximum: About 10 percent Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Loamy
Present native vegetation: blue grama, western wheatgrass, Indian ricegrass, galleta, bottlebrush squirreltail, fourwing saltbush, needleandthread, winterfat, sand dropseed, spineless horsebrush, oneseed juniper, rabbitbrush
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 4

Typical Profile:

A-0 to 5 inches; fine sandy loam
Bt-5 to 11 inches; sandy clay loam
Btk-11 to 47 inches; clay loam
$B k-47$ to 65 inches; fine sandy loam

Skyvillage soils

Geomorphic position: Structural benches and summits on mesas, hills and ridges and dipslopes on cuestas
Parent material: Eolian material and slope alluvium derived from sandstone
Slope: 1 to 6 percent

Surface fragments: About 20 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)
Drainage class: Well drained
Slowest permeability: About $0.60 \mathrm{in} / \mathrm{hr}$ (moderate)
Available water capacity: About 2.0 inches (very low)
Shrink-swell potential: About 4.0 LEP (moderate)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Medium
Calcium carbonate maximum: About 10 percent Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (slightly sodic)
Ecological site: Shallow Sandstone
Present native vegetation: Bigelow's sagebrush, blue grama, fourwing saltbush, galleta, Indian ricegrass, New Mexico feathergrass, little bluestem, shadscale saltbush, sideoats grama, winterfat, cliffrose, Mormon tea, oneseed juniper, twoneedle pinyon
Land capability (nonirrigated): 7s
Conservation Tree/Shrub Group: 10
Typical Profile:
A-0 to 2 inches; channery sandy loam
Bw1-2 to 5 inches; sandy loam Bw2-5 to 9 inches; sandy clay loam Bk-9 to 15 inches; sandy clay loam 2R-15 inches sandstone bedrock

Minor Components

Hagerwest and similar soils Composition: About 10 percent
Slope: 1 to 6 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Loamy
Rock outcrop
Composition: About 5 percent
Rock outcrop consists of barren or nearly barren areas of exposed sandstone and shale on ridges, ledges, and escarpments.

Hospah and similar soils
Composition: About 5 percent
Slope: 2 to 8 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (paralithic)
Drainage class: Well drained
Ecological site: Shale Hills

212—Rehobeth silty clay loam, 0 to 1 percent slopes

Map Unit Setting

MLRA: 36
Elevation: 6,600 to 6,800 feet (2,012 to 2,073 meters)
Mean annual precipitation: 10 to 13 inches (254 to 330 millimeters)
Average annual air temperature: 46 to 49 degrees F (8 to 9 degrees C)
Frost-free period: 100 to 135 days

Map Unit Composition

Rehobeth and similar soils: 90 percent
Minor components: 10 percent
Urban land
In the City of Gallup, components of this map unit are covered by buildings, parking lots, roads, and sidewalks. The percentage of Urban land ranges from less than 10 percent on the city's periphery to 60 percent in densely developed residential sections. There are also many areas that have been cut and filled with a variety of earthen materials or man-made soils.

Component Descriptions

Rehobeth soils

Geomorphic position: Flood plains and stream terraces on valley floors
Parent material: Stream alluvium derived from gypsiferous shale
Slope: 0 to 1 percent
Depth to restrictive feature: None within 60 inches Drainage class: Well drained
Slowest permeability: About $0.06 \mathrm{in} / \mathrm{hr}$ (slow)
Available water capacity: About 8.5 inches (moderate)
Shrink-swell potential: About 7.5 LEP (high)
Flooding hazard: Occasional
Ponding hazard: Occasional
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Low
Calcium carbonate maximum: About 5 percent
Gypsum maximum: About 15 percent
Salinity maximum: About 8 mmhos/cm (slightly saline)
Sodicity maximum: About 13 SAR (moderately sodic)
Ecological site: Salty Bottomland
Present native vegetation: alkali sacaton, western wheatgrass, fourwing saltbush, black greasewood, blue grama, bottlebrush squirreltail, inland saltgrass, mat muhly, rabbitbrush

Land capability (nonirrigated): 6c Conservation Tree/Shrub Group: 10

Typical Profile:

A-0 to 2 inches; silty clay loam
Bw-2 to 5 inches; silty clay loam
Bss-5 to 12 inches; clay
Bssny1-12 to 18 inches; clay
Bssny2-18 to 32 inches; clay
Bssny3-32 to 80 inches; clay

Minor Components

Nuffel and similar soils
Composition: About 4 percent
Slope: 0 to 1 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Bottomland
Aquima and similar soils
Composition: About 3 percent
Slope: 0 to 1 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Loamy
Zia and similar soils
Composition: About 3 percent
Slope: 0 to 1 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Somewhat excessively drained
Ecological site: Sandy

215—Viuda-Penistaja-Rock outcrop complex, 1 to 5 percent slopes

Map Unit Setting

MLRA: 36
Elevation: 6,700 to 7,000 feet (2,042 to 2,134 meters)
Mean annual precipitation: 10 to 13 inches (254 to 330 millimeters)
Average annual air temperature: 49 to 54 degrees F (9 to 12 degrees C$)$
Frost-free period: 120 to 140 days

Map Unit Composition

Viuda and similar soils: 35 percent
Penistaja and similar soils: 30 percent
Rock outcrop: 25 percent
Minor components: 10 percent

Component Descriptions

Viuda soils

Geomorphic position: Lava flows
Parent material: Eolian material and slope alluvium derived from sandstone and basalt
Slope: 1 to 5 percent
Surface fragments: About 40 percent
Depth to restrictive feature: 10 to 20 inches to bedrock (lithic)
Drainage class: Well drained
Slowest permeability: About 0.06 in/hr (slow)
Available water capacity: About 2.5 inches (very low)
Shrink-swell potential: About 7.5 LEP (high)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: High
Calcium carbonate maximum: About 10 percent
Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 2 SAR (slightly sodic)
Ecological site: Malpais
Present native vegetation: blue grama, galleta, alkali sacaton, hairy grama, sideoats grama, black grama, common wolfstail, fourwing saltbush, little bluestem, spike muhly
Land capability (nonirrigated): 7s
Conservation Tree/Shrub Group: 10

Typical Profile:

A-0 to 3 inches; very cobbly fine sandy loam
Bt-3 to 15 inches; clay
Bk-15 to 17 inches; cobbly clay loam
2R-17 inches; basalt bedrock

Penistaja soils

Geomorphic position: Drainageways on lava flows
Parent material: Eolian and fan alluvium derived from sandstone and shale
Slope: 1 to 5 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Slowest permeability: About $0.60 \mathrm{in} / \mathrm{hr}$ (moderate)
Available water capacity: About 8.4 inches (moderate)
Shrink-swell potential: About 4.0 LEP (moderate)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Low
Calcium carbonate maximum: About 10 percent Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)

Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Loamy
Present native vegetation: blue grama, western wheatgrass, Indian ricegrass, galleta, bottlebrush squirreltail, fourwing saltbush, needleandthread, winterfat, sand dropseed, spineless horsebrush, rabbitbrush
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 4

Typical Profile:

A-0 to 2 inches; sandy loam
Bt-2 to 22 inches; sandy clay loam
Bk-22 to 65 inches; sandy clay loam

Rock outcrop

Rock outcrop consists of barren or nearly barren areas of exposed sandstone and shale on ridges, ledges, and escarpments.

Minor Components

Bond and similar soils
Composition: About 5 percent
Slope: 1 to 5 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Shallow Sandstone
Hagerwest and similar soils
Composition: About 5 percent
Slope: 1 to 5 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Loamy

220-Hagerwest-Bond fine sandy loams, 1 to 8 percent slopes

Map Unit Setting

MLRA: 36

Elevation: 6,500 to 7,200 feet (1,981 to 2,195 meters)
Mean annual precipitation: 10 to 13 inches (254 to 330 millimeters)
Average annual air temperature: 49 to 54 degrees F (9 to 12 degrees C)
Frost-free period: 120 to 140 days

Map Unit Composition

Hagerwest and similar soils: 50 percent
Bond and similar soils: 35 percent

Minor components: 15 percent

Component Descriptions

Hagerwest soils

Geomorphic position: Summits on hills and mesas and dipslopes on cuestas
Parent material: Eolian material and slope alluvium derived from sandstone and shale
Slope: 1 to 5 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Drainage class: Well drained
Slowest permeability: About $0.60 \mathrm{in} / \mathrm{hr}$ (moderate)
Available water capacity: About 4.8 inches (low)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Medium
Calcium carbonate maximum: About 10 percent
Gypsum maximum: None
Salinity maximum: About $2 \mathrm{mmhos} / \mathrm{cm}$ (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Loamy
Present native vegetation: blue grama, western wheatgrass, Indian ricegrass, galleta, bottlebrush squirreltail, fourwing saltbush, winterfat, sand dropseed, oneseed juniper, spineless horsebrush, rabbitbrush
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 6D

Typical Profile:

A-0 to 2 inches; fine sandy loam
Bt-2 to 13 inches; sandy clay loam
Bk1-13 to 19 inches; sandy clay loam Bk2-19 to 35 inches; sandy loam 2R-35 inches; sandstone bedrock

Bond soils

Geomorphic position: Summits on hills and mesas and dipslopes on cuestas
Parent material: Eolian material and slope alluvium derived from sandstone
Slope: 1 to 8 percent
Depth to restrictive feature: 10 to 20 inches to bedrock (lithic)
Drainage class: Well drained
Slowest permeability: About 0.60 in/hr (moderate)
Available water capacity: About 2.0 inches (very low)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: None

Seasonal water table minimum depth: Greater than 6 feet
Runoff class: High
Calcium carbonate maximum: About 5 percent
Gypsum maximum: None
Salinity maximum: About $2 \mathrm{mmhos} / \mathrm{cm}$ (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Shallow Sandstone
Present native vegetation: Bigelow's sagebrush, blue grama, fourwing saltbush, Indian ricegrass, New Mexico feathergrass, galleta, little bluestem, sideoats grama, winterfat, cliffrose, Mormon tea, oneseed juniper, twoneedle pinyon
Land capability (nonirrigated): 7s
Conservation Tree/Shrub Group: 10

Typical Profile:

A-0 to 2 inches; fine sandy loam Bt1-2 to 5 inches; fine sandy loam
Bt2-5 to 14 inches; sandy clay loam
2R-14 inches sandstone bedrock

Minor Components

Rock outcrop Composition: About 5 percent Rock outcrop consists of barren or nearly barren areas of exposed sandstone and shale on ridges, ledges, and escarpments.
Tintero and similar soils Composition: About 5 percent Slope: 1 to 8 percent Depth to restrictive feature: None within 60 inches Drainage class: Somewhat excessively drained Ecological site: Sandy
Penistaja and similar soils
Composition: About 5 percent
Slope: 1 to 8 percent
Depth to restrictive feature: None within 60 inches Drainage class: Well drained Ecological site: Loamy

225-Aquima-Hawaikuh silt loams, 1 to 5 percent slopes

Map Unit Setting

MLRA: 36
Elevation: 6,000 to 6,800 feet (1,829 to 2,073 meters)
Mean annual precipitation: 10 to 13 inches (254 to 330 millimeters)
Average annual air temperature: 49 to 54 degrees F (9 to 12 degrees C)
Frost-free period: 120 to 140 days

Map Unit Composition

Aquima and similar soils: 40 percent Hawaikuh and similar soils: 40 percent Minor components: 20 percent

Component Descriptions

Aquima soils

Geomorphic position: Stream terraces on valley floors and alluvial fans on valley sides
Parent material: Fan and stream alluvium derived from siltstone, sandstone and shale
Slope: 1 to 5 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Slowest permeability: About $0.20 \mathrm{in} / \mathrm{hr}$ (moderately slow)
Available water capacity: About 10.7 inches (high)
Shrink-swell potential: About 4.5 LEP (moderate)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Low
Calcium carbonate maximum: About 10 percent Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 10 SAR (slightly sodic)
Ecological site: Loamy
Present native vegetation: blue grama, western wheatgrass, Indian ricegrass, galleta, bottlebrush squirreltail, fourwing saltbush, needleandthread, winterfat, sand dropseed, rabbitbrush, broom snakeweed (fig. 4)
Land capability (irrigated): 3e
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 8

Typical Profile:

A—0 to 2 inches; silt loam
Bk1-2 to 11 inches; silt loam
Bk2-11 to 17 inches; sandy clay loam
2Bk3-17 to 45 inches; silt loam
3Bk4-45 to 49 inches; sandy clay loam
3Bk5-49 to 65 inches; gravelly clay loam

Hawaikuh soils

Geomorphic position: Fan remnants on valley sides and stream terraces on valley floors
Parent material: Fan and stream alluvium derived from sandstone and shale
Slope: 1 to 5 percent
Depth to restrictive feature: None within 60 inches Drainage class: Well drained

Slowest permeability: About $0.20 \mathrm{in} / \mathrm{hr}$ (moderately slow)
Available water capacity: About 10.1 inches (high)
Shrink-swell potential: About 4.5 LEP (moderate)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Medium
Calcium carbonate maximum: About 10 percent
Gypsum maximum: None
Salinity maximum: About 4 mmhos/cm (very slightly saline)
Sodicity maximum: About 2 SAR (slightly sodic)
Ecological site: Clayey
Present native vegetation: alkali sacaton, western wheatgrass, galleta, Indian ricegrass, blue grama, bottlebrush squirreltail, broom snakeweed, fourwing saltbush, threeawn, winterfat, mat muhly, spike muhly
Land capability (irrigated): 3e
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 4

Typical Profile:

A—0 to 3 inches; silt loam
Btk1-3 to 12 inches; silty clay loam
Btk2—12 to 29 inches; clay loam
Bk1-29 to 39 inches; sandy clay loam
Bk2-39 to 54 inches; sandy loam
Bk3-54 to 65 inches; silty clay loam

Minor Components

Venadito and similar soils
Composition: About 10 percent
Slope: 0 to 1 percent
Depth to restrictive feature: None within 60 inches Drainage class: Well drained
Ecological site: Clayey Bottomland

Tintero and similar soils
Composition: About 6 percent
Slope: 1 to 5 percent
Depth to restrictive feature: None within 60 inches Drainage class: Somewhat excessively drained Ecological site: Sandy

Mido and similar soils
Composition: About 4 percent
Slope: 1 to 5 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Excessively drained
Ecological site: Deep Sand

Figure 4.-Typical landscape of Aquima-Hawaikuh silt loams, 1 to 5 percent slopes. Fourwing saltbush and galleta grass dominate this unit.

230-Sparank-San Mateo-Zia complex, 0 to 3 percent slopes

Map Unit Setting

MLRA: 36
Elevation: 6,300 to 6,900 feet (1,920 to 2,090 meters)
Mean annual precipitation: 10 to 13 inches (254 to 330 millimeters)
Average annual air temperature: 49 to 54 degrees F (9 to 12 degrees C)
Frost-free period: 120 to 140 days
Map Unit Composition
Sparank and similar soils: 40 percent San Mateo and similar soils: 35 percent Zia and similar soils: 20 percent Minor components: 5 percent

Component Descriptions

Sparank soils

Geomorphic position: Flood plains on valley floors and alluvial fans on valley sides

Parent material: Fan and stream alluvium derived from sandstone and shale
Slope: 0 to 3 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Slowest permeability: About 0.03 in/hr (very slow)
Available water capacity: About 10.0 inches (high)
Shrink-swell potential: About 7.5 LEP (high)
Flooding hazard: Occasional
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: High
Calcium carbonate maximum: About 5 percent
Gypsum maximum: None
Salinity maximum: About 4 mmhos/cm (very slightly saline)
Sodicity maximum: About 5 SAR (slightly sodic)
Ecological site: Clayey Bottomland
Present native vegetation: western wheatgrass, alkali sacaton, fourwing saltbush, galleta, blue grama, spike muhly, mat muhly, broom snakeweed, rabbitbrush
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 4CC

Typical Profile:
A-0 to 2 inches; silty clay loam
C1-2 to 25 inches; clay
C2-25 to 65 inches; clay

San Mateo soils

Geomorphic position: Flood plains on valley floors and alluvial fans on valley sides
Parent material: Fan and stream alluvium derived from sandstone and shale
Slope: 0 to 3 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Slowest permeability: About $0.20 \mathrm{in} / \mathrm{hr}$ (moderately slow)
Available water capacity: About 10.6 inches (high)
Shrink-swell potential: About 4.5 LEP (moderate)
Flooding hazard: Occasional
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Medium
Calcium carbonate maximum: About 5 percent
Gypsum maximum: None
Salinity maximum: About 4 mmhos/cm (very slightly saline)
Sodicity maximum: About 5 SAR (slightly sodic)
Ecological site: Bottomland
Present native vegetation: alkali sacaton, western wheatgrass, fourwing saltbush, blue grama, galleta, spike muhly, mat muhly, sand dropseed, spineless horsebrush
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 4
Typical Profile:
A-0 to 2 inches; clay loam
C1-2 to 15 inches; clay loam
C2-15 to 30 inches; sandy clay loam
C3-30 to 39 inches; clay loam
C4-39 to 45 inches; sandy loam
C5-45 to 65 inches; clay loam

Zia soils

Geomorphic position: Stream terraces on valley floors and alluvial fans on valley sides
Parent material: Eolian material and fan and stream alluvium derived from sandstone
Slope: 1 to 3 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Somewhat excessively drained
Slowest permeability: About $2.00 \mathrm{in} / \mathrm{hr}$ (moderately rapid)
Available water capacity: About 8.0 inches (moderate)

Shrink-swell potential: About 1.5 LEP (low)

Flooding hazard: Rare
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Very low
Calcium carbonate maximum: About 5 percent
Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 2 SAR (slightly sodic)
Ecological site: Sandy
Present native vegetation: blue grama, western wheatgrass, Indian ricegrass, fourwing saltbush, sand dropseed, needleandthread, spike dropseed, winterfat, galleta, ring muhly, rabbitbrush, sand sagebrush, spineless horsebrush
Land capability (irrigated): 4e
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 3
Typical Profile:
A-0 to 3 inches; fine sandy loam
Bw-3 to 12 inches; fine sandy loam
2C1-12 to 20 inches; fine sandy loam
2C2-20 to 28 inches; sandy loam
2C3-28 to 70 inches; fine sandy loam

Minor Components

Querencia and similar soils
Composition: About 3 percent
Slope: 1 to 3 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Loamy
Penistaja and similar soils
Composition: About 2 percent
Slope: 1 to 3 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Loamy

235-Notal-Hamburn complex, 0 to 2 percent slopes

Map Unit Setting

MLRA: 37
Elevation: 5,600 to 6,000 feet (1,707 to 1,829 meters)
Mean annual precipitation: 7 to 9 inches (178 to 229 millimeters)
Average annual air temperature: 50 to 55 degrees F (10
to 13 degrees C)
Frost-free period: 130 to 150 days

Map Unit Composition

Notal and similar soils: 45 percent Hamburn and similar soils: 40 percent Minor components: 15 percent

Component Descriptions

Notal soils

Geomorphic position: Stream terraces on valley floors (fig. 5)
Parent material: Stream alluvium derived from sandstone and shale
Slope: 0 to 2 percent
Depth to restrictive feature: None within 60 inches Drainage class: Well drained
Slowest permeability: About $0.01 \mathrm{in} / \mathrm{hr}$ (very slow)
Available water capacity: About 9.1 inches (high)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: Rare
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: High
Calcium carbonate maximum: About 5 percent
Gypsum maximum: About 1 percent

Salinity maximum: About 16 mmhos/cm (moderately saline)
Sodicity maximum: About 30 SAR (strongly sodic)
Ecological site: Clay Loam Terrace (sodic) 5-8" P.z.
Present native vegetation: alkali sacaton, mound saltbush, galleta, greasewood
Land capability (nonirrigated): 7c
Conservation Tree/Shrub Group: 10
Typical Profile:
A-0 to 1 inches; loam C-1 to 3 inches; clay loam Cn1-3 to 13 inches; sandy clay loam Cn2-13 to 27 inches; clay loam Cnkz1-27 to 44 inches; silty clay Cnkz2-44 to 65 inches; sandy clay loam

Hamburn soils

Geomorphic position: Flood plains on valley floors
Parent material: Stream alluvium derived from sandstone and shale
Slope: 0 to 2 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained

Figure 5.-Typical landscape of Notal-Hamburn complex, 0 to 2 percent slopes. These soils can produce an abundance of alkali sacaton.

Slowest permeability: About $0.20 \mathrm{in} / \mathrm{hr}$ (moderately slow)
Available water capacity: About 9.6 inches (high)
Shrink-swell potential: About 5.0 LEP (moderate)
Flooding hazard: Occasional
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Medium
Calcium carbonate maximum: About 5 percent
Gypsum maximum: About 1 percent
Salinity maximum: About 4 mmhos/cm (very slightly saline)
Sodicity maximum: About 5 SAR (slightly sodic)
Ecological site: Saline Bottom 5-8" P.z.
Present native vegetation: alkali sacaton, galleta, Indian ricegrass, mound saltbush, western wheatgrass, perennial forbs, black greasewood, fourwing saltbush
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 10
Typical Profile:
AC-0 to 3 inches; clay loam
C1-3 to 8 inches; stratified clay loam
C2-8 to 29 inches; sandy clay loam
Cky1-29 to 52 inches; sandy clay loam
Cky2-52 to 70 inches; clay loam

Minor Components

Yelives and similar soils
Composition: About 10 percent
Slope: 1 to 2 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Loamy Upland
Razito and similar soils
Composition: About 5 percent
Slope: 1 to 8 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Excessively drained Ecological site: Sandy Upland

240-Breadsprings and Nahodish soils, 0 to 2 percent slopes

Map Unit Setting

MLRA: 36

Elevation: 6,100 to 6,800 feet (1,859 to 2,195 meters)
Mean annual precipitation: 10 to 13 inches (254 to 330 millimeters)

Average annual air temperature: 46 to 49 degrees F (8 to 9 degrees C)
 Frost-free period: 100 to 135 days

Map Unit Composition

Breadsprings and similar soils: 35 percent
Nahodish and similar soils: 35 percent
Minor components: 30 percent
Urban land
In the City of Gallup, components of this map unit are covered by buildings, parking lots, roads, and sidewalks. The percentage of Urban land ranges from less than 10 percent on the city's periphery to 60 percent in densely developed residential sections. There are also many areas that have been cut and filled with a variety of earthen materials or man-made soils.

Component Descriptions

Breadsprings soils

Geomorphic position: Stream terraces on valley floors (fig. 6)
Parent material: Stream alluvium derived from sandstone and shale
Slope: 0 to 2 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Slowest permeability: About $0.20 \mathrm{in} / \mathrm{hr}$ (moderately slow)
Available water capacity: About 9.8 inches (high)
Shrink-swell potential: About 2.0 LEP (low)
Flooding hazard: Rare
Ponding hazard: Rare
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Medium
Calcium carbonate maximum: About 15 percent
Gypsum maximum: About 2 percent
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 5 SAR (slightly sodic)
Ecological site: Salty Bottomland
Present native vegetation: alkali sacaton, western wheatgrass, fourwing saltbush, blue grama, bottlebrush squirreltail, greasewood, inland saltgrass, mound saltbush, mat muhly, rabbitbrush
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 4

Typical Profile:

A-0 to 3 inches; loam
Bw1-3 to 7 inches; loam
Bw2-7 to 14 inches; stratified clay loam

Bk-14 to 22 inches; fine sandy loam
Ck1-22 to 29 inches; stratified silt loam Ck2-29 to 36 inches; stratified loam Ck3-36 to 70 inches; stratified silt loam

Nahodish soils

Geomorphic position: Stream terraces on valley floors
Parent material: Stream alluvium derived from sandstone and shale
Slope: 0 to 2 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Slowest permeability: About $0.06 \mathrm{in} / \mathrm{hr}$ (slow)
Available water capacity: About 10.9 inches (high)
Shrink-swell potential: About 2.0 LEP (low)
Flooding hazard: Rare
Ponding hazard: Rare
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: High
Calcium carbonate maximum: About 10 percent Gypsum maximum: About 10 percent Salinity maximum: About 4 mmhos/cm (slightly saline) Sodicity maximum: About 10 SAR (slightly sodic) Ecological site: Salty Bottomland
Present native vegetation: alkali sacaton, western wheatgrass, fourwing saltbush, blue grama,
bottlebrush squirreltail, greasewood, inland saltgrass, mound saltbush, mat muhly, rabbitbrush
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 10
Typical Profile:
A-0 to 1 inches; silt loam
Bw1-1 to 9 inches; silty clay loam
Bw2-9 to 17 inches; silty clay
Bk1-17 to 31 inches; silty clay
Bk2-31 to 36 inches; clay loam
2Bk3-36 to 58 inches; silt loam
3Bky-58 to 80 inches; clay

Minor Components

Nahodish Sodic and similar soils Composition: About 15 percent Slope: 0 to 1 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Salty Bottomland
Breadsprings Sodic and similar soils
Composition: About 10 percent
Slope: 0 to 1 percent
Depth to restrictive feature: None within 60 inches

Figure 6.-Typical landscape of Breadsprings and Nahodish soils, 0 to 2 percent slopes. Black greasewood has taken over many of these areas.

Drainage class: Well drained Ecological site: Salty Bottomland

Berryhill and similar soils
Composition: About 5 percent
Slope: 0 to 1 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Clayey

241—Mentmore loam, 1 to 8 percent slopes

Map Unit Setting

MLRA: 36
Elevation: 6,100 to 6,900 feet (1,859 to 2,103 meters)
Mean annual precipitation: 10 to 13 inches (254 to 330 millimeters)
Average annual air temperature: 45 to 49 degrees $F(7$ to 9 degrees C)
Frost-free period: 100 to 135 days

Map Unit Composition

Mentmore and similar soils: 85 percent
Minor components: 15 percent
Urban land
In the City of Gallup, components of this map unit are covered by buildings, parking lots, roads, and sidewalks. The percentage of Urban land ranges from less than 10 percent on the city's periphery to 60 percent in densely developed residential sections. There are also many areas that have been cut and filled with a variety of earthen materials or man-made soils.

Component Descriptions

Mentmore soils

Geomorphic position: Fan remnants on valley sides and drainageways on dipslopes on cuestas (fig. 7)
Parent material: Fan and slope alluvium derived from sandstone and shale
Slope: 1 to 8 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Slowest permeability: About $0.20 \mathrm{in} / \mathrm{hr}$ (moderately slow)
Available water capacity: About 11.6 inches (high)
Shrink-swell potential: About 5.0 LEP (moderate) Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet

Runoff class: Medium
Calcium carbonate maximum: About 10 percent
Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Loamy
Present native vegetation: blue grama, western wheatgrass, Indian ricegrass, big sagebrush, galleta, bottlebrush squirreltail, fourwing saltbush, needleandthread, oneseed juniper, sand dropseed, spineless horsebrush, rabbitbrush, twoneedle pinyon
Conservation Tree/Shrub Group: 5
Typical Profile:
A-0 to 1 inches; loam
Bt1-1 to 2 inches; clay loam
Bt2-2 to 7 inches; sandy clay loam
Btk1-7 to 13 inches; clay loam
Btk2-13 to 22 inches; clay loam
Bk-22 to 70 inches; clay loam

Minor Components

Atrac and similar soils
Composition: About 10 percent
Slope: 1 to 8 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Loamy
Gish and similar soils
Composition: About 5 percent
Slope: 1 to 8 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Clayey

242—Gish-Mentmore complex, 1 to 8 percent slopes

Map Unit Setting

MLRA: 36

Elevation: 6,100 to 7,200 feet (1,859 to 2,195 meters)
Mean annual precipitation: 10 to 13 inches (254 to 330 millimeters)
Average annual air temperature: 46 to 49 degrees $F(8$ to 9 degrees C)
Frost-free period: 100 to 135 days

Map Unit Composition

Gish and similar soils: 45 percent
Mentmore and similar soils: 35 percent
Minor components: 20 percent

Figure 7.-Mentmore loam, 1 to 8 percent slopes, is in the foreground. Coal Mine Land is in the background. Coal mining is a major commercial activity within the survey area.

Component Descriptions

Gish soils

Geomorphic position: Alluvial fans on valley sides and drainageways
Parent material: Fan alluvium derived from shale
Slope: 1 to 8 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Slowest permeability: About $0.06 \mathrm{in} / \mathrm{hr}$ (slow)
Available water capacity: About 9.2 inches (high)
Shrink-swell potential: About 8.0 LEP (high)
Flooding hazard: Rare
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: High
Calcium carbonate maximum: About 10 percent
Gypsum maximum: About 2 percent
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 2 SAR (slightly sodic)
Ecological site: Clayey
Present native vegetation: alkali sacaton, western wheatgrass, galleta, Indian ricegrass, blue grama,
bottlebrush squirreltail, broom snakeweed, fourwing saltbush, threeawn, winterfat, mat muhly, spike muhly
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 4C
Typical Profile:
A-0 to 3 inches; clay loam
Bw-3 to 13 inches; clay
Bky1-13 to 27 inches; clay
Bky2—27 to 55 inches; clay
Bky3-55 to 64 inches; clay loam
Bky4-64 to 70 inches; clay

Mentmore soils

Geomorphic position: Fan remnants on valley sides
Parent material: Slope and fan alluvium derived from sandstone and shale
Slope: 1 to 8 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Slowest permeability: About $0.20 \mathrm{in} / \mathrm{hr}$ (moderately slow)
Available water capacity: About 11.7 inches (high)

Shrink-swell potential: About 5.0 LEP (moderate)
\section*{Flooding hazard: None}
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Medium
Calcium carbonate maximum: About 2 percent
Gypsum maximum: About 2 percent
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (slightly sodic)
Ecological site: Loamy
Present native vegetation: blue grama, western wheatgrass, Indian ricegrass, big sagebrush, galleta, bottlebrush squirreltail, fourwing saltbush, needleandthread, oneseed juniper, sand dropseed, spineless horsebrush, rabbitbrush, twoneedle pinyon
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 5

Typical Profile:

A-0 to 2 inches; fine sandy loam
Bw-2 to 4 inches; clay loam
Bt1-4 to 13 inches; clay loam
Bt2-13 to 24 inches; clay loam
Bk1-24 to 44 inches; clay loam
Bk2-44 to 62 inches; clay loam
By-62 to 70 inches; clay loam

Minor Components

Berryhill and similar soils Composition: About 10 percent Slope: 0 to 2 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Clayey
Nahodish and similar soils
Composition: About 10 percent
Slope: 1 to 3 percent
Depth to restrictive feature: None within 60 inches Drainage class: Well drained
Ecological site: Salty Bottomland

244—Buckle fine sandy loam, 1 to 8 percent slopes

Map Unit Setting

MLRA:36

Elevation: 6,400 to 6,800 feet (1,951 to 2,073 meters)
Mean annual precipitation: 10 to 13 inches (254 to 330 millimeters)

Average annual air temperature: 45 to 49 degrees F (7 to 9 degrees C)
Frost-free period: 100 to 135 days

Map Unit Composition

Buckle and similar soils: 85 percent
Minor components: 15 percent

Component Descriptions

Buckle soils

Geomorphic position: Drainageways and fan remnants on valley sides
Parent material: Eolian material and fan alluvium derived from sandstone and shale
Slope: 1 to 8 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Slowest permeability: About $0.20 \mathrm{in} / \mathrm{hr}$ (moderately slow)
Available water capacity: About 10.3 inches (high)
Shrink-swell potential: About 7.0 LEP (high)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Low
Calcium carbonate maximum: About 5 percent
Gypsum maximum: About 1 percent
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Loamy
Present native vegetation: blue grama, western wheatgrass, Indian ricegrass, big sagebrush, galleta, bottlebrush squirreltail, oneseed juniper, winterfat, sand dropseed, spineless horsebrush, twoneedle pinyon, rabbitbrush
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 4C
Typical Profile:
A-0 to 4 inches; fine sandy loam
Bt1-4 to 14 inches; sandy clay loam
Bt2-14 to 22 inches; sandy clay loam
Btk1-22 to 34 inches; loam
Btk2-34 to 48 inches; clay loam
Btk3-48 to 62 inches; clay loam
Btk4-62 to 75 inches; clay loam

Minor Components

Gapmesa and similar soils
Composition: About 10 percent
Slope: 1 to 3 percent

Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Loamy
Zia and similar soils
Composition: About 5 percent
Slope: 1 to 6 percent
Depth to restrictive feature: None within 60 inches Drainage class: Somewhat excessively drained Ecological site: Sandy

245-Buckle-Gapmesa-Barboncito complex, 1 to 6 percent slopes

Map Unit Setting

MLRA: 36
Elevation: 6,400 to 6,800 feet (1,951 to 2,073 meters)
Mean annual precipitation: 10 to 13 inches (254 to 330 millimeters)
Average annual air temperature: 45 to 49 degrees F (7 to 9 degrees C)
Frost-free period: 100 to 135 days

Map Unit Composition

Buckle and similar soils: 35 percent Gapmesa and similar soils: 30 percent Barboncito and similar soils: 25 percent Minor components: 10 percent Urban land

In the City of Gallup, components of this map unit are covered by buildings, parking lots, roads, and sidewalks. The percentage of Urban land ranges from less than 10 percent on the city's periphery to 60 percent in densely developed residential sections. There are also many areas that have been cut and filled with a variety of earthen materials or man-made soils.

Component Descriptions

Buckle soils

Geomorphic position: Summits and sideslopes on ridges and hills and dipslope on cuestas
Parent material: Eolian material and slope alluvium derived from sandstone and shale
Slope: 1 to 6 percent
Depth to restrictive feature: None within 60 inches Drainage class: Well drained
Slowest permeability: About $0.20 \mathrm{in} / \mathrm{hr}$ (moderately slow)
Available water capacity: About 9.3 inches (high)
Shrink-swell potential: About 2.0 LEP (low)

Flooding hazard: None

Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Medium
Calcium carbonate maximum: About 10 percent Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Loamy
Present native vegetation: blue grama, western wheatgrass, Indian ricegrass, big sagebrush, galleta, bottlebrush squirreltail, fourwing saltbush, needleandthread, oneseed juniper, sand dropseed, spineless horsebrush, rabbitbrush, twoneedle pinyon
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 4
Typical Profile:
A-0 to 1 inches; loamy fine sand
Bt1-1 to 7 inches; clay loam
Bt2—7 to 25 inches; sandy clay loam
Btk-25 to 35 inches; clay loam
Bk-35 to 80 inches; fine sandy loam

Gapmesa soils

Geomorphic position: Summits on hills and ridges and dipslopes on cuestas
Parent material: Eolian material and slope alluvium derived from sandstone and shale
Slope: 1 to 3 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Drainage class: Well drained
Slowest permeability: About 0.20 in/hr (moderately slow)
Available water capacity: About 5.6 inches (low)
Shrink-swell potential: About 4.0 LEP (moderate)

Flooding hazard: None

Seasonal water table minimum depth: Greater than 6 feet
Runoff class: High
Calcium carbonate maximum: About 5 percent Gypsum maximum: About 5 percent
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (slightly sodic)

Ecological site: Loamy

Present native vegetation: blue grama, western wheatgrass, Indian ricegrass, big sagebrush, galleta, bottlebrush squirreltail, fourwing saltbush, needleandthread, oneseed juniper, sand dropseed, spineless horsebrush, rabbitbrush, twoneedle pinyon
Land capability (nonirrigated): 6c

Conservation Tree/Shrub Group: 10

Typical Profile:

A-0 to 1 inches; fine sandy loam
Bt-1 to 9 inches; loam
Btk1-9 to 20 inches; loam
Btk2-20 to 31 inches; clay loam
R-31 inches; sandstone bedrock

Barboncito soils

Geomorphic position: Summits on hills and ridges and dipslopes on cuestas
Parent material: Eolian material and slope alluvium derived from sandstone and shale
Slope: 1 to 3 percent
Depth to restrictive feature: 10 to 20 inches to bedrock (lithic)
Drainage class: Well drained
Slowest permeability: About $0.20 \mathrm{in} / \mathrm{hr}$ (moderately slow)
Available water capacity: About 1.8 inches (very low)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Very high
Calcium carbonate maximum: About 5 percent Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Loamy
Present native vegetation: blue grama, western wheatgrass, Indian ricegrass, big sagebrush, galleta, bottlebrush squirreltail, fourwing saltbush, needleandthread, oneseed juniper, sand dropseed, spineless horsebrush, rabbitbrush, twoneedle pinyon
Land capability (nonirrigated): 7s
Conservation Tree/Shrub Group: 10

Typical Profile:

A-0 to 2 inches; loamy fine sand
Bt1-2 to 6 inches; sandy clay loam
Btk-6 to 11 inches; clay loam
R-11 inches; sandstone bedrock

Minor Components

Rock outcrop
Composition: About 5 percent
Rock outcrop consists of barren or nearly barren areas of exposed sandstone and shale on ridges, ledges, and escarpments.

Betonnie and similar soils
Composition: About 5 percent
Slope: 1 to 6 percent

Depth to restrictive feature: None within 60 inches Drainage class: Somewhat excessively drained Ecological site: Sandy

250-Hospah-Skyvillage-Rock outcrop complex, 2 to 35 percent slopes

Map Unit Setting

MLRA: 36
Elevation: 6,400 to 7,000 feet (1,951 to 2,134 meters)
Mean annual precipitation: 10 to 13 inches (254 to 330 millimeters)
Average annual air temperature: 49 to 54 degrees F (9 to 12 degrees C)
Frost-free period: 120 to 140 days
Map Unit Composition
Hospah and similar soils: 35 percent
Skyvillage and similar soils: 30 percent
Rock outcrop: 25 percent
Minor components: 10 percent

Component Descriptions

Hospah soils

Geomorphic position: Sideslopes on hills and ridges and breaks
Parent material: Colluvium and residuum derived from sandstone and shale
Slope: 2 to 35 percent
Surface fragments: About 66 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (paralithic)
Drainage class: Well drained
Slowest permeability: About $0.06 \mathrm{in} / \mathrm{hr}$ (slow)
Available water capacity: About 1.9 inches (very low)
Shrink-swell potential: About 7.5 LEP (high)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Very high
Calcium carbonate maximum: About 5 percent
Gypsum maximum: About 5 percent
Salinity maximum: About $4 \mathrm{mmhos} / \mathrm{cm}$ (very slightly saline)
Sodicity maximum: About 13 SAR (moderately sodic)
Ecological site: Shale Hills
Present native vegetation: alkali sacaton, galleta, Indian ricegrass, blue grama, bottlebrush squirreltail, fourwing saltbush, little bluestem, needleandthread, sideoats grama, western
wheatgrass, mound saltbush, shadscale saltbush, Bigelow's sagebrush, oneseed juniper, winterfat Land capability (nonirrigated): 7e
Conservation Tree/Shrub Group: 10

Typical Profile:

A-0 to 3 inches; extremely cobbly clay loam
2BC-3 to 15 inches; clay
2 Cr - 15 inches; shale

Skyvillage soils

Geomorphic position: Structural benches and summits on hills and ridges and breaks
Parent material: Eolian material and slope alluvium derived from sandstone
Slope: 2 to 15 percent
Surface fragments: About 45 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)
Drainage class: Well drained
Slowest permeability: About $0.60 \mathrm{in} / \mathrm{hr}$ (moderate)
Available water capacity: About 1.0 inches (very low)
Shrink-swell potential: About 4.5 LEP (moderate)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Medium
Calcium carbonate maximum: About 10 percent
Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (slightly sodic)
Ecological site: Shallow Sandstone
Present native vegetation: Bigelow's sagebrush, blue grama, fourwing saltbush, galleta, Indian ricegrass, New Mexico feathergrass, little bluestem, shadscale saltbush, sideoats grama, winterfat, cliffrose, Mormon tea, oneseed juniper, twoneedle pinyon
Land capability (nonirrigated): 7s
Conservation Tree/Shrub Group: 10

Typical Profile:

A-0 to 1 inches; very channery sandy loam
C1-1 to 5 inches; sandy loam
C2-5 to 8 inches; channery sandy clay loam
2R-8 inches; hard sandstone

Rock outcrop

Rock outcrop consists of barren or nearly barren areas of exposed sandstone and shale on ridges, ledges, and escarpments.

Minor Components

Hagerwest and similar soils

Composition: About 5 percent Slope: 1 to 5 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Loamy
Bond and similar soils
Composition: About 5 percent
Slope: 1 to 5 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Shallow Sandstone

255-Farview-Rock outcrop complex, 2 to 15 percent slopes

Map Unit Setting

MLRA:36
Elevation: 6,500 to 6,900 feet (1,981 to 2,103 meters)
Mean annual precipitation: 10 to 13 inches (254 to 330 millimeters)
Average annual air temperature: 46 to 49 degrees F (8 to 9 degrees C)
Frost-free period: 100 to 135 days

Map Unit Composition

Farview and similar soils: 50 percent
Rock outcrop: 35 percent
Minor components: 15 percent

Component Descriptions

Farview soils

Geomorphic position: Dipslopes on cuestas
Parent material: Eolian material derived from sandstone
Slope: 2 to 15 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)
Drainage class: Somewhat excessively drained
Slowest permeability: About $1.98 \mathrm{in} / \mathrm{hr}$ (moderately rapid)
Available water capacity: About 2.3 inches (very low)
Shrink-swell potential: About 2.0 LEP (low)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Very high
Calcium carbonate maximum: About 10 percent Gypsum maximum: None

Salinity maximum: About 0 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Pinyon-Juniper Forest
Land capability (nonirrigated): 7s
Conservation Tree/Shrub Group: 10

Typical Profile:

A-0 to 1 inches; loamy fine sand
C-1 to 10 inches; fine sandy loam
Ck-10 to 17 inches; fine sandy loam
R-17 inches; sandstone bedrock

Rock outcrop

Rock outcrop consists of barren or nearly barren areas of exposed sandstone and shale on ridges, ledges, and escarpments.

Minor Components

Gapmesa and similar soils
Composition: About 8 percent
Slope: 1 to 5 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Loamy
Mido and similar soils
Composition: About 7 percent
Slope: 1 to 5 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Excessively drained
Ecological site: Deep Sand

258-Eagleye-Atchee-Rock outcrop complex, 2 to 35 percent slopes

Map Unit Setting

MLRA: 36
Elevation: 6,500 to 7,000 feet (1,981 to 2,134 meters)
Mean annual precipitation: 10 to 13 inches (254 to 330 millimeters)
Average annual air temperature: 46 to 49 degrees F (8 to 9 degrees C)
Frost-free period: 100 to 135 days

Map Unit Composition

Eagleye and similar soils: 40 percent
Atchee and similar soils: 35 percent
Rock outcrop: 20 percent
Minor components: 5 percent
Urban land
In the City of Gallup, components of this map unit
are covered by buildings, parking lots, roads, and sidewalks. The percentage of Urban land ranges from less than 10 percent on the city's periphery to 60 percent in densely developed residential sections. There are also many areas that have been cut and filled with a variety of earthen materials or man-made soils.

Component Descriptions

Eagleye soils

Geomorphic position: Sideslopes on hills and ridges (fig. 8)
Parent material: Slope alluvium over residuum derived from shale
Slope: 5 to 35 percent
Surface fragments: About 16 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (paralithic)
Drainage class: Well drained
Slowest permeability: About $0.06 \mathrm{in} / \mathrm{hr}$ (slow)
Available water capacity: About 1.6 inches (very low)
Shrink-swell potential: About 8.0 LEP (high)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Very high
Calcium carbonate maximum: None
Gypsum maximum: About 2 percent
Salinity maximum: About $2 \mathrm{mmhos} / \mathrm{cm}$ (nonsaline)
Sodicity maximum: About 1 SAR (slightly sodic)
Ecological site: Clayey
Present native vegetation: alkali sacaton, western wheatgrass, galleta, blue grama, bottlebrush squirreltail, broom snakeweed, threeawn, mat muhly, oneseed juniper, spike muhly, twoneedle pinyon
Land capability (nonirrigated): 7e
Conservation Tree/Shrub Group: 10
Typical Profile:
A-0 to 2 inches; gravelly clay loam
Cy-2 to 10 inches; clay $\mathrm{Cr}-10$ inches; shale

Atchee soils

Geomorphic position: Summits on hills and ridges
Parent material: Slope alluvium over residuum derived from sandstone and shale
Slope: 2 to 10 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)
Drainage class: Well drained

Figure 8.-Typical landscape of the Eagleye-Atchee-Rock outcrop complex, 2 to 35 percent slopes. Steep, broken slopes provide wildlife habitat.

Slowest permeability: About $0.20 \mathrm{in} / \mathrm{hr}$ (moderately slow)
Available water capacity: About 1.3 inches (very low) Shrink-swell potential: About 5.0 LEP (moderate)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Very high
Calcium carbonate maximum: About 1 percent
Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 1 SAR (slightly sodic)
Ecological site: Clayey
Present native vegetation: alkali sacaton, western wheatgrass, galleta, Indian ricegrass, black sagebrush, blue grama, bottlebrush squirreltail, broom snakeweed, oneseed juniper, threeawn, twoneedle pinyon, mat muhly, spike muhly
Land capability (nonirrigated): 7e
Conservation Tree/Shrub Group: 10

Typical Profile:
A-0 to 2 inches; fine sandy loam
C1-2 to 12 inches; extremely channery sandy clay loam
C2-12 to 14 inches; extremely channery sandy clay loam
R-14 inches; sandstone bedrock

Rock outcrop

Rock outcrop consists of barren or nearly barren areas of exposed sandstone and shale on ridges, ledges, and escarpments.

Minor Components

Lockerby and similar soils
Composition: About 3 percent
Slope: 2 to 15 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (paralithic)
Drainage class: Well drained
Ecological site: Clayey

Barboncito and similar soils
Composition: About 2 percent
Slope: 2 to 5 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Loamy

260—Quarries and Pits

This unit consists of limestone quarries and gravel and borrow pits. This unit occurs throughout the county and on a wide variety of different soils. Included in this unit is the demolition area on Ft. Wingate. This unit is used for the excavation of construction materials. Recommendations on use, reclamation, and revegetation need to be made on a site-specific basis.

261-Coal Mine Land

This unit consists of all areas associated with coal mine activities. These areas include the actual mines, barren tailings, and reclaimed areas. This unit occurs in the northwest part of Mckinley county, from Gallup to near Window Rock, Arizona. Recommendations on use, revegetation, and reclamation need to be made on a site-specific basis.

265-Uranium Mined Lands

This unit consists of all areas associated with uranium mine activities. These areas include the actual mines, shafts, structures, borrow pits, barren tailings and waste rock piles, evaporation ponds, and contaminated waste yards. This unit occurs throughout the county and on a wide variety of different soils. These areas, unless reclaimed or revegetated, have no agricultural uses. Recommendations on use, revegetation and reclamation need to be made on a site-specific basis.

270—Alesna-Rock outcrop complex, 15 to 55 percent slopes

Map Unit Setting

MLRA: 36

Elevation: 6,500 to 7,600 feet (1,981 to 2,316 meters)
Mean annual precipitation: 10 to 13 inches (254 to 330 millimeters)
Average annual air temperature: 49 to 54 degrees F (9 to 12 degrees C)

Frost-free period: 120 to 140 days

Map Unit Composition

Alesna and similar soils: 70 percent
Rock outcrop: 20 percent
Minor components: 10 percent

Component Descriptions

Alesna soils

Geomorphic position: Volcanic cones and escarpments on lava plateaus
Parent material: Slope alluvium and colluvium derived from basalt, shale, and sandstone
Slope: 15 to 55 percent
Surface fragments: About 65 percent
Depth to restrictive feature: 40 to 60 inches to bedrock (paralithic)
Drainage class: Well drained
Slowest permeability: About $0.06 \mathrm{in} / \mathrm{hr}$ (slow)
Available water capacity: About 8.0 inches (moderate)
Shrink-swell potential: About 7.5 LEP (high)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Very high
Calcium carbonate maximum: About 40 percent
Gypsum maximum: None
Salinity maximum: About 4 mmhos/cm (very slightly saline)
Sodicity maximum: About 5 SAR (slightly sodic)
Ecological site: Foothills
Present native vegetation: blue grama, galleta, sideoats grama, alkali sacaton, black grama, bottlebrush squirreltail, fourwing saltbush, little bluestem, needleandthread, winterfat, common wolfstail, oneseed juniper, twoneedle pinyon, narrowleaf yucca
Land capability (nonirrigated): 7e
Conservation Tree/Shrub Group: 4K

Typical Profile:

A-0 to 1 inches; extremely cobbly loam
Bt-1 to 10 inches; gravelly clay loam
Btk1-10 to 20 inches; very gravelly clay Btk2-20 to 26 inches; clay Btk3-26 to 52 inches; clay loam $2 \mathrm{Cr}-52$ inches; basalt bedrock

Rock outcrop

Rock outcrop consists of barren or nearly barren areas of exposed sandstone and shale on ridges, ledges, and escarpments.

Minor Components

Azabache and similar soils
Composition: About 4 percent
Slope: 5 to 8 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Loamy Upland (sodic)
Hagerwest and similar soils
Composition: About 3 percent
Slope: 5 to 8 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Loamy
Bond and similar soils
Composition: About 3 percent
Slope: 5 to 8 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Shallow Sandstone

275-Eldado gravelly fine sandy loam, 1 to 5 percent slopes

Map Unit Setting

MLRA: 36
Elevation: 6,300 to 7,300 feet (1,920 to 2,225 meters)
Mean annual precipitation: 10 to 13 inches (254 to 330 millimeters)
Average annual air temperature: 49 to 54 degrees F (9 to 12 degrees C)
Frost-free period: 120 to 140 days
Map Unit Composition
Eldado and similar soils: 85 percent
Minor components: 15 percent

Component Descriptions

Eldado soils

Geomorphic position: Relict stream terraces on valley floors
Parent material: Eolian and stream alluvium derived from basalt and sandstone
Slope: 1 to 5 percent
Surface fragments: About 15 percent
Depth to restrictive feature: None within 60 inches

Drainage class: Well drained
Slowest permeability: About $0.60 \mathrm{in} / \mathrm{hr}$ (moderate)
Available water capacity: About 3.8 inches (low)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Low
Calcium carbonate maximum: About 50 percent
Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 2 SAR (slightly sodic)
Ecological site: Gravelly
Present native vegetation: blue grama, sideoats grama, Indian ricegrass, black grama, bottlebrush squirreltail, little bluestem, needleandthread, western wheatgrass, winterfat, fourwing saltbush, galleta, oneseed juniper, rabbitbrush, sand dropseed, twoneedle pinyon
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 6GK
Typical Profile:
A-0 to 2 inches; gravelly fine sandy loam Btk1-2 to 9 inches; sandy clay loam Btk2-9 to 13 inches; sandy clay loam Bk1-13 to 25 inches; sandy clay loam 2Bk2—25 to 43 inches; extremely gravelly loamy coarse sand
2C-43 to 72 inches; extremely gravelly coarse sand

Minor Components

Eldado and similar soils Composition: About 15 percent Slope: 5 to 30 percent Depth to restrictive feature: None within 60 inches Drainage class: Well drained Ecological site: Gravelly

280-Azabache extremely gravelly clay loam, 2 to 8 percent slopes

Map Unit Setting

MLRA: 37
Elevation: 6,500 to 6,900 feet (1,981 to 2,103 meters)
Mean annual precipitation: 8 to 10 inches (229 to 254 millimeters)
Average annual air temperature: 50 to 54 degrees F (9 to 12 degrees C)
Frost-free period: 130 to 140 days

Map Unit Composition

Azabache and similar soils: 85 percent Minor components: 15 percent

Component Descriptions

Azabache soils

Geomorphic position: Lava plateaus, volcanic cones, and stream terraces on valley floors
Parent material: Slope alluvium derived from basalt, shale, and sandstone
Slope: 2 to 8 percent
Surface fragments: About 76 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Slowest permeability: About 0.01 in/hr (very slow)
Available water capacity: About 4.3 inches (low)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Very high
Calcium carbonate maximum: About 15 percent
Gypsum maximum: About 1 percent
Salinity maximum: About $16 \mathrm{mmhos} / \mathrm{cm}$ (moderately saline)
Sodicity maximum: About 30 SAR (strongly sodic)
Ecological site: Loamy Upland (sodic) 5-8" P.z.
Present native vegetation: alkali sacaton, mound saltbush, galleta, Indian ricegrass, blue grama, sand dropseed, shadscale saltbush
Land capability (nonirrigated): 7s
Conservation Tree/Shrub Group: 10
Typical Profile:
A-0 to 1 inches; extremely gravelly clay loam
Btn-1 to 5 inches; clay
Btknz1-5 to 17 inches; gravelly sandy clay loam
Btknz2-17 to 32 inches; extremely gravelly sandy clay loam
Btknz3-32 to 50 inches; extremely gravelly fine sandy loam
2Btnz-50 to 62 inches; very gravelly fine sandy loam

Minor Components

Eldado and similar soils
Composition: About 15 percent
Slope: 2 to 8 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Gravelly

290-Rock outcrop-Westmion-Skyvillage complex, 30 to 80 percent slopes

Map Unit Setting

Elevation: 6,400 to 8,100 feet (1,951 to 2,469 meters)
Mean annual precipitation: 10 to 13 inches (254 to 330 millimeters)
Mean annual air temperature: 49 to 54 degrees F (9.4 to 12.0 degrees C)
Frost-free period: 120 to 140 days

Map Unit Composition

Rock outcrop: 45 percent
Westmion and similar soils: 30 percent
Skyvillage and similar soils: 15 percent
Minor components: 10 percent

Component Descriptions

Rock outcrop

Rock outcrop consists of barren or nearly barren areas of exposed sandstone. Slopes range from about 5 to 15 percent on treads (structural benches) to almost vertical cliffs on the risers (escarpment face).

Westmion soils

Landform: Escarpments on mesas and cuestas
Parent material: Slope alluvium and colluvium over residuum derived from shale
Slope: 30 to 50 percent
Surface fragments: About 30 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (paralithic)
Drainage class: Well drained
Slowest permeability: . 06 to $0.2 \mathrm{in} / \mathrm{hr}$ (slow)
Available water capacity: About 2.1 inches (very low)
Shrink-swell potential: About 7.5 percent (high)
Runoff class: Very high
Calcium carbonate maximum: About 5 percent
Gypsum maximum: About 1 percent
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodium adsorption ratio maximum: About 5 (slightly sodic)
Ecological site: Foothills
Potential native vegetation: Indian ricegrass, Mormon tea, blue grama, cliffrose, fourwing saltbush, galleta, little bluestem, mountainmahogany, sideoats grama, winterfat, oneseed juniper, twoneedle pinyon
Land capability subclass (nonirrigated): 7e
Typical Profile:
A-0 to 2 inches; gravelly clay loam

2C-2 to 14 inches; clay
$2 \mathrm{Cr}-14$ to 20 inches; weathered bedrock

Skyvillage soils

Landform: Structural benches on escarpments on mesas and cuestas
Parent material: Eolian material and slope alluvium derived from sandstone
Slope: 30 to 40 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)
Drainage class: Well drained
Slowest permeability: 2.0 to $6.0 \mathrm{in} / \mathrm{hr}$ (moderately rapid)
Available water capacity: About 1.6 inches (very low)
Shrink-swell potential: About 1.5 percent (low)
Runoff class: Medium
Calcium carbonate maximum: About 15 percent Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodium adsorption ratio maximum: About 0 (nonsodic)
Ecological site: Shallow Sandstone
Potential native vegetation: Bigelow sagebrush, blue grama, fourwing saltbush, galleta, Indian ricegrass, New Mexico feathergrass, little bluestem, shadscale saltbush, sideoats grama, winterfat, cliffrose, mormon tea, oneseed juniper, twoneedle pinyon
Land capability subclass (nonirrigated): 7s
Typical Profile:
A-0 to 2 inches; sandy loam
$C-2$ to 13 inches; sandy loam
R-13 to 20 inches; unweathered bedrock

Minor Components

Hospah and similar soils
Composition: About 6 percent
Slope: 30 to 80 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (paralithic)
Drainage class: Well drained
Ecological site: Shale Hills
Vessilla and similar soils
Composition: About 2 percent
Slope: 2 to 15 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)
Drainage class: Somewhat excessively drained
Ecological site: Shallow Sandstone
Skyvillage and similar soils
Composition: About 2 percent
Slope: 2 to 20 percent

Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Shallow Sandstone

291—Rock outcrop-Eagleye-Atchee complex, 35 to 70 percent slopes

Map Unit Setting

Elevation: 6,500 to 7,500 feet (1,981 to 2,286 meters)
Mean annual precipitation: 10 to 13 inches (254 to 330 millimeters)
Mean annual air temperature: 46 to 49 degrees F (8.0 to 9.4 degrees C)
Frost-free period: 100 to 135 days

Map Unit Composition

Rock outcrop: 50 percent
Eagleye and similar soils: 25 percent
Atchee and similar soils: 15 percent
Minor components: 10 percent

Component Descriptions

Rock outcrop

Rock outcrop consists of barren or nearly barren areas of exposed sandstone. Slopes range from about 5 to 15 percent on treads (structural benches) to almost vertical cliffs on the risers (escarpment face).

Eagleye soils

Landform: Escarpments on cuestas and mesas
Parent material: Slope alluvium over residuum derived from shale
Slope: 35 to 70 percent
Surface fragments: About 25 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (paralithic)
Drainage class: Well drained
Slowest permeability: 0.2 to $0.6 \mathrm{in} / \mathrm{hr}$ (moderately slow)
Available water capacity: About 2.6 inches (very low)
Shrink-swell potential: About 5.0 percent (moderate)
Runoff class: Very high
Calcium carbonate maximum: None
Gypsum maximum: About 2 percent
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodium adsorption ratio maximum: About 0 (nonsodic)
Ecological site: Draft Clayey 9-14" P.z.
Potential native vegetation: western wheatgrass, alkali sacaton, big sagebrush, blue grama, bottlebrush
squirreltail, fourwing saltbush, galleta, Indian
ricegrass, rabbitbrush, winterfat Land capability subclass (nonirrigated): 7e

Typical Profile:

A-0 to 2 inches; very gravelly silty clay loam
C1-2 to 7 inches; silty clay loam
C2-7 to 13 inches; silty clay loam
$\mathrm{Cr}-13$ to 20 inches; weathered bedrock

Atchee soils

Landform: Structural benches on escarpments on cuestas and mesas
Parent material: Slope alluvium over residuum derived from sandstone
Slope: 35 to 50 percent
Surface fragments: About 57 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)
Drainage class: Well drained
Slowest permeability: 0.6 to $2.0 \mathrm{in} / \mathrm{hr}$ (moderate)
Available water capacity: About 1.1 inches (very low)
Shrink-swell potential: About 2.0 percent (low)
Runoff class: Medium
Calcium carbonate maximum: About 5 percent Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodium adsorption ratio maximum: About 0 (nonsodic)
Ecological site: Draft Clayey 9-14" P.z.
Potential native vegetation: alkali sacaton, western wheatgrass, galleta, Indian ricegrass, blue grama, bottlebrush squirreltail, broom snakeweed, oneseed juniper, threeawn, twoneedle pinyon, winterfat, mat muhly, spike muhly
Land capability subclass (nonirrigated): 7e

Typical Profile:

A-0 to 2 inches; very gravelly fine sandy loam
C-2 to 8 inches; very channery fine sandy loam
R-8 to 20 inches; unweathered bedrock

Minor Components

Gapmesa and similar soils
Composition: About 5 percent
Slope: 2 to 10 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Loamy
Atchee and similar soils
Composition: About 5 percent
Slope: 2 to 35 percent

Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Clayey

300-Regracic gravelly sandy clay loam, 2 to 6 percent slopes

Map Unit Setting

MLRA: 36
Elevation: 7,400 to 7,700 feet (2,256 to 2,347 meters)
Mean annual precipitation: 13 to 16 inches (330 to 406 millimeters)
Average annual air temperature: 47 to 53 degrees F (8 to 12 degrees C)
Frost-free period: 100 to 135 days

Map Unit Composition

Regracic and similar soils: 80 percent
Minor components: 20 percent

Component Descriptions

Regracic soils

Geomorphic position: Stream terraces on valley floors
Parent material: Stream alluvium derived from sandstone, shale, and conglomerate
Slope: 2 to 6 percent
Surface fragments: About 31 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Slowest permeability: About $0.06 \mathrm{in} / \mathrm{hr}$ (slow)
Available water capacity: About 8.1 inches (moderate)
Shrink-swell potential: About 7.5 LEP (high)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Medium
Calcium carbonate maximum: About 40 percent
Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 1 SAR (slightly sodic)
Ecological site: Pinyon-Juniper Forest
Present native vegetation: Rocky Mountain juniper, blue grama, muttongrass, oneseed juniper, ponderosa pine, rabbitbrush, twoneedle pinyon, western wheatgrass
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 4C
Typical Profile:
A-0 to 2 inches; gravelly sandy clay loam

Bt-2 to 31 inches; clay, clay loam
2Btk1-31 to 45 inches; very gravelly sandy clay
2Btk2—45 to 50 inches; clay loam
2Btk3-50 to 60 inches; stratified very gravelly sandy clay loam
3BCk-60 to 80 inches; gravelly sandy loam

Minor Components

Tuces and similar soils
Composition: About 10 percent
Slope: 2 to 10 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (paralithic)
Drainage class: Well drained
Ecological site: Pinyon-Juniper Forest
Venzuni and similar soils
Composition: About 10 percent
Slope: 1 to 3 percent
Depth to restrictive feature: None within 60 inches Drainage class: Well drained Ecological site: Meadow

305-Celavar-Atarque complex, 1 to 8 percent slopes

Map Unit Setting

MLRA: 36
Elevation: 6,500 to 7,500 feet (1,981 to 2,286 meters)
Mean annual precipitation: 13 to 14 inches (330 to 356 millimeters)
Average annual air temperature: 49 to 53 degrees F (9 to 12 degrees C)
Frost-free period: 115 to 135 days

Map Unit Composition

Celavar and similar soils: 50 percent
Atarque and similar soils: 35 percent
Minor components: 15 percent

Component Descriptions

Celavar soils

Geomorphic position: Dipslopes on cuestas and summits on mesas
Parent material: Eolian material and slope alluvium derived from sandstone and shale
Slope: 1 to 8 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Drainage class: Well drained
Slowest permeability: About $0.60 \mathrm{in} / \mathrm{hr}$ (moderate)

Available water capacity: About 4.7 inches (low)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Low
Calcium carbonate maximum: About 10 percent Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 1 SAR (slightly sodic)
Ecological site: Savannah
Present native vegetation: blue grama, western wheatgrass, Indian ricegrass, Mormon tea needleandthread, oneseed juniper, sand dropseed, twoneedle pinyon, muttongrass, rabbitbrush, winterfat, Bigelow's sagebrush, bottlebrush squirreltail, spineless horsebrush
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 6D
Typical Profile:
A-0 to 2 inches; loam
Bt1-2 to 24 inches; sandy clay loam
Bt2-24 to 31 inches; sandy clay loam
2R-31 inches; sandstone bedrock

Atarque soils

Geomorphic position: Dipslopes on cuestas and summits on mesas
Parent material: Eolian material and slope alluvium derived from sandstone and shale
Slope: 1 to 8 percent
Depth to restrictive feature: 10 to 20 inches to bedrock (lithic)
Drainage class: Well drained
Slowest permeability: About $0.60 \mathrm{in} / \mathrm{hr}$ (moderate)
Available water capacity: About 2.0 inches (very low)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: High
Calcium carbonate maximum: About 3 percent Gypsum maximum: None
Salinity maximum: About $2 \mathrm{mmhos} / \mathrm{cm}$ (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Shallow Sandstone
Present native vegetation: Indian ricegrass, New Mexico feathergrass, blue grama, little bluestem, sideoats grama, Bigelow's sagebrush, fourwing saltbush, galleta, rabbitbrush, twoneedle pinyon, Mormon tea, oneseed juniper
Land capability (nonirrigated): 7s

Conservation Tree/Shrub Group: 10

Typical Profile:

A-0 to 3 inches; sandy loam
Bt-3 to 14 inches; sandy clay loam
2R-14 inches; sandstone bedrock

Minor Components

Rock outcrop
Composition: About 9 percent
Rock outcrop consists of barren or nearly barren areas of exposed sandstone and shale on ridges, ledges, and escarpments.

Flugle and similar soils
Composition: About 6 percent
Slope: 1 to 5 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Loamy

308-Fikel-Venzuni complex, 1 to 6 percent slopes

Map Unit Setting

MLRA: 36
Elevation: 7,000 to 7,600 feet (2,134 to 2,316 meters)
Mean annual precipitation: 13 to 16 inches (330 to 406 millimeters)
Average annual air temperature: 49 to 53 degrees F (9 to 12 degrees C)
Frost-free period: 115 to 135 days

Map Unit Composition

Fikel and similar soils: 50 percent
Venzuni and similar soils: 40 percent
Minor components: 10 percent

Component Descriptions

Fikel soils

Geomorphic position: Fan remnants on valley sides
Parent material: Fan alluvium derived from sandstone and shale
Slope: 2 to 6 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Slowest permeability: About $0.06 \mathrm{in} / \mathrm{hr}$ (slow)
Available water capacity: About 9.0 inches (moderate)
Shrink-swell potential: About 4.5 LEP (moderate)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet

Runoff class: High
Calcium carbonate maximum: About 10 percent
Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (very slightly saline)
Sodicity maximum: About 5 SAR (slightly sodic)
Ecological site: Clayey
Present native vegetation: alkali sacaton, western wheatgrass, galleta, Indian ricegrass, blue grama, bottlebrush squirreltail, broom snakeweed, fourwing saltbush, threeawn, winterfat, mat muhly, spike muhly
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 4C
Typical Profile:
A-0 to 3 inches; clay loam
$\mathrm{Bt}-3$ to 14 inches; clay Btk1-14 to 32 inches; clay Btk2-32 to 50 inches; sandy clay loam Btk3-50 to 65 inches; clay Btk4-65 to 70 inches; sandy clay loam

Venzuni soils

Geomorphic position: Stream terraces on valley floors
Parent material: Stream alluvium derived from sandstone and shale
Slope: 1 to 6 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Slowest permeability: About 0.01 in/hr (very slow)
Available water capacity: About 7.9 inches (moderate)
Shrink-swell potential: About 8.0 LEP (high)
Flooding hazard: Rare
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Very high
Calcium carbonate maximum: About 10 percent
Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 5 SAR (slightly sodic)
Ecological site: Clayey
Present native vegetation: alkali sacaton, western wheatgrass, galleta, Indian ricegrass, blue grama, bottlebrush squirreltail, broom snakeweed, fourwing saltbush, threeawn, winterfat, mat muhly, spike muhly
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 4C
Typical Profile:
A-0 to 7 inches; clay
Bss1-7 to 22 inches; clay
Bss2-22 to 42 inches; clay

Bk1-42 to 56 inches; sandy clay
2Bk2—56 to 75 inches; sandy clay loam

Minor Components

Celavar and similar soils
Composition: About 5 percent
Slope: 1 to 6 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Savannah
Bluewater
Composition: About 5 percent
Slope: 0 to 1 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Somewhat poorly drained Ecological site: Meadow

310—Parkelei sandy loam, 1 to 8 percent slopes

Map Unit Setting

MLRA: 36
Elevation: 6,500 to 7,800 feet (1,981 to 2,377 meters)
Mean annual precipitation: 13 to 16 inches (330 to 406 millimeters)
Average annual air temperature: 46 to 49 degrees F (8 to 9 degrees C)
Frost-free period: 100 to 135 days
Map Unit Composition
Parkelei and similar soils: 80 percent
Minor components: 20 percent

Component Descriptions

Parkelei soils

Geomorphic position: Summits on plateaus and mesas, dipslopes on cuestas, and drainageways
Parent material: Eolian material and fan and slope alluvium derived from sandstone and shale
Slope: 1 to 8 percent
Depth to restrictive feature: None within 60 inches Drainage class: Well drained
Slowest permeability: About $0.20 \mathrm{in} / \mathrm{hr}$ (moderately slow)
Available water capacity: About 9.0 inches (moderate)
Shrink-swell potential: About 4.5 LEP (moderate)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet

Runoff class: Low
Calcium carbonate maximum: About 10 percent
Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 1 SAR (slightly sodic)
Ecological site: Loamy
Present native vegetation: western wheatgrass, Indian ricegrass, big sagebrush, blue grama, bottlebrush squirreltail, galleta, needleandthread, winterfat, broom snakeweed, muttongrass, rabbitbrush, spineless horsebrush, oneseed juniper, twoneedle pinyon
Land capability (irrigated): 2e
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 4C

Typical Profile:

A-0 to 2 inches; sandy loam
Bt-2 to 21 inches; sandy clay loam
Btk1-21 to 55 inches; sandy clay loam
Btk2—55 to 65 inches; clay loam

Minor Components

Fraguni and similar soils
Composition: About 10 percent
Slope: 1 to 8 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Somewhat excessively drained
Ecological site: Sandy
Evpark and similar soils
Composition: About 5 percent
Slope: 1 to 8 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Loamy
Galzuni and similar soils
Composition: About 3 percent
Slope: 1 to 8 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Clayey
Bryway and similar soils
Composition: About 2 percent
Slope: 2 to 8 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (paralithic)
Drainage class: Well drained
Ecological site: Loamy

312-Bluewater loam, 0 to 1 percent slopes

Map Unit Setting

MLRA: 36
Elevation: 7,200 to 7,600 feet (2,195 to 2,316 meters)
Mean annual precipitation: 13 to 16 inches (330 to 406 millimeters)
Average annual air temperature: 48 to 53 degrees F (9 to 12 degrees C)
Frost-free period: 100 to 135 days

Map Unit Composition

Bluewater: 90 percent
Minor components: 10 percent

Component Descriptions

Bluewater

Geomorphic position: Stream terraces on valley floors
Parent material: Stream alluvium derived from sandstone and shale
Slope: 0 to 1 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Somewhat poorly drained
Slowest permeability: About $0.01 \mathrm{in} / \mathrm{hr}$ (very slow)
Available water capacity: About 11.2 inches (high)
Shrink-swell potential: About 4.5 LEP (moderate)
Flooding hazard: Rare
Seasonal water table minimum depth: About 36 inches
Runoff class: Low
Calcium carbonate maximum: About 30 percent
Gypsum maximum: About 1 percent
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 5 SAR (slightly sodic)
Ecological site: Meadow
Present native vegetation: western wheatgrass, rush, sedge, California brome, bottlebrush squirreltail, slender wheatgrass, willow, clover
Land capability (irrigated): 3s
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 1K
Typical Profile:
A-0 to 2 inches; loam
Btk1-2 to 11 inches; clay loam
Btk2—11 to 28 inches; clay loam
Btk3—28 to 50 inches; clay loam
Btk4-50 to 70 inches; clay
Bk-70 to 80 inches; clay

Minor Components

Venzuni and similar soils
Composition: About 5 percent
Slope: 1 to 3 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Clayey
Fikel and similar soils
Composition: About 5 percent
Slope: 1 to 3 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Clayey

315—Flugle-Fragua complex, 1 to 10 percent slopes

Map Unit Setting

MLRA: 36
Elevation: 6,400 to 7,300 feet (1,951 to 2,225 meters)
Mean annual precipitation: 13 to 14 inches (330 to 356 millimeters)
Average annual air temperature: 49 to 53 degrees F (9 to 12 degrees C)
Frost-free period: 115 to 135 days

Map Unit Composition

Flugle and similar soils: 50 percent
Fragua and similar soils: 40 percent
Minor components: 10 percent

Component Descriptions

Flugle soils

Geomorphic position: Fan remnants on valley sides, summits on mesas, and dipslopes on cuestas
Parent material: Eolian material and fan and slope alluvium derived from sandstone and shale
Slope: 1 to 5 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Slowest permeability: About $0.20 \mathrm{in} / \mathrm{hr}$ (moderately slow)
Available water capacity: About 8.9 inches (moderate)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Medium

Calcium carbonate maximum: About 5 percent
Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (slightly sodic)
Ecological site: Pinyon-Juniper Forest
Present native vegetation: Indian ricegrass, blue grama, bottlebrush squirreltail, broom snakeweed, buckwheat, galleta, muttongrass, oneseed juniper, sand dropseed, spineless horsebrush, threeawn, twoneedle pinyon, narrowleaf yucca
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 4C
Typical Profile:
A-0 to 3 inches; loam
Bt1-3 to 10 inches; sandy clay loam
Bt2-10 to 28 inches; clay loam
Bk-28 to 65 inches; sandy loam

Fragua soils

Geomorphic position: Fan remnants on valley sides, summits on mesas, and dipslopes on cuestas
Parent material: Eolian material and fan and slope alluvium derived from sandstone
Slope: 1 to 10 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Somewhat excessively drained
Slowest permeability: About $2.00 \mathrm{in} / \mathrm{hr}$ (moderately rapid)
Available water capacity: About 7.0 inches (moderate)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Low
Calcium carbonate maximum: About 10 percent
Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (slightly sodic)
Ecological site: Sandy Slopes
Present native vegetation: Indian ricegrass, blue grama, western wheatgrass, galleta, needleandthread, rabbitbrush, sand dropseed, spineless horsebrush, threeawn, oneseed juniper, ring muhly, twoneedle pinyon
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 5
Typical Profile:
A-0 to 2 inches; loamy fine sand
Btk-2 to 19 inches; sandy loam Bk-19 to 65 inches; sandy loam

Minor Components

Celavar and similar soils
Composition: About 5 percent
Slope: 1 to 5 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Pinyon-Juniper Forest
Royosa and similar soils
Composition: About 5 percent
Slope: 1 to 10 percent
Depth to restrictive feature: None within 60 inches Drainage class: Excessively drained Ecological site: Sandy Plains

316-Royosa loamy fine sand, 1 to 15 percent slopes

Map Unit Setting

MLRA: 36
Elevation: 6,400 to 7,000 feet (1,951 to 2,134 meters)
Mean annual precipitation: 13 to 16 inches (330 to 406 millimeters)
Average annual air temperature: 46 to 49 degrees F (8 to 9 degrees C)
Frost-free period: 100 to 135 days

Map Unit Composition

Royosa and similar soils: 80 percent Minor components: 20 percent

Component Descriptions

Royosa soils

Geomorphic position: Dunes
Parent material: Eolian material derived from sandstone
Slope: 1 to 15 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Excessively drained
Slowest permeability: About $6.00 \mathrm{in} / \mathrm{hr}$ (rapid)
Available water capacity: About 5.9 inches (low)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Very low
Calcium carbonate maximum: None
Gypsum maximum: None

Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Sandy Plains
Present native vegetation: blue grama, Indian
ricegrass, big sagebrush, oneseed juniper, sand
sagebrush, little bluestem, rabbitbrush, twoneedle
pinyon, antelope bitterbrush, cliffrose, spineless
horsebrush
Land capability (nonirrigated): 6e
Conservation Tree/Shrub Group: 7

Typical Profile:

A1-0 to 2 inches; loamy fine sand
A2-2 to 6 inches; loamy fine sand
C-6 to 65 inches; fine sand

Minor Components

Parkelei and similar soils
Composition: About 10 percent
Slope: 1 to 5 percent
Depth to restrictive feature: None within 60 inches Drainage class: Well drained
Ecological site: Loamy
Fraguni and similar soils
Composition: About 5 percent
Slope: 1 to 10 percent
Depth to restrictive feature: None within 60 inches Drainage class: Somewhat excessively drained Ecological site: Sandy

Plumasano and similar soils
Composition: About 5 percent
Slope: 5 to 15 percent
Depth to restrictive feature: None within 60 inches Drainage class: Well drained
Ecological site: Sandy Slopes

317-Highdye-Evpark-Bryway complex, 2 to 20 percent slopes

Map Unit Setting

MLRA: 36
Elevation: 6,800 to 7,600 feet (2,073 to 2,316 meters)
Mean annual precipitation: 13 to 16 inches (330 to 406 millimeters)
Average annual air temperature: 46 to 49 degrees F (8 to 9 degrees C)
Frost-free period: 100 to 135 days

Map Unit Composition

Highdye and similar soils: 35 percent
Evpark and similar soils: 30 percent

Bryway and similar soils: 20 percent Minor components: 15 percent

Component Descriptions

Highdye soils

Geomorphic position: Sideslopes and summits on hills and ridges, dipslopes on cuestas, and summits on mesas
Parent material: Eolian material and slope alluvium over residuum derived from sandstone and shale
Slope: 2 to 20 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)
Drainage class: Well drained
Slowest permeability: About $0.06 \mathrm{in} / \mathrm{hr}$ (slow)
Available water capacity: About 1.8 inches (very low)
Shrink-swell potential: About 7.5 LEP (high)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: High
Calcium carbonate maximum: None
Gypsum maximum: None
Salinity maximum: About 0 mmhos/cm (nonsaline)
Sodicity maximum: About 2 SAR (slightly sodic)
Ecological site: Pinyon-Juniper Forest
Present native vegetation: Gambel's oak, antelope bitterbrush, banana yucca, big sagebrush, blue grama, bottlebrush squirreltail, broom snakeweed, buckwheat, cliffrose, fringed sagewort, muttongrass, oneseed juniper, pingue hymenoxys, prairie junegrass, threeawn, twoneedle pinyon
Land capability (nonirrigated): 7s
Conservation Tree/Shrub Group: 10

Typical Profile:

A-0 to 3 inches; fine sandy loam Bt1-3 to 5 inches; clay loam 2Bt2-5 to 12 inches; clay 2R-12 inches; sandstone bedrock

Evpark soils

Geomorphic position: Sideslopes and summits on hills and ridges, dipslopes on cuestas, and summits on mesas
Parent material: Eolian material and slope alluvium derived from sandstone and shale
Slope: 2 to 8 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Drainage class: Well drained
Slowest permeability: About $0.20 \mathrm{in} / \mathrm{hr}$ (moderately slow)

Available water capacity: About 3.9 inches (low)
Shrink-swell potential: About 4.5 LEP (moderate)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: High
Calcium carbonate maximum: About 10 percent Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (slightly sodic)
Ecological site: Pinyon-Juniper Forest
Present native vegetation: Gambel's oak, antelope bitterbrush, banana yucca, big sagebrush, blue grama, bottlebrush squirreltail, broom snakeweed, buckwheat, muttongrass, oneseed juniper, prairie junegrass, twoneedle pinyon, western wheatgrass
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 6D

Typical Profile:

A-0 to 5 inches; loam
Bt1-5 to 10 inches; clay loam
Bt2-10 to 24 inches; sandy clay loam
R-24 inches; unweathered bedrock

Bryway soils

Geomorphic position: Sideslopes on hills and ridges, dipslopes on cuestas, and summits on mesas
Parent material: Slope alluvium over residuum derived from shale and sandstone
Slope: 2 to 8 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (paralithic)
Drainage class: Well drained
Slowest permeability: About $0.06 \mathrm{in} / \mathrm{hr}$ (slow)
Available water capacity: About 3.3 inches (low)
Shrink-swell potential: About 7.5 LEP (high)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Very high
Calcium carbonate maximum: About 5 percent Gypsum maximum: None
Salinity maximum: About $0 \mathrm{mmhos} / \mathrm{cm}$ (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Pinyon-Juniper Forest
Present native vegetation: Gambel's oak, Indian ricegrass, banana yucca, big sagebrush, blue grama, bottlebrush squirreltail, broom snakeweed, buckwheat, mountainmahogany, muttongrass, oneseed juniper, pingue hymenoxys, prairie junegrass, twoneedle pinyon, western wheatgrass Land capability (nonirrigated): 6c

Conservation Tree/Shrub Group: 4C

Typical Profile:
A-0 to 4 inches; sandy loam
Bt1-4 to 10 inches; clay
Bt2-10 to 23 inches; clay
2 Cr -23 inches; shale

Minor Components

Vessilla and similar soils
Composition: About 5 percent
Slope: 2 to 4 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)
Drainage class: Somewhat excessively drained
Ecological site: Shallow Sandstone
Galzuni and similar soils
Composition: About 5 percent
Slope: 2 to 8 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Clayey
Parkelei and similar soils
Composition: About 5 percent
Slope: 2 to 8 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Pinyon-Juniper Forest

320—Parkelei-Fraguni complex, 1 to 8 percent slopes

Map Unit Setting

MLRA: 36
Elevation: 6,500 to 7,500 feet (1,981 to 2,286 meters)
Mean annual precipitation: 13 to 16 inches (330 to 406 millimeters)
Average annual air temperature: 46 to 49 degrees F (8 to 9 degrees C)
Frost-free period: 100 to 135 days

Map Unit Composition

Parkelei and similar soils: 45 percent
Fraguni and similar soils: 40 percent
Minor components: 15 percent

Component Descriptions

Parkelei soils

Geomorphic position: Dipslopes on cuestas, summits
on mesas and plateaus, and fan remnants on valley sides
Parent material: Eolian material and fan and slope
alluvium derived from sandstone and shale (fig. 9)
Slope: 1 to 8 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Slowest permeability: About $0.60 \mathrm{in} / \mathrm{hr}$ (moderate)
Available water capacity: About 8.6 inches (moderate)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Low
Calcium carbonate maximum: About 5 percent Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Pinyon-Juniper Forest
Present native vegetation: Gambel's oak, Indian ricegrass, banana yucca, big sagebrush, blue grama, bottlebrush squirreltail, buckwheat, muttongrass, oneseed juniper, prairie junegrass, twoneedle pinyon, western wheatgrass
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 4
Typical Profile:
A-0 to 4 inches; fine sandy loam
Bt1-4 to 18 inches; sandy clay loam
Bt2-18 to 28 inches; sandy clay loam
Bt3-28 to 39 inches; sandy clay loam
Btk- 39 to 52 inches; sandy clay loam
Bk-52 to 70 inches; fine sandy loam

Fraguni soils

Geomorphic position: Dipslopes on cuestas, summits on mesas and plateaus, and fan remnants on valley sides
Parent material: Eolian material and fan and slope alluvium derived from sandstone
Slope: 1 to 8 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Somewhat excessively drained
Slowest permeability: About 0.60 in/hr (moderate)
Available water capacity: About 7.2 inches (moderate)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Very low
Calcium carbonate maximum: About 1 percent

Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Pinyon-Juniper Forest
Present native vegetation: Indian ricegrass, banana yucca, big sagebrush, blue grama, bottlebrush squirreltail, broom snakeweed, buckwheat, muttongrass, oneseed juniper, twoneedle pinyon, western wheatgrass
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 5
Typical Profile:
A-0 to 4 inches; loamy fine sand
Bt1-4 to 20 inches; fine sandy loam
Bt2-20 to 46 inches; loamy fine sand
Bt3-46 to 58 inches; sandy clay loam
$B C-58$ to 70 inches; fine sandy loam

Minor Components

Evpark and similar soils
Composition: About 8 percent
Slope: 1 to 5 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Pinyon-Juniper Forest
Bryway and similar soils
Composition: About 7 percent
Slope: 2 to 8 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (paralithic)
Drainage class: Well drained
Ecological site: Pinyon-Juniper Forest

325-Venzuni silty clay, 1 to 3 percent slopes

Map Unit Setting

MLRA: 36

Elevation: 6,700 to 7,600 feet (2,042 to 2,316 meters)
Mean annual precipitation: 13 to 16 inches (330 to 406 millimeters)
Average annual air temperature: 46 to 49 degrees F (8 to 9 degrees C)
Frost-free period: 100 to 135 days

Map Unit Composition

Venzuni and similar soils: 90 percent
Minor components: 10 percent

Component Descriptions

Venzuni soils

Geomorphic position: Stream terraces on valley floors and alluvial fans on valley sides
Parent material: Fan and stream alluvium derived from shale
Slope: 1 to 3 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Slowest permeability: About 0.01 in/hr (very slow)
Available water capacity: About 9.0 inches (moderate)
Shrink-swell potential: About 7.5 LEP (high)
Flooding hazard: Rare
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Very high
Calcium carbonate maximum: About 5 percent
Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 5 SAR (slightly sodic)
Ecological site: Clayey
Present native vegetation: western wheatgrass, rush, sedge, slender wheatgrass, California brome, muttongrass, willow
Land capability (irrigated): 3s
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 4CC

Typical Profile:

A-0 to 2 inches; silty clay
BC-2 to 12 inches; silty clay
Bss-12 to 46 inches; clay
2Bss-46 to 65 inches; clay

Minor Components

Nutreeah and similar soils
Composition: About 5 percent
Slope: 0 to 2 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Moderately well drained
Ecological site: Meadow
Suwanee and similar soils
Composition: About 5 percent
Slope: 0 to 2 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Bottomland

332—Evpark-Arabrab complex, 2 to 6 percent slopes

Map Unit Setting

MLRA: 36
Elevation: 6,800 to 8,000 feet (2,073 to 2,438 meters)
Mean annual precipitation: 13 to 16 inches (330 to 406 millimeters)
Average annual air temperature: 46 to 49 degrees F (8 to 9 degrees C)
Frost-free period: 100 to 135 days

Map Unit Composition

Evpark and similar soils: 50 percent
Arabrab and similar soils: 40 percent
Minor components: 10 percent

Component Descriptions

Evpark soils

Geomorphic position: Dipslopes on cuestas and summits on mesas
Parent material: Eolian material and slope alluvium derived from sandstone and shale
Slope: 2 to 6 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Drainage class: Well drained
Slowest permeability: About 0.20 in/hr (moderately slow)
Available water capacity: About 7.0 inches (moderate)
Shrink-swell potential: About 4.5 LEP (moderate)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Medium
Calcium carbonate maximum: None
Gypsum maximum: None
Salinity maximum: About 0 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Pinyon-Juniper Forest
Present native vegetation: Gambel's oak, antelope bitterbrush, banana yucca, big sagebrush, blue grama, bottlebrush squirreltail, broom snakeweed, buckwheat, muttongrass, oneseed juniper, prairie junegrass, twoneedle pinyon, western wheatgrass
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 6D

Figure 9.-Typical landscape of Parklei-Fraguni complex, 1 to 8 percent slopes. Profile of the Parklei soil in a roadcut.

Typical Profile:
A-0 to 2 inches; fine sandy loam
Bt1-2 to 9 inches; loam
Bt2-9 to 36 inches; clay loam
R-36 inches; sandstone bedrock

Arabrab soils

Geomorphic position: Dipslopes on cuestas and summits on mesas
Parent material: Eolian material and slope alluvium over residuum derived from sandstone
Slope: 2 to 6 percent
Surface fragments: About 23 percent
Depth to restrictive feature: 10 to 20 inches to bedrock (lithic)
Drainage class: Well drained
Slowest permeability: About $0.20 \mathrm{in} / \mathrm{hr}$ (moderately slow)
Shrink-swell potential: About 4.0 LEP (moderate)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: High

Calcium carbonate maximum: About 10 percent Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Pinyon-Juniper Forest
Present native vegetation: big sagebrush, muttongrass, Utah serviceberry, banana yucca, bottlebrush squirreltail, cliff fendlerbush, thrifty goldenweed, toadflax penstemon, oneseed juniper, twoneedle pinyon
Land capability (nonirrigated): 7s
Conservation Tree/Shrub Group: 10
Typical Profile:
A-0 to 2 inches; gravelly fine sandy loam
Bt1-2 to 7 inches; sandy clay loam
Bt2-7 to 12 inches; clay loam
Btk-12 to 17 inches; gravelly clay loam
R-17 inches; sandstone bedrock

Minor Components

Highdye and similar soils
Composition: About 3 percent

Slope: 2 to 6 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Pinyon-Juniper Forest
Parkelei and similar soils
Composition: About 5 percent
Slope: 2 to 6 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Pinyon-Juniper Forest
Rock outcrop
Composition: About 2 percent
Rock outcrop consists of barren or nearly barren areas of exposed sandstone and shale on ridges, ledges, and escarpments.

335-Venadito clay, 1 to 3 percent slopes

Map Unit Setting

MLRA: 36
Elevation: 6,600 to 7,100 feet (2,012 to 2,164 meters)
Mean annual precipitation: 10 to 13 inches (254 to 330 millimeters)
Average annual air temperature: 49 to 53 degrees F (9 to 12 degrees C)
Frost-free period: 120 to 140 days

Map Unit Composition

Venadito and similar soils: 85 percent Minor components: 15 percent

Component Descriptions

Venadito soils

Geomorphic position: Swales, depressions, and flood plains on valley floors and alluvial fans on valley sides
Parent material: Fan and stream alluvium derived from shale
Slope: 1 to 3 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Slowest permeability: About $0.01 \mathrm{in} / \mathrm{hr}$ (very slow)
Available water capacity: About 8.9 inches (moderate)
Shrink-swell potential: About 7.5 LEP (high)
Flooding hazard: Frequent
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Very high
Calcium carbonate maximum: About 10 percent
Gypsum maximum: About 1 percent

Salinity maximum: About 4 mmhos/cm (very slightly saline)
Sodicity maximum: About 10 SAR (slightly sodic)
Ecological site: Clayey Bottomland
Present native vegetation: western wheatgrass, alkali sacaton, fourwing saltbush, galleta, blue grama, spike muhly, mat muhly, broom snakeweed, rabbitbrush
Land capability (irrigated): 4w
Land capability (nonirrigated): 6w
Conservation Tree/Shrub Group: 4CC

Typical Profile:

A-0 to 3 inches; clay
BCss1-3 to 30 inches; clay
BCss2-30 to 65 inches; clay

Minor Components

Suwanee and similar soils
Composition: About 10 percent
Slope: 0 to 2 percent
Depth to restrictive feature: None within 60 inches Drainage class: Well drained
Ecological site: Bottomland
Nuffel and similar soils
Composition: About 5 percent
Slope: 0 to 2 percent
Depth to restrictive feature: None within 60 inches Drainage class: Well drained
Ecological site: Bottomland

336-Nuffel-Venadito complex, 1 to 3 percent slopes

Map Unit Setting

MLRA: 36
Elevation: 6,100 to 6,500 feet (1,859 to 1,981 meters)
Mean annual precipitation: 10 to 13 inches (254 to 330 millimeters)
Average annual air temperature: 49 to 53 degrees F (9 to 12 degrees C)
Frost-free period: 120 to 140 days

Map Unit Composition

Nuffel and similar soils: 45 percent
Venadito and similar soils: 35 percent
Minor components: 20 percent

Component Descriptions

Nuffel soils

Geomorphic position: Flood plains on valley floors

Parent material: Stream alluvium derived from siltstone and shale
Slope: 1 to 3 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Slowest permeability: About 0.06 in/hr (slow)
Available water capacity: About 10.5 inches (high)
Shrink-swell potential: About 4.5 LEP (moderate)
Flooding hazard: Frequent
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Medium
Calcium carbonate maximum: About 10 percent Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 5 SAR (slightly sodic)
Ecological site: Bottomland
Present native vegetation: alkali sacaton, western wheatgrass, fourwing saltbush, blue grama, galleta, spike muhly, mat muhly, sand dropseed, spineless horsebrush
Land capability (irrigated): 4w
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 8

Typical Profile:

A-0 to 2 inches; silt loam
C1-2 to 10 inches; sandy loam
C2-10 to 17 inches; silt loam
C3-17 to 20 inches; loam C4-20 to 47 inches; silty clay loam $2 \mathrm{Ab}-47$ to 65 inches; silty clay

Venadito soils

Geomorphic position: Flood plains, depressions and swales on valley floors
Parent material: Stream alluvium derived from shale
Slope: 1 to 3 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Slowest permeability: About 0.03 in/hr (very slow)
Available water capacity: About 7.7 inches (moderate)
Shrink-swell potential: About 11.0 LEP (very high)
Flooding hazard: Frequent
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Very high
Calcium carbonate maximum: About 10 percent
Gypsum maximum: None
Salinity maximum: About 4 mmhos/cm (very slightly saline)
Sodicity maximum: About 10 SAR (slightly sodic) Ecological site: Clayey Bottomland

Present native vegetation: western wheatgrass, alkali sacaton, fourwing saltbush, galleta, blue grama, spike muhly, mat muhly, broom snakeweed, rabbitbrush
Land capability (irrigated): 4w
Land capability (nonirrigated): 6w
Conservation Tree/Shrub Group: 4CC
Typical Profile:
A-0 to 2 inches; clay
BCss1-2 to 9 inches; clay BCss2-9 to 11 inches; silty clay BCss3-11 to 65 inches; clay

Minor Components

Hawaikuh and similar soils Composition: About 8 percent Slope: 0 to 2 percent Depth to restrictive feature: None within 60 inches Drainage class: Well drained Ecological site: Clayey

Aquima and similar soils
Composition: About 8 percent
Slope: 1 to 5 percent
Depth to restrictive feature: None within 60 inches Drainage class: Well drained Ecological site: Loamy

Penistaja and similar soils
Composition: About 4 percent
Slope: 1 to 5 percent
Depth to restrictive feature: None within 60 inches Drainage class: Well drained Ecological site: Loamy

338-Zyme-Lockerby association, 5 to 35 percent slopes

Map Unit Setting
MLRA: 36
Elevation: 6,500 to 7,200 feet (1,981 to 2,195 meters)
Mean annual precipitation: 10 to 13 inches (254 to 330 millimeters)
Average annual air temperature: 46 to 49 degrees F (8 to 9 degrees C)
Frost-free period: 100 to 135 days
\section*{Map Unit Composition}

Zyme and similar soils: 50 percent Lockerby and similar soils: 40 percent

Minor components: 10 percent

Component Descriptions

Zyme soils

Geomorphic position: Sideslopes and summits on hills and ridges
Parent material: Residuum derived from shale
Slope: 5 to 35 percent
Surface fragments: About 16 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (paralithic)
Drainage class: Well drained
Slowest permeability: About $0.06 \mathrm{in} / \mathrm{hr}$ (slow)
Available water capacity: About 2.4 inches (very low)
Shrink-swell potential: About 8.0 LEP (high)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Very high
Calcium carbonate maximum: About 5 percent
Gypsum maximum: About 2 percent
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Clayey
Present native vegetation: alkali sacaton, western wheatgrass, galleta, Indian ricegrass, blue grama, bottlebrush squirreltail, broom snakeweed, fourwing saltbush, threeawn, winterfat, mat muhly, spike muhly
Land capability (nonirrigated): 7s
Conservation Tree/Shrub Group: 10

Typical Profile:

A-0 to 3 inches; channery silty clay loam
Cky1-3 to 8 inches; silty clay
Cky2-8 to 15 inches; channery clay
Cr-15 inches; shale

Lockerby soils

Geomorphic position: Sideslopes on hills and ridges
Parent material: Residuum derived from shale
Slope: 5 to 15 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (paralithic)
Drainage class: Well drained
Slowest permeability: About $0.03 \mathrm{in} / \mathrm{hr}$ (very slow)
Available water capacity: About 4.0 inches (low)
Shrink-swell potential: About 8.0 LEP (high)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Very high

Calcium carbonate maximum: About 5 percent Gypsum maximum: About 1 percent
Salinity maximum: About 4 mmhos/cm (very slightly saline)
Sodicity maximum: About 2 SAR (slightly sodic)
Ecological site: Clayey
Present native vegetation: alkali sacaton, western wheatgrass, galleta, Indian ricegrass, blue grama, bottlebrush squirreltail, broom snakeweed, fourwing saltbush, threeawn, winterfat, mat muhly, spike muhly
Land capability (nonirrigated): 7e
Conservation Tree/Shrub Group: 10
Typical Profile:
A-0 to 1 inches; silty clay loam
Bw-1 to 11 inches; clay
Bss-11 to 15 inches; clay
Bssy-15 to 26 inches; clay
$\mathrm{Cr}-26$ inches; shale

Minor Components

Rock outcrop
Composition: About 6 percent
Rock outcrop consists of barren or nearly barren areas of exposed sandstone and shale on ridges, ledges, and escarpments.

Marianolake and similar soils
Composition: About 4 percent
Slope: 5 to 8 percent
Depth to restrictive feature: None within 60 inches Drainage class: Well drained Ecological site: Loamy

345-Rock outcrop-Tuces complex, 20 to 70 percent slopes

Map Unit Setting

MLRA: 36
Elevation: 7,400 to 8,000 feet (2,256 to 2,438 meters)
Mean annual precipitation: 13 to 16 inches (330 to 406 millimeters)
Average annual air temperature: 46 to 49 degrees F (8 to 9 degrees C)
Frost-free period: 100 to 135 days

Map Unit Composition

Rock outcrop: 40 percent
Tuces and similar soils: 40 percent
Minor components: 20 percent

Component Descriptions

Rock outcrop

Rock outcrop consists of barren or nearly barren areas of exposed sandstone and shale on ridges, ledges, and escarpments.

Tuces soils

Geomorphic position: Escarpments on cuestas
Parent material: Slope alluvium and colluvium over residuum derived from sandstone and shale
Slope: 20 to 40 percent
Surface fragments: About 75 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (paralithic)
Drainage class: Well drained
Slowest permeability: About 0.06 in/hr (slow)
Available water capacity: About 3.5 inches (low)
Shrink-swell potential: About 7.5 LEP (high)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Very high
Calcium carbonate maximum: About 10 percent Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 1 SAR (slightly sodic)
Ecological site: Pinyon-Juniper Forest
Present native vegetation: Gambel's oak, banana yucca, blue grama, bottlebrush squirreltail, buckwheat, cliffrose, fourwing saltbush, galleta, mountainmahogany, muttongrass, needlegrass, oneseed juniper, sideoats grama, threeawn, twoneedle pinyon
Land capability (nonirrigated): 8
Conservation Tree/Shrub Group: 10

Typical Profile:

A-0 to 1 inches; extremely gravelly clay loam
Bk1-1 to 4 inches; clay
Bk2-4 to 24 inches; clay
Cr-24 inches; shale

Minor Components

Vessilla and similar soils
Composition: About 10 percent
Slope: 2 to 15 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)
Drainage class: Somewhat excessively drained Ecological site: Shallow Sandstone

Fikel and similar soils
Composition: About 5 percent
Slope: 2 to 6 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Clayey
Venzuni and similar soils
Composition: About 5 percent
Slope: 1 to 3 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Meadow

350-Toldohn-Vessilla-Rock outcrop complex, 8 to 35 percent slopes

Map Unit Setting
Elevation: 6,800 to 8,000 feet (2,073 to 2,438 meters)
Mean annual precipitation: 13 to 16 inches (330 to 406 millimeters)
Mean annual air temperature: 46 to 49 degrees F (8.0 to 9.4 degrees C)
Frost-free period: 100 to 135 days

Map Unit Composition

Toldohn and similar soils: 35 percent
Vessilla and similar soils: 30 percent
Rock outcrop: 20 percent
Minor components: 15 percent

Component Descriptions

Toldohn soils

Landform: Breaks, ridges, hills
Parent material: Slope alluvium over residuum derived from shale
Slope: 8 to 35 percent
Surface fragments: About 25 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (paralithic)
Drainage class: Well drained
Slowest permeability: . 06 to $0.2 \mathrm{in} / \mathrm{hr}$ (slow)
Available water capacity: About 1.5 inches (very low)
Shrink-swell potential: About 7.5 percent (high)
Runoff class: Very high
Calcium carbonate maximum: About 5 percent
Gypsum maximum: None
Salinity maximum: About 0 mmhos/cm (nonsaline)
Sodium adsorption ratio maximum: About 2 (slightly sodic)

Ecological site: pinyon-juniper forest

Potential native vegetation:
Common trees: oneseed juniper, Rocky Mountain juniper, Gambel oak, twoneedle pinyon
Other plants: Gambel oak, antelope bitterbrush, banana yucca, big sagebrush, blue grama, bottlebrush squirreltail, broom snakeweed, buckwheat, little bluestem, mountainmahogany, muttongrass, oneseed juniper, prairie junegrass, sideoats grama, twoneedle pinyon
Land capability subclass (nonirrigated): 7s

Typical Profile:

A-0 to 4 inches; gravelly clay loam
2BC-4 to 11 inches; clay
$2 \mathrm{Cr}-11$ to 20 inches; weathered bedrock

Vessilla soils

Landform: Breaks, structural benches on ridges, structural benches on hills
Parent material: Eolian and slope alluvium derived from sandstone
Slope: 8 to 15 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)
Drainage class: Somewhat excessively drained Slowest permeability: 2.0 to $6.0 \mathrm{in} / \mathrm{hr}$ (moderately rapid)
Available water capacity: About 1.5 inches (very low)
Runoff class: Medium
Calcium carbonate maximum: About 5 percent
Gypsum maximum: None
Salinity maximum: About $0 \mathrm{mmhos} / \mathrm{cm}$ (nonsaline)
Sodium adsorption ratio maximum: About 0 (nonsodic)
Ecological site: pinyon-juniper forest
Potential native vegetation:
Common trees: oneseed juniper, Rocky Mountain juniper, Gambel oak, twoneedle pinyon
Other plants: Gambel oak, antelope bitterbrush, banana yucca, big sagebrush, blue grama, broom snakeweed, buckwheat, little bluestem, mountainmahogany, muttongrass, oneseed juniper, prairie junegrass, sideoats grama, twoneedle pinyon
Land capability subclass (nonirrigated): 7s
Typical Profile:
A-0 to 2 inches; fine sandy loam
C-2 to 11 inches; fine sandy loam
2R-11 to 20 inches; unweathered bedrock

Rock outcrop

Rock outcrop consists of barren or nearly barren areas of exposed sandstone and shale on ridges, ledges, and escarpments.

Minor Components

Galzuni and similar soils
Composition: About 5 percent
Slope: 5 to 8 percent
Drainage class: Well drained
Ecological site: Clayey
Parkelei and similar soils
Composition: About 5 percent
Slope: 5 to 8 percent
Drainage class: Well drained
Ecological site: Pinyon-Juniper Forest
Bryway and similar soils
Composition: About 5 percent
Slope: 5 to 8 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (paralithic)
Drainage class: Well drained Ecological site: Pinyon-Juniper Forest

351—Rock outcrop-Vessilla complex, 35 to 70 percent slopes

Map Unit Setting

Elevation: 6,800 to 8,000 feet (2,073 to 2,438 meters)
Mean annual precipitation: 13 to 16 inches (330 to 406 millimeters)
Mean annual air temperature: 46 to 49 degrees F (8.0 to 9.4 degrees C)
Frost-free period: 100 to 135 days

Map Unit Composition

Rock outcrop: 60 percent
Vessilla and similar soils: 30 percent
Minor components: 10 percent

Component Descriptions

Rock outcrop

Rock outcrop consists of barren or nearly barren areas of exposed sandstone and shale. Slopes range from about 5 to 15 percent on treads (structural benches) to almost vertical cliffs on the risers (escarpment face).

Vessilla soils

Landform: Escarpments on cuestas, escarpments on mesas
Parent material: Eolian material and slope alluvium derived from sandstone

Slope: 35 to 50 percent

Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)
Drainage class: Somewhat excessively drained
Slowest permeability: 2.0 to $6.0 \mathrm{in} / \mathrm{hr}$ (moderately rapid)
Available water capacity: About 0.7 inches (very low)
Shrink-swell potential: About 1.5 percent (low)
Runoff class: Medium
Calcium carbonate maximum: About 5 percent Gypsum maximum: None
Salinity maximum: About 0 mmhos/cm (nonsaline)
Sodium adsorption ratio maximum: About 0 (nonsodic)
Ecological site: Draft Shallow Savannah 9-14" P.z.
Potential native vegetation: Gambel oak, antelope
bitterbrush, banana yucca, big sagebrush, blue grama, broom snakeweed, buckwheat, little bluestem, mountainmahogany, muttongrass, oneseed juniper, prairie junegrass, sideoats grama Land capability subclass (nonirrigated): 7s

Typical Profile:
A-0 to 5 inches; fine sandy loam
2R-5 to 20 inches; unweathered bedrock

Minor Components

Rubble Land
Composition: About 3 percent
Depth to restrictive feature: 0 inches to bedrock (lithic)

Mido and similar soils
Composition: About 3 percent
Slope: 5 to 10 percent
Drainage class: Excessively drained
Ecological site: Deep Sand
Toldohn and similar soils
Composition: About 2 percent
Slope: 20 to 35 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (paralithic)
Drainage class: Well drained
Ecological site: Clayey
Vessilla and similar soils
Composition: About 2 percent
Slope: 5 to 35 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Shallow Sandstone

352-Zia sandy loam, 1 to 5 percent slopes

Map Unit Setting

MLRA: 36
Elevation: 6,000 to 6,800 feet (1,829 to 2,073 meters)
Mean annual precipitation: 10 to 13 inches (254 to 330 millimeters)
Average annual air temperature: 49 to 53 degrees F (9 to 12 degrees C)
Frost-free period: 120 to 140 days

Map Unit Composition

Zia and similar soils: 80 percent
Minor components: 20 percent

Component Descriptions

Zia soils

Geomorphic position: Stream terraces on valley floors and alluvial fans on valley sides
Parent material: Eolian material and fan and stream alluvium derived from sandstone
Slope: 1 to 5 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Somewhat excessively drained
Slowest permeability: About $2.00 \mathrm{in} / \mathrm{hr}$ (moderately rapid)
Available water capacity: About 7.1 inches (moderate)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Very low
Calcium carbonate maximum: About 5 percent
Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 2 SAR (slightly sodic)
Ecological site: Sandy
Present native vegetation: blue grama, western wheatgrass, Indian ricegrass, fourwing saltbush, sand dropseed, needleandthread, spike dropseed, winterfat, galleta, ring muhly, rabbitbrush, sand sagebrush, spineless horsebrush
Land capability (irrigated): 3e
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 5

Typical Profile:

A-0 to 3 inches; sandy loam

C1-3 to 31 inches; sandy loam
C2-31 to 65 inches; fine sandy loam

Minor Components

Mido and similar soils
Composition: About 10 percent
Slope: 1 to 5 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Excessively drained
Ecological site: Deep Sand
Penistaja and similar soils
Composition: About 5 percent
Slope: 1 to 5 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Loamy
Aquima and similar soils
Composition: About 5 percent
Slope: 1 to 5 percent
Depth to restrictive feature: None within 60 inches Drainage class: Well drained
Ecological site: Loamy

353-Mido loamy fine sand, 1 to 6 percent slopes

Map Unit Setting

MLRA: 36
Elevation: 6,300 to 6,700 feet (1,920 to 2,042 meters)
Mean annual precipitation: 10 to 13 inches (254 to 330 millimeters)
Average annual air temperature: 49 to 53 degrees F (9 to 12 degrees C)
Frost-free period: 120 to 140 days

Map Unit Composition

Mido and similar soils: 90 percent
Minor components: 10 percent

Component Descriptions

Mido soils

Geomorphic position: Dunes on valley sides and valley floors
Parent material: Eolian material derived from sandstone
Slope: 1 to 6 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Excessively drained
Slowest permeability: About $6.00 \mathrm{in} / \mathrm{hr}$ (rapid)

Available water capacity: About 4.8 inches (low)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Negligible
Calcium carbonate maximum: About 1 percent
Gypsum maximum: None
Salinity maximum: About 0 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Deep Sand
Present native vegetation: Indian ricegrass,
blue grama, antelope bitterbrush, broom
snakeweed, fourwing saltbush, sand dropseed, sandhill muhly
Land capability (irrigated): 3e
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 5
Typical Profile:
A-0 to 3 inches; loamy fine sand
C-3 to 65 inches; loamy fine sand

Minor Components

Redpen and similar soils Composition: About 5 percent
Slope: 1 to 6 percent
Depth to restrictive feature: None within 60 inches Drainage class: Well drained
Ecological site: Loamy
Fragua and similar soils
Composition: About 5 percent
Slope: 1 to 6 percent
Depth to restrictive feature: None within 60 inches Drainage class: Somewhat excessively drained Ecological site: Sandy Slopes

354-Knifehill loam, 1 to 5 percent slopes

Map Unit Setting

MLRA: 36

Elevation: 6,900 to 7,500 feet (2,103 to 2,286 meters)
Mean annual precipitation: 13 to 16 inches (330 to 406 millimeters)
Average annual air temperature: 46 to 49 degrees F (8 to 9 degrees C)
Frost-free period: 100 to 135 days

Map Unit Composition

Knifehill and similar soils: 80 percent
Minor components: 20 percent

Component Descriptions

Knifehill soils

Geomorphic position: Stream terraces on valley floors and fan remnants on valley sides
Parent material: Fan and stream alluvium derived from sandstone and shale
Slope: 1 to 5 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Slowest permeability: About $0.06 \mathrm{in} / \mathrm{hr}$ (slow)
Available water capacity: About 9.4 inches (high)
Shrink-swell potential: About 7.5 LEP (high)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: High
Calcium carbonate maximum: About 15 percent
Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Meadow
Present native vegetation: western wheatgrass, rush, sedge, slender wheatgrass, California brome, muttongrass, willow
Land capability (irrigated): 3c
Land capability (nonirrigated): 4c
Conservation Tree/Shrub Group: 4C

Typical Profile:

A-0 to 2 inches; loam
Bw-2 to 6 inches; clay loam
Bt1-6 to 11 inches; clay loam
Bt2-11 to 26 inches; clay
Btk-26 to 35 inches; clay
Bk-35 to 65 inches; clay

Minor Components

Silcat and similar soils
Composition: About 10 percent
Slope: 1 to 5 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Clayey
Parkelei and similar soils
Composition: About 10 percent
Slope: 1 to 5 percent
Depth to restrictive feature: None within 60 inches Drainage class: Well drained
Ecological site: Loamy

355—Rizno-Tekapo-Rock outcrop complex, 2 to 45 percent slopes

Map Unit Setting

MLRA: 36
Elevation: 6,200 to 6,700 feet (1,890 to 2,042 meters)
Mean annual precipitation: 10 to 13 inches (254 to 330 millimeters)
Average annual air temperature: 49 to 54 degrees F (9 to 12 degrees C)
Frost-free period: 120 to 140 days

Map Unit Composition

Rizno and similar soils: 35 percent
Tekapo and similar soils: 30 percent
Rock outcrop: 20 percent
Minor components: 15 percent

Component Descriptions

Rizno soils

Geomorphic position: Structural benches on escarpments on cuestas and mesas
Parent material: Eolian material over residuum derived from sandstone
Slope: 2 to 20 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)
Drainage class: Well drained
Slowest permeability: About $2.00 \mathrm{in} / \mathrm{hr}$ (moderately rapid)
Available water capacity: About 0.9 inches (very low)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Medium
Calcium carbonate maximum: About 10 percent
Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Shallow Sandstone
Present native vegetation: Indian ricegrass, New Mexico feathergrass, blue grama, little bluestem, sideoats grama, Bigelow's sagebrush, fourwing saltbush, galleta, sand dropseed, antelope bitterbrush, cliffrose, Mormon tea, oneseed juniper
Land capability (nonirrigated): 7s
Conservation Tree/Shrub Group: 10

Typical Profile:
A-0 to 3 inches; fine sandy loam
C-3 to 8 inches; sandy loam
2R-8 inches; sandstone bedrock

Tekapo soils

Geomorphic position: Escarpments on mesas and cuestas
Parent material: Slope alluvium and colluvial material over residuum derived from shale and siltstone
Slope: 10 to 45 percent
Surface fragments: About 20 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (paralithic)
Drainage class: Well drained
Slowest permeability: About $0.06 \mathrm{in} / \mathrm{hr}$ (slow)
Available water capacity: About 1.6 inches (very low)
Shrink-swell potential: About 7.5 LEP (high)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Very high
Calcium carbonate maximum: About 5 percent
Gypsum maximum: None
Salinity maximum: About $2 \mathrm{mmhos} / \mathrm{cm}$ (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Shale Hills
Present native vegetation: alkali sacaton, galleta, Indian ricegrass, blue grama, bottlebrush squirreltail, fourwing saltbush, little bluestem, needleandthread, sideoats grama, western wheatgrass, mound saltbush, shadscale saltbush, Bigelow's sagebrush, oneseed juniper, winterfat
Land capability (nonirrigated): 7s
Conservation Tree/Shrub Group: 10
Typical Profile:
A-0 to 2 inches; channery silty clay loam
C-2 to 10 inches; silty clay
2 Cr - 10 inches; shale

Rock outcrop

Rock outcrop consists of barren or nearly barren areas of exposed sandstone and shale on ridges, ledges, and escarpments.

Minor Components

Aquima and similar soils
Composition: About 5 percent
Slope: 2 to 5 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Loamy

Mido and similar soils Composition: About 5 percent
Slope: 2 to 5 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Excessively drained
Ecological site: Deep Sand
Monpark and similar soils
Composition: About 5 percent
Slope: 2 to 5 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (paralithic)
Drainage class: Well drained
Ecological site: Clayey

357-Heshotauthla clay, 0 to 1 percent slopes

Map Unit Setting

MLRA: 36
Elevation: 6,300 to 7,000 feet (1,920 to 2,134 meters)
Mean annual precipitation: 13 to 16 inches (330 to 406 millimeters)
Average annual air temperature: 46 to 49 degrees F (8 to 9 degrees C)
Frost-free period: 100 to 135 days

Map Unit Composition

Heshotauthla and similar soils: 85 percent
Minor components: 15 percent

Component Descriptions

Heshotauthla soils

Geomorphic position: Stream terraces on valley floors and flood plains on valley floors
Parent material: Stream alluvium derived from sandstone and shale
Slope: 0 to 1 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Slowest permeability: About 0.01 in/hr (very slow)
Available water capacity: About 5.4 inches (low)
Shrink-swell potential: About 7.5 LEP (high)
Flooding hazard: Occasional
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: High
Calcium carbonate maximum: About 5 percent
Gypsum maximum: About 1 percent
Salinity maximum: About $16 \mathrm{mmhos} / \mathrm{cm}$ (moderately saline)

Sodicity maximum: About 40 SAR (strongly sodic)
Ecological site: Salty Bottomland
Present native vegetation: alkali sacaton, western
wheatgrass, fourwing saltbush, big sagebrush, blue
grama, bottlebrush squirreltail, greasewood, inland
saltgrass, mat muhly, rabbitbrush
Land capability (irrigated): 4w
Land capability (nonirrigated): 7s
Conservation Tree/Shrub Group: 10

Typical Profile:

A-0 to 3 inches; clay
Btn-3 to 18 inches; clay
Btkz-18 to 65 inches; clay
Minor Components
Hosta and similar soils
Composition: About 5 percent
Slope: 1 to 3 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Loamy
Knifehill and similar soils
Composition: About 5 percent
Slope: 0 to 2 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Meadow
Concho and similar soils
Composition: About 5 percent
Slope: 0 to 2 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Clayey

360-Hosta-Concho association, 0 to 5 percent slopes

Map Unit Setting

MLRA: 36
Elevation: 6,800 to 7,000 feet (2,073 to 2,134 meters)
Mean annual precipitation: 13 to 16 inches (330 to 406 millimeters)
Average annual air temperature: 46 to 49 degrees F (8 to 9 degrees C)
Frost-free period: 100 to 135 days

Map Unit Composition

Hosta and similar soils: 45 percent

Concho and similar soils: 40 percent Minor components: 15 percent

Component Descriptions

Hosta soils

Geomorphic position: Drainageways and fan remnants on valley sides
Parent material: Fan alluvium derived from sandstone and shale
Slope: 1 to 5 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Slowest permeability: About $0.06 \mathrm{in} / \mathrm{hr}$ (slow)
Available water capacity: About 10.0 inches (high)
Shrink-swell potential: About 7.5 LEP (high)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Medium
Calcium carbonate maximum: About 5 percent
Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 2 SAR (slightly sodic)
Ecological site: Loamy
Present native vegetation: western wheatgrass, Indian ricegrass, big sagebrush, blue grama, bottlebrush squirreltail, galleta, oneseed juniper, winterfat, broom snakeweed, muttongrass, rabbitbrush, spineless horsebrush
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 4C
Typical Profile:
A-0 to 2 inches; loam
Bt—2 to 4 inches; clay loam
Btk1-4 to 24 inches; clay loam
Btk2-24 to 51 inches; clay Bk—51 to 65 inches; sandy clay loam

Concho soils

Geomorphic position: Drainageways and stream terraces on valley floors
Parent material: Fan and stream alluvium derived from sandstone and shale
Slope: 0 to 3 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Slowest permeability: About $0.06 \mathrm{in} / \mathrm{hr}$ (slow)
Available water capacity: About 8.9 inches (moderate)
Shrink-swell potential: About 7.5 LEP (high)
Flooding hazard: Rare

Seasonal water table minimum depth: Greater than 6 feet
Runoff class: High
Calcium carbonate maximum: About 5 percent Gypsum maximum: None
Salinity maximum: About 4 mmhos/cm (very slightly saline)
Sodicity maximum: About 2 SAR (slightly sodic)
Ecological site: Clayey
Present native vegetation: western wheatgrass, needleandthread, winterfat, Indian ricegrass, big sagebrush, blue grama, bottlebrush squirreltail, galleta, pingue hymenoxys, rabbitbrush
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 4C
Typical Profile:
Ap1-0 to 1 inches; clay loam
Ap2-1 to 5 inches; clay
Btss-5 to 32 inches; clay
Btkss-32 to 51 inches; clay
Btkz-51 to 65 inches; clay

Minor Components

Fraguni and similar soils
Composition: About 5 percent
Slope: 1 to 5 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Somewhat excessively drained Ecological site: Sandy

Parkelei and similar soils
Composition: About 5 percent
Slope: 1 to 5 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Loamy
Silcat and similar soils
Composition: About 5 percent
Slope: 0 to 3 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Clayey

361-Monpark silty clay, 2 to 8 percent slopes

Map Unit Setting
MLRA: 36
Elevation: 6,000 to 7,000 feet (1,829 to 2,134 meters)

Mean annual precipitation: 10 to 13 inches (254 to 330 millimeters)
Average annual air temperature: 49 to 53 degrees F (9 to 12 degrees C)
Frost-free period: 120 to 140 days

Map Unit Composition

Monpark and similar soils: 80 percent
Minor components: 20 percent

Component Descriptions

Monpark soils

Geomorphic position: Hills and valley sides
Parent material: Slope alluvium over residuum derived from shale
Slope: 2 to 8 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (paralithic)
Drainage class: Well drained
Slowest permeability: About $0.03 \mathrm{in} / \mathrm{hr}$ (very slow)
Available water capacity: About 4.1 inches (low)
Shrink-swell potential: About 7.5 LEP (high)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: High
Calcium carbonate maximum: About 10 percent
Gypsum maximum: None
Salinity maximum: About 4 mmhos/cm (very slightly saline)
Sodicity maximum: About 5 SAR (slightly sodic)
Ecological site: Clayey
Present native vegetation: western wheatgrass, alkali sacaton, blue grama, galleta, Indian ricegrass, fourwing saltbush, winterfat, bottlebrush squirreltail, rabbitbrush, broom snakeweed
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 4CK
Typical Profile:
A-0 to 4 inches; silty clay
BC-4 to 7 inches; silty clay
2BCss-7 to 27 inches; clay
$2 \mathrm{Cr}-27$ inches; shale

Minor Components

Tekapo and similar soils
Composition: About 5 percent
Slope: 2 to 8 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (paralithic)
Drainage class: Well drained
Ecological site: Shale Hills

Rizno and similar soils
Composition: About 5 percent
Slope: 2 to 8 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)
Drainage class: Somewhat excessively drained
Ecological site: Shallow Sandstone
Venadito and similar soils
Composition: About 5 percent
Slope: 2 to 8 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained Ecological site: Clayey Bottomland

Aquima and similar soils
Composition: About 5 percent
Slope: 2 to 8 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Loamy

365-Vessilla-Rock outcrop complex, 2 to 15 percent slopes

Map Unit Setting

MLRA: 36
Elevation: 6,500 to 8,000 feet (1,981 to 2,469 meters)
Mean annual precipitation: 13 to 14 inches (330 to 356 millimeters)
Average annual air temperature: 46 to 49 degrees F (8 to 9 degrees C)
Frost-free period: 100 to 135 days

Map Unit Composition

Vessilla and similar soils: 55 percent
Rock outcrop: 35 percent
Minor components: 10 percent

Component Descriptions

Vessilla soils

Geomorphic position: Summits on mesas and dipslopes on cuestas
Parent material: Eolian material derived from sandstone
Slope: 2 to 15 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)
Drainage class: Well drained
Slowest permeability: About $2.00 \mathrm{in} / \mathrm{hr}$ (moderately rapid)

Available water capacity: About 2.1 inches (very low)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Medium
Calcium carbonate maximum: About 15 percent
Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Pinyon-Juniper Forest
Present native vegetation: Bigelow's sagebrush, blue grama, fourwing saltbush, Indian ricegrass, New Mexico feathergrass, galleta, little bluestem, sideoats grama, winterfat, cliffrose, Mormon tea, oneseed juniper, twoneedle pinyon
Land capability (nonirrigated): 7s
Conservation Tree/Shrub Group: 10
Typical Profile:
A-0 to 2 inches; fine sandy loam
Ck1-2 to 6 inches; fine sandy loam
Ck2-6 to 15 inches; fine sandy loam R-15 to 20 inches; sandstone bedrock

Rock outcrop

Rock outcrop consists of barren or nearly barren areas of exposed sandstone and shale on ridges, ledges, and escarpments.

Minor Components

Arabrab and similar soils
Composition: About 5 percent
Slope: 2 to 8 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Pinyon-Juniper Forest
Evpark and similar soils
Composition: About 3 percent
Slope: 2 to 8 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Pinyon-Juniper Forest
Parkelei and similar soils
Composition: About 2 percent
Slope: 2 to 8 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Pinyon-Juniper Forest

366-Bosonoak loam, 1 to 5 percent slopes

Map Unit Setting

MLRA:
Elevation: 6,500 to 7,000 feet (1,981 to 2,134 meters)
Mean annual precipitation: 13 to 16 inches (330 to 406 millimeters)
Average annual air temperature: 46 to 49 degrees F (8 to 9 degrees C)
Frost-free period: 100 to 135 days

Map Unit Composition

Bosonoak and similar soils: 95 percent
Minor components: 5 percent

Component Descriptions

Bosonoak soils

Geomorphic position: Fan remnants on valley sides and drainageways
Parent material: Fan alluvium derived from siltstone and shale
Slope: 1 to 5 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Slowest permeability: About $0.20 \mathrm{in} / \mathrm{hr}$ (moderately slow)
Available water capacity: About 10.8 inches (high)
Shrink-swell potential: About 2.0 LEP (low)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Medium
Calcium carbonate maximum: About 10 percent
Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Loamy
Present native vegetation: western wheatgrass, Indian
ricegrass, big sagebrush, blue grama, galleta, winterfat, rubber rabbitbrush, oneseed juniper, twoneedle pinyon
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 4C
Typical Profile:
A—0 to 2 inches; loam
Bt-2 to 5 inches; clay loam
Btk1-5 to 28 inches; clay loam
Btk2—28 to 40 inches; loam
Btk3-40 to 63 inches; loam
Btk4-63 to 80 inches; silt loam

Minor Components

Royosa and similar soils
Composition: About 5 percent
Slope: 1 to 5 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Excessively drained
Ecological site: Sandy Plains

367-Chunkmonk very gravelly fine sandy loam, 2 to 10 percent slopes

Map Unit Setting

MLRA: 36
Elevation: 7,000 to 7,700 feet (2,134 to 2,347 meters)
Mean annual precipitation: 13 to 16 inches (330 to 406 millimeters)
Average annual air temperature: 46 to 49 degrees F (8 to 9 degrees C)
Frost-free period: 100 to 135 days

Map Unit Composition

Chunkmonk and similar soils: 85 percent
Minor components: 15 percent

Component Descriptions

Chunkmonk soils

Geomorphic position: Dipslopes on cuestas
Parent material: Eolian material and slope alluvium over residuum derived from sandstone and limestone
Slope: 2 to 10 percent
Surface fragments: About 50 percent
Depth to restrictive feature: 10 to 20 inches to bedrock (lithic)
Drainage class: Well drained
Slowest permeability: About $0.60 \mathrm{in} / \mathrm{hr}$ (moderate)
Available water capacity: About 1.3 inches (very low)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: High
Calcium carbonate maximum: About 40 percent
Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Pinyon-Juniper Forest
Present native vegetation: Gambel's oak, antelope bitterbrush, banana yucca, big sagebrush, blue grama, bottlebrush squirreltail, broom snakeweed, buckwheat, muttongrass, oneseed juniper, pingue hymenoxys, prairie junegrass, twoneedle pinyon

Land capability (nonirrigated): 7s
Conservation Tree/Shrub Group: 10

Typical Profile:

A-0 to 1 inches; very gravelly fine sandy loam
Btk1-1 to 4 inches; very cobbly loam
Btk2—4 to 8 inches; gravelly loam
Btk3-8 to 10 inches; gravelly loam
R-10 inches; limestone bedrock

Minor Components

Evpark and similar soils
Composition: About 10 percent
Slope: 2 to 6 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Pinyon-Juniper Forest
Losegate and similar soils
Composition: About 5 percent
Slope: 2 to 6 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Pinyon-Juniper Forest

368-Simitarq-Celavar sandy loams, 2 to 8 percent slopes

Map Unit Setting

MLRA: 36
Elevation: 7,200 to 8,100 feet (2,195 to 2,469 meters)
Mean annual precipitation: 13 to 16 inches (330 to 406 millimeters)
Average annual air temperature: 49 to 53 degrees F (9 to 12 degrees C)
Frost-free period: 115 to 135 days
Map Unit Composition
Simitarq and similar soils: 60 percent
Celavar and similar soils: 20 percent
Minor components: 20 percent

Component Descriptions

Simitarq soils

Geomorphic position: Summits on mesas and dipslopes on cuestas
Parent material: Eolian material and slope alluvium over residuum derived from sandstone
Slope: 2 to 8 percent

Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)
Drainage class: Well drained
Slowest permeability: About $0.20 \mathrm{in} / \mathrm{hr}$ (moderately slow)
Available water capacity: About 2.1 inches (very low)
Shrink-swell potential: About 7.5 LEP (high)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: High
Calcium carbonate maximum: About 5 percent
Gypsum maximum: None
Salinity maximum: About 0 mmhos/cm (nonsaline)
Sodicity maximum: None
Ecological site: Pinyon-Juniper Forest
Land capability (nonirrigated): 7s
Conservation Tree/Shrub Group: 10
Typical Profile:
A-0 to 1 inches; sandy loam
Bt1-1 to 6 inches; sandy clay loam
Bt2-6 to 14 inches; sandy clay R-14 inches; sandstone bedrock

Celavar soils

Geomorphic position: Summits on mesas and dipslopes on cuestas
Parent material: Eolian material and slope alluvium derived from sandstone and shale
Slope: 2 to 8 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Drainage class: Well drained
Slowest permeability: About $0.60 \mathrm{in} / \mathrm{hr}$ (moderate)
Available water capacity: About 4.3 inches (low)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Medium
Calcium carbonate maximum: About 5 percent
Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Pinyon-Juniper Forest
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 6D

Typical Profile:

$\mathrm{Oi}-0$ to 1 inches;
A-1 to 2 inches; sandy loam
Bt-2 to 11 inches; sandy clay loam Btk1-11 to 27 inches; sandy clay loam

Btk2—27 to 31 inches; sandy clay loam
R-31 inches; sandstone bedrock

Minor Components

Rock outcrop
Rock outcrop consists of barren or nearly barren areas of exposed sandstone and shale on ridges, ledges, and escarpments.

Fikel and similar soils
Composition: About 6 percent
Slope: 2 to 8 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Clayey
Tuces and similar soils
Composition: About 5 percent
Slope: 2 to 8 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (paralithic)
Drainage class: Well drained
Ecological site: Pinyon-Juniper Forest

375-Todest-Shadilto complex, 2 to 8 percent slopes

Map Unit Setting

MLRA: 36
Elevation: 7,000 to 7,700 feet (2,134 to 2,347 meters)
Mean annual precipitation: 13 to 16 inches (330 to 406 millimeters)
Average annual air temperature: 49 to 53 degrees F (9 to 12 degrees C)
Frost-free period: 115 to 135 days

Map Unit Composition

Todest and similar soils: 60 percent
Shadilto and similar soils: 25 percent
Minor components: 15 percent

Component Descriptions

Todest soils

Geomorphic position: Dipslopes on cuestas
Parent material: Eolian material and slope alluvium derived from limestone and sandstone
Slope: 2 to 8 percent
Surface fragments: About 55 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Drainage class: Well drained
Slowest permeability: About $0.60 \mathrm{in} / \mathrm{hr}$ (moderate)

Available water capacity: About 3.8 inches (low)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Medium
Calcium carbonate maximum: About 80 percent
Gypsum maximum: None
Salinity maximum: About 0 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Savannah
Present native vegetation: blue grama, western wheatgrass, Indian ricegrass, needleandthread, oneseed juniper, sand dropseed, twoneedle pinyon, muttongrass, rabbitbrush, winterfat, Bigelow's sagebrush, bottlebrush squirreltail, spineless horsebrush
Land capability (nonirrigated): 6e
Conservation Tree/Shrub Group: 6DK

Typical Profile:

A-0 to 1 inches; fine sandy loam
BAt-1 to 3 inches; fine sandy loam
Btk1-3 to 10 inches; sandy clay loam
Btk2-10 to 18 inches; sandy clay loam
Bk-18 to 25 inches; loam
2R-25 inches; limestone bedrock

Shadilto soils

Geomorphic position: Dipslopes on cuestas
Parent material: Eolian material over residuum derived from limestone and sandstone
Slope: 2 to 8 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)
Drainage class: Somewhat excessively drained
Slowest permeability: About $2.00 \mathrm{in} / \mathrm{hr}$ (moderately rapid)
Available water capacity: About 1.6 inches (very low)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: High
Calcium carbonate maximum: About 80 percent Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Shallow
Present native vegetation: New Mexico feathergrass, blue grama, sideoats grama, Indian ricegrass, bottlebrush squirreltail, little bluestem, western wheatgrass, galleta, sand dropseed, threeawn, oneseed juniper, twoneedle pinyon

Land capability (nonirrigated): 7e
Conservation Tree/Shrub Group: 10

Typical Profile:

A-0 to 1 inches; very gravelly sandy loam
Bk1-1 to 9 inches; sandy loam
Bk2-9 to 13 inches; sandy loam
Bk3-13 to 15 inches; sandy loam
R-15 inches; limestone bedrock

Minor Components

Flugle and similar soils
Composition: About 5 percent
Slope: 2 to 8 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Loamy
Evpark and similar soils
Composition: About 5 percent
Slope: 2 to 8 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Loamy
Arabrab and similar soils
Composition: About 5 percent
Slope: 2 to 6 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Shallow Sandstone

376-Todest fine sandy loam, 2 to 8 percent slopes

Map Unit Setting

MLRA: 36
Elevation: 7,000 to 7,700 feet (2,134 to 2,347 meters)
Mean annual precipitation: 13 to 16 inches (330 to 406 millimeters)
Average annual air temperature: 49 to 53 degrees F (9 to 12 degrees C)
Frost-free period: 115 to 135 days

Map Unit Composition

Todest and similar soils: 80 percent
Minor components: 20 percent

Component Descriptions

Todest soils

Geomorphic position: Dipslopes on cuestas
Parent material: Eolian material and slope alluvium derived from limestone and sandstone
Slope: 2 to 8 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Drainage class: Well drained
Slowest permeability: About $0.60 \mathrm{in} / \mathrm{hr}$ (moderate)
Available water capacity: About 3.4 inches (low)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Medium
Calcium carbonate maximum: About 80 percent
Gypsum maximum: None
Salinity maximum: About 0 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Savannah
Present native vegetation: blue grama, western wheatgrass, Indian ricegrass, needleandthread, oneseed juniper, sand dropseed, twoneedle pinyon, muttongrass, rabbitbrush, winterfat, Bigelow's sagebrush, bottlebrush squirreltail, spineless horsebrush
Land capability (nonirrigated): 6e
Conservation Tree/Shrub Group: 6KK
Typical Profile:
A-0 to 1 inches; fine sandy loam
Btk1-1 to 8 inches; sandy clay loam
Btk2—8 to 14 inches; sandy clay loam
Bk-14 to 24 inches; cobbly sandy clay loam
2R-24 inches; limestone bedrock

Minor Components

Shadilto and similar soils
Composition: About 10 percent
Slope: 2 to 8 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)
Drainage class: Somewhat excessively drained Ecological site: Shallow

Celavar and similar soils
Composition: About 5 percent
Slope: 2 to 8 percent

Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Savannah
Atarque and similar soils
Composition: About 5 percent
Slope: 2 to 8 percent
Depth to restrictive feature: 10 to 20 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Shallow Sandstone

380-Berryhill-Casamero clays, 2 to 10 percent slopes

Map Unit Setting

MLRA: 36
Elevation: 7,000 to 7,800 feet (2,134 to 2,377 meters)
Mean annual precipitation: 10 to 13 inches (254 to 330 millimeters)
Average annual air temperature: 49 to 53 degrees F (9 to 12 degrees C)
Frost-free period: 120 to 140 days
Map Unit Composition
Berryhill and similar soils: 50 percent
Casamero and similar soils: 45 percent
Minor components: 5 percent
Component Descriptions

Berryhill soils

Geomorphic position: Depressions on valley floors, sideslopes on hills, and valley sides
Parent material: Slope alluvium derived from shale
Slope: 2 to 8 percent
Depth to restrictive feature: None within 60 inches Drainage class: Well drained
Slowest permeability: About 0.01 in/hr (very slow)
Available water capacity: About 8.3 inches (moderate)
Shrink-swell potential: About 7.5 LEP (high)
Flooding hazard: None
Ponding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Very high
Calcium carbonate maximum: About 10 percent
Gypsum maximum: About 35 percent
Salinity maximum: About 8 mmhos/cm (slightly saline)
Sodicity maximum: About 8 SAR (slightly sodic)

Ecological site: Clayey
Present native vegetation: western wheatgrass, alkali
sacaton, blue grama, galleta, Indian ricegrass,
fourwing saltbush, winterfat, bottlebrush
squirreltail, rabbitbrush, broom snakeweed
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 4CC
Typical Profile:
A-0 to 2 inches; clay
Bw-2 to 12 inches; clay
Bssyz1-12 to 26 inches; clay
Bssyz2-26 to 39 inches; clay Bssyz3-39 to 70 inches; clay

Casamero soils

Geomorphic position: Sideslopes on hills and valley sides
Parent material: Slope alluvium over residuum derived from shale
Slope: 2 to 10 percent
Depth to restrictive feature: 10 to 20 inches to bedrock (paralithic)
Drainage class: Well drained
Slowest permeability: About 0.01 in/hr (very slow)
Available water capacity: About 2.5 inches (very low)
Shrink-swell potential: About 7.5 LEP (high)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Very high
Calcium carbonate maximum: About 10 percent
Gypsum maximum: About 5 percent
Salinity maximum: About 8 mmhos/cm (slightly saline)
Sodicity maximum: About 5 SAR (slightly sodic)
Ecological site: Clayey
Present native vegetation: western wheatgrass, alkali sacaton, blue grama, galleta, Indian ricegrass, fourwing saltbush, winterfat, bottlebrush squirreltail, rabbitbrush, broom snakeweed
Land capability (nonirrigated): 7s
Conservation Tree/Shrub Group: 10
Typical Profile:
A-0 to 3 inches; clay Bss-3 to 11 inches; clay Bssyz-11 to 18 inches; clay Cr-18 inches; shale

Minor Components

Marianolake and similar soils Composition: About 3 percent Slope: 2 to 8 percent

Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Loamy
Rock outcrop
Composition: About 2 percent
Rock outcrop consists of barren or nearly barren areas of exposed sandstone and shale on ridges, ledges, and escarpments.

385-Mcorreon-Rock outcrop complex, 10 to 40 percent slopes

Map Unit Setting

MLRA: 36
Elevation: 6,500 to 8,600 feet (1,981 to 2,621 meters)
Mean annual precipitation: 13 to 16 inches (330 to 406 millimeters)
Average annual air temperature: 47 to 53 degrees F (8 to 12 degrees C)
Frost-free period: 100 to 135 days

Map Unit Composition

Mcorreon and similar soils: 65 percent
Rock outcrop: 20 percent
Minor components: 15 percent

Component Descriptions

Mcorreon soils

Geomorphic position: Escarpments on lava plateaus
Parent material: Eolian material and slope alluvium over residuum derived from basalt
Slope: 10 to 40 percent
Surface fragments: About 80 percent
Depth to restrictive feature: Greater than 60 inches to bedrock
Drainage class: Well drained
Slowest permeability: About $0.06 \mathrm{in} / \mathrm{hr}$ (slow)
Available water capacity: About 8.4 inches (moderate)
Shrink-swell potential: About 7.5 LEP (high)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Very high
Calcium carbonate maximum: About 50 percent
Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 1 SAR (slightly sodic)
Ecological site: Pinyon-Juniper Forest
Land capability (nonirrigated): 7e
Conservation Tree/Shrub Group: 4C

Typical Profile:
A-0 to 2 inches; extremely cobbly loam
Bt1-2 to 5 inches; clay loam
Bt2-5 to 16 inches; clay
Btk1-16 to 22 inches; clay
Btk2—22 to 70 inches; clay
R-70 inches; basalt bedrock

Rock outcrop

Rock outcrop consists of barren or nearly barren areas of exposed sandstone and shale on ridges, ledges, and escarpments.

Minor Components

Flugle and similar soils
Composition: About 5 percent
Slope: 5 to 8 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Pinyon-Juniper Forest
Cabezon and similar soils
Composition: About 5 percent
Slope: 5 to 8 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Pinyon-Juniper Forest
Toldohn and similar soils
Composition: About 3 percent
Slope: 10 to 40 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (paralithic)
Drainage class: Well drained
Ecological site: Pinyon-Juniper Forest
Vessilla and similar soils
Composition: About 2 percent
Slope: 2 to 15 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)
Drainage class: Somewhat excessively drained
Ecological site: Shallow Sandstone

390-Banquito very fine sandy loam, 1 to 3 percent slopes

Map Unit Setting

MLRA: 36
Elevation: 7,200 to 7,800 feet (2,195 to 2,377 meters)
Mean annual precipitation: 13 to 16 inches (330 to 406 millimeters)

Average annual air temperature: 47 to 53 degrees F (8 to 12 degrees C)
Frost-free period: 100 to 135 days

Map Unit Composition

Banquito and similar soils: 90 percent
Minor components: 10 percent

Component Descriptions

Banquito soils

Geomorphic position: Lava plateaus
Parent material: Eolian material and slope alluvium over residuum derived from basalt
Slope: 1 to 3 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Drainage class: Well drained
Slowest permeability: About $0.20 \mathrm{in} / \mathrm{hr}$ (moderately slow)
Available water capacity: About 5.5 inches (low)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Medium
Calcium carbonate maximum: About 55 percent
Gypsum maximum: None
Salinity maximum: About $2 \mathrm{mmhos} / \mathrm{cm}$ (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Limy
Present native vegetation: western wheatgrass, blue grama, needleandthread, winterfat, Indian ricegrass, bottlebrush squirreltail, fourwing saltbush, twoneedle pinyon, broom snakeweed, oneseed juniper, rabbitbrush, spineless horsebrush
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 6DK
Typical Profile:
A-0 to 2 inches; very fine sandy loam
Btk1-2 to 9 inches; clay loam
Btk2-9 to 17 inches; loam
Bk1-17 to 22 inches; sandy clay loam
Bk2-22 to 36 inches; sandy loam
2R-36 inches; basalt bedrock

Minor Components

Flugle and similar soils
Composition: About 10 percent
Slope: 1 to 3 percent

Depth to restrictive feature: None within 60 inches Drainage class: Well drained Ecological site: Loamy

395-Cabezon-Mcorreon complex, 2 to 8 percent slopes

Map Unit Setting

MLRA: 36
Elevation: 6,800 to 8,000 feet (2,073 to 2,438 meters)
Mean annual precipitation: 14 to 16 inches (356 to 406 millimeters)
Average annual air temperature: 47 to 53 degrees F (8 to 12 degrees C)
Frost-free period: 100 to 135 days

Map Unit Composition

Cabezon and similar soils: 60 percent Mcorreon and similar soils: 30 percent Minor components: 10 percent

Component Descriptions

Cabezon soils

Geomorphic position: Summits on lava plateaus
Parent material: Eolian material over residuum from basalt
Slope: 2 to 8 percent
Surface fragments: About 50 percent
Depth to restrictive feature: 10 to 20 inches to bedrock (lithic)
Drainage class: Well drained
Slowest permeability: About $0.06 \mathrm{in} / \mathrm{hr}$ (slow)
Available water capacity: About 2.1 inches (very low)
Shrink-swell potential: About 7.5 LEP (high)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Very high
Calcium carbonate maximum: About 0 percent
Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 1 SAR (slightly sodic)
Ecological site: Pinyon-Juniper Forest
Land capability (nonirrigated): 7s
Conservation Tree/Shrub Group: 10
Typical Profile:
A-0 to 2 inches; very cobbly loam Bt1-2 to 6 inches; clay loam

Bt2-6 to 14 inches; clay
Crk-14 to 17 inches; weathered bedrock
R—17 inches; basalt bedrock

Mcorreon soils

Geomorphic position: Summits on lava plateaus
Parent material: Eolian material and slope alluvium over residuum derived from basalt
Slope: 2 to 8 percent
Depth to restrictive feature: Greater than 60 inches to bedrock
Drainage class: Well drained
Slowest permeability: About 0.06 in/hr (slow)
Available water capacity: About 10.4 inches (high)
Shrink-swell potential: About 4.5 LEP (moderate)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Very high
Calcium carbonate maximum: About 50 percent
Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 1 SAR (slightly sodic)
Ecological site: Pinyon-Juniper Forest
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 4C
Typical Profile:
A-0 to 2 inches; loam
Bt1-2 to 13 inches; clay
Bt2-13 to 19 inches; clay
Btk—19 to 27 inches; clay loam
Bk-27 to 70 inches; clay loam
R—70 inches; basalt bedrock

Minor Components

Rock outcrop
Composition: About 5 percent
Rock outcrop consists of barren or nearly barren areas of exposed sandstone and shale on ridges, ledges, and escarpments.

Banquito and similar soils
Composition: About 5 percent
Slope: 2 to 8 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Limy

400—Shoemaker-Stozuni complex, 2 to 8 percent slopes

Map Unit Setting
MLRA: 39
Elevation: 7,000 to 7,600 feet (2,134 to 2,303 meters)
Mean annual precipitation: 16 to 20 inches (406 to 508 millimeters)
Average annual air temperature: 40 to 45 degrees F (4 to 7 degrees C)
Frost-free period: 90 to 110 days
\section*{Map Unit Composition}
Shoemaker and similar soils: 45 percent
Stozuni and similar soils: 35 percent
Minor components: 20 percent

Component Descriptions

Shoemaker soils

Geomorphic position: Summits on mesas and dipslopes on cuestas
Parent material: Eolian and slope alluvium derived from sandstone and shale
Slope: 2 to 8 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Drainage class: Moderately well drained
Slowest permeability: About $0.60 \mathrm{in} / \mathrm{hr}$ (moderate)
Available water capacity: About 4.1 inches (low)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: High
Calcium carbonate maximum: None
Gypsum maximum: None
Salinity maximum: About 0 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Ponderosa Pine Forest
Present native vegetation: Arizona fescue, Gambel's oak, blue grama, bottlebrush squirreltail, mountain muhly, muttongrass, prairie junegrass
Land capability (nonirrigated): 6e
Conservation Tree/Shrub Group: 6D
Typical Profile:
A-0 to 2 inches; loamy fine sand

Bt1-2 to 7 inches; fine sandy loam Bt2—7 to 20 inches; sandy clay loam Bt3-20 to 28 inches; sandy clay loam 2R-28 inches; sandstone bedrock

Stozuni soils

Geomorphic position: Summits on mesas and dipslopes on cuestas
Parent material: Eolian material and slope alluviim derived from sandstone
Slope: 2 to 8 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)
Drainage class: Somewhat excessively drained Slowest permeability: About $2.00 \mathrm{in} / \mathrm{hr}$ (moderately rapid)
Available water capacity: About 2.1 inches (very low)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Very high
Calcium carbonate maximum: None
Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Ponderosa Pine Forest
Present native vegetation: Arizona fescue, Gambel's
oak, blue grama, bottlebrush squirreltail, mountain
muhly, muttongrass, prairie junegrass
Land capability (nonirrigated): 7s
Conservation Tree/Shrub Group: 10
Typical Profile:
A-0 to 2 inches; sandy loam
C1-2 to 10 inches; fine sandy loam
C2-10 to 15 inches; fine sandy loam
2R-15 inches; sandstone bedrock

Minor Components

Rock outcrop
Composition: About 5 percent
Rock outcrop consists of barren or nearly barren areas of exposed sandstone and shale on ridges, ledges, and escarpments.

Knifehill and similar soils
Composition: About 5 percent
Slope: 1 to 5 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Meadow

Zunalei and similar soils
Composition: About 5 percent
Slope: 2 to 8 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Ponderosa Forest
Valnor and similar soils
Composition: About 5 percent
Slope: 2 to 8 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (paralithic)
Drainage class: Well drained
Ecological site: Ponderosa Forest

403-Valnor-Techado complex, 2 to 25 percent slopes

Map Unit Setting

MLRA: 39
Elevation: 7,100 to 7,800 feet (2,164 to 2,377 meters)
Mean annual precipitation: 16 to 20 inches (406 to 508 millimeters)
Average annual air temperature: 40 to 45 degrees F (4 to 7 degrees C)
Frost-free period: 90 to 110 days

Map Unit Composition

Valnor and similar soils: 50 percent
Techado and similar soils: 30 percent
Minor components: 20 percent

Component Descriptions

Valnor soils

Geomorphic position: Sideslopes on hills and ridges
Parent material: Slope alluvium derived from shale
Slope: 2 to 15 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (paralithic)
Drainage class: Well drained
Slowest permeability: About $0.06 \mathrm{in} / \mathrm{hr}$ (slow)
Available water capacity: About 5.3 inches (low)
Shrink-swell potential: About 7.5 LEP (high)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Very high
Calcium carbonate maximum: About 5 percent
Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)

Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Ponderosa Pine Forest
Present native vegetation: Arizona fescue, Gambel's oak, blue grama, bottlebrush squirreltail, buckwheat, mountainmahogany, mountain muhly, muttongrass, rabbitbrush
Land capability (nonirrigated): 6e
Conservation Tree/Shrub Group: 4C

Typical Profile:
A-0 to 2 inches; clay loam
Bw-2 to 4 inches; clay loam
Bt-4 to 20 inches; clay
2Ck-20 to 34 inches; clay
2Cr-34 inches; shale

Techado soils

Geomorphic position: Sideslopes on hills and ridges
Parent material: Slope alluvium and colluvium over residuum derived from shale
Slope: 5 to 25 percent
Surface fragments: About 25 percent
Depth to restrictive feature: 10 to 20 inches to bedrock (paralithic)
Drainage class: Well drained
Slowest permeability: About $0.06 \mathrm{in} / \mathrm{hr}$ (slow)
Available water capacity: About 1.9 inches (very low)
Shrink-swell potential: About 7.5 LEP (high)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Very high
Calcium carbonate maximum: None
Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 1 SAR (slightly sodic)
Ecological site: Ponderosa Pine Forest
Present native vegetation: Arizona fescue, Gambel's oak, blue grama, bottlebrush squirreltail, buckwheat, mountainmahogany, mountain muhly, muttongrass, rabbitbrush
Land capability (nonirrigated): 7s
Conservation Tree/Shrub Group: 10

Typical Profile:

A-0 to 3 inches; gravelly clay
2C-3 to 13 inches; clay
$2 \mathrm{Cr}-13$ inches; shale

Minor Components

Zunalei and similar soils
Composition: About 5 percent
Slope: 2 to 8 percent

Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Ponderosa Pine Forest
Knifehill and similar soils
Composition: About 5 percent
Slope: 1 to 5 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Meadow
Shoemaker and similar soils
Composition: About 5 percent
Slope: 2 to 8 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Drainage class: Moderately well drained
Ecological site: Ponderosa Pine Forest
Stozuni and similar soils
Composition: About 5 percent
Slope: 2 to 8 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)
Drainage class: Somewhat excessively drained
Ecological site: Ponderosa Pine Forest

404-Rock outcrop-Techado-Stozuni complex, 5 to 60 percent slopes

Map Unit Setting
Elevation: 6,600 to 8,000 feet (2,012 to 2,438 meters)
Mean annual precipitation: 16 to 20 inches (406 to 508 millimeters)
Mean annual air temperature: 40 to 45 degrees F (4.4 to 7.0 degrees C)
Frost-free period: 90 to 110 days

Map Unit Composition

Rock outcrop: 35 percent
Techado and similar soils: 35 percent
Stozuni and similar soils: 25 percent
Minor components: 5 percent
Component Descriptions

Rock outcrop

Rock outcrop consists of barren or nearly barren areas of exposed sandstone and shale. Slopes range from about 5 to 15 percent on treads (structural benches) to almost vertical cliffs on the risers (escarpment face).

Techado soils

Landform: Sideslopes on hills and ridges, and escarpments on cuestas and mesas
Parent material: Slope alluvium and colluvium over residuum derived from shale
Slope: 5 to 60 percent
Surface fragments: About 15 percent
Depth to restrictive feature: 10 to 20 inches to bedrock (paralithic)
Drainage class: Well drained
Slowest permeability: . 06 to $0.2 \mathrm{in} / \mathrm{hr}$ (slow)
Available water capacity: About 2.6 inches (very low)
Shrink-swell potential: About 7.5 percent (high)
Runoff class: Very high
Calcium carbonate maximum: None
Gypsum maximum: None
Salinity maximum: About $2 \mathrm{mmhos} / \mathrm{cm}$ (nonsaline)
Sodium adsorption ratio maximum: About 1 (slightly sodic)
Ecological site: Ponderosa Pine Forest
Potential native vegetation:
Common trees: alligator juniper, Rocky Mountain juniper, Gambel oak, twoneedle pinyon, ponderosa pine, Douglas-fir
Other plants: Arizona fescue, Gambel oak, blue grama, bottlebrush squirreltail, buckwheat, mountainmahogany, mountain muhly, muttongrass, rabbitbrush
Land capability subclass (nonirrigated): 8
Typical Profile:
A-0 to 5 inches; channery clay loam
C1-5 to 8 inches; clay
C2-8 to 17 inches; clay
2R-17 to 20 inches; weathered bedrock

Stozuni soils

Landform: Summits on hills and ridges and structural benches on escarpments
Parent material: Eolian material and slope alluvium derived from sandstone
Slope: 5 to 15 percent
Surface fragments: About 25 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)
Drainage class: Somewhat excessively drained
Slowest permeability: 2.0 to $6.0 \mathrm{in} / \mathrm{hr}$ (moderately rapid)
Available water capacity: About 0.7 inches (very low)
Shrink-swell potential: About 1.5 percent (low)
Runoff class: Medium
Calcium carbonate maximum: About 1 percent
Gypsum maximum: None

Salinity maximum: About 0 mmhos/cm (nonsaline)
Sodium adsorption ratio maximum: About 0 (nonsodic)
Ecological site: Ponderosa Pine Forest
Potential native vegetation:
Common trees: Rocky Mountain juniper, alligator juniper, twoneedle pinyon, Gambel oak, ponderosa pine, Douglas-fir
Other plants: Arizona fescue, Gambel oak, blue grama, bottlebrush squirreltail, buckwheat, mountainmahogany, mountain muhly, muttongrass, rabbitbrush
Land capability subclass (nonirrigated): 7s
Typical Profile:
A-0 to 1 inch; gravelly sandy loam
C-1 inch to 7 inches; gravelly sandy loam
$\mathrm{R}-7$ to 20 inches; unweathered bedrock

Minor Components

Valnor and similar soils
Composition: About 3 percent
Slope: 2 to 15 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (paralithic)
Drainage class: Well drained
Ecological site: Ponderosa Pine Forest
Asaayi and similar soils
Composition: About 2 percent
Slope: 2 to 15 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Ponderosa Pine Forest

405—Fortwingate-OwIrock complex, 2 to 8 percent slopes

Map Unit Setting

MLRA: 39

Elevation: 7,200 to 8,200 feet (2,195 to 2,499 meters)
Mean annual precipitation: 16 to 20 inches (406 to 508 millimeters)
Average annual air temperature: 40 to 45 degrees F (4 to 7 degrees C)
Frost-free period: 90 to 110 days

Map Unit Composition

Fortwingate and similar soils: 50 percent
Owlrock and similar soils: 35 percent
Minor components: 15 percent

Component Descriptions

Fortwingate soils

Geomorphic position: Dipslopes on cuestas
Parent material: Slope alluvium over residuum derived from sandstone, shale, and dolomitic limestone
Slope: 2 to 8 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Drainage class: Well drained
Slowest permeability: About $0.06 \mathrm{in} / \mathrm{hr}$ (slow)
Available water capacity: About 3.6 inches (low)
Shrink-swell potential: About 7.5 LEP (high)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Very high
Calcium carbonate maximum: None
Gypsum maximum: None
Salinity maximum: About 0 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Ponderosa Pine Forest
Present native vegetation: Arizona fescue, Gambel's oak, Kentucky bluegrass, Rocky Mountain juniper, antelope bitterbrush, blue grama, bottlebrush squirreltail, mountain muhly, muttongrass, pine dropseed, prairie junegrass, twoneedle pinyon
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 4C

Typical Profile:

$\mathrm{Oi}-0$ to 1 inches; slightly decomposed plant material
A-1 to 4 inches; loam
Bt-4 to 9 inches; clay loam
Btss-9 to 26 inches; clay
2R-26 inches; sandstone and limestone bedrock

OwIrock soils

Geomorphic position: Dipslopes on cuestas
Parent material: Residuum derived from dolomitic limestone
Slope: 2 to 8 percent
Surface fragments: About 55 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)
Drainage class: Well drained
Slowest permeability: About $0.60 \mathrm{in} / \mathrm{hr}$ (moderate)
Available water capacity: About 1.7 inches (very low)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet

Runoff class: High
Calcium carbonate maximum: About 20 percent
Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Ponderosa Pine Forest
Present native vegetation: Arizona fescue, Gambel's oak, Rocky Mountain juniper, barberry, blue grama, bottlebrush squirreltail, buckwheat, little bluestem, mountain muhly, muttongrass, sideoats grama
Land capability (nonirrigated): 7s
Conservation Tree/Shrub Group: 10
Typical Profile:
A-0 to 1 inches; very gravelly loam
Btk1-1 to 6 inches; very cobbly loam
Btk2-6 to 13 inches; very cobbly loam
R-13 inches; limestone bedrock

Minor Components

Rock outcrop
Composition: About 5 percent
Rock outcrop consists of barren or nearly barren areas of exposed sandstone and shale on ridges, ledges, and escarpments.

Asaayi and similar soils
Composition: About 5 percent
Slope: 2 to 8 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Ponderosa Pine Forest
Osoridge and similar soils
Composition: About 5 percent
Slope: 2 to 8 percent
Depth to restrictive feature: 10 to 20 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Ponderosa Pine Forest

406—Polich silt loam, 0 to 3 percent slopes

Map Unit Setting

MLRA: 39
Elevation: 7,600 to 8,000 feet (2,316 to 2,438 meters)
Mean annual precipitation: 16 to 20 inches (406 to 508 millimeters)
Average annual air temperature: 40 to 45 degrees F (4 to 7 degrees C)
Frost-free period: 90 to 110 days

Figure 10.-Typical landscape of Polich silt loam, 0 to 3 percent slopes. These soils have a seasonally high water table and provide good livestock grazing. In the background is the Cinnadale-Heckly association, 5 to 40 percent slopes.

Map Unit Composition

Polich and similar soils: 90 percent Minor components: 10 percent

Component Descriptions

Polich soils

Geomorphic position: Flood plains on valley floors (fig. 10)
Parent material: Stream alluvium derived from sandstone, granite, and limestone
Slope: 0 to 3 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Somewhat poorly drained
Slowest permeability: About $0.06 \mathrm{in} / \mathrm{hr}$ (moderately slow)
Available water capacity: About 11.5 inches (high)
Shrink-swell potential: About 4.5 LEP (moderate)
Flooding hazard: Frequent
Seasonal water table minimum depth: About 33 inches Runoff class: Low
Calcium carbonate maximum: About 15 percent Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Meadow
Present native vegetation: redtop, sedge, Rocky
Mountain iris, bottlebrush squirreltail, muttongrass,
plantain, Kentucky bluegrass, rush, western wheatgrass, clover, smooth brome, western yarrow
Land capability (nonirrigated): 4 w
Conservation Tree/Shrub Group: 2
Typical Profile:
A-0 to 13 inches; silt loam
Bw-13 to 23 inches; loam
Bk1-23 to 40 inches; clay loam
Bk2-40 to 48 inches; clay loam
2BCk1-48 to 58 inches; clay loam
2BCk2-58 to 70 inches; loam

Minor Components

Robolata and similar soils
Composition: About 5 percent
Slope: 0 to 3 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Mountain Grassland
Ligocki and similar soils
Composition: About 5 percent
Slope: 1 to 3 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Ponderosa Pine Forest

407-Cinnadale-Heckly association, 5 to 40 percent slopes

Map Unit Setting

MLRA: 39
Elevation: 7,800 to 8,200 feet (2,377 to 2,499 meters)
Mean annual precipitation: 16 to 20 inches (406 to 508 millimeters)
Average annual air temperature: 40 to 45 degrees F (4 to 7 degrees C)
Frost-free period: 90 to 110 days

Map Unit Composition

Cinnadale and similar soils: 50 percent
Heckly and similar soils: 35 percent
Minor components: 15 percent

Component Descriptions

Cinnadale soils

Geomorphic position: Summits on hills and ridges
Parent material: Slope alluvium over residuum derived from sandstone
Slope: 5 to 15 percent
Surface fragments: About 45 percent gravel
Depth to restrictive feature: 10 to 20 inches to bedrock (lithic)
Drainage class: Well drained
Slowest permeability: About $2.00 \mathrm{in} / \mathrm{hr}$ (moderately rapid)
Available water capacity: About 1.4 inches (very low)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Medium
Calcium carbonate maximum: None
Gypsum maximum: None
Salinity maximum: About 0 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Ponderosa Pine Forest
Present native vegetation: Arizona fescue, Fendler's ceanothus, blue grama, bottlebrush squirreltail, mountain muhly, muttongrass, pine dropseed, prairie junegrass, yucca
Land capability (nonirrigated): 7s
Conservation Tree/Shrub Group: 10

Typical Profile:

A-0 to 2 inches; very channery fine sandy loam Bw1-2 to 9 inches; very channery fine sandy loam

Bw2-9 to 15 inches; very channery fine sandy loam
R-15 inches; sandstone bedrock

Heckly soils

Geomorphic position: Sideslopes on hills and ridges
Parent material: Slope alluvium over residuum derived from sandstone and siltstone
Slope: 5 to 40 percent
Surface fragments: About 65 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Drainage class: Well drained
Slowest permeability: About 0.06 in/hr (slow)
Available water capacity: About 5.2 inches (low)
Shrink-swell potential: About 4.5 LEP (moderate)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Very high
Calcium carbonate maximum: None
Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Ponderosa Pine Forest
Present native vegetation: Arizona fescue, Gambel's oak, blue grama, bottlebrush squirreltail, mountain muhly, muttongrass, pine dropseed, pingue hymenoxys
Land capability (nonirrigated): 7e
Conservation Tree/Shrub Group: 4C
Typical Profile:
A-0 to 3 inches; extremely channery sandy loam
Bt1-3 to 15 inches; channery clay
Bt2—15 to 38 inches; very channery silty clay loam
R-38 inches; shale and siltstone

Minor Components

Rock outcrop
Composition: About 5 percent
Rock outcrop consists of barren or nearly barren areas of exposed sandstone and shale on ridges, ledges, and escarpments

Asaayi and similar soils
Composition: About 5 percent
Slope: 2 to 15 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Ponderosa Pine Forest

Osoridge and similar soils
Composition: About 5 percent
Slope: 2 to 15 percent
Depth to restrictive feature: 10 to 20 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Ponderosa Pine Forest

408-Mirabal-Zuni complex, 1 to 40 percent slopes

Map Unit Setting

MLRA: 39
Elevation: 7,800 to 8,200 feet (2,377 to 2,499 meters)
Mean annual precipitation: 16 to 20 inches (406 to 508 millimeters)
Average annual air temperature: 40 to 45 degrees F (4 to 7 degrees C)
Frost-free period: 90 to 110 days
Map Unit Composition
Mirabal and similar soils: 50 percent
Zuni and similar soils: 40 percent
Minor components: 10 percent

Component Descriptions

Mirabal soils

Geomorphic position: Sideslopes on mountains
Parent material: Colluvial material over residuum derived from gneissic granite
Slope: 5 to 40 percent
Surface fragments: About 90 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Drainage class: Well drained
Slowest permeability: About $2.00 \mathrm{in} / \mathrm{hr}$ (moderately rapid)
Available water capacity: About 1.6 inches (very low)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Medium
Calcium carbonate maximum: None
Gypsum maximum: None
Salinity maximum: About 0 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Ponderosa Forest
Present native vegetation: Arizona fescue, Fendler's ceanothus, Gambel's oak, bottlebrush squirreltail,
little bluestem, mountain muhly, muttongrass, pine dropseed
Land capability (nonirrigated): 7e
Conservation Tree/Shrub Group: 10
Typical Profile:
Oi-0 to 1 inches; slightly decomposed plant material
A-1 to 2 inches; extremely gravelly loamy sand
AC-2 to 6 inches; gravelly sandy loam
C1-6 to 13 inches; very gravelly sandy loam
C2-13 to 30 inches; extremely gravelly sandy loam
R-30 inches; gneissic-granite bedrock

Zuni soils

Geomorphic position: Summits on mountain
Parent material: Residuum derived from gneissic granite
Slope: 1 to 15 percent
Surface fragments: About 31 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Drainage class: Well drained
Slowest permeability: About $0.06 \mathrm{in} / \mathrm{hr}$ (slow)
Available water capacity: About 3.3 inches (low)
Shrink-swell potential: About 7.5 LEP (high)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: High
Calcium carbonate maximum: None
Gypsum maximum: None
Salinity maximum: About 0 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Ponderosa Pine Forest
Present native vegetation: Arizona fescue, Gambel's oak, blue grama, bottlebrush squirreltail, mountain muhly, muttongrass, pine dropseed
Land capability (nonirrigated): 6s
Conservation Tree/Shrub Group: 4C
Typical Profile:
$\mathrm{Oi}-0$ to 1 inches; slightly decomposed plant material
A-1 to 3 inches; gravelly sandy loam
Bt1-3 to 18 inches; gravelly sandy clay
Bt2-18 to 27 inches; gravelly sandy clay
R—27 inches; gneissic-granite bedrock

Minor Components

Rock outcrop
Composition: About 5 percent

Rock outcrop consists of barren or nearly barren areas of exposed sandstone and shale on ridges, ledges, and escarpments.

Asaayi and similar soils
Composition: About 5 percent
Slope: 1 to 15 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Ponderosa Pine Forest

409-Rauster-Rock outcrop complex, 5 to 35 percent slopes

Map Unit Setting

MLRA: 39
Elevation: 7,100 to 8,000 feet (2,164 to 2,438 meters)
Mean annual precipitation: 16 to 20 inches (406 to 508 millimeters)
Average annual air temperature: 40 to 45 degrees F (4 to 7 degrees C)
Frost-free period: 90 to 110 days

Map Unit Composition

Rauster and similar soils: 60 percent
Rock outcrop: 30 percent
Minor components: 10 percent

Component Descriptions

Rauster soils

Geomorphic position: Sideslopes of hills and ridges and escarpments on cuestas
Parent material: Slope alluvium over residuum derived from sandstone and shale
Slope: 5 to 35 percent
Depth to restrictive feature: 40 to 60 inches to bedrock (paralithic)
Drainage class: Well drained
Slowest permeability: About $0.03 \mathrm{in} / \mathrm{hr}$ (very slow)
Available water capacity: About 8.3 inches (moderate)
Shrink-swell potential: About 7.5 LEP (high)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Very high
Calcium carbonate maximum: About 5 percent Gypsum maximum: None
Salinity maximum: About 0 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Ponderosa Pine Forest
Present native vegetation: Arizona fescue, Gambel's
oak, Kentucky bluegrass, blue grama, bottlebrush squirreltail, mountain muhly, muttongrass, pine dropseed, prairie junegrass
Land capability (nonirrigated): 7e
Conservation Tree/Shrub Group: 4C
Typical Profile:
A-0 to 1 inches; clay loam
Bt-1 to 5 inches; clay
Bssk-5 to 28 inches; clay
Bk-28 to 55 inches; clay
Cr-55 inches; shale

Rock outcrop

Rock outcrop consists of barren or nearly barren areas of exposed sandstone and shale on ridges, ledges, and escarpments.

Minor Components

Morclay and similar soils
Composition: About 5 percent
Slope: 5 to 10 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Clayey
Osoridge and similar soils
Composition: About 4 percent
Slope: 5 to 10 percent
Depth to restrictive feature: 10 to 20 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Ponderosa Pine Forest
Asaayi and similar soils
Composition: About 1 percent
Slope: 5 to 10 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Ponderosa Pine Forest

410—Montillo-Tsoodzil complex, 5 to 35 percent slopes

Map Unit Setting

MLRA: 39
Elevation: 7,800 to 9,000 feet (2,377 to 2,743 meters)
Mean annual precipitation: 16 to 20 inches (406 to 508 millimeters)
Average annual air temperature: 40 to 45 degrees F (4 to 7 degrees C)
Frost-free period: 90 to 110 days

Map Unit Composition

Montillo and similar soils: 50 percent Tsoodzil and similar soils: 40 percent Minor components: 10 percent

Component Descriptions

Montillo soils

Geomorphic position: Cinder cones and lava plateaus
Parent material: Eolian material and slope alluvium over residuum derived from basalt
Slope: 5 to 15 percent
Surface fragments: About 36 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Drainage class: Well drained
Slowest permeability: About $0.06 \mathrm{in} / \mathrm{hr}$ (slow)
Available water capacity: About 4.2 inches (low)
Shrink-swell potential: About 7.5 LEP (high)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Very high
Calcium carbonate maximum: About 1 percent
Gypsum maximum: None
Salinity maximum: About 0 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Ponderosa Pine Forest
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 4C

Typical Profile:

A-0 to 3 inches; very gravelly loam
Bt1-3 to 8 inches; silty clay loam
Btss1-8 to 15 inches; silty clay
Btss2-15 to 27 inches; clay
2Bt2-27 to 32 inches; very gravelly clay
2R-32 inches; basalt bedrock

Tsoodzil soils

Geomorphic position: Cinder cones and lava plateaus
Parent material: Eolian material and slope alluvium derived from basalt
Slope: 5 to 35 percent
Surface fragments: About 46 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Slowest permeability: About $0.06 \mathrm{in} / \mathrm{hr}$ (slow)
Available water capacity: About 8.2 inches (moderate)
Shrink-swell potential: About 7.5 LEP (high)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Very high

Calcium carbonate maximum: About 1 percent Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Ponderosa Pine Forest
Land capability (nonirrigated):7e
Conservation Tree/Shrub Group: 4C
Typical Profile:
A-0 to 3 inches; very gravelly silt loam
Bt-3 to 10 inches; silty clay loam
Btss1-10 to 21 inches; clay
Btss2-21 to 46 inches; clay
Btss3-46 to 70 inches; gravelly clay

Minor Components

Rock outcrop
Composition: About 5 percent
Rock outcrop consists of barren or nearly barren areas of exposed sandstone and shale on ridges, ledges, and escarpments.

Canoneros and similar soils
Composition: About 5 percent
Slope: 2 to 6 percent
Depth to restrictive feature: 10 to 20 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Shallow

411-Ligocki-Robolata complex, 1 to 5 percent slopes

Map Unit Setting

MLRA: 39
Elevation: 7,700 to 8,000 feet (2,347 to 2,438 meters)
Mean annual precipitation: 16 to 20 inches (406 to 508 millimeters)
Average annual air temperature: 40 to 45 degrees F (4 to 7 degrees C)
Frost-free period: 90 to 110 days

Map Unit Composition

Ligocki and similar soils: 45 percent
Robolata and similar soils: 35 percent
Minor components: 20 percent

Component Descriptions

Ligocki soils

Geomorphic position: Fan remnants on valley sides
Parent material: Fan alluvium derived from sandstone, shale, and granite

Slope: 1 to 5 percent
Depth to restrictive feature: None within 60 inches Drainage class: Well drained
Slowest permeability: About $0.06 \mathrm{in} / \mathrm{hr}$ (slow)
Available water capacity: About 8.9 inches (moderate)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: High
Calcium carbonate maximum: About 10 percent Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Ponderosa Pine Forest (fig. 11)
Present native vegetation: Arizona fescue, Gambel's oak, Kentucky bluegrass, blue grama, bottlebrush squirreltail, mountain muhly, muttongrass, pine dropseed, prairie junegrass
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 4

Typical Profile:
A-0 to 2 inches; fine sandy loam
$A B-2$ to 8 inches; fine sandy loam
Bt1-8 to 21 inches; clay 2Btk1-21 to 30 inches; clay loam 2Btk2-30 to 41 inches; gravelly sandy clay loam 3Btk3-41 to 70 inches; sandy clay loam

Robolata soils

Geomorphic position: Stream terraces on valley floors
Parent material: Stream alluvium derived from sandstone, shale, and granite
Slope: 1 to 5 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Slowest permeability: About 0.06 in/hr (slow)
Available water capacity: About 8.8 inches (moderate)
Shrink-swell potential: About 4.5 LEP (moderate)
Flooding hazard: Occasional
Seasonal water table minimum depth: Greater than 6 feet

Figure 11.-Typical landscape of Logocki-Robolata complex, 1 to 5 percent slopes. Some areas of these soils have ben cleared of trees for use as high mountain pasture.

Runoff class: High
Calcium carbonate maximum: About 10 percent Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Mountain Grassland
Present native vegetation: Arizona fescue, mountain muhly, blue grama, buckwheat, muttongrass, western wheatgrass, pingue hymenoxys, silvery lupine, spineless horsebrush, whorled plantain, Gambel's oak, broom snakeweed
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 4C

Typical Profile:

A-0 to 6 inches; loam
Bt1-6 to 12 inches; loam
Bt2-12 to 20 inches; clay
2Bt3-20 to 30 inches; clay loam
2Btk-30 to 50 inches; sandy clay loam
$2 B C-50$ to 70 inches; very gravelly sandy loam

Minor Components

Polich and similar soils
Composition: About 10 percent
Slope: 0 to 3 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Somewhat poorly drained
Ecological site: Meadow
Mcgaffey and similar soils
Composition: About 5 percent
Slope: 1 to 5 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Ponderosa Pine Forest
Zuni and similar soils
Composition: About 5 percent
Slope: 1 to 5 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Ponderosa Pine Forest

412—Rock outcrop-Rionutria-Zaster association, 15 to 80 percent slopes

Map Unit Setting

Elevation: 7,000 to 7,600 feet (2,134 to 2,316 meters)

Mean annual precipitation: 16 to 20 inches (406 to 508 millimeters)
Mean annual air temperature: 40 to 45 degrees F (4.4 to 7.0 degrees C)
Frost-free period: 90 to 110 days
Map Unit Composition
Rock outcrop: 50 percent
Rionutria and similar soils: 25 percent
Zaster and similar soils: 25 percent

Component Descriptions

Rock outcrop

Rock outcrop consists of barren or nearly barren areas of exposed limestone and shale. Slopes range from about 5 to 15 percent on treads (structural benches) to almost vertical cliffs on the risers (escarpment face).

Rionutria soils

Landform: Structural benches on escarpments
Parent material: Slope alluvium and colluvium over residuum derived from sandstone, shale, and limestone
Slope: 15 to 20 percent
Surface fragments: About 53 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Drainage class: Well drained
Slowest permeability: 0.2 to $0.6 \mathrm{in} / \mathrm{hr}$ (moderately slow)
Available water capacity: About 2.8 inches (very low)
Shrink-swell potential: About 4.5 percent (moderate)
Runoff class: Very high
Calcium carbonate maximum: About 10 percent
Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodium adsorption ratio maximum: About 0 (nonsodic)
Ecological site: Ponderosa Pine Forest
Potential native vegetation:
Common trees: Rocky Mountain juniper, Douglasfir, twoneedle pinyon, ponderosa pine
Other plants: Arizona fescue, Gambel oak, Oregongrape, bottlebrush squirreltail, buckwheat, mountainmahogany, mountain muhly, muttongrass, pine dropseed, ponderosa pine, whortleleaf snowberry, yucca
Land capability subclass (nonirrigated): 7s
Typical Profile:
A-0 to 3 inches; very gravelly loam Btk1-3 to 12 inches; very cobbly clay loam Btk2-12 to 24 inches; very cobbly clay loam R-24 to 40 inches; unweathered bedrock

Zaster soils

Landform: Structural benches on escarpments
Parent material: Slope alluvium and colluvium derived from sandstone and limestone
Slope: 15 to 40 percent
Surface fragments: About 75 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Drainage class: Well drained
Slowest permeability: 2.0 to $6.0 \mathrm{in} / \mathrm{hr}$ (moderately rapid)
Available water capacity: About 2.2 inches (very low)
Shrink-swell potential: About 1.5 percent (low)
Runoff class: High
Calcium carbonate maximum: About 25 percent Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodium adsorption ratio maximum: About 0 (nonsodic)
Ecological site: pinyon-juniper forest
Potential native vegetation:
Common trees: oneseed juniper, Rocky Mountain juniper, alligator juniper, twoneedle pinyon
Other plants: Gambel oak, antelope bitterbrush, blue grama, bottlebrush squirreltail, mountainmahogany, muttongrass, needlegrass, oneseed juniper, prairie junegrass, twoneedle pinyon, yucca
Land capability subclass (nonirrigated): 7s

Typical Profile:

A-0 to 3 inches; extremely gravelly loam Bk1-3 to 11 inches; gravelly loam
Bk2-11 to 27 inches; extremely gravelly loam R—27 to 40 inches; unweathered bedrock

413-Morclay silty clay, 1 to 5 percent slopes

Map Unit Setting

MLRA: 39

Elevation: 7,400 to 7,800 feet (2,256 to 2,377 meters)
Mean annual precipitation: 16 to 20 inches (406 to 508 millimeters)
Average annual air temperature: 40 to 45 degrees F (4 to 7 degrees C)
Frost-free period: 90 to 110 days

Map Unit Composition

Morclay and similar soils: 85 percent
Minor components: 15 percent

Component Descriptions

Morclay soils

Geomorphic position: Stream terraces on valley floors and alluvial fans on valley sides
Parent material: Slope alluvium over residuum derived from shale
Slope: 1 to 5 percent
Depth to restrictive feature: Greater than 60 inches to bedrock
Drainage class: Well drained
Slowest permeability: About $0.03 \mathrm{in} / \mathrm{hr}$ (very slow)
Available water capacity: About 8.9 inches (moderate)
Shrink-swell potential: About 7.5 LEP (high)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Very high
Calcium carbonate maximum: About 5 percent
Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 1 SAR (slightly sodic)
Ecological site: Clayey
Present native vegetation: western wheatgrass, needleandthread, Indian ricegrass, blue grama, bottlebrush squirreltail, galleta, pingue hymenoxys, rabbitbrush
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 4CC
Typical Profile:
A-0 to 1 inches; silty clay
Bk1-1 to 5 inches; clay Bssk-5 to 48 inches; clay 2Ck1-48 to 56 inches; clay 2Ck2-56 to 70 inches; clay Cr-70 inches; shale

Minor Components

Rauster and similar soils Composition: About 10 percent Slope: 3 to 5 percent
Depth to restrictive feature: 40 to 60 inches to bedrock (paralithic)
Drainage class: Well drained Ecological site: Ponderosa Pine Forest

Fortwingate and similar soils Composition: About 3 percent Slope: 1 to 5 percent

Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Ponderosa Pine Forest
Osoridge and similar soils
Composition: About 2 percent
Slope: 1 to 5 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Ponderosa Pine Forest

414-Zunalei-Corzuni loamy fine sands, 2 to 10 percent slopes

Map Unit Setting

MLRA: 39
Elevation: 7,000 to 7,500 feet (2,134 to 2,286 meters)
Mean annual precipitation: 16 to 20 inches (406 to 508 millimeters)
Average annual air temperature: 45 to 48 degrees F (7 to 9 degrees C)
Frost-free period: 90 to 110 days
Map Unit Composition
Zunalei and similar soils: 50 percent
Corzuni and similar soils: 40 percent
Minor components: 10 percent

Component Descriptions

Zunalei soils

Geomorphic position: Fan remnants on valley sides and dipslopes on cuestas
Parent material: Eolian material and fan alluvium derived from sandstone
Slope: 2 to 10 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Slowest permeability: About $0.60 \mathrm{in} / \mathrm{hr}$ (moderate)
Available water capacity: About 8.4 inches (moderate)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Medium
Calcium carbonate maximum: About 5 percent
Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Ponderosa Pine Forest

Present native vegetation: blue grama, bottlebrush squirreltail, broom snakeweed, buckwheat, fringed sagewort, little bluestem, muttongrass, needlegrass, pine dropseed, prairie junegrass
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 4
Typical Profile:
A-0 to 1 inches; loamy fine sand
$A B-1$ to 6 inches; fine sandy loam
Bt1-6 to 20 inches; sandy clay loam
Bt2-20 to 50 inches; fine sandy loam
BCk-50 to 70 inches; fine sandy loam

Corzuni soils

Geomorphic position: Fan remnants on valley sides and dipslopes on cuestas
Parent material: Eolian material and fan alluvium derived from sandstone
Slope: 2 to 10 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Somewhat excessively drained
Slowest permeability: About $2.00 \mathrm{in} / \mathrm{hr}$ (moderately rapid)
Available water capacity: About 7.9 inches (moderate)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Low
Calcium carbonate maximum: About 5 percent
Gypsum maximum: None
Salinity maximum: About $2 \mathrm{mmhos} / \mathrm{cm}$ (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Ponderosa Pine Forest
Present native vegetation: blue grama, bottlebrush squirreltail, broom snakeweed, buckwheat, fringed sagewort, little bluestem, muttongrass, needlegrass, pine dropseed, prairie junegrass
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 3
Typical Profile:
Oi-0 to 1 inches; slightly decomposed plant material
A-1 to 8 inches; loamy fine sand Bt1-8 to 29 inches; fine sandy loam Bt2-29 to 45 inches; fine sandy loam Bk-45 to 70 inches; fine sandy loam

Minor Components

Knifehill and similar soils
Composition: About 5 percent

Slope: 1 to 5 percent
Depth to restrictive feature: None within 60 inches Drainage class: Well drained
Ecological site: Meadow
Fikel and similar soils
Composition: About 3 percent
Slope: 2 to 10 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Clayey
Shoemaker and similar soils
Composition: About 2 percent
Slope: 2 to 8 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Drainage class: Moderately well drained
Ecological site: Ponderosa Pine Forest

415-Tsoodzil-Rubble land complex, 10 to 55 percent slopes

Map Unit Setting

MLRA: 39

Elevation: 7,600 to 9,000 feet (2,316 to 2,743 meters)
Mean annual precipitation: 16 to 20 inches (406 to 508 millimeters)
Average annual air temperature: 40 to 45 degrees $F(4$ to 7 degrees C)
Frost-free period: 90 to 110 days

Map Unit Composition

Tsoodzil and similar soils: 60 percent
Rubble land: 20 percent
Minor components: 20 percent

Component Descriptions

Tsoodzil soils

Geomorphic position: Escarpments on lava plateaus
Parent material: Eolian material and slope alluvium derived from basalt
Slope: 10 to 55 percent
Surface fragments: About 45 percent
Depth to restrictive feature: None within 60 inches Drainage class: Well drained
Slowest permeability: About $0.06 \mathrm{in} / \mathrm{hr}$ (slow)
Available water capacity: About 8.0 inches (moderate)
Shrink-swell potential: About 7.5 LEP (high)
Flooding hazard: None

Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Very high
Calcium carbonate maximum: About 2 percent
Gypsum maximum: None
Salinity maximum: About $2 \mathrm{mmhos} / \mathrm{cm}$ (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Ponderosa Pine Forest
Present native vegetation: blue grama, broom snakeweed, little bluestem, muttongrass, pine dropseed
Land capability (nonirrigated): 7e
Conservation Tree/Shrub Group: 4C
Typical Profile:
$\mathrm{E}-0$ to 3 inches; very cobbly loam
Bt- 3 to 7 inches; clay loam Btss1-7 to 22 inches; gravelly clay Btss2-22 to 65 inches; clay

Rubble land

Rubble land consists of areas of cobbles, stones, and boulders. Most areas are at the base of escarpments.

Slope: 0 to 200 percent
Drainage class: Excessively drained
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Low
Conservation Tree/Shrub Group: 10

Minor Components

Rock outcrop
Composition: About 9 percent
Rock outcrop consists of barren or nearly barren areas of exposed sandstone and shale on ridges, ledges, and escarpments.

Montillo and similar soils
Composition: About 5 percent
Slope: 10 to 15 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Drainage class: Well drained Ecological site: Ponderosa Pine Forest

Canoneros and similar soils
Composition: About 3 percent
Slope: 2 to 6 percent
Depth to restrictive feature: 10 to 20 inches to bedrock (lithic)

Figure 12.-Typical landscape of Rock outcrop-Bluesky complex, 5 to 80 percent slopes.

Drainage class: Well drained Ecological site: Shallow

Valnor and similar soils
Composition: About 3 percent
Slope: 10 to 15 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (paralithic)
Drainage class: Well drained
Ecological site: Ponderosa Pine Forest

416-Rock outcrop-Bluesky complex, 5 to 80 percent slopes

Map Unit Setting

Elevation: 7,100 to 7,700 feet (2,164 to 2,347 meters)

Mean annual precipitation: 16 to 20 inches (406 to 508 millimeters)
Mean annual air temperature: 40 to 45 degrees F (4.4 to 7.0 degrees C)
Frost-free period: 90 to 110 days

Map Unit Composition

Rock outcrop: 70 percent
Bluesky and similar soils: 20 percent Minor components: 10 percent

Component Descriptions

Rock outcrop

Rock outcrop consists of barren or nearly barren areas of exposed sandstone (fig. 12). Slopes range from about 5 to 15 percent on treads (structural benches) to almost vertical cliffs on the risers (escarpment face)

Bluesky soils

Landform: Structural benches on escarpments
Parent material: Eolian material and slope alluvium derived from sandstone
Slope: 5 to 20 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)
Drainage class: Excessively drained
Slowest permeability: Greater than 20 in/hr (very rapid)
Available water capacity: About 0.5 inches (very low)
Shrink-swell potential: About 1.5 percent (low)
Runoff class: Medium
Calcium carbonate maximum: None
Gypsum maximum: None
Salinity maximum: About 0 mmhos/cm (nonsaline)
Sodium adsorption ratio maximum: About 0 (nonsodic)
Ecological site: Ponderosa Pine Forest
Potential native vegetation:
Common trees: Rocky Mountain juniper, Douglasfir, twoneedle pinyon, ponderosa pine
Other plants: Gambel oak, Indian ricegrass, blue grama, bottlebrush squirreltail, buckwheat, cliffrose, little bluestem, mountainmahogany, mountain muhly, muttongrass, pine dropseed, sideoats grama, yucca
Land capability subclass (nonirrigated): 8
Typical Profile:
A-0 to 5 inches; fine sand
C-5 to 8 inches; fine sand
R-8 inches; sandstone bedrock

Minor Components

Stozuni and similar soils
Composition: About 5 percent
Slope: 5 to 8 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)
Drainage class: Somewhat excessively drained
Ecological site: Ponderosa Pine Forest
Shoemaker and similar soils
Composition: About 3 percent
Slope: 5 to 8 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Drainage class: Moderately well drained
Ecological site: Ponderosa Pine Forest
Royosa and similar soils
Composition: About 2 percent

Slope: 1 to 15 percent
Drainage class: Excessively drained
Ecological site: Sandy Plains

418-Asaayi-Osoridge complex, 2 to 15 percent slopes

Map Unit Setting

MLRA: 39
Elevation: 7,500 to 7,900 feet (2,286 to 2,408 meters)
Mean annual precipitation: 16 to 20 inches (406 to 508 millimeters)
Average annual air temperature: 40 to 45 degrees F (4 to 7 degrees C)
Frost-free period: 90 to 110 days

Map Unit Composition

Asaayi and similar soils: 40 percent
Osoridge and similar soils: 35 percent
Minor components: 25 percent

Component Descriptions

Asaayi soils

Geomorphic position: Dipslopes on cuestas
Parent material: Slope alluvium derived from sandstone and shale
Slope: 2 to 15 percent
Surface fragments: About 50 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)
Drainage class: Well drained
Slowest permeability: About $0.20 \mathrm{in} / \mathrm{hr}$ (moderately slow)
Available water capacity: About 2.4 inches (very low)
Shrink-swell potential: About 4.5 LEP (moderate)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: High
Calcium carbonate maximum: None
Gypsum maximum: None
Salinity maximum: About 0 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Ponderosa Pine Forest
Present native vegetation: Gambel's oak, blue grama, bottlebrush squirreltail, buckwheat, cliffrose, little bluestem, mountainmahogany, mountain muhly, pine dropseed, sideoats grama
Land capability (nonirrigated): 7s
Conservation Tree/Shrub Group: 10

Typical Profile:

Oi-0 to 1 inches; slightly decomposed plant material
A-1 to 3 inches; very gravelly fine sandy loam
Bt1- 3 to 5 inches; fine sandy loam
Bt2-5 to 16 inches; clay loam
R-16 inches; sandstone bedrock

Osoridge soils

Geomorphic position: Dipslopes on cuestas
Parent material: Slope alluvium over residuum derived from sandstone and shale
Slope: 2 to 15 percent
Surface fragments: About 40 percent
Depth to restrictive feature: 10 to 20 inches to bedrock (lithic)
Drainage class: Well drained
Slowest permeability: About $0.06 \mathrm{in} / \mathrm{hr}$ (slow)
Available water capacity: About 2.6 inches (very low)
Shrink-swell potential: About 7.5 LEP (high)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Very high
Calcium carbonate maximum: None
Gypsum maximum: None
Salinity maximum: About 0 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Ponderosa Pine Forest
Present native vegetation: Gambel's oak, blue grama, bottlebrush squirreltail, buckwheat, cliffrose, little bluestem, mountainmahogany, mountain muhly, pine dropseed, sideoats grama
Land capability (nonirrigated): 7s
Conservation Tree/Shrub Group: 10

Typical Profile:

A-0 to 2 inches; very gravelly clay loam
Bt1-2 to 6 inches; clay
Bt2-6 to 18 inches; clay
R-18 inches; shale

Minor Components

Cinnadale and similar soils
Composition: About 10 percent
Slope: 2 to 15 percent
Depth to restrictive feature: 10 to 20 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Ponderosa Pine Forest
Fortwingate and similar soils
Composition: About 10 percent
Slope: 2 to 15 percent

Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Ponderosa Pine Forest
Rauster and similar soils
Composition: About 5 percent
Slope: 2 to 15 percent
Depth to restrictive feature: 40 to 60 inches to bedrock (paralithic)
Drainage class: Well drained
Ecological site: Ponderosa Pine Forest

419—Fortwingate-Cinnadale-Rock outcrop complex, 5 to 45 percent slopes

Map Unit Setting

MLRA: 39
Elevation: 7,200 to 8,200 feet (2,195 to 2,499 meters)
Mean annual precipitation: 16 to 20 inches (406 to 508 millimeters)
Average annual air temperature: 40 to 45 degrees F (4 to 7 degrees C)
Frost-free period: 90 to 110 days

Map Unit Composition

Fortwingate and similar soils: 35 percent
Cinnadale and similar soils: 30 percent
Rock outcrop: 20 percent
Minor components: 15 percent

Component Descriptions

Fortwingate soils

Geomorphic position: Sideslopes on hills, ridges, hogbacks and escarpments on cuestas
Parent material: Slope alluvium over residuum derived from sandstone and shale
Slope: 5 to 45 percent
Surface fragments: About 45 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Drainage class: Well drained
Slowest permeability: About $0.06 \mathrm{in} / \mathrm{hr}$ (slow)
Available water capacity: About 3.8 inches (low)
Shrink-swell potential: About 7.5 LEP (high)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Very high
Calcium carbonate maximum: None

Gypsum maximum: None
Salinity maximum: About 0 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Ponderosa Pine Forest
Present native vegetation: Arizona fescue, Gambel's oak, Kentucky bluegrass, blue grama, bottlebrush squirreltail, mountain muhly, muttongrass, pine dropseed, prairie junegrass
Land capability (nonirrigated): 7e
Conservation Tree/Shrub Group: 4C

Typical Profile:

A-0 to 5 inches; very cobbly loam
Bt1-5 to 13 inches; clay
Bt2—13 to 21 inches; clay loam
2Bt3-21 to 26 inches; clay loam
R-26 inches; sandstone bedrock

Cinnadale soils

Geomorphic position: Sideslopes on hills, ridges, hogbacks and structural benches on escarpments on cuestas
Parent material: Slope alluvium over residuum derived from sandstone
Slope: 5 to 15 percent
Surface fragments: About 65 percent
Depth to restrictive feature: 10 to 20 inches to bedrock (lithic)
Drainage class: Well drained
Slowest permeability: About $2.00 \mathrm{in} / \mathrm{hr}$ (moderately rapid)
Available water capacity: About 0.8 inches (very low)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Medium
Calcium carbonate maximum: None
Gypsum maximum: None
Salinity maximum: About 0 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Ponderosa Pine Forest
Present native vegetation: Arizona fescue, blue grama, bottlebrush squirreltail, mountain muhly, muttongrass, pine dropseed, prairie junegrass, yucca
Land capability (nonirrigated): 7s
Conservation Tree/Shrub Group: 10

Typical Profile:

A-0 to 6 inches; extremely stony sandy loam
Bw-6 to 11 inches; very gravelly fine sandy loam
R-11 inches; sandstone bedrock

Rock outcrop

Rock outcrop consists of barren or nearly barren areas of exposed sandstone and shale on ridges, ledges, and escarpments.

Minor Components

Osoridge and similar soils
Composition: About 8 percent
Slope: 5 to 15 percent
Depth to restrictive feature: 10 to 20 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Ponderosa Pine Forest
Asaayi and similar soils
Composition: About 7 percent
Slope: 5 to 15 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Ponderosa Pine Forest

420-Seco clay loam, 1 to 5 percent slopes

Map Unit Setting

MLRA: 39

Elevation: 8,000 to 8,400 feet (2,438 to 2,560 meters)
Mean annual precipitation: 16 to 20 inches (406 to 508 millimeters)
Average annual air temperature: 40 to 45 degrees F (4 to 7 degrees C)
Frost-free period: 90 to 110 days

Map Unit Composition

Seco and similar soils: 85 percent
Minor components: 15 percent

Component Descriptions

Seco soils

Geomorphic position: Playas on valley floors Parent material: Alluvium derived from basalt Slope: 1 to 5 percent
Depth to restrictive feature: None within 60 inches Drainage class: Moderately well drained
Slowest permeability: About 0.01 in/hr (very slow)
Available water capacity: About 9.0 inches (high)
Shrink-swell potential: About 7.5 LEP (high)
Flooding hazard: Rare
Seasonal water table minimum depth: Greater than 6 feet

Runoff class: Very high
Calcium carbonate maximum: About 5 percent
Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Mountain Grassland
Present native vegetation: Arizona fescue, mountain muhly, blue grama, buckwheat, muttongrass, western wheatgrass, pingue hymenoxys, silvery lupine, spineless horsebrush, whorled plantain, Gambel's oak, broom snakeweed
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 4CC
Typical Profile:
A-0 to 3 inches; clay loam
Bt-3 to 11 inches; clay
Btss-11 to 23 inches; clay
Btkss—23 to 58 inches; clay
$2 B C g-58$ to 70 inches; clay

Minor Components

Montillo and similar soils
Composition: About 5 percent
Slope: 1 to 5 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Shallow
Canoneros and similar soils
Composition: About 5 percent
Slope: 1 to 5 percent
Depth to restrictive feature: 10 to 20 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Shallow
Chivato and similar soils
Composition: About 5 percent
Slope: 0 to 1 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Moderately well drained
Ecological site: Playa

425-Montillo-Canoneros complex, 2 to 6 percent slopes

Map Unit Setting

MLRA: 39
Elevation: 7,800 to 9,000 feet (2,377 to 2,743 meters)

Mean annual precipitation: 16 to 20 inches (406 to 508 millimeters)
Average annual air temperature: 40 to 45 degrees F (4 to 7 degrees C)
Frost-free period: 90 to 110 days
Map Unit Composition
Montillo and similar soils: 50 percent
Canoneros and similar soils: 35 percent
Minor components: 15 percent

Component Descriptions

Montillo soils

Geomorphic position: Cinder cones and lava plateaus
Parent material: Slope alluvium over residuum derived from basalt
Slope: 2 to 6 percent
Surface fragments: About 20 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Drainage class: Well drained
Slowest permeability: About $0.06 \mathrm{in} / \mathrm{hr}$ (slow)
Available water capacity: About 3.7 inches (low)
Shrink-swell potential: About 7.5 LEP (high)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: High
Calcium carbonate maximum: None
Gypsum maximum: None
Salinity maximum: About 0 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Shallow
Present native vegetation: Arizona fescue, mountain muhly, blue grama, buckwheat, prairie junegrass, bottlebrush squirreltail, spineless horsebrush, broom snakeweed
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 4C
Typical Profile:
A-0 to 2 inches; gravelly loam
Bt1-2 to 8 inches; clay
2Btss-8 to 18 inches; gravelly clay
2Bt2-18 to 35 inches; very cobbly clay
2R-35 inches; basalt bedrock

Canoneros soils

Geomorphic position: Cinder cones and lava plateaus Parent material: Slope alluvium over residuum derived from basalt
Slope: 2 to 6 percent

Surface fragments: About 40 percent
Depth to restrictive feature: 10 to 20 inches to bedrock (lithic)
Drainage class: Well drained
Slowest permeability: About 0.06 in/hr (slow)
Available water capacity: About 2.0 inches (very low)
Shrink-swell potential: About 7.5 LEP (high)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Very high
Calcium carbonate maximum: None
Gypsum maximum: None
Salinity maximum: About 0 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Shallow
Present native vegetation: Arizona fescue, mountain
muhly, blue grama, buckwheat, prairie junegrass, bottlebrush squirreltail, spineless horsebrush, broom snakeweed
Land capability (nonirrigated): 7s
Conservation Tree/Shrub Group: 10

Typical Profile:

A-0 to 2 inches; very cobbly loam
Bt1-2 to 8 inches; clay loam
Bt2-8 to 13 inches; clay
2R-13 inches; basalt bedrock

Minor Components

Rock outcrop
Composition: About 5 percent
Rock outcrop consists of barren or nearly barren areas of exposed sandstone and shale on ridges, ledges, and escarpments.

Tsoodzil and similar soils
Composition: About 5 percent
Slope: 2 to 6 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Cinder Hills
Seco and similar soils
Composition: About 5 percent
Slope: 1 to 5 percent
Depth to restrictive feature: None within 60 inches Drainage class: Well drained
Ecological site: Mountain Grassland

430—Montillo gravelly loam, 2 to 6 percent slopes

Map Unit Setting
MLRA: 39
Elevation: 7,800 to 9,000 feet (2,377 to 2,743 meters)
Mean annual precipitation: 16 to 20 inches (406 to 508 millimeters)
Average annual air temperature: 40 to 45 degrees F (4 to 7 degrees C)
Frost-free period: 90 to 110 days
\section*{Map Unit Composition}
Montillo and similar soils: 80 percent
Minor components: 20 percent

Component Descriptions

Montillo soils

Geomorphic position: Summits on lava plateaus
Parent material: Slope alluvium over residuum derived from basalt
Slope: 2 to 6 percent
Surface fragments: About 20 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Drainage class: Well drained
Slowest permeability: About 0.06 in/hr (slow)
Available water capacity: About 5.2 inches (low)
Shrink-swell potential: About 7.5 LEP (high)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: High
Calcium carbonate maximum: About 1 percent
Gypsum maximum: None
Salinity maximum: About 0 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Shallow
Present native vegetation: Arizona fescue, Gambel's oak, mountain muhly, blue grama, bottlebrush squirreltail, prairie junegrass, broom snakeweed, muttongrass, buckwheat, whorled plantain
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 4C
Typical Profile:
A-0 to 4 inches; gravelly loam

Bt1-4 to 13 inches; clay
Btss-13 to 31 inches; clay
2Bt2-31 to 38 inches; gravelly clay
2R-38 inches; basalt bedrock

Minor Components

Rock outcrop
Composition: About 9 percent
Rock outcrop consists of barren or nearly barren areas of exposed sandstone and shale on ridges, ledges, and escarpments.

Canoneros and similar soils
Composition: About 6 percent
Slope: 2 to 6 percent
Depth to restrictive feature: 10 to 20 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Shallow
Tsoodzil and similar soils
Composition: About 5 percent
Slope: 2 to 6 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Cinder Hills

435-Tsoodzil-Amcec association, 5 to 50 percent slopes

Map Unit Setting

MLRA: 39
Elevation: 7,600 to 9,200 feet (2,316 to 2,804 meters)
Mean annual precipitation: 16 to 20 inches (406 to 508 millimeters)
Average annual air temperature: 40 to 45 degrees F (4 to 7 degrees C)
Frost-free period: 90 to 110 days

Map Unit Composition

Tsoodzil and similar soils: 50 percent
Amcec and similar soils: 40 percent
Minor components: 10 percent

Component Descriptions

Tsoodzil soils

Geomorphic position: Cinder cones
Parent material: Eolian material and slope alluvium derived from basalt
Slope: 5 to 35 percent
Surface fragments: About 46 percent

Depth to restrictive feature: None within 60 inches Drainage class: Well drained
Slowest permeability: About $0.06 \mathrm{in} / \mathrm{hr}$ (slow)
Available water capacity: About 5.8 inches (low)
Shrink-swell potential: About 4.5 LEP (moderate)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Very high
Calcium carbonate maximum: About 10 percent
Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 2 SAR (slightly sodic)
Ecological site: Cinder Hills
Present native vegetation: Gambel's oak, Arizona fescue, mountain muhly, blue grama, bottlebrush squirreltail, muttongrass, prairie junegrass, buckwheat
Land capability (nonirrigated): 7e
Conservation Tree/Shrub Group: 4C
Typical Profile:
A-0 to 3 inches; very gravelly loam
Bt1-3 to 11 inches; clay
Bt2-11 to 25 inches; clay Btk1-25 to 32 inches; gravelly clay 2Btk2-32 to 65 inches; extremely gravelly clay loam

Amcec soils

Geomorphic position: Cinder cones
Parent material: Eolian material and slope alluvium over residuum derived from cinders
Slope: 15 to 50 percent
Surface fragments: About 88 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Somewhat excessively drained
Slowest permeability: About $0.60 \mathrm{in} / \mathrm{hr}$ (moderate)
Available water capacity: About 1.9 inches (very low)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: High
Calcium carbonate maximum: About 10 percent
Gypsum maximum: None
Salinity maximum: About 0 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Cinder Hills
Present native vegetation: Arizona fescue, mountain muhly, Gambel's oak, blue grama, bottlebrush squirreltail, muttongrass, prairie junegrass, buckwheat
Land capability (nonirrigated): 7e

Conservation Tree/Shrub Group: 10

Typical Profile:
A-0 to 4 inches; extremely gravelly loam
Bt-4 to 16 inches; very gravelly loam
Btk1-16 to 39 inches; extremely gravelly coarse sandy loam
Btk2-39 to 53 inches; extremely gravelly loamy coarse sand
Bk-53 to 70 inches; extremely gravelly loamy coarse sand

Minor Components

Rock outcrop
Rock outcrop consists of barren or nearly barren areas of exposed sandstone and shale on ridges, ledges, and escarpments.

Canoneros and similar soils
Composition: About 3 percent
Slope: 2 to 6 percent
Depth to restrictive feature: 10 to 20 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Shallow
Montillo and similar soils
Composition: About 3 percent
Slope: 2 to 6 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Oak Savannah

440-Chivato clay, 0 to 1 percent slopes

Map Unit Setting

MLRA: 39

Elevation: 8,100 to 8,600 feet (2,469 to 2,621 meters)
Mean annual precipitation: 16 to 20 inches (406 to 508 millimeters)
Average annual air temperature: 40 to 45 degrees F (4 to 7 degrees C)
Frost-free period: 90 to 110 days

Map Unit Composition

Chivato and similar soils: 90 percent
Minor components: 10 percent

Component Descriptions

Chivato soils

Geomorphic position: Playas on lava plateaus

Parent material: Lacustrine deposits derived from basalt
Slope: 0 to 1 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Moderately well drained
Slowest permeability: About 0.01 in/hr (very slow)
Available water capacity: About 8.3 inches (moderate)
Shrink-swell potential: About 7.5 LEP (high)
Ponding hazard: Occasional
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Negligible
Calcium carbonate maximum: None
Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 1 SAR (slightly sodic)
Ecological site: Playa
Present native vegetation: western wheatgrass, curly dock, pingue hymenoxys
Land capability (nonirrigated): 3s
Conservation Tree/Shrub Group: 4CC

Typical Profile:

A-0 to 2 inches; clay Bss1-2 to 13 inches; clay Bss2-13 to 40 inches; clay Bss3-40 to 52 inches; clay Bssg-52 to 65 inches; clay

Minor Components

Seco and similar soils Composition: About 10 percent Slope: 1 to 3 percent
Depth to restrictive feature: None within 60 inches Drainage class: Moderately well drained Ecological site: Mountain Grassland

525-Silcat clay loam, 1 to 10 percent slopes

Map Unit Setting

MLRA: 36
Elevation: 6,800 to 7,500 feet (2,073 to 2,286 meters)
Mean annual precipitation: 13 to 16 inches (330 to 406 millimeters)
Average annual air temperature: 46 to 49 degrees F (8 to 9 degrees C)
Frost-free period: 100 to 135 days

Map Unit Composition

Silcat and similar soils: 85 percent
Minor components: 15 percent

Figure 13.-Typical landscape of Silcat clay loam, 1 to 10 percent slopes. With adequate rainfall, these heavy-textured soils will produce an abundance of western wheatgrass.

Component Descriptions

Silcat soils

Geomorphic position: Stream terraces and depressions on valley floors and alluvial fans on valley sides (fig. 13)
Parent material: Stream alluvium derived from shale Slope: 1 to 10 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Slowest permeability: About $0.01 \mathrm{in} / \mathrm{hr}$ (very slow)
Available water capacity: About 8.4 inches (moderate)
Shrink-swell potential: About 7.5 LEP (high)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Very high
Calcium carbonate maximum: About 5 percent
Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 2 SAR (slightly sodic)
Ecological site: Clayey
Present native vegetation: western wheatgrass,
needleandthread, winterfat, Indian ricegrass, big sagebrush, blue grama, bottlebrush squirreltail,
galleta, pingue hymenoxys, rabbitbrush
Land capability (irrigated): 4e
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 4CC

Typical Profile:

A-0 to 2 inches; clay loam
2BCss-2 to 38 inches; clay
Bk-38 to 65 inches; clay

Minor Components

Galzuni and similar soils
Composition: About 8 percent
Slope: 1 to 10 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Clayey
Bryway and similar soils
Composition: About 7 percent
Slope: 1 to 10 percent

Depth to restrictive feature: 20 to 40 inches to bedrock (paralithic)
Drainage class: Well drained Ecological site: Pinyon-Juniper Forest

550—Bryway-Galzuni loams, 1 to 8 percent slopes

Map Unit Setting

MLRA: 36

Elevation: 6,800 to 7,600 feet (2,073 to 2,316 meters)
Mean annual precipitation: 13 to 16 inches (330 to 406 millimeters)
Average annual air temperature: 46 to 49 degrees F (8 to 9 degrees C)
Frost-free period: 100 to 135 days

Map Unit Composition

Bryway and similar soils: 50 percent
Galzuni and similar soils: 35 percent
Minor components: 15 percent

Component Descriptions

Bryway soils

Geomorphic position: Sideslopes on hills, dipslopes on cuestas, and summits on mesas
Parent material: Slope alluvium over residuum derived from shale and sandstone
Slope: 2 to 8 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (paralithic)
Drainage class: Well drained
Slowest permeability: About 0.06 in/hr (slow)
Available water capacity: About 4.8 inches (low)
Shrink-swell potential: About 7.5 LEP (high)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: High
Calcium carbonate maximum: About 5 percent
Gypsum maximum: None
Salinity maximum: About 0 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Pinyon-Juniper Forest
Present native vegetation: Gambel's oak, Indian ricegrass, banana yucca, big sagebrush, blue grama, bottlebrush squirreltail, broom snakeweed, buckwheat, mountainmahogany, muttongrass, oneseed juniper, pingue hymenoxys, prairie junegrass, twoneedle pinyon, western wheatgrass

Land capability (irrigated): 4e
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 4C

Typical Profile:

E-0 to 2 inches; loam
Bt-2 to 6 inches; clay loam
Btk-6 to 32 inches; clay
$2 \mathrm{Cr}-32$ inches; shale

Galzuni soils

Geomorphic position: Sideslopes on hills, dipslopes on cuestas, and summits on mesas
Parent material: Eolian material and slope alluvium derived from shale and sandstone
Slope: 1 to 8 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Slowest permeability: About $0.06 \mathrm{in} / \mathrm{hr}$ (slow)
Available water capacity: About 9.6 inches (high)
Shrink-swell potential: About 4.5 LEP (moderate)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: High
Calcium carbonate maximum: About 5 percent
Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 2 SAR (slightly sodic)
Ecological site: Clayey
Present native vegetation: western wheatgrass, needleandthread, winterfat, Indian ricegrass, big sagebrush, blue grama, bottlebrush squirreltail, galleta, pingue hymenoxys, rabbitbrush, spineless horsebrush
Land capability (irrigated): 4e
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 4C
Typical Profile:
A—0 to 2 inches; loam
Bt1-2 to 4 inches; clay
Bt2—4 to 23 inches; clay
Btk-23 to 32 inches; clay loam
Bk1-32 to 52 inches; sandy clay
Bk2—52 to 65 inches; sandy clay loam

Minor Components

Highdye and similar soils Composition: About 6 percent Slope: 2 to 8 percent Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)

Drainage class: Well drained
Ecological site: Pinyon-Juniper Forest
Evpark and similar soils
Composition: About 5 percent
Slope: 2 to 8 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Pinyon-Juniper Forest

Parkelei and similar soils
Composition: About 4 percent
Slope: 2 to 8 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Pinyon-Juniper Forest

555-Parkelei-Evpark fine sandy loams, 2 to 8 percent slopes

Map Unit Setting

MLRA: 36
Elevation: 6,800 to 8,000 feet (2,073 to 2,438 meters)
Mean annual precipitation: 13 to 16 inches (330 to 406 millimeters)
Average annual air temperature: 46 to 49 degrees F (8 to 9 degrees C)
Frost-free period: 100 to 135 days
Map Unit Composition
Parkelei and similar soils: 45 percent
Evpark and similar soils: 35 percent
Minor components: 20 percent

Component Descriptions

Parkelei soils

Geomorphic position: Sideslopes on ridges, dipslopes on cuestas, and summits on mesas
Parent material: Eolian material and slope alluvium derived from sandstone and shale
Slope: 2 to 8 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Slowest permeability: About $0.20 \mathrm{in} / \mathrm{hr}$ (moderately slow)
Available water capacity: About 8.1 inches (moderate)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: High

Calcium carbonate maximum: About 5 percent Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 1 SAR (slightly sodic)
Ecological site: Pinyon-Juniper Forest
Present native vegetation: Gambel's oak, antelope bitterbrush, banana yucca, big sagebrush, blue grama, bottlebrush squirreltail, broom snakeweed, buckwheat, muttongrass, oneseed juniper, prairie junegrass, twoneedle pinyon, western wheatgrass
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 4
Typical Profile:
A-0 to 3 inches; fine sandy loam
Bt1-3 to 12 inches; clay loam
Bt2-12 to 21 inches; sandy clay loam Bk-21 to 65 inches; sandy loam

Evpark soils

Geomorphic position: Sideslopes and summits on ridges, dipslopes on cuestas, and summits on mesas
Parent material: Eolian material and slope alluvium derived from sandstone and shale
Slope: 2 to 8 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Drainage class: Well drained
Slowest permeability: About 0.20 in/hr (moderately slow)
Available water capacity: About 6.1 inches (moderate)
Shrink-swell potential: About 4.5 LEP (moderate)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: High
Calcium carbonate maximum: About 10 percent Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 1 SAR (slightly sodic)
Ecological site: Pinyon-Juniper Forest
Present native vegetation: Gambel's oak, antelope bitterbrush, banana yucca, big sagebrush, blue grama, bottlebrush squirreltail, broom snakeweed, buckwheat, muttongrass, oneseed juniper, prairie junegrass, twoneedle pinyon, western wheatgrass
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 6D
Typical Profile:
A-0 to 3 inches; fine sandy loam Bt1-3 to 16 inches; clay loam

Bt2-16 to 20 inches; clay loam
Bt3-20 to 29 inches; sandy clay loam
Btk-29 to 35 inches; sandy clay loam
2R-35 inches; sandstone bedrock

Minor Components

Arabrab and similar soils
Composition: About 10 percent
Slope: 2 to 8 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Pinyon-Juniper Forest
Highdye and similar soils
Composition: About 5 percent
Slope: 2 to 8 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Pinyon-Juniper Forest
Bryway and similar soils
Composition: About 5 percent
Slope: 2 to 8 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (paralithic)
Drainage class: Well drained
Ecological site: Pinyon-Juniper Forest

560—Flugle-Teczuni complex, 1 to 5 percent slopes

Map Unit Setting

MLRA: 36

Elevation: 6,800 to 7,200 feet (2,073 to 2,195 meters)
Mean annual precipitation: 13 to 14 inches (330 to 356 millimeters)
Average annual air temperature: 49 to 53 degrees F (9 to 12 degrees C)
Frost-free period: 115 to 135 days

Map Unit Composition

Flugle and similar soils: 45 percent
Teczuni and similar soils: 35 percent
Minor components: 20 percent

Component Descriptions

Flugle soils

Geomorphic position: Sideslopes on hills, fan remnants on valley sides, and dipslopes on cuestas

Parent material: Eolian material and fan and slope alluvium derived from sandstone and shale
Slope: 1 to 5 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Slowest permeability: About $0.60 \mathrm{in} / \mathrm{hr}$ (moderate)
Available water capacity: About 8.6 inches (moderate)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Low
Calcium carbonate maximum: About 15 percent
Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 1 SAR (slightly sodic)
Ecological site: Loamy
Present native vegetation: blue grama, bottlebrush squirreltail, western wheatgrass, Indian ricegrass, needleandthread, winterfat, fringed sagewort, broom snakeweed, oneseed juniper, rabbitbrush, spineless horsebrush, twoneedle pinyon
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 4
Typical Profile:
A-0 to 3 inches; fine sandy loam
Bt-3 to 35 inches; sandy clay loam
Bk-35 to 65 inches; fine sandy loam

Teczuni soils

Geomorphic position: Sideslopes on hills, fan remnants on valley sides, and dipslopes on cuestas
Parent material: Eolian material and fan and slope alluvium derived from sandstone and shale
Slope: 1 to 5 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Slowest permeability: About 0.06 in/hr (slow)
Available water capacity: About 10.5 inches (high)
Shrink-swell potential: About 4.5 LEP (moderate)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Medium
Calcium carbonate maximum: About 30 percent
Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 2 SAR (slightly sodic)
Ecological site: Loamy
Present native vegetation: blue grama, bottlebrush squirreltail, western wheatgrass, Indian ricegrass, needleandthread, winterfat, fringed sagewort,
broom snakeweed, rabbitbrush, spineless
horsebrush, twoneedle pinyon
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 4C
Typical Profile:
A-0 to 2 inches; loam
Bt-2 to 16 inches; clay loam
Btk-16 to 33 inches; clay loam
Bk-33 to 65 inches; clay

Minor Components

Fragua and similar soils
Composition: About 10 percent
Slope: 1 to 5 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Somewhat excessively drained
Ecological site: Sandy Slopes
Atarque and similar soils
Composition: About 5 percent
Slope: 1 to 5 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Shallow Sandstone

Celavar and similar soils
Composition: About 5 percent
Slope: 1 to 5 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Savannah

561—Flugle-Plumasano association, 2 to 8 percent slopes

Map Unit Setting

MLRA: 36
Elevation: 6,200 to 7,200 feet (1,890 to 2,195 meters)
Mean annual precipitation: 13 to 14 inches (330 to 356 millimeters)
Average annual air temperature: 49 to 53 degrees F (9 to 12 degrees C)
Frost-free period: 115 to 135 days

Map Unit Composition

Flugle and similar soils: 50 percent
Plumasano and similar soils: 40 percent
Minor components: 10 percent

Component Descriptions

Flugle soils

Geomorphic position: Dipslopes on cuestas, sideslopes on ridges, and fan remnants on valley sides
Parent material: Eolian material and fan and slope alluvium derived from sandstone and shale
Slope: 2 to 8 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Slowest permeability: About $0.60 \mathrm{in} / \mathrm{hr}$ (moderate)
Available water capacity: About 8.4 inches (moderate)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Medium
Calcium carbonate maximum: About 10 percent Gypsum maximum: None
Salinity maximum: About $2 \mathrm{mmhos} / \mathrm{cm}$ (nonsaline)
Sodicity maximum: About 1 SAR (slightly sodic)
Ecological site: Pinyon-Juniper Forest
Present native vegetation: Indian ricegrass, antelope bitterbrush, blue grama, bottlebrush squirreltail, broom snakeweed, buckwheat, cliffrose, galleta, muttongrass, oneseed juniper, sand dropseed, spineless horsebrush, threeawn, twoneedle pinyon, yucca
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 4
Typical Profile:
A-0 to 3 inches; fine sandy loam
Bt-3 to 17 inches; sandy clay loam Bk-17 to 65 inches; fine sandy loam

Plumasano soils

Geomorphic position: Dipslopes on cuestas, sideslopes on ridges
Parent material: Eolian material and slope alluvium derived from sandstone
Slope: 2 to 8 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Somewhat excessively drained
Slowest permeability: About $0.60 \mathrm{in} / \mathrm{hr}$ (moderate)
Available water capacity: About 7.8 inches (moderate)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Low

Calcium carbonate maximum: About 15 percent Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Pinyon-Juniper Forest
Present native vegetation: Bigelow's sagebrush, Indian ricegrass, antelope bitterbrush, blue grama, cliffrose, galleta, muttongrass, oneseed juniper, rabbitbrush, ring muhly, sand dropseed, sideoats grama, twoneedle pinyon, yucca
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 5

Typical Profile:

A-0 to 2 inches; sandy loam
Bw-2 to 11 inches; sandy loam
Bk1-11 to 27 inches; sandy loam
Bk2-27 to 43 inches; fine sandy loam
Bk3-43 to 53 inches; fine sandy loam
Bk4-53 to 65 inches; sandy clay loam

Minor Components

Royosa and similar soils
Composition: About 5 percent
Slope: 2 to 8 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Excessively drained
Ecological site: Sandy Slopes
Rizno and similar soils
Composition: About 3 percent
Slope: 2 to 8 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)
Drainage class: Somewhat excessively drained
Ecological site: Shallow Sandstone
Tekapo and similar soils
Composition: About 2 percent
Slope: 2 to 8 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (paralithic)
Drainage class: Well drained
Ecological site: Shale Hills

565-Plumasano-Rock outcrop complex, 15 to 40 percent slopes

Map Unit Setting

MLRA: 36

Elevation: 6,500 to 7,200 feet (1,981 to 2,195 meters)
Mean annual precipitation: 13 to 14 inches (330 to 356 millimeters)

Average annual air temperature: 49 to 53 degrees F (9 to 12 degrees C)
 Frost-free period: 115 to 135 days

Map Unit Composition

Plumasano and similar soils: 65 percent
Rock outcrop: 20 percent
Minor components: 15 percent

Component Descriptions

Plumasano soils

Geomorphic position: Sideslopes on ridges and escarpments on plateaus and cuestas
Parent material: Eolian material and slope alluvium derived from sandstone
Slope: 15 to 40 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Somewhat excessively drained
Slowest permeability: About $2.00 \mathrm{in} / \mathrm{hr}$ (moderately rapid)
Available water capacity: About 6.5 inches (moderate)
Shrink-swell potential: About 1.5 LEP (Iow)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Medium
Calcium carbonate maximum: About 15 percent
Gypsum maximum: None
Salinity maximum: About $2 \mathrm{mmhos} / \mathrm{cm}$ (nonsaline)
Sodicity maximum: None
Ecological site: Sandy Slopes
Present native vegetation: blue grama, galleta, sand dropseed, Indian ricegrass, antelope bitterbrush, cliffrose, muttongrass, oneseed juniper, rabbitbrush, ring muhly, sideoats grama, twoneedle pinyon, yucca
Land capability (nonirrigated): 7e
Conservation Tree/Shrub Group: 5
Typical Profile:
A-0 to 3 inches; sandy loam
Bk1-3 to 24 inches; sandy loam
Bk2-24 to 36 inches; loamy sand
Bk3-36 to 65 inches; fine sandy loam

Rock outcrop

Rock outcrop consists of barren or nearly barren areas of exposed sandstone and shale on ridges, ledges, and escarpments.

Minor Components

Rizno and similar soils
Composition: About 5 percent

Slope: 5 to 10 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)
Drainage class: Somewhat excessively drained
Ecological site: Shallow Sandstone
Teczuni and similar soils
Composition: About 5 percent
Slope: 5 to 10 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Loamy
Flugle and similar soils
Composition: About 5 percent
Slope: 5 to 10 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Loamy

566-Bamac extremely gravelly sandy loam, 5 to 50 percent slopes

Map Unit Setting

MLRA: 36
Elevation: 6,200 to 6,500 feet (1,890 to 1,981 meters)
Mean annual precipitation: 13 to 14 inches (330 to 356 millimeters)
Average annual air temperature: 49 to 53 degrees F (9 to 12 degrees C)
Frost-free period: 115 to 135 days
Map Unit Composition
Bamac and similar soils: 90 percent Minor components: 10 percent

Component Descriptions

Bamac soils

Geomorphic position: Hills and ridges
Parent material: Slope alluvium derived from sandstone and conglomerate
Slope: 5 to 50 percent
Surface fragments: About 70 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Excessively drained
Slowest permeability: About $5.95 \mathrm{in} / \mathrm{hr}$ (very rapid)
Available water capacity: About 1.6 inches (very low)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet

Runoff class: Medium
Calcium carbonate maximum: About 15 percent Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 0 SAR (nonsodic)
Ecological site: Gravelly
Present native vegetation: sideoats grama, black grama, galleta, Indian ricegrass, New Mexico feathergrass, antelope bitterbrush, blue grama, muttongrass, Bigelow's sagebrush, Mormon tea, oneseed juniper, twoneedle pinyon
Land capability (nonirrigated): 8
Conservation Tree/Shrub Group: 10

Typical Profile:

A-0 to 2 inches; extremely gravelly sandy loam Ck1-2 to 8 inches; gravelly sandy loam
Ck2-8 to 30 inches; extremely gravelly coarse sand
Ck3-30 to 63 inches; very cobbly coarse sand

Minor Components

Plumasano and similar soils
Composition: About 5 percent
Slope: 5 to 40 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Sandy Slopes
Royosa and similar soils
Composition: About 5 percent
Slope: 5 to 10 percent
Depth to restrictive feature: None within 60 inches Drainage class: Excessively drained Ecological site: Sandy Plains

575—Ramah-Pescado association, 1 to 8 percent slopes

Map Unit Setting

MLRA: 36
Elevation: 6,400 to 7,000 feet (1,951 to 2,134 meters)
Mean annual precipitation: 13 to 14 inches (330 to 356 millimeters)
Average annual air temperature: 46 to 49 degrees F (8 to 9 degrees C)
Frost-free period: 100 to 135 days

Map Unit Composition

Ramah and similar soils: 45 percent
Pescado and similar soils: 35 percent
Minor components: 20 percent

Component Descriptions

Ramah soils

Geomorphic position: Lava flows on valley floors
Parent material: Eolian and alluvial material derived from sandstone
Slope: 1 to 4 percent
Depth to restrictive feature: None within 60 inches Drainage class: Well drained
Slowest permeability: About $0.20 \mathrm{in} / \mathrm{hr}$ (moderately slow)
Available water capacity: About 10.4 inches (high)
Shrink-swell potential: About 1.5 LEP (low)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Medium
Calcium carbonate maximum: About 30 percent
Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: About 1 SAR (slightly sodic)
Ecological site: Loamy
Present native vegetation: western wheatgrass, Indian ricegrass, big sagebrush, blue grama, bottlebrush squirreltail, galleta, oneseed juniper, winterfat, broom snakeweed, muttongrass, rabbitbrush, spineless horsebrush, twoneedle pinyon
Land capability (irrigated): 3c
Land capability (nonirrigated): 6c
Conservation Tree/Shrub Group: 4C

Typical Profile:

A-0 to 3 inches; sandy loam
Bt1-3 to 8 inches; sandy clay loam
Bt2-8 to 15 inches; clay loam
Btk-15 to 33 inches; clay loam
Bk1-33 to 41 inches; clay loam
Bk2-41 to 62 inches; sandy clay loam

Pescado soils

Geomorphic position: Lava flows on valley floors
Parent material: Eolian material derived from sandstone
Slope: 1 to 8 percent
Depth to restrictive feature: 5 to 20 inches to bedrock (lithic)
Drainage class: Well drained

Slowest permeability: About $0.20 \mathrm{in} / \mathrm{hr}$ (moderately slow)
Available water capacity: About 2.7 inches (very low)
Shrink-swell potential: About 4.5 LEP (moderate)
Flooding hazard: None
Seasonal water table minimum depth: Greater than 6 feet
Runoff class: Medium
Calcium carbonate maximum: About 5 percent
Gypsum maximum: None
Salinity maximum: About 2 mmhos/cm (nonsaline)
Sodicity maximum: None
Ecological site: Malpais
Present native vegetation: big sagebrush, blue grama, galleta, western wheatgrass, Indian ricegrass, bottlebrush squirreltail, little bluestem, muttongrass, needleandthread, sideoats grama, winterfat, oneseed juniper, twoneedle pinyon
Land capability (nonirrigated): 7s
Conservation Tree/Shrub Group: 10
Typical Profile:
A-0 to 3 inches; fine sandy loam
Bt1-3 to 10 inches; sandy clay loam
Bt2-10 to 16 inches; clay loam
$2 \mathrm{R}-16$ inches; basalt bedrock

Minor Components

Rock outcrop
Composition: About 9 percent
Rock outcrop consists of barren or nearly barren areas of exposed sandstone and shale on ridges, ledges, and escarpments.
Evpark and similar soils
Composition: About 6 percent
Slope: 2 to 6 percent
Depth to restrictive feature: 20 to 40 inches to bedrock (lithic)
Drainage class: Well drained
Ecological site: Loamy
Parkelei and similar soils
Composition: About 5 percent
Slope: 2 to 8 percent
Depth to restrictive feature: None within 60 inches
Drainage class: Well drained
Ecological site: Loamy

Use and Management of the Soils

This soil survey is an inventory and evaluation of the soils in the survey area. It can be used to adjust land uses to the limitations and potentials of natural resources and the environment. Also, it can help to prevent soil-related failures in land uses.

In preparing a soil survey, soil scientists, conservationists, engineers, and others collect extensive field data about the nature and behavioral characteristics of the soils. They collect data on erosion, droughtiness, flooding, and other factors that affect various soil uses and management. Field experience and collected data on soil properties and performance are used as a basis in predicting soil behavior.

Information in this section can be used to plan the use and management of soils for crops and pasture; as rangeland and forestland; as sites for buildings, sanitary facilities, highways and other transportation systems, and parks and other recreational facilities; for agricultural waste management; and as wildlife habitat. It can be used to identify the potentials and limitations of each soil for specific land uses and to help prevent construction failures caused by unfavorable soil properties.

Planners and others using soil survey information can evaluate the effect of specific land uses on productivity and on the environment in all or part of the survey area. The survey can help planners to maintain or create a land use pattern in harmony with the natural soil.

Contractors can use this survey to locate sources of sand and gravel, roadfill, and topsoil. They can use it to identify areas where bedrock, wetness, or very firm soil layers can cause difficulty in excavation.

Health officials, highway officials, engineers, and others may also find this survey useful. The survey can help them plan the safe disposal of wastes and locate sites for pavements, sidewalks, campgrounds, playgrounds, lawns, and trees and shrubs.

Interpretive Ratings

The interpretive tables in this survey rate the soils in the survey area for various uses. Many of the tables identify the limitations that affect specified uses and
indicate the severity of those limitations. The ratings in these tables are both verbal and numerical.

Rating Class Terms

Rating classes are expressed in the tables in terms that indicate the extent to which the soils are limited by all of the soil features that affect a specified use or in terms that indicate the suitability of the soils for the use. Thus, the tables may show limitation classes or suitability classes. Terms for the limitation classes are not limited, slightly limited, somewhat limited, and very limited. The suitability ratings are expressed as well suited, moderately well suited, poorly suited, and unsuited or as good, fair, and poor.

Numerical Ratings

Numerical ratings in the tables indicate the relative severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.00 to 1.00 . They indicate gradations between the point at which a soil feature has the greatest negative impact on the use and the point at which the soil feature is not a limitation. The limitations appear in order from the most limiting to the least limiting. Thus, if more than one limitation is identified, the most severe limitation is listed first and the least severe one is listed last.

Prime Farmland and Farmland of Statewide and Local Importance

Prime farmland is one of several kinds of important farmland defined by the U.S. Department of Agriculture. It is of major importance in meeting the Nation's short- and long-range needs for food and fiber. Because the supply of high-quality farmland is limited, the U.S. Department of Agriculture recognizes that responsible levels of government, as well as individuals, should encourage and facilitate the wise use of our Nation's prime farmland.

Prime farmland, as defined by the U.S. Department of Agriculture, is land that has the best combination of physical and chemical characteristics for producing food, feed, forage, fiber, and oilseed crops and is
available for these uses. It could be cultivated land, pastureland, forestland, or other land, but it is not urban or built-up land or water areas. The soil qualities, growing season, and moisture supply are those needed for the soil to economically produce sustained high yields of crops when proper management, including water management, and acceptable farming methods are applied. In general, prime farmland has an adequate and dependable supply of moisture from precipitation or irrigation, a favorable temperature and growing season, acceptable acidity or alkalinity, an acceptable salt and sodium content, and few or no rocks. It is permeable to water and air. It is not excessively erodible or saturated with water for long periods, and it either is not frequently flooded during the growing season or is protected from flooding. Slope ranges mainly from 0 to 6 percent. More detailed information about the criteria for prime farmland is available at the local office of the Natural Resources Conservation Service. There is no farmland in the survey that meets the criteria for prime farmland. In addition, no farmlands meet the criteria for statewide importance. Statewide important farmlands are those having an irrigated land capability class of IV or better and are irrigated with a supply of irrigation water that will meet crop needs throughout the growing season.

In some local areas there is a need for certain additional farmlands for the production of food, feed, fiber, and forage, even though these lands are not identified as having national or statewide importance. Where appropriate, these lands are to be identified by the local agency or agencies concerned. In places, additional farmlands of local importance may include tracts of land that have been designated for agriculture by local ordinance.

The map units in the survey area that are considered farmlands of local importance are listed in table 5. Areas in the survey where these soils exist are mostly on the Zuni Indian Reservation, the upper reaches of the Rio Nutria, along the Rio Pescado, the Ramah Valley, and small areas west of Vanderwagon, NM . This list does not constitute a recommendation for a particular land use. On some soils included in the list, measures that overcome a hazard or limitation, such as flooding, wetness, and droughtiness, are needed. Onsite evaluation is needed to determine whether or not the hazard or limitation has been overcome by corrective measures. The location is shown on the detailed soil maps. The soil qualities that affect use and management are described under the heading "Detailed Soil Map Units."

Crops and Pasture

By Edward J. Oliver Jr., district conservationist, Natural Resources Conservation Service.

General management needed for crops and pasture is suggested in this section. The estimated yields of the main crops and pasture plants are listed, the system of land capability classification used by the Natural Resources Conservation Service is explained, and prime farmland is described.

Planners of management systems for individual fields or farms should consider the detailed information given in the description of each soil under the heading "Detailed Soil Map Units." Specific information can be obtained from the local office of the Natural Resources Conservation Service or the Cooperative Extension Service.

Approximately 2,100 acres in the survey area is irrigated cropland. The supply of irrigation water is limited in most areas. The irrigation reservoirs in the survey area are limited by capacity and/or runoff capacity. Dryland farming acreage is limited to small plots of corn planted mostly for ceremonial purposes. Given a mean annual precipitation range of 10 to 16 inches, moisture is not dependable enough to allow producers to expect reliable yields in any given year. The number of frost-free days in the survey area ranges from 100 to 150 days, depending on the elevation.

In the Ramah Valley area, the main use of irrigated water is to produce pasture grasses for grazing domestic livestock. A small acreage in the area is used for growing small grains, such as wheat and oats. Irrigation water in the valley comes from the Ramah reservoir a few miles to the north.

There are five irrigated areas on the Zuni Reservation. Water for the irrigation areas is provided by reservoirs, which store water from several rivers. The main crops grown are alfalfa, corn, rye, and oats. Also grown is an assortment of garden vegetables, including pumpkins, squash, beans, cucumbers, and chili peppers.

The main objectives in cropland management are proper irrigation, maintenance of good soil tilth and fertility, and control of water erosion and soil blowing. Measures that reduce salinity or sodicity and improve drainage also are needed in some areas. Salinity and sodicity can be reduced by leaching or by applying soil amendments.

Using a suitable cropping system helps to maintain
good soil tilth, structure, aeration, and fertility. A single crop can be grown for many years on some soils with little adverse effect on yields. Other soils deteriorate rapidly if low-residue crops are grown unless large amounts of organic matter are added annually. Rotating crops helps to control insects, disease, and weeds.

Applying adequate amounts of irrigation water in a timely manner and avoiding over-irrigation are essential for high yields. The irrigation system should be adapted to the soil and the crops grown. Over-irrigation leaches nutrients from the root zone, results in excessive wetness of the lower part of the soil, and reduces aeration in the root zone.

Good management practices such as planting adapted varieties, timely planting and harvesting, and applying fertilizer according to needs of the crops can increase yields of annual crops, hay crops and pasture plants. Control of weeds, insects and disease also helps to increase yields.

Good pasture management includes such practices as applying adequate fertilizer, clipping after grazing to remove excess forage and weeds and rotation grazing.

Yields per Acre

The average irrigated yields per acre that can be expected of the principal crops under a high level of management are shown in table 5. In any given year, yields may be higher or lower than those indicated in the table because of variations in rainfall and other climatic factors. The land capability classification of map units in the survey area also is shown in the table.

The yields are based mainly on the experience and records of farmers, conservationists, and extension agents. Available yield data from nearby counties and results of field trials and demonstrations also are considered.

The management needed to obtain the indicated yields of the various crops depends on the kind of soil and the crop. Management can include drainage, erosion control, and protection from flooding; the proper planting and seeding rates; suitable high-yielding crop varieties; appropriate and timely tillage; control of weeds, plant diseases, and harmful insects; favorable soil reaction and optimum levels of nitrogen, phosphorus, potassium, and trace elements for each crop; effective use of crop residue, barnyard manure, and green manure crops; and harvesting that ensures the smallest possible loss.

For yields of irrigated crops, it is assumed that the irrigation system is adapted to the soils and to the crops grown, that good-quality irrigation water is
uniformly applied as needed, and that tillage is kept to a minimum.

The estimated yields reflect the productive capacity of each soil for each of the principal crops. Yields are likely to increase as new production technology is developed. The productivity of a given soil compared with that of other soils, however, is not likely to change.

Crops other than those shown in table 5 are grown in the survey area, but estimated yields are not listed because the acreage of such crops is small. The local office of the Natural Resources Conservation Service or of the Cooperative Extension Service can provide information about the management and productivity of the soils for those crops.

The productivity index is a relative rating of the capacity of a soil to produce a specific plant under a defined management system. The index is determined from yield data on a few benchmark soils and is used to calculate yields, the net returns from crops, land assessment values and taxes, and to perform risk analysis when land management decisions are made.

Land Capability Classification

Land capability classification shows, in a general way, the suitability of soils for most kinds of field crops. Crops that require special management are excluded. The soils are grouped according to their limitations for field crops, the risk of damage if they are used for crops, and the way they respond to management. The criteria used in grouping the soils do not include major and generally expensive landforming that would change slope, depth, or other characteristics of the soils, nor do they include possible but unlikely major reclamation projects. Capability classification is not a substitute for interpretations designed to show suitability and limitations of groups of soils for rangeland, for forestland, or for engineering purposes.

Land capability classifications for the individual soils in this survey can be found in the "Detailed Soil Map Units" section.

In the capability system, soils are generally grouped at two levels-capability class and subclass.

Capability classes, the broadest groups, are designated by the numbers 1 through 8. The numbers indicate progressively greater limitations and narrower choices for practical use. The classes are defined as follows:

Class 1 soils have slight limitations that restrict their use.

Class 2 soils have moderate limitations that restrict
the choice of plants or that require moderate conservation practices.

Class 3 soils have severe limitations that restrict the choice of plants or that require special conservation practices, or both.

Class 4 soils have very severe limitations that restrict the choice of plants or that require very careful management, or both.

Class 5 soils are subject to little or no erosion but have other limitations, impractical to remove, that restrict their use mainly to pasture, rangeland, forestland, or wildlife habitat.

Class 6 soils have severe limitations that make them generally unsuitable for cultivation and that restrict their use mainly to pasture, rangeland, forestland, or wildlife habitat.

Class 7 soils have very severe limitations that make them unsuitable for cultivation and that restrict their use mainly to grazing, forestland, or wildlife habitat.

Class 8 soils and miscellaneous areas have limitations that preclude commercial plant production and that restrict their use to recreational purposes, wildlife habitat, watershed, or esthetic purposes.

Capability subclasses are soil groups within one class. They are designated by adding a small letter, e, w, s, or c, to the class numeral, for example, 2e. The letter e shows that the main hazard is the risk of erosion unless close-growing plant cover is maintained; w shows that water in or on the soil interferes with plant growth or cultivation (in some soils the wetness can be partly corrected by artificial drainage); s shows that the soil is limited mainly because it is shallow, droughty, or stony; and c, used in only some parts of the United States, shows that the chief limitation is climate that is very cold or very dry.

In class 1 there are no subclasses because the soils of this class have few limitations. Class 5 contains only the subclasses indicated by w, s, or c because the soils in class 5 are subject to little or no erosion. They have other limitations that restrict their use to pasture, rangeland, forestland, wildlife habitat, or recreation.

Rangeland

About 80 percent of the survey area is range or grazable woodland. A large portion of the farm income is derived from the production of cattle and some sheep. Cow-calf-yearling operations are the most common. On many ranches the forage produced on rangeland is supplemented with hay and protein supplements. There are ranches of up to 250,000 acres and smaller ranches that average about 3,000
acres or less. Most tribal ranches, Navajo and Zuni, average about 4,000 acres in size.

Prior to the introduction of domestic livestock by the Spanish explorers, the main grazers and browsers of the land were small numbers of buffalo, mule deer, and elk, and larger numbers of desert bighorn sheep, antelope, and prairie dogs.

About 48 percent of the grazing land is administered by the Bureau of Indian Affairs, and about 41 percent is under private management. About 9 percent is managed by the Bureau of Land Management, about 1 percent is managed by the U.S. Forest Service, and approximately another 1 percent is overseen by the National Park Service and the State of New Mexico.

In areas that have similar climate and topography, differences in the kind and amount of rangeland or forest understory vegetation are closely related to the kind of soil. Effective management is based on the relationship between the soils and vegetation and water.

Table 6 shows, for each soil that supports vegetation suitable for grazing, the ecological site; the total annual production of vegetation in favorable, normal, and unfavorable years; the characteristic vegetation; and the average percentage of each species. An explanation of the column headings in table 6 follows.

An ecological site is the product of all the environmental factors responsible for its development. It has characteristic soils that have developed over time throughout the soil development process; a characteristic hydrology, particularly infiltration and runoff, that has developed over time; and a characteristic plant community (kind and amount of vegetation). The hydrology of the site is influenced by development of the soil and plant community. The vegetation, soils, and hydrology are all interrelated. Each is influenced by the others and influences the development of the others. The plant community on an ecological site is typified by an association of species that differs from that of other ecological sites in the kind and/or proportion of species or in total production. Descriptions of ecological sites are provided in the Field Office Technical Guide, which is available in local offices of the Natural Resources Conservation Service.

Total dry-weight production is the amount of vegetation that can be expected to grow annually in a well managed area that is supporting the potential natural plant community. It includes all vegetation, whether or not it is palatable to grazing animals. It includes the current year's growth of leaves, twigs, and fruits of woody plants. It does not include the increase in stem diameter of trees and shrubs. It is expressed
in pounds per acre of air-dry vegetation for favorable, normal, and unfavorable years. In a favorable year, the amount and distribution of precipitation and the temperatures make growing conditions substantially better than average. In a normal year, growing conditions are about average. In an unfavorable year, growing conditions are well below average, generally because of low available soil moisture. Yields are adjusted to a common percent of air-dry moisture content.

Characteristic vegetation-the grasses, forbs, and shrubs that make up most of the potential natural plant community on each soil-is listed by common name. Under rangeland composition, the expected percentage of the total annual production is given for each species making up the characteristic vegetation. The amount that can be used as forage depends on the kinds of grazing animals and on the grazing season.

Range management requires a knowledge of the kinds of soil and of the potential natural plant community. It also requires an evaluation of the present range similarity index and rangeland trend. Range similarity index is determined by comparing the present plant community with the potential natural plant community on a particular rangeland ecological site. The more closely the existing community resembles the potential community, the higher the range similarity index. Rangeland trend is defined as the direction of change in an existing plant community relative to the potential natural plant community. Further information about the range similarity index and rangeland trend is available in chapter 4 of the National Range and Pasture Handbook, which is available in local offices of the Natural Resources Conservation Service.

The objective in range management is to control grazing so that the plants growing on a site are about the same in kind and amount as the potential natural plant community for that site. Such management generally results in the optimum production of vegetation, control of undesirable brush species, conservation of water, and control of erosion. Sometimes, however, an area with a range similarity index somewhat below the potential meets grazing needs, provides wildlife habitat, and protects soil and water resources.

Forest Productivity and Management

The two major types of forestland in the survey area are ponderosa pines mixed with Douglas fir and Englemann spruce at the higher elevations, and pinyon-juniper forests. Logging in the Zuni Mountains began in the 1890's. Areas were logged extensively from the 1900's to the 1940's. In the Zuni Mountains, a
narrow-gauge railroad was used to transport logs to the sawmills. From the late 1930's through World War II, areas that had appreciable amounts of ponderosa pine were cut over for the production of railroad ties.

The many periods of heavy cutting and the subsequent farming, overgrazing, and control of fires have resulted in the present forest conditions. Some wooded areas are understocked. The residual trees in these areas are of poor quality for timber. Many second-growth stands are overstocked and require thinning before optimum growth and yields can be achieved.

The dominant timber species in the survey area is ponderosa pine. Ponderosa pine grows best at elevations above 8,000 feet, but it also grows at elevations as low as 7,300 feet. Douglas fir grows best on the north-facing slopes between elevations of 7,800 and 8,300 feet. Small areas of Douglas fir are on the cooler, north-facing slopes in the Zuni Mountains. The main species at elevations above 8,800 feet are Engelman spruce and corkbar fir. Narrow bands of blue spruce are along some of the drainageways at the higher elevations.

The Corzuni, Fortwingate, and Zunalei soils have the highest potential for timber production. Timber can also be produced on the Asaayi and Osoridge soils.

Twoneedle pinyon and oneseed juniper are common at elevations of 7,100 to 7,800 feet, but they also grow on the south-facing slopes at elevations as high as 8,100 feet. Rocky Mountain juniper and alligator juniper are included in the overstory at the higher elevations. Although twoneedle pinyon and oneseed juniper are not considered commercial species, they are used extensively for fuel wood, fenceposts, Christmas trees and ornamental plantings. Pinyon also provides edible nuts.

Most of the understory in the areas of pinyon and juniper is used for livestock grazing. Understory vegetation consists of grasses, forbs, shrubs, and other plants. If well managed, some forestland can produce enough understory vegetation to support grazing by livestock or wildlife, or both, without damage to the trees.

The quantity and quality of understory vegetation vary with the kind of soil, the age and kind of trees in the canopy, the density of the canopy, and the depth and condition of the litter. The density of the canopy determines the amount of light that understory plants receive; therefore, the production of understory plants can be increased by thinning the trees in the overstory. In the section "Detailed Soil Map Units," the common understory plants are specified for the soils in the survey area that are used as forestland.

The Flugle, Parkelei, and Fragua soils support the
best stands of pinyon and juniper. The Fraguni and Celavar soils also support pinyon and juniper.

Good forestland management includes protection against fire, insects and disease; thinning and pruning to improve growth and quality; reforestation; cutting to improve the stocking level; and proper watershed management.

The United States Forest Service, New Mexico Division of Forestry, and private individuals oversee fire prevention and control. Proper silviculture practices provide protection against insects (bark beetles) and diseases (dwarf mistletoe and red rot). Thinning and pruning of selected trees can improve the quality of the timber and the growth potential of the site.

Reforestation can be achieved by natural regeneration and by planting. Proper site preparation may be needed to provide a good seedbed and minimize competition from shrubs and grasses.

Watershed management includes the proper location of skid trails, logging roads and landing, and the proper treatment of all areas disturbed by logging activities. Constructing water bars, cross ditching, building outsloping roads, and then seeding grasses, forbs and browse species are practices that help control water erosion. Leaving a buffer strip of undisturbed soil and vegetation on both sides of watercourses also helps to control erosion and minimizes the amount of sediment reaching streams.

The tables in this section can help forest owners or managers plan the use of soils for wood crops. They show the potential productivity of the soils for wood crops and rate the soils according to the limitations that affect various aspects of forest management.

Forest Productivity

In table 7. the potential productivity of merchantable or common trees on a soil is expressed as a site index and as a volume number. The site index is the average height, in feet, that dominant and codominant trees of a given species attain in a specified number of years. The site index applies to fully stocked, even-aged, unmanaged stands. Commonly grown trees are those that forest managers generally favor in intermediate or improvement cuttings. They are selected on the basis of growth rate, quality, value, and marketability. More detailed information regarding site index is available in the National Forestry Manual, which is available in local offices of the Natural Resources Conservation Service or on the Internet.

The volume of wood fiber, a number, is the yield likely to be produced by the most important tree
species. This number, expressed as cubic feet per acre per year and calculated at the age of culmination of the mean annual increment (CMAI), indicates the amount of fiber produced in a fully stocked, even-aged, unmanaged stand.

Trees to manage are those that are preferred for planting, seeding, or natural regeneration and those that remain in the stand after thinning or partial harvest.

Forest Management

In table 8a and table 8b, interpretive ratings are given for various aspects of forest management. The ratings are both verbal and numerical.

Some rating class terms indicate the degree to which the soils are suited to a specified forest management practice. Well suited indicates that the soil has features that are favorable for the specified practice and has no limitations. Good performance can be expected, and little or no maintenance is needed. Moderately well suited indicates that the soil has features that are moderately favorable for the specified practice. One or more soil properties are less than desirable, and fair performance can be expected. Some maintenance is needed. Poorly suited indicates that the soil has one or more properties that are unfavorable for the specified practice. Overcoming the unfavorable properties requires special design, extra maintenance, and costly alteration. Unsuited indicates that the expected performance of the soil is unacceptable for the specified practice or that extreme measures are needed to overcome the undesirable soil properties.

Numerical ratings in the tables indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.00 to 1.00 . They indicate gradations between the point at which a soil feature has the greatest negative impact on the specified forest management practice (1.00) and the point at which the soil feature is not a limitation (0.00).

The paragraphs that follow indicate the soil properties considered in rating the soils for forest management practices. More detailed information about the criteria used in the ratings is available in the National Forestry Manual, which is available in local offices of the Natural Resources Conservation Service or on the Internet.

Ratings in the column hazard of off-road or off-trail erosion are based on slope and on soil erodibility factor K . The soil loss is caused by sheet or rill erosion in off-
road or off-trail areas where 50 to 75 percent of the surface has been exposed by logging, grazing, mining, or other kinds of disturbance. The hazard is described as slight, moderate, severe, or very severe. A rating of slight indicates that erosion is unlikely under ordinary climatic conditions; moderate indicates that some erosion is likely and that erosion-control measures may be needed; severe indicates that erosion is very likely and that erosion-control measures, including revegetation of bare areas, are advised; and very severe indicates that significant erosion is expected, loss of soil productivity and off-site damage are likely, and erosion-control measures are costly and generally impractical.

Ratings in the column hazard of erosion on roads and trails are based on the soil erodibility factor K, slope, and content of rock fragments. The ratings apply to unsurfaced roads and trails. The hazard is described as slight, moderate, or severe. A rating of slight indicates that little or no erosion is likely; moderate indicates that some erosion is likely, that the roads or trails may require occasional maintenance; and that simple erosion-control measures are needed; and severe indicates that significant erosion is expected, that the roads or trails require frequent maintenance, and that costly erosion-control measures are needed.

Ratings in the column suitability for roads (natural surface) are based on slope, rock fragments on the surface, plasticity index, content of sand, the Unified classification, depth to a water table, ponding, flooding, and the hazard of soil slippage. The ratings indicate the suitability for using the natural surface of the soil for roads. The soils are described as well suited, moderately well suited, or poorly suited to this use.

Ratings in the columns suitability for hand planting and suitability for mechanical planting are based on slope, depth to a restrictive layer, content of sand, plasticity index, rock fragments on or below the surface, depth to a water table, and ponding. The soils are described as well suited, moderately well suited, poorly suited, or unsuited to these methods of planting. It is assumed that necessary site preparation is completed before seedlings are planted.

Ratings in the column suitability for use of harvesting equipment are based on slope, rock fragments on the surface, plasticity index, content of sand, the Unified classification, depth to a water table, and ponding. The soils are described as well suited, moderately well suited, or poorly suited to this use.

Windbreaks and Environmental Plantings

Windbreaks protect livestock, buildings, and yards from wind and snow. They also protect fruit trees and gardens, and they furnish habitat for wildlife. Several rows of low and high-growing broadleaf and coniferous trees and shrubs provide the most protection.

Field windbreaks are narrow plantings made at right angles to the prevailing wind and at specific intervals across the field. The interval depends on the erodibilty of the soil. Field windbreaks protect cropland and crops from wind, help to keep snow on the fields, and provide food and cover for wildlife.

Environmental plantings help to beautify and screen houses and other buildings and to abate noise. The plants, mostly evergreen shrubs and trees, are closely spaced. To ensure plant survival, a healthy planting stock of suitable species should be planted properly on a well prepared site and maintained in good condition.

The trees or shrubs selected for planting in windbreaks should be those that are suited to the soils on the site. Selecting suitable species helps to ensure the survival, rapid growth, and longevity of windbreaks. The soil characteristics that greatly affect the growth rate of trees and shrubs are permeability, available water capacity, and depth to bedrock.

Grazing can be detrimental to windbreaks and environmental plantings because livestock compact the soil and remove the lower branches of the trees and shrubs. Compaction retards growth and removal of the lower branches reduces the effectiveness and esthetic value of the windbreaks. Weeds and insects prevent trees from achieving their maximum growth rates. Weeds can be controlled by clean cultivation and herbicide applications. An insufficient moisture supply hinders the survival of trees in urban areas and on cropland. Drip irrigation or other methods of irrigation are needed to reduce the seedling mortality rate and ensure continued growth. Fallowing a year before planting helps to provide a sufficient soil moisture supply for the establishment of seedlings.

In the section "Detailed Soil Map Units," the Conservation Tree/Shrub Group is provided. This grouping can be used to reference tables and charts that show the height that locally grown trees and shrubs are expected to reach in 20 years on various soils. The estimates are based on measurements and observation of established plantings that have been given adequate care. They can be used as a guide in planning windbreaks and screens.

Additional information on planning windbreaks and
screens along with guidance on their proper care can be obtained from the local offices of the Natural Resources Conservation Service, the Cooperative Extension Service, or from a commercial nursery.

Recreation

The soils of the survey area are rated in table 9a and table 9b according to limitations that affect their suitability for recreation. The ratings are both verbal and numerical. Rating class terms indicate the extent to which the soils are limited by all of the soil features that affect the recreational uses. Not limited indicates that the soil has features that are very favorable for the specified use. Good performance and very low maintenance can be expected. Slightly limited indicates that the soil has features that are favorable for the specified use. The limitations are minor and can be easily overcome. Good performance and low maintenance can be expected. Somewhat limited indicates that the soil has features that are moderately favorable for the specified use. The limitations can be overcome or minimized by special planning, design, or installation. Fair performance and moderate maintenance can be expected. Very limited indicates that the soil has one or more features that are unfavorable for the specified use. The limitations generally cannot be overcome without major soil reclamation, special design, or expensive installation procedures. Poor performance and high maintenance can be expected.

Numerical ratings in the tables indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.00 to 1.00. They indicate gradations between the point at which a soil feature has the greatest negative impact on the use (1.00) and the point at which the soil feature is not a limitation (0.00).

The ratings in the tables are based on restrictive soil features, such as wetness, slope, and texture of the surface layer. Susceptibility to flooding is considered. Not considered in the ratings, but important in evaluating a site, are the location and accessibility of the area, the size and shape of the area and its scenic quality, vegetation, access to water, potential water impoundment sites, and access to public sewer lines. The capacity of the soil to absorb septic tank effluent and the ability of the soil to support vegetation also are important. Soils that are subject to flooding are limited for recreational uses by the duration and intensity of flooding and the season when flooding occurs. In planning recreational facilities, onsite assessment of the height, duration, intensity, and frequency of flooding is essential.

The information in tables 9a and 9b can be supplemented by other information in this survey, for example, interpretations for building site development, construction materials, sanitary facilities, and water management.

Camp areas require site preparation, such as shaping and leveling the tent and parking areas, stabilizing roads and intensively used areas, and installing sanitary facilities and utility lines. Camp areas are subject to heavy foot traffic and some vehicular traffic. The ratings are based on the soil properties that affect the ease of developing camp areas and the performance of the areas after development. Slope, stoniness, and depth to bedrock or a cemented pan are the main concerns affecting the development of camp areas.

The soil properties that affect the performance of the areas after development are those that influence trafficability and promote the growth of vegetation, especially in heavily used areas. For good trafficability, the surface of camp areas should absorb rainfall readily, remain firm under heavy foot traffic, and not be dusty when dry. The soil properties that influence trafficability are texture of the surface layer, depth to a water table, ponding, flooding, permeability, and large stones. The soil properties that affect the growth of plants are depth to bedrock or a cemented pan, permeability, and toxic substances in the soil.

Picnic areas are subject to heavy foot traffic. Most vehicular traffic is confined to access roads and parking areas. The ratings are based on the soil properties that affect the ease of developing picnic areas and that influence trafficability and the growth of vegetation after development. Slope and stoniness are the main concerns affecting the development of picnic areas. For good trafficability, the surface of picnic areas should absorb rainfall readily, remain firm under heavy foot traffic, and not be dusty when dry. The soil properties that influence trafficability are texture of the surface layer, depth to a water table, ponding, flooding, permeability, and large stones. The soil properties that affect the growth of plants are depth to bedrock or a cemented pan, permeability, and toxic substances in the soil.

Playgrounds require soils that are nearly level, are free of stones, and can withstand intensive foot traffic. The ratings are based on the soil properties that affect the ease of developing playgrounds and that influence trafficability and the growth of vegetation after development. Slope and stoniness are the main concerns affecting the development of playgrounds. For good trafficability, the surface of the playgrounds should absorb rainfall readily, remain firm under heavy foot traffic, and not be dusty when dry. The soil
properties that influence trafficability are texture of the surface layer, depth to a water table, ponding, flooding, permeability, and large stones. The soil properties that affect the growth of plants are depth to bedrock or a cemented pan, permeability, and toxic substances in the soil.

Paths and trails for hiking and horseback riding should require little or no slope modification through cutting and filling. The ratings are based on the soil properties that affect trafficability and erodibility. These properties are stoniness, depth to a water table, ponding, flooding, slope, and texture of the surface layer.

Off-road motorcycle trails require little or no site preparation. They are not covered with surfacing material or vegetation. Considerable compaction of the soil material is likely. The ratings are based on the soil properties that influence erodibility, trafficability, dustiness, and the ease of revegetation. These properties are stoniness, slope, depth to a water table, ponding, flooding, and texture of the surface layer.

Golf fairways are subject to heavy foot traffic and some light vehicular traffic. Cutting or filling may be required. Irrigation is not considered in the ratings. The ratings are based on the soil properties that affect plant growth and trafficability after vegetation is established. The properties that affect plant growth are reaction; depth to a water table; ponding; depth to bedrock or a cemented pan; the available water capacity in the upper 40 inches; the content of salts, sodium, or calcium carbonate; and sulfidic materials. The properties that affect trafficability are flooding, depth to a water table, ponding, slope, stoniness, and the amount of sand, clay, or organic matter in the surface layer. The suitability of the soil for traps, tees, roughs, and greens is not considered in the ratings.

Wildlife Habitat

David Seery, Wildlife Biologist, Natural Resources
Conservation Service, helped prepare this section.
There are six general areas containing wildlife
habitat in the McKinley County Area:
1.) Plateaus, mesas, and terraces
2.) Mountains
3.) River and stream valleys
4.) Wetlands
5.) Breaks
6.) Rock outcrops

Plateaus, mesas, and terraces contain soils that have grasslands and pinyon-juniper forests on the gently undulating to steep slopes. Grasses and shrubs
grow on soils that range from very shallow to very deep.

The summits of plateaus and mesas support pinyon-juniper forests. Elevations range from 6,800 to 7,800 feet. Various wildlife species also use these areas, for example, gray squirrels, cottontail rabbits, prairie rattlesnakes, and pinyon jays.

Fan remnants and stream terraces form old land surfaces near valleys and mountains. These upland sites are home to badger, striped skunk, prairie dogs, prairie rattlesnakes, black-tailed jackrabbit, and hawks. Antelope could be reintroduced in the northern half of the survey if given protection until established. Badgers and other burrowing animals make extensive use of areas of coarse and moderately coarse textured soils.

Mountains occur in the southern portion of the survey area east of Gallup and north of Grants.

The Zuni Mountains and the Mt. Taylor area contain some of the most important wildlife habitat in the survey area. Woodlands of ponderosa pine, Douglasfir, pinyon, juniper, and Gambel oak provide habitat for turkey, mule deer, elk, black bear, porcupine, cottontail rabbits, gray squirrel, band-tailed pigeons, owls, hawks, prairie rattlesnakes, and songbirds.

Open grassy valleys are home to prairie dogs and possibly the endangered black-footed ferret. The longtailed weasel also occurs in these areas. Local wetlands are important for many birds, waterfowl, and local mammals. Steep slopes and variable topography also play important roles in wildlife habitat.

River and stream valleys occur along such streams as the Puerco, Chaco, Cottonwood, Pescado, Rio Nutria, Zuni, and San Jose River. They contain riparian vegetation and water for wildlife use. These areas are used by all local wildlife for some part of their needs.

Songbirds nest in cottonwood and willow trees in large numbers. Cavity-nesting birds find many nest sites in holes within large cottonwood trees. Quail use the thick vegetation for cover and seed sources. The abundant prey species attract many predators such as coyote, hawks, prairie rattlesnakes, and bobcat. Mule deer may spend their whole lives in these river bottoms.

The potential for competition between livestock and wildlife is high. The plant communities in these riparian areas must be maintained in good condition to provide wildlife habitat, flood protection, water quality, and soil erosion control.

Wetlands are areas containing hydrophytic vegetation, hydric soils, and wetland hydrology. Marshes are wetlands dominated by grasses and grass-like plants, and they occur in few areas of the
survey area. Some are in channels of the Rio Nutria, Pescado, and Cottonwood River valleys and are produced by ground water. Other small marshes are human-induced and formed by irrigation impoundments.

All of these wetlands are used extensively by a large variety of wildlife species. Predators and prey species alike gather at these oases in an otherwise dry landscape.

Wetlands provide natural protection from flooding, enhance water quality, furnish habitat for wildlife, and conserve water. Wetlands need protection from excessive grazing, drainage projects, and poorly planned urban development.

Breaks are the steep, broken lands on the escarpments of mesas and plateaus. Breaks are very eroded and dissected, with many small ridges and gullies. Vegetation on the soils occurs in breaks, but not in large amounts. Although annual production of airdry vegetation is generally low, plant diversity is high. This botanic diversity, along with the physical cover provided by the terrain, provides an attractive habitat for wildlife. Mule deer hide in breaks and feed on browse plants such as true mountainmahogany. Coyote and red fox find cover in the intricate, rocky landscapes. Trees growing on breaks at higher elevations provide nest sites and hunting perches for raptors, such as the red-tailed hawk.

Rock outcrops furnish wildlife habitat when they occur as cliffs below rims of plateaus, mesas, and canyons. Although little or no vegetation grows on rock outcrops, they are still important to many species. Eagles, hawks, turkey vultures, owls, diamondback rattlers, and swallows utilize cliffs and ledges. Migratory bats seasonally roost in cracks and caves. Foxes, bobcats, bears, and cougars have dens in alcoves and caves.

Engineering

This section provides information for planning land uses related to urban development and to water management. Soils are rated for various uses, and the most limiting features are identified. Ratings are given for building site development, sanitary facilities, construction materials, and water management. The ratings are based on observed performance of the soils and on the estimated data and test data in the "Soil Properties" section.

Information in this section is intended for land use planning, for evaluating land use alternatives, and for planning site investigations prior to design and
construction. The information, however, has limitations. For example, estimates and other data generally apply only to that part of the soil between the surface and a depth of 5 to 7 feet. Because of the map scale, small areas of different soils may be included within the mapped areas of a specific soil.

The information is not site specific and does not eliminate the need for onsite investigation of the soils or for testing and analysis by personnel experienced in the design and construction of engineering works.

Government ordinances and regulations that restrict certain land uses or impose specific design criteria were not considered in preparing the information in this section. Local ordinances and regulations should be considered in planning, in site selection, and in design.

Soil properties, site features, and observed performance were considered in determining the ratings in this section. During the fieldwork for this soil survey, determinations were made about particle-size distribution, liquid limit, plasticity index, soil reaction, depth to bedrock, hardness of bedrock within 5 to 7 feet of the surface, soil wetness, depth to a water table, ponding, slope, likelihood of flooding, natural soil structure aggregation, and soil density. Data were collected about kinds of clay minerals, mineralogy of the sand and silt fractions, and the kinds of adsorbed cations. Estimates were made for erodibility, permeability, corrosivity, shrink-swell potential, available water capacity, and other behavioral characteristics affecting engineering uses.

This information can be used to evaluate the potential of areas for residential, commercial, industrial, and recreational uses; make preliminary estimates of construction conditions; evaluate alternative routes for roads, streets, highways, pipelines, and underground cables; evaluate alternative sites for sanitary landfills, septic tank absorption fields, and sewage lagoons; plan detailed onsite investigations of soils and geology; locate potential sources of gravel, sand, earthfill, and topsoil; plan drainage systems, irrigation systems, ponds, terraces, and other structures for soil and water conservation; and predict performance of proposed small structures and pavements by comparing the performance of existing similar structures on the same or similar soils.

The information in the tables, along with the soil maps, the soil descriptions, and other data provided in this survey, can be used to make additional interpretations.

Some of the terms used in this soil survey have a special meaning in soil science and are defined in the Glossary.

Building Site Development

Soil properties influence the development of building sites, including the selection of the site, the design of the structure, construction, performance after construction, and maintenance. Tables 10aland table 10b show the degree and kind of soil limitations that affect dwellings with and without basements, small commercial buildings, local roads and streets, shallow excavations, and lawns and landscaping.

The ratings in the tables are both verbal and numerical. Rating class terms indicate the extent to which the soils are limited by all of the soil features that affect building site development. Not limited indicates that the soil has features that are very favorable for the specified use. Good performance and very low maintenance can be expected. Slightly limited indicates that the soil has features that are favorable for the specified use. The limitations are minor and can be easily overcome. Good performance and low maintenance can be expected. Somewhat limited indicates that the soil has features that are moderately favorable for the specified use. The limitations can be overcome or minimized by special planning, design, or installation. Fair performance and moderate maintenance can be expected. Very limited indicates that the soil has one or more features that are unfavorable for the specified use. The limitations generally cannot be overcome without major soil reclamation, special design, or expensive installation procedures. Poor performance and high maintenance can be expected.

Numerical ratings in the tables indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.00 to 1.00 . They indicate gradations between the point at which a soil feature has the greatest negative impact on the use (1.00) and the point at which the soil feature is not a limitation (0.00).

Dwellings are single-family houses of three stories or less. For dwellings without basements, the foundation is assumed to consist of spread footings of reinforced concrete built on undisturbed soil at a depth of 2 feet or at the depth of maximum frost penetration, whichever is deeper. For dwellings with basements, the foundation is assumed to consist of spread footings of reinforced concrete built on undisturbed soil at a depth of about 7 feet. The ratings for dwellings are based on the soil properties that affect the capacity of the soil to support a load without movement and on the properties that affect excavation and construction costs. The properties that affect the load-supporting capacity include depth to a water table, ponding, flooding, subsidence, linear extensibility (shrink-swell potential),
and compressibility. Compressibility is inferred from the Unified classification. The properties that affect the ease and amount of excavation include depth to a water table, ponding, flooding, slope, depth to bedrock or a cemented pan, hardness of bedrock or a cemented pan, and the amount and size of rock fragments.

Small commercial buildings are structures that are less than three stories high and do not have basements. The foundation is assumed to consist of spread footings of reinforced concrete built on undisturbed soil at a depth of 2 feet or at the depth of maximum frost penetration, whichever is deeper. The ratings are based on the soil properties that affect the capacity of the soil to support a load without movement and on the properties that affect excavation and construction costs. The properties that affect the load-supporting capacity include depth to a water table, ponding, flooding, subsidence, linear extensibility (shrink-swell potential), and compressibility (which is inferred from the Unified classification). The properties that affect the ease and amount of excavation include flooding, depth to a water table, ponding, slope, depth to bedrock or a cemented pan, hardness of bedrock or a cemented pan, and the amount and size of rock fragments.

Local roads and streets have an all-weather surface and carry automobile and light truck traffic all year. They have a subgrade of cut or fill soil material; a base of gravel, crushed rock, or soil material stabilized by lime or cement; and a surface of flexible material (asphalt), rigid material (concrete), or gravel with a binder. The ratings are based on the soil properties that affect the ease of excavation and grading and the traffic-supporting capacity. The properties that affect the ease of excavation and grading are depth to bedrock or a cemented pan, hardness of bedrock or a cemented pan, depth to a water table, ponding, flooding, the amount of large stones, and slope. The properties that affect the traffic-supporting capacity are soil strength (as inferred from the AASHTO group index number), subsidence, linear extensibility (shrinkswell potential), the potential for frost action, depth to a water table, and ponding.

Shallow excavations are trenches or holes dug to a maximum depth of 5 or 6 feet for graves, utility lines, open ditches, or other purposes. The ratings are based on the soil properties that influence the ease of digging and the resistance to sloughing. Depth to bedrock or a cemented pan, hardness of bedrock or a cemented pan, the amount of large stones, and dense layers influence the ease of digging, filling, and compacting. Depth to the seasonal high water table, flooding, and ponding may restrict the period when excavations can
be made. Slope influences the ease of using machinery. Soil texture, depth to the water table, and linear extensibility (shrink-swell potential) influence the resistance to sloughing.

Lawns and landscaping require soils on which turf and ornamental trees and shrubs can be established and maintained. Irrigation is not considered in the ratings. The ratings are based on the soil properties that affect plant growth and trafficability after vegetation is established. The properties that affect plant growth are reaction; depth to a water table; ponding; depth to bedrock or a cemented pan; the available water capacity in the upper 40 inches; the content of salts, sodium, or calcium carbonate; and sulfidic materials. The properties that affect trafficability are flooding, depth to a water table, ponding, slope, stoniness, and the amount of sand, clay, or organic matter in the surface layer.

Sanitary Facilities

Table 11a and table 11b show the degree and kind of soil limitations that affect septic tank absorption fields, sewage lagoons, sanitary landfills, and daily cover for landfill. The ratings are both verbal and numerical. Rating class terms indicate the extent to which the soils are limited by all of the soil features that affect these uses. Not limited indicates that the soil has features that are very favorable for the specified use. Good performance and very low maintenance can be expected. Slightly limited indicates that the soil has features that are favorable for the specified use. The limitations are minor and can be easily overcome. Good performance and low maintenance can be expected. Somewhat limited indicates that the soil has features that are moderately favorable for the specified use. The limitations can be overcome or minimized by special planning, design, or installation. Fair performance and moderate maintenance can be expected. Very limited indicates that the soil has one or more features that are unfavorable for the specified use. The limitations generally cannot be overcome without major soil reclamation, special design, or expensive installation procedures. Poor performance and high maintenance can be expected.

Numerical ratings in the tables indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.00 to 1.00 . They indicate gradations between the point at which a soil feature has the greatest negative impact on the use (1.00) and the point at which the soil feature is not a limitation (0.00).

Septic tank absorption fields are areas in which effluent from a septic tank is distributed into the soil through subsurface tiles or perforated pipe. Only that part of the soil between depths of 24 and 60 inches is evaluated. The ratings are based on the soil properties that affect absorption of the effluent, construction and maintenance of the system, and public health. Permeability, depth to a water table, ponding, depth to bedrock or a cemented pan, and flooding affect absorption of the effluent. Stones and boulders, ice, and bedrock or a cemented pan interfere with installation. Subsidence interferes with installation and maintenance. Excessive slope may cause lateral seepage and surfacing of the effluent in downslope areas.

Some soils are underlain by loose sand and gravel or fractured bedrock at a depth of less than 4 feet below the distribution lines. In these soils the absorption field may not adequately filter the effluent, particularly when the system is new. As a result, the ground water may become contaminated.

Sewage lagoons are shallow ponds constructed to hold sewage while aerobic bacteria decompose the solid and liquid wastes. Lagoons should have a nearly level floor surrounded by cut slopes or embankments of compacted soil. Nearly impervious soil material for the lagoon floor and sides is required to minimize seepage and contamination of ground water. Considered in the ratings are slope, permeability, depth to a water table, ponding, depth to bedrock or a cemented pan, flooding, large stones, and content of organic matter.

Soil permeability is a critical property affecting the suitability for sewage lagoons. Most porous soils eventually become sealed when they are used as sites for sewage lagoons. Until sealing occurs, however, the hazard of pollution is severe. Soils that have a permeability rate of more than 2 inches per hour are too porous for the proper functioning of sewage lagoons. In these soils, seepage of the effluent can result in contamination of the ground water. Groundwater contamination is also a hazard if fractured bedrock is within a depth of 40 inches, if the water table is high enough to raise the level of sewage in the lagoon, or if floodwater overtops the lagoon.

A high content of organic matter is detrimental to proper functioning of the lagoon because it inhibits aerobic activity. Slope, bedrock, and cemented pans can cause construction problems, and large stones can hinder compaction of the lagoon floor. If the lagoon is to be uniformly deep throughout, the slope must be gentle enough and the soil material must be thick
enough over bedrock or a cemented pan to make land smoothing practical.

A trench sanitary landfill is an area where solid waste is placed in successive layers in an excavated trench. The waste is spread, compacted, and covered daily with a thin layer of soil excavated at the site. When the trench is full, a final cover of soil material at least 2 feet thick is placed over the landfill. The ratings in the table are based on the soil properties that affect the risk of pollution, the ease of excavation, trafficability, and revegetation. These properties include permeability, depth to bedrock or a cemented pan, depth to a water table, ponding, slope, flooding, texture, stones and boulders, highly organic layers, soil reaction, and content of salts and sodium. Unless otherwise stated, the ratings apply only to that part of the soil within a depth of about 6 feet. For deeper trenches, onsite investigation may be needed.

Hard, nonrippable bedrock, creviced bedrock, or highly permeable strata in or directly below the proposed trench bottom can affect the ease of excavation and the hazard of ground-water pollution. Slope affects construction of the trenches and the movement of surface water around the landfill. It also affects the construction and performance of roads in areas of the landfill.

Soil texture and consistence affect the ease with which the trench is dug and the ease with which the soil can be used as daily or final cover. They determine the workability of the soil when dry and when wet. Soils that are plastic and sticky when wet are difficult to excavate, grade, or compact and are difficult to place as a uniformly thick cover over a layer of refuse.

The soil material used as the final cover for a trench landfill should be suitable for plants. It should not have excess sodium or salts and should not be too acid. The surface layer generally has the best workability, the highest content of organic matter, and the best potential for plants. Material from the surface layer should be stockpiled for use as the final cover.

In an area sanitary landfill, solid waste is placed in successive layers on the surface of the soil. The waste is spread, compacted, and covered daily with a thin layer of soil from a source away from the site. A final cover of soil material at least 2 feet thick is placed over the completed landfill. The ratings in the table are based on the soil properties that affect trafficability and the risk of pollution. These properties include flooding, permeability, depth to a water table, ponding, slope, and depth to bedrock or a cemented pan.

Flooding is a serious problem because it can result in pollution in areas downstream from the landfill. If
permeability is too rapid or if fractured bedrock, a fractured cemented pan, or the water table is close to the surface, the leachate can contaminate the water supply. Slope is a consideration because of the extra grading required to maintain roads in the steeper areas of the landfill. Also, leachate may flow along the surface of the soils in the steeper areas and cause difficult seepage problems.

Daily cover for landfill is the soil material that is used to cover compacted solid waste in an area sanitary landfill. The soil material is obtained offsite, transported to the landfill, and spread over the waste. The ratings in the table also apply to the final cover for a landfill. They are based on the soil properties that affect workability, the ease of digging, and the ease of moving and spreading the material over the refuse daily during wet and dry periods. These properties include soil texture, depth to a water table, ponding, rock fragments, slope, depth to bedrock or a cemented pan, reaction, and content of salts, sodium, or lime.

Loamy or silty soils that are free of large stones and excess gravel are the best cover for a landfill. Clayey soils may be sticky and difficult to spread; sandy soils are subject to wind erosion.

Slope affects the ease of excavation and of moving the cover material. Also, it can influence runoff, erosion, and reclamation of the borrow area.

After soil material has been removed, the soil material remaining in the borrow area must be thick enough over bedrock, a cemented pan, or the water table to permit revegetation. The soil material used as the final cover for a landfill should be suitable for plants. It should not have excess sodium, salts, or lime and should not be too acid.

Construction Materials

Table 12a and table 12b give information about the soils as potential sources of gravel, sand, topsoil, reclamation material, and roadfill. Normal compaction, minor processing, and other standard construction practices are assumed.

The soils are rated good, fair, or poor as potential sources of topsoil, reclamation material, and roadfill. The features that limit the soils as sources of these materials are specified in the tables. The numerical ratings given after the specified features indicate the degree to which the features limit the soils as sources of topsoil, reclamation material, or roadfill. The lower the number, the greater the limitation.

The soils are rated as a probable or improbable source of sand and gravel. A rating of probable means that the source material is likely to be in or below the soil. The numerical ratings in these columns indicate
the degree of probability. The number 0.00 indicates that the soil is an improbable source. A number between 0.00 and 1.00 indicates the degree to which the soil is a probable source of sand or gravel.

Sand and gravel are natural aggregates suitable for commercial use with a minimum of processing. They are used in many kinds of construction. Specifications for each use vary widely. In table 12a, only the probability of finding material in suitable quantity is evaluated. The suitability of the material for specific purposes is not evaluated, nor are factors that affect excavation of the material. The properties used to evaluate the soil as a source of sand or gravel are gradation of grain sizes (as indicated by the Unified classification of the soil), the thickness of suitable material, and the content of rock fragments. If the lowest layer of the soil contains sand or gravel, the soil is rated as a probable source regardless of thickness. The assumption is that the sand or gravel layer below the depth of observation exceeds the minimum thickness.

Topsoil is used to cover an area so that vegetation can be established and maintained. The upper 40 inches of a soil is evaluated for use as topsoil. Also evaluated is the reclamation potential of the borrow area. The ratings are based on the soil properties that affect plant growth; the ease of excavating, loading, and spreading the material; and reclamation of the borrow area. Toxic substances, soil reaction, and the properties that are inferred from soil texture, such as available water capacity and fertility, affect plant growth. The ease of excavating, loading, and spreading is affected by rock fragments, slope, depth to a water table, soil texture, and thickness of suitable material. Reclamation of the borrow area is affected by slope, depth to a water table, rock fragments, depth to bedrock or a cemented pan, and toxic material.

The surface layer of most soils is generally preferred for topsoil because of its organic matter content. Organic matter greatly increases the absorption and retention of moisture and nutrients for plant growth.

Reclamation material is used in areas that have been drastically disturbed by surface mining or similar activities. When these areas are reclaimed, layers of soil material or unconsolidated geological material, or both, are replaced in a vertical sequence. The reconstructed soil favors plant growth. The ratings in the table do not apply to quarries and other mined areas that require an offsite source of reconstruction material. The ratings are based on the soil properties that affect erosion and stability of the surface and the
productive potential of the reconstructed soil. These properties include the content of sodium, salts, and calcium carbonate; reaction; available water capacity; erodibility; texture; content of rock fragments; and content of organic matter and other features that affect fertility.

Roadfill is soil material that is excavated in one place and used in road embankments in another place. In this table, the soils are rated as a source of roadfill for low embankments, generally less than 6 feet high and less exacting in design than higher embankments.

The ratings are for the whole soil, from the surface to a depth of about 5 feet. It is assumed that soil layers will be mixed when the soil material is excavated and spread.

The ratings are based on the amount of suitable material and on soil properties that affect the ease of excavation and the performance of the material after it is in place. The thickness of the suitable material is a major consideration. The ease of excavation is affected by large stones, depth to a water table, and slope. How well the soil performs in place after it has been compacted and drained is determined by its strength (as inferred from the AASHTO classification of the soil) and linear extensibility (shrink-swell potential).

Water Management

Table 13 gives information on the soil properties and site features that affect water management. The degree and kind of soil limitations are given for pond reservoir areas; embankments, dikes, and levees; and aquifer-fed excavated ponds. The limitations are considered slight if soil properties and site features are generally favorable for the indicated use and limitations are minor and are easily overcome; moderate if soil properties or site features are not favorable for the indicated use and special planning, design, or maintenance is needed to overcome or minimize the limitations; and severe if soil properties or site features are so unfavorable or so difficult to overcome that special design, significant increase in construction costs, and possibly increased maintenance are required.

This table also gives for each soil the restrictive features that affect drainage, irrigation, terraces and diversions, and grassed waterways.

Pond reservoir areas hold water behind a dam or embankment. Soils best suited to this use have low seepage potential in the upper 60 inches. The seepage potential is determined by the permeability of the soil
and the depth to fractured bedrock or other permeable material. Excessive slope can affect the storage capacity of the reservoir area.

Embankments, dikes, and levees are raised structures of soil material, generally less than 20 feet high, constructed to impound water or to protect land against overflow. In this table, the soils are rated as a source of material for embankment fill. The ratings apply to the soil material below the surface layer to a depth of about 5 feet. It is assumed that soil layers will be uniformly mixed and compacted during construction.

The ratings do not indicate the ability of the natural soil to support an embankment. Soil properties to a depth even greater than the height of the embankment can affect performance and safety of the embankment. Generally, deeper onsite investigation is needed to determine these properties.

Soil material in embankments must be resistant to seepage, piping, and erosion and have favorable compaction characteristics. Unfavorable features include less than 5 feet of suitable material and a high content of stones or boulders, organic matter, or salts or sodium. A high water table affects the amount of usable material. It also affects trafficability.

Aquifer-fed excavated ponds are pits or dugouts that extend to a ground-water aquifer or to a depth below a permanent water table. Excluded are ponds that are fed only by surface runoff and embankment ponds that impound water 3 feet or more above the original surface. Excavated ponds are affected by depth to a permanent water table, permeability of the aquifer, and quality of the water as inferred from the salinity of the soil. Depth to bedrock and the content of large stones affect the ease of excavation.

Drainage is the removal of excess surface and subsurface water from the soil. How easily and effectively the soil is drained depends on the depth to bedrock, a cemented pan, or other layers that affect the rate of water movement; permeability; depth to a high water table or depth of standing water if the soil is
subject to ponding; slope; susceptibility to flooding; subsidence of organic layers; and the potential for frost action. Excavating and grading and the stability of ditchbanks are affected by depth to bedrock or a cemented pan, large stones, slope, and the hazard of cutbanks caving. The productivity of the soil after drainage is adversely affected by extreme acidity or by toxic substances in the root zone, such as salts, sodium, and sulfur. Availability of drainage outlets is not considered in the ratings.

Irrigation is the controlled application of water to supplement rainfall and support plant growth. The design and management of an irrigation system are affected by depth to the water table, the need for drainage, flooding, available water capacity, intake rate, permeability, erosion hazard, and slope. The construction of a system is affected by large stones and depth to bedrock or a cemented pan. The performance of a system is affected by the depth of the root zone, the amount of salts or sodium, and soil reaction.

Terraces and diversions are embankments or a combination of channels and ridges constructed across a slope to control erosion and conserve moisture by intercepting runoff. Slope, wetness, large stones, and depth to bedrock or a cemented pan affect the construction of terraces and diversions. A restricted rooting depth, a severe hazard of wind erosion or water erosion, an excessively coarse texture, and restricted permeability adversely affect maintenance.

Grassed waterways are natural or constructed channels, generally broad and shallow, that conduct surface water to outlets at a nonerosive velocity. Large stones, wetness, slope, and depth to bedrock or a cemented pan affect the construction of grassed waterways. A hazard of wind erosion, low available water capacity, restricted rooting depth, toxic substances such as salts and sodium, and restricted permeability adversely affect the growth and maintenance of the grass after construction.

Soil Properties

Data relating to soil properties are collected during the course of the soil survey.

Soil properties are ascertained by field examination of the soils and by laboratory index testing of some benchmark soils. Established standard procedures are followed. During the survey, many shallow borings are made and examined to identify and classify the soils and to delineate them on the soil maps. Samples are taken from some typical profiles and tested in the laboratory to determine particle-size distribution, plasticity, and compaction characteristics.

Estimates of soil properties are based on field examinations, on laboratory tests of samples from the survey area, and on laboratory tests of samples of similar soils in nearby areas. Tests verify field observations, verify properties that cannot be estimated accurately by field observation, and help to characterize key soils.

The estimates of soil properties are shown in tables. They include engineering index properties, physical and chemical properties, and pertinent soil and water features.

Engineering Index Properties

Table 14 gives the engineering classifications and the range of index properties for the layers of each soil in the survey area.

Depth to the upper and lower boundaries of each layer is indicated.

Texture is given in the standard terms used by the U.S. Department of Agriculture. These terms are defined according to percentages of sand, silt, and clay in the fraction of the soil that is less than 2 millimeters in diameter. "Loam," for example, is soil that is 7 to 27 percent clay, 28 to 50 percent silt, and less than 52 percent sand. If the content of particles coarser than sand is 15 percent or more, an appropriate modifier is added, for example, "gravelly." Textural terms are defined in the Glossary.

Classification of the soils is determined according to the Unified soil classification system (ASTM, 1998) and the system adopted by the American Association of State Highway and Transportation Officials (AASHTO, 1998).

The Unified system classifies soils according to properties that affect their use as construction material. Soils are classified according to particle-size distribution of the fraction less than 3 inches in diameter and according to plasticity index, liquid limit, and organic matter content. Sandy and gravelly soils are identified as GW, GP, GM, GC, SW, SP, SM, and SC; silty and clayey soils as ML, CL, OL, MH, CH, and OH ; and highly organic soils as PT. Soils exhibiting engineering properties of two groups can have a dual classification, for example, CL-ML.

The AASHTO system classifies soils according to those properties that affect roadway construction and maintenance. In this system, the fraction of a mineral soil that is less than 3 inches in diameter is classified in one of seven groups from A-1 through A-7 on the basis of particle-size distribution, liquid limit, and plasticity index. Soils in group A-1 are coarse grained and low in content of fines (silt and clay). At the other extreme, soils in group A-7 are fine grained. Highly organic soils are classified in group A-8 on the basis of visual inspection.

If laboratory data are available, the A-1, A-2, and A7 groups are further classified as $\mathrm{A}-1-\mathrm{a}, \mathrm{A}-1-\mathrm{b}, \mathrm{A}-2-4$, A-2-5, A-2-6, A-2-7, A-7-5, or A-7-6. As an additional refinement, the suitability of a soil as subgrade material can be indicated by a group index number. Group index numbers range from 0 for the best subgrade material to 20 or higher for the poorest. The AASHTO classification for soils tested, with group index numbers in parentheses, is given in table 14.

Rock fragments larger than 10 inches in diameter and 3 to 10 inches in diameter are indicated as a percentage of the total soil on a dry-weight basis. The percentages are estimates determined mainly by converting volume percentage in the field to weight percentage.

Percentage (of soil particles) passing designated sieves is the percentage of the soil fraction less than 3 inches in diameter based on an ovendry weight. The sieves, numbers 4, 10, 40, and 200 (USA Standard Series), have openings of $4.76,2.00,0.420$, and 0.074 millimeters, respectively. Estimates are based on laboratory tests of soils sampled in the survey area
and in nearby areas and on estimates made in the field.

Liquid limit and plasticity index (Atterberg limits) indicate the plasticity characteristics of a soil. The estimates are based on test data from the survey area or from nearby areas and on field examination.

The estimates of particle-size distribution, liquid limit, and plasticity index are generally rounded to the nearest 5 percent. Thus, if the ranges of gradation and Atterberg limits extend a marginal amount (1 or 2 percentage points) across classification boundaries, the classification in the marginal zone is generally omitted in the table.

Physical Properties

Table 15 shows estimates of some physical characteristics and features that affect soil behavior. These estimates are given for the layers of each soil in the survey area. The estimates are based on field observations and on test data for these and similar soils.

Depth to the upper and lower boundaries of each layer is indicated.

Particle size is the effective diameter of a soil particle as measured by sedimentation, sieving, or micrometric methods. Particle sizes are expressed as classes with specific effective diameter class limits. The broad classes are sand, silt, and clay, ranging from the larger to the smaller.

Sand as a soil separate consists of mineral soil particles that are 0.05 millimeter to 2 millimeters in diameter.

Silt as a soil separate consists of mineral soil particles that are 0.002 to 0.05 millimeter in diameter.

Clay as a soil separate consists of mineral soil particles that are less than 0.002 millimeter in diameter. In table 15, the estimated clay content of each soil layer is given as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

The content of sand, silt, and clay affects the physical behavior of a soil. Particle size is important for engineering and agronomic interpretations, for determination of soil hydrologic qualities, and for soil classification.

The amount and kind of clay affect the fertility and physical condition of the soil and the ability of the soil to adsorb cations and to retain moisture. They influence shrink-swell potential, permeability, plasticity, the ease of soil dispersion, and other soil properties. The amount and kind of clay in a soil also affect tillage and earthmoving operations.

Moist bulk density is the weight of soil (ovendry) per unit volume. Volume is measured when the soil is at field moisture capacity, that is, the moisture content at $1 / 3$ - or $1 / 10-\mathrm{bar}(33 \mathrm{kPa}$ or 10 kPa) moisture tension. Weight is determined after the soil is dried at 105 degrees C. In the table, the estimated moist bulk density of each soil horizon is expressed in grams per cubic centimeter of soil material that is less than 2 millimeters in diameter. Bulk density data are used to compute shrink-swell potential, available water capacity, total pore space, and other soil properties. The moist bulk density of a soil indicates the pore space available for water and roots. Depending on soil texture, a bulk density of more than 1.4 can restrict water storage and root penetration. Moist bulk density is influenced by texture, kind of clay, content of organic matter, and soil structure.

Permeability $\left(K_{\text {sat }}\right)$ refers to the ability of a soil to transmit water or air. The term "permeability," as used in soil surveys, indicates saturated hydraulic conductivity ($\mathrm{K}_{\text {sat }}$). The estimates in the table indicate the rate of water movement, in inches per hour, when the soil is saturated. They are based on soil characteristics observed in the field, particularly structure, porosity, and texture. Permeability is considered in the design of soil drainage systems and septic tank absorption fields.

Available water capacity refers to the quantity of water that the soil is capable of storing for use by plants. The capacity for water storage is given in inches of water per inch of soil for each soil layer. The capacity varies, depending on soil properties that affect retention of water. The most important properties are the content of organic matter, soil texture, bulk density, and soil structure. Available water capacity is an important factor in the choice of plants or crops to be grown and in the design and management of irrigation systems. Available water capacity is not an estimate of the quantity of water actually available to plants at any given time.

Linear extensibility refers to the change in length of an unconfined clod as moisture content is decreased from a moist to a dry state. It is an expression of the volume change between the water content of the clod at $1 / 3$ - or $1 / 10$-bar tension (33 kPa or 10 kPa tension) and oven dryness. The volume change is reported in the table as percent change for the whole soil. Volume change is influenced by the amount and type of clay minerals in the soil.

Linear extensibility is used to determine the shrinkswell potential of soils. The shrink-swell potential is low if the soil has a linear extensibility of less than 3 percent; moderate if 3 to 6 percent; high if 6 to 9
percent; and very high if more than 9 percent. If the linear extensibility is more than 3 , shrinking and swelling can cause damage to buildings, roads, and other structures and to plant roots. Special design commonly is needed.

Organic matter is the plant and animal residue in the soil at various stages of decomposition. In table 15, the estimated content of organic matter is expressed as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

The content of organic matter in a soil can be maintained by returning crop residue to the soil. Organic matter has a positive effect on available water capacity, water infiltration, soil organism activity, and tilth. It is a source of nitrogen and other nutrients for crops and soil organisms.

Erosion factors are shown in table 15 as the K factor (Kw and Kf) and the T factor. Erosion factor K indicates the susceptibility of a soil to sheet and rill erosion by water. Factor K is one of several factors used in the Universal Soil Loss Equation (USLE) and the Revised Universal Soil Loss Equation (RUSLE) to predict the average annual rate of soil loss by sheet and rill erosion in tons per acre per year. The estimates are based primarily on percentage of silt, sand, and organic matter and on soil structure and permeability. Values of K range from 0.02 to 0.69 . Other factors being equal, the higher the value, the more susceptible the soil is to sheet and rill erosion by water.

Erosion factor Kw indicates the erodibility of the whole soil. The estimates are modified by the presence of rock fragments.

Erosion factor Kf indicates the erodibility of the fineearth fraction, or the material less than 2 millimeters in size.

Erosion factor T is an estimate of the maximum average annual rate of soil erosion by wind or water that can occur without affecting crop productivity over a sustained period. The rate is in tons per acre per year.

Wind erodibility groups are made up of soils that have similar properties affecting their susceptibility to wind erosion in cultivated areas. The soils assigned to group 1 are the most susceptible to wind erosion, and those assigned to group 8 are the least susceptible. The groups are as follows:

1. Coarse sands, sands, fine sands, and very fine sands.
2. Loamy coarse sands, loamy sands, loamy fine sands, loamy very fine sands, ash material, and sapric soil material.
3. Coarse sandy loams, sandy loams, fine sandy loams, and very fine sandy loams.

4L. Calcareous loams, silt loams, clay loams, and silty clay loams.
4. Clays, silty clays, noncalcareous clay loams, and silty clay loams that are more than 35 percent clay.
5. Noncalcareous loams and silt loams that are less than 20 percent clay and sandy clay loams, sandy clays, and hemic soil material.
6. Noncalcareous loams and silt loams that are more than 20 percent clay and noncalcareous clay loams that are less than 35 percent clay.
7. Silts, noncalcareous silty clay loams that are less than 35 percent clay, and fibric soil material.
8. Soils that are not subject to wind erosion because of coarse fragments on the surface or because of surface wetness.

Wind erodibility index is a numerical value indicating the susceptibility of soil to wind erosion, or the tons per acre per year that can be expected to be lost to wind erosion. There is a close correlation between wind erosion and the texture of the surface layer, the size and durability of surface clods, rock fragments, organic matter, and a calcareous reaction. Soil moisture and frozen soil layers also influence wind erosion.

Chemical Properties

Table 16 shows estimates of some chemical characteristics and features that affect soil behavior. These estimates are given for the layers of each soil in the survey area. The estimates are based on field observations and on test data for these and similar soils.

Depth to the upper and lower boundaries of each layer is indicated.

Cation-exchange capacity is the total amount of extractable bases that can be held by the soil, expressed in terms of milliequivalents per 100 grams of soil at neutrality (pH 7.0) or at some other stated pH value. Soils having a low cation-exchange capacity hold fewer cations and may require more frequent applications of fertilizer than soils having a high cationexchange capacity. The ability to retain cations reduces the hazard of ground-water pollution.

Effective cation-exchange capacity refers to the sum of extractable bases plus aluminum expressed in terms of milliequivalents per 100 grams of soil. It is determined for soils that have pH of less than 5.5.

Soil reaction is a measure of acidity or alkalinity. The pH of each soil horizon is based on many field tests. For many soils, values have been verified by laboratory analyses. Soil reaction is important in selecting crops and other plants, in evaluating soil
amendments for fertility and stabilization, and in determining the risk of corrosion.

Calcium carbonate equivalent is the percent of carbonates, by weight, in the fraction of the soil less than 2 millimeters in size. The availability of plant nutrients is influenced by the amount of carbonates in the soil. Incorporating nitrogen fertilizer into calcareous soils helps to prevent nitrite accumulation and ammonium-N volatilization.

Gypsum is expressed as a percent, by weight, of hydrated calcium sulfates in the fraction of the soil less than 20 millimeters in size. Gypsum is partially soluble in water. Soils that have a high content of gypsum may collapse if the gypsum is removed by percolating water.

Salinity is a measure of soluble salts in the soil at saturation. It is expressed as the electrical conductivity of the saturation extract, in millimhos per centimeter at 25 degrees C. Estimates are based on field and laboratory measurements at representative sites of nonirrigated soils. The salinity of irrigated soils is affected by the quality of the irrigation water and by the frequency of water application. Hence, the salinity of soils in individual fields can differ greatly from the value given in the table. Salinity affects the suitability of a soil for crop production, the stability of soil if used as construction material, and the potential of the soil to corrode metal and concrete.

Sodium adsorption ratio (SAR) is a measure of the amount of sodium (Na) relative to calcium (Ca) and magnesium (Mg) in the water extract from saturated soil paste. It is the ratio of the Na concentration divided by the square root of one-half of the $\mathrm{Ca}+\mathrm{Mg}$ concentration. Soils that have SAR values of 13 or more may be characterized by an increased dispersion of organic matter and clay particles, reduced permeability and aeration, and a general degradation of soil structure.

Soil Features

Table 17 gives estimates of various soil features. The estimates are used in land use planning that involves engineering considerations.

A restrictive layer is a nearly continuous layer that has one or more physical, chemical, or thermal properties that significantly impede the movement of water and air through the soil or that restrict roots or otherwise provide an unfavorable root environment. Examples are bedrock, cemented layers, dense layers, and frozen layers. The table indicates the hardness and thickness of the restrictive layer, both of which significantly affect the ease of excavation. Depth to
top is the vertical distance from the soil surface to the upper boundary of the restrictive layer.

Potential for frost action is the likelihood of upward or lateral expansion of the soil caused by the formation of segregated ice lenses (frost heave) and the subsequent collapse of the soil and loss of strength on thawing. Frost action occurs when moisture moves into the freezing zone of the soil. Temperature, texture, density, permeability, content of organic matter, and depth to the water table are the most important factors considered in evaluating the potential for frost action. It is assumed that the soil is not insulated by vegetation or snow and is not artificially drained. Silty and highly structured, clayey soils that have a high water table in winter are the most susceptible to frost action. Well drained, very gravelly, or very sandy soils are the least susceptible. Frost heave and low soil strength during thawing cause damage to pavements and other rigid structures.

Risk of corrosion pertains to potential soil-induced electrochemical or chemical action that corrodes or weakens uncoated steel or concrete. The rate of corrosion of uncoated steel is related to such factors as soil moisture, particle-size distribution, acidity, and electrical conductivity of the soil. The rate of corrosion of concrete is based mainly on the sulfate and sodium content, texture, moisture content, and acidity of the soil. Special site examination and design may be needed if the combination of factors results in a severe hazard of corrosion. The steel or concrete in installations that intersect soil boundaries or soil layers is more susceptible to corrosion than the steel or concrete in installations that are entirely within one kind of soil or within one soil layer.

For uncoated steel, the risk of corrosion, expressed as low, moderate, or high, is based on soil drainage class, total acidity, electrical resistivity near field capacity, and electrical conductivity of the saturation extract.

For concrete, the risk of corrosion also is expressed as low, moderate, or high. It is based on soil texture, acidity, and amount of sulfates in the saturation extract.

Water Features

Table 18 gives estimates of various water features. The estimates are used in land use planning that involves engineering considerations.

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are
thoroughly wet, and receive precipitation from longduration storms.

The four hydrologic soil groups are:
Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B / D, or C / D), the first letter is for drained areas and the second is for undrained areas.

The months in the table indicate the portion of the year in which the feature is most likely to be a concern.

Water table refers to a saturated zone in the soil. Table 18 indicates, by month, depth to the top (upper limit) and base (lower limit) of the saturated zone in most years. Estimates of the upper and lower limits are based mainly on observations of the water table at various times of the year at selected sites and on evidence of a saturated zone, namely grayish colors or mottles (redoximorphic features) in the soil. A saturated zone that lasts for less than a month is not considered a water table.

Ponding is standing water in a closed depression. Unless a drainage system is installed, the water is removed only by percolation, transpiration, or evaporation. Table 18 indicates surface water depth and the duration and frequency of ponding. Duration is expressed as very brief if less than 2 days, brief if 2 to 7 days, long if 7 to 30 days, and very long if more than

30 days. Frequency is expressed as none, rare, occasional, and frequent. None means that ponding is not probable; rare that it is unlikely but possible under unusual weather conditions (the chance of ponding is nearly 0 percent to 5 percent in any year); occasional that it occurs, on the average, once or less in 2 years (the chance of ponding is 5 to 50 percent in any year); and frequent that it occurs, on the average, more than once in 2 years (the chance of ponding is more than 50 percent in any year).

Flooding is the temporary inundation of an area caused by overflowing streams, by runoff from adjacent slopes, or by tides. Water standing for short periods after rainfall or snowmelt is not considered flooding, and water standing in swamps and marshes is considered ponding rather than flooding.

Duration and frequency are estimated. Duration is expressed as extremely brief if 0.1 hour to 4 hours, very brief if 4 hours to 2 days, brief if 2 to 7 days, long if 7 to 30 days, and very long if more than 30 days. Frequency is expressed as none, very rare, rare, occasional, frequent, and very frequent. None means that flooding is not probable; very rare that it is very unlikely but possible under extremely unusual weather conditions (the chance of flooding is less than 1 percent in any year); rare that it is unlikely but possible under unusual weather conditions (the chance of flooding is 1 to 5 percent in any year); occasional that it occurs infrequently under normal weather conditions (the chance of flooding is 5 to 50 percent in any year); frequent that it is likely to occur often under normal weather conditions (the chance of flooding is more than 50 percent in any year but is less than 50 percent in all months in any year); and very frequent that it is likely to occur very often under normal weather conditions (the chance of flooding is more than 50 percent in all months of any year).

The information is based on evidence in the soil profile, namely thin strata of gravel, sand, silt, or clay deposited by floodwater; irregular decrease in organic matter content with increasing depth; and little or no horizon development.

Also considered are local information about the extent and levels of flooding and the relation of each soil on the landscape to historic floods. Information on the extent of flooding based on soil data is less specific than that provided by detailed engineering surveys that delineate flood-prone areas at specific flood frequency levels.

Classification of the Soils

The system of soil classification used by the National Cooperative Soil Survey has six categories (USDA, 1998 and 1999). Beginning with the broadest, these categories are the order, suborder, great group, subgroup, family, and series. Classification is based on soil properties observed in the field or inferred from those observations or from laboratory measurements. Table 19 shows the classification of the soils in the survey area. The categories are defined in the following paragraphs.

ORDER. Twelve soil orders are recognized. The differences among orders reflect the dominant soilforming processes and the degree of soil formation. Each order is identified by a word ending in sol. An example is Alfisol.

SUBORDER. Each order is divided into suborders primarily on the basis of properties that influence soil genesis and are important to plant growth or properties that reflect the most important variables within the orders. The last syllable in the name of a suborder indicates the order. An example is Ustalfs (Ust, meaning burnt or dry, plus alf, from Alfisol).

GREAT GROUP. Each suborder is divided into great groups on the basis of close similarities in kind, arrangement, and degree of development of pedogenic horizons; soil moisture and temperature regimes; type of saturation; and base status. Each great group is identified by the name of a suborder and by a prefix that indicates a property of the soil. An example is Haplustalfs (Hapl, meaning minimal horizonation, plus ustalf, the suborder of the Alfisols that has a ustic moisture regime).

SUBGROUP. Each great group has a typic subgroup. Other subgroups are intergrades or extragrades. The typic subgroup is the central concept of the great group; it is not necessarily the most extensive. Intergrades are transitions to other orders, suborders, or great groups. Extragrades have some properties that are not representative of the great group but do not indicate transitions to any other taxonomic class. Each subgroup is identified by one or more adjectives preceding the name of the great group. The adjective Aridic identifies the subgroup that typifies the great group. An example is Aridic Haplustalfs.

FAMILY. Families are established within a subgroup on the basis of physical and chemical properties and other characteristics that affect management. Generally, the properties are those of horizons below plow depth where there is much biological activity. Among the properties and characteristics considered are particle size, mineral content, soil temperature regime, soil depth, and reaction. A family name consists of the name of a subgroup preceded by terms that indicate soil properties. An example is the Flugle series, which is a fine-loamy, mixed, superactive, mesic Aridic Haplustalf.

SERIES. The series consists of soils within a family that have horizons similar in color, texture, structure, reaction, consistence, mineral and chemical composition, and arrangement in the profile.

Soil Series and Their Morphology

In this section, each soil series recognized in the survey area is described. Characteristics of the soil and the material in which it formed are identified for each series. A pedon, a small three-dimensional area of soil, that is typical of the series in the survey area is described. The detailed description of each soil horizon follows standards in the "Soil Survey Manual" (USDA, 1993). Many of the technical terms used in the descriptions are defined in "Soil Taxonomy" (USDA, 1999) and in "Keys to Soil Taxonomy" (USDA, 1998). Unless otherwise indicated, colors in the descriptions are for dry soil. Following the pedon description is the range of important characteristics of the soils in the series.

The map units of each soil series are described in the section "Detailed Soil Map Units."

Alesna Series

Taxonomic class: Fine, mixed, superactive, mesic Ustic Calciargids
Depth class: Deep
Drainage class: Well drained

Permeability: Slow

Geomorphic position: Lava plateaus and volcanic cones
Parent material: Slope alluvium and colluvium derived from basalt, shale, and sandstone
Slope range: 15 to 55 percent
Elevation: 6,500 to 7,600 feet
Mean annual air temperature: 49 to 54 degrees F Mean annual precipitation: 10 to 13 inches
Frost-free period: 120 to 140 days

Typical Pedon

Alesna extremely cobbly loam, in an area of mapping unit 270, Alesna-Rock outcrop complex, 15 to 55 percent slopes; McKinley County, New Mexico; Cerro Alesna Quadrangle; 3,800 feet west and 200 feet north of the southeast corner of sec. 2, T. 14 N., R. 7 W.; latitude 35 degrees, 27 minutes, 52 seconds and longitude 107 degrees, 33 minutes, 09 seconds.
The surface is covered by 35 percent gravel, 25 percent cobbles, and 5 percent stones.

A-0 to 1 inches; pale brown (10YR 6/3) extremely cobbly loam, brown (10YR 4/3) moist; weak medium platy structure parting to moderate very fine granular; soft, very friable, slightly sticky and slightly plastic; many very fine and fine and few medium roots; common fine irregular pores; 35 percent gravel, 25 percent cobbles, and 5 percent stones; slightly effervescent; moderately alkaline (pH 8.0); clear wavy boundary.
Bt-1 to 10 inches; brown (10YR 5/3) gravelly clay loam, brown (10YR 4/3) moist; moderate fine subangular blocky structure; slightly hard, friable, very sticky and plastic; many very fine and fine and few medium roots; many fine irregular pores; common distinct clay films bridging sand grains and on faces of peds; 20 percent gravel and 1 percent cobbles; moderately alkaline (pH 8.0); clear wavy boundary.
Btk1-10 to 20 inches; light olive brown (2.5Y 5/3) very
gravelly clay, olive brown (2.5Y 4/3) moist; moderate medium prismatic structure parting to strong fine angular blocky; very hard, very firm, sticky and very plastic; many very fine and fine and few medium roots; common fine tubular pores; many prominent clay films on faces of peds; 35 percent gravel, 5 percent cobbles; strongly effervescent; many fine weakly cemented concretions of calcium carbonate and coating rock fragments; 8 percent calcium carbonate equivalent; strongly alkaline (pH 8.6); clear wavy boundary.
Btk2—20 to 26 inches; light olive brown (2.5Y 5/3)
clay, olive brown (2.5Y 4/3) moist; very hard, very firm, sticky and very plastic; common very fine and fine roots; common fine tubular pores; many prominent clay films on faces of peds; 1 percent gravel and 1 percent cobbles; strongly effervescent; many medium and coarse masses of calcium carbonate and coating rock fragments; 12 percent calcium carbonate equivalent; strongly alkaline (pH 8.6); clear wavy boundary.
Btk3-26 to 52 inches; very pale brown (10YR 7/3) clay loam, brown (10YR 5/3) moist; weak fine and medium subangular blocky structure; very hard, very firm, very sticky and very plastic; few very fine and fine roots; common fine irregular pores; many distinct clay films bridging sand grains and on faces of peds; 8 percent gravel, 1 percent cobbles, and 1 percent stones; violently effervescent; rock fragments are coated with calcium carbonate; 20 percent calcium carbonate equivalent; strongly alkaline (pH 8.8).
2 Cr -52 inches; shale

Range in Characteristics

Particle-size control section: 40 to 55 percent clay with 5 to 34 percent rock fragments
Depth to paralithic contact: 40 to 60 inches to shale, or shale interbedded with sandstone
Depth to calcic horizon: 10 to 35 inches with 15 to 40 percent calcium carbonate equivalent

Sodicity: SAR of 1 to 5

A horizon:
Hue: 7.5YR or 10YR
Value: 4 to 6 dry, 3 or 4 moist
Chroma: 3 or 4 dry or moist
Rock fragments: 60 to 80 percent total; 35 to 50 percent gravel; 20 to 40 percent cobbles; 0 to 5 percent stones; 0 to 1 percent boulders. All fragments are basalt and sandstone.
Reaction: neutral to moderately alkaline
Bt horizon:
Hue: 5YR, 7.5YR, or 10YR
Value: 4 or 5 dry, 3 or 4 moist
Chroma: 3 or 4 dry or moist
Texture: clay loam or clay
Rock fragments: 0 to 50 percent total; 0 to 50 percent gravel; 0 to 10 percent cobbles. All fragments are basalt and sandstone.
Note: When this horizon has more than 35 percent rock fragments, it is too thin or is below the particle size control section to affect the particle size class.
Reaction: slightly or moderately alkaline
Btk horizon:
Hue: 7.5YR, 10YR, or 2.5Y

Value: 4 to 7 dry, 3 to 5 moist
Chroma: 3 to 6 dry or moist
Texture: clay loam or clay
Rock fragments: 1 to 40 percent total; 0 to 40 percent gravel; 0 to 5 percent cobbles; 0 to 1 percent stones. All fragments are basalt and sandstone.
Note: When this horizon has more than 35 percent rock fragments, it is too thin or is too far below the particle size control section to affect the particle size class.
Calcium carbonate equivalent: 5 to 40 percent
Reaction: slightly to strongly alkaline
Bk horizon (when present):
Hue: 7.5YR or 10YR
Value: 4 to 6 dry, 4 or 5 moist
Chroma: 4 or 5 dry, 4 to 6 moist
Rock fragments: 20 to 50 percent total; 20 to 45 percent gravel; 0 to 5 percent cobbles. All fragments are basalt and sandstone.
Calcium carbonate equivalent: 15 to 40 percent
Reaction: moderately or strongly alkaline

Amcec Series

Taxonomic class: Loamy-skeletal, mixed, superactive, frigid Vitrandic Haplustalfs
Depth class: Very deep
Drainage class: Somewhat excessively drained
Permeability: Moderate
Geomorphic position: Cinder cones
Parent material: Eolian material and slope alluvium over residuum derived from cinders
Slope range: 10 to 50 percent
Elevation: 7,600 to 9,200 feet
Mean annual air temperature: 40 to 45 degrees F
Mean annual precipitation: 16 to 20 inches
Frost-free period: 90 to 110 days

Typical Pedon

Amcec extremely gravelly loam, in an area of mapping unit 435, Tsoodzil-Amcec association, 5 to 50 percent slopes; McKinley County, New Mexico; latitude 35 degrees, 20 minutes, 55 seconds and longitude 107 degrees, 20 minutes, 41 seconds.
The surface is covered by 80 percent gravel, 5 percent cobbles, and 3 percent stones.

A—0 to 4 inches; dark reddish brown (5YR 3/4) extremely gravelly loam, dark reddish brown (2.5YR 2.5/4) moist; moderate fine granular structure; soft, friable, slightly sticky and slightly plastic; many very fine and fine roots; common fine irregular pores; 80 percent gravel, 5 percent
cobbles, and 3 percent stones, neutral (pH 6.8); clear smooth boundary.
Bt-4 to 16 inches; dark reddish brown (2.5YR 3/4) very gravelly loam, dark reddish brown (2.5YR 2.5/4) moist, slightly hard, firm, sticky and plastic; many very fine and fine roots; common fine irregular pores; many distinct clay films on faces of peds; 40 percent gravel and 5 percent cobbles, slightly alkaline (pH 7.4); clear wavy boundary.
Btk1-16 to 39 inches; dark reddish brown (5YR 3/4) extremely gravelly coarse sandy loam, dark reddish brown (2.5YR 2.5/4) moist; weak fine subangular blocky structure; soft, very friable, nonsticky and nonplastic; common very fine and fine and few medium roots; common distinct clay films bridging sand grains; 85 percent gravel and 5 percent cobbles; violently effervescent; rock fragments are coated with calcium carbonate; 1 percent calcium carbonate equivalent; slightly alkaline (pH 7.8); gradual wavy boundary.
Btk2—39 to 53 inches; dark reddish brown (2.5YR 3/4) extremely gravelly loamy coarse sand, dark reddish brown (2.5YR 2.5/4) moist; massive; loose, loose, nonsticky and nonplastic; few very fine and fine roots; common distinct clay films bridging sand grains; 80 percent gravel, 5 percent cobbles, 5 percent stones; strongly effervescent; rock fragments are coated with calcium carbonate; 1 percent calcium carbonate equivalent; slightly alkaline (pH 7.8); gradual irregular boundary.
Bk-53 to 70 inches; dark reddish brown (2.5YR 3/4) extremely gravelly loamy coarse sand, dark reddish brown (2.5YR 2.5/4) moist; massive; loose, loose, nonsticky and nonplastic; few very fine and fine roots; 50 percent gravel, 20 percent cobbles, and 20 percent stones; strongly effervescent; rock fragments are coated with calcium carbonate; slightly alkaline (pH 7.8).

Range in Characteristics

Particle-size control section: 20 to 30 percent clay, more than 35 percent sand, and more than 35 percent gravel and cobble-sized cinders
Depth to secondary calcium carbonate: 15 to 25 inches with 1 to 10 percent calcium carbonate equivalent in the Btk and Bk horizons.
Reaction: slightly acid or neutral in the surface and slightly alkaline in the subsoil

A horizon:
Hue: 2.5YR through 10YR
Value: 3 or 4 dry, 2.5 or 3 moist
Chroma: 2 to 4 dry or moist
Rock fragments: 60 to 90 percent total; 20 to 80
percent gravel; 5 to 30 percent cobbles; 0 to 10 percent stones; 0 to 1 percent boulders. All fragments are cinders and basalt.

Bt horizon:

Hue: 2.5YR or 5YR
Value: 3 or 4 dry, 2.5 or 3 moist
Chroma: 3 or 4 dry or moist
Texture: loam, clay loam, or sandy clay loam
Rock fragments: 20 to 60 percent total; 15 to 60 percent gravel; 5 to 20 percent cobbles. All fragments are cinders and basalt.

Btk horizon:
Hue: 2.5YR or 5YR
Value: 3 or 4 dry, 2.5 or 3 moist
Chroma: 3 or 4 dry or moist
Texture: coarse sandy loam, loamy coarse sand, or sandy clay loam
Rock fragments: 50 to 90 percent total; 40 to 85 percent gravel; 5 to 10 percent cobbles; 0 to 5 percent stones. All fragments are cinders and basalt.

Bk horizon (when present):
Hue: 2.5YR or 5YR
Value: 3 or 4 dry, 2.5 or 3 moist
Chroma: 4 or 6 dry or moist
Texture: loamy coarse sand or sandy loam
Rock fragments: 80 to 95 percent total; 40 to 90 percent gravel; 0 to 20 percent cobbles; 0 to 20 percent stones. All fragments are cinders and basalt.

Aquima Series

Taxonomic class: Fine-loamy, mixed, superactive, mesic Ustic Haplocambids
Depth class: Very deep
Drainage class: Well drained
Permeability: Moderately slow
Geomorphic position: Valley sides and valley floors
Parent material: Fan and stream alluvium derived from siltstone, sandstone, and shale
Slope range: 1 to 5 percent
Elevation: 6,000 to 6,800 feet
Mean annual air temperature: 49 to 54 degrees F
Mean annual precipitation: 10 to 13 inches
Frost-free period: 120 to 140 days

Typical Pedon

Aquima silt loam, in an area of mapping unit 225, Aquima-Hawaikuh silt loams, 1 to 5 percent slopes; McKinley County, New Mexico; Ojo Caliente Reservoir Quadrangle; 2,800 feet east and 200 feet north of the
southwest corner of sec. 29, T. 9 N., R. 20 W.; latitude 34 degrees, 58 minutes, 27 seconds and longitude 108 degrees, 58 minutes, 09 seconds (fig. 14).

A-0 to 2 inches; reddish brown (2.5YR 5/4) silt loam, reddish brown (2.5YR 4/4) moist; weak thin platy parting to weak fine granular structure; soft, friable, slightly sticky and nonplastic; few very fine and fine roots; common very fine irregular pores; strongly effervescent; moderately alkaline (pH 8.0); abrupt smooth boundary.
Bk1-2 to 11 inches; reddish brown (2.5YR 5/4) silt loam, reddish brown (2.5YR 4/4) moist; moderate medium subangular blocky structure; soft, friable, slightly sticky and nonplastic; common very fine and fine roots; common fine tubular pores; 2 percent gravel; strongly effervescent; few fine irregular masses and weakly cemented concretions of calcium carbonate; 7 percent calcium carbonate equivalent; moderately alkaline (pH 8.3); abrupt smooth boundary.
Bk2-11 to 17 inches; red (2.5YR 4/6) sandy clay loam, red (2.5YR 4/6) moist; massive; soft, friable, slightly sticky and slightly plastic; common very fine and fine roots; common very fine irregular pores; 4 percent gravel; strongly effervescent; common fine and medium irregular masses and weakly cemented concretions of calcium carbonate; 8 percent calcium carbonate equivalent; moderately alkaline (pH 8.0); clear smooth boundary.
2Bk3-17 to 26 inches; red (2.5YR 5/6) silt loam, red (2.5YR 4/6) moist; massive; soft, friable, slightly sticky and nonplastic; common very fine and fine roots; common very fine irregular pores; slightly effervescent; 4 percent calcium carbonate equivalent; strongly alkaline (pH 8.8); clear smooth boundary.
2Bk4-26 to 30 inches; red (2.5YR 4/6) silt loam, dark red (2.5YR 3/6) moist; massive; soft, friable, slightly sticky and nonplastic; common very fine and fine roots; common fine irregular pores; slightly effervescent; few fine irregular masses and weakly cemented concretions of calcium carbonate; 5 percent calcium carbonate equivalent; strongly alkaline (pH 8.7); clear smooth boundary.
2Bk5-30 to 33 inches; red (2.5YR 4/6) silt loam, dark red (2.5YR 3/6) moist; massive; soft, friable, slightly sticky and nonplastic; common very fine and fine roots; common fine irregular pores; slightly effervescent; 4 percent calcium carbonate equivalent; strongly alkaline (pH 8.9); clear smooth boundary.
3Bk6-33 to 45 inches; red (2.5YR 4/6) silty clay loam, dark red (2.5YR $3 / 6$) moist; massive; soft, friable,
slightly sticky and slightly plastic; common very fine and fine roots; common fine irregular pores; 1 percent gravel; slightly effervescent; few fine irregular masses and weakly cemented concretions of calcium carbonate; 5 percent calcium carbonate equivalent; strongly alkaline (pH 8.5); clear smooth boundary.
$3 B k 7-45$ to 49 inches; red (2.5YR 4/6) sandy clay loam, dark red (2.5YR 3/6) moist; massive; soft, friable, slightly sticky and slightly plastic; common very fine and fine roots; common fine irregular pores; 5 percent gravel; strongly effervescent; common fine irregular masses and weakly cemented concretions of calcium carbonate; 9 percent calcium carbonate equivalent; moderately alkaline (pH 8.4); clear smooth boundary.
3Bk8-49 to 65 inches; red (2.5YR 4/6) gravelly clay loam, dark red (2.5YR 3/6) moist; massive; soft, friable, slightly sticky and slightly plastic; common very fine and fine roots; common fine irregular pores; 15 percent gravel; strongly effervescent; common fine irregular masses and weakly cemented concretions of calcium carbonate; 8 percent calcium carbonate equivalent; moderately alkaline (pH 8.4).

Range in Characteristics

Particle-size control section: 20 to 35 percent clay
Reaction: Slightly to moderately alkaline in the surface and moderately to strongly alkaline in the subsoil
A horizon:
Hue: 2.5YR or 5YR
Value: 4 or 5 dry, 3 or 4 moist
Chroma: 4 or 6 dry, 3 or 4 moist
Bw horizon:
Hue:2.5YR or 5YR
Value: 4 or 5 dry, 3 or 4 moist
Chroma: 4 or 6 dry or moist
Texture: Silt loam, silty clay loam, and sandy clay loam
Rock fragments: 0 to 5 percent gravel. All fragments are sandstone.
Calcium carbonate equivalent: 2 to 10 percent
Bk horizons:
Hue: 10R, 2.5YR or 5YR
Value: 4 or 5 dry, 3 or 4 moist
Chroma: 4 or 6 dry, 4 through 8 moist
Texture: clay loam, sandy clay loam, or silty clay loam
Rock fragments: 0 to 20 percent gravel and 0 to 10 percent cobbles. All fragments are sandstone.
Calcium carbonate equivalent: 2 to 10 percent

Some pedons have a C horizon with textures of loamy sand and sand, below 50 inches.

Arabrab Series

Taxonomic class: Loamy, mixed, superactive, mesic Lithic Haplustalfs
Depth class: Shallow
Drainage class: Well drained
Permeability: Moderately slow
Geomorphic position: Mesas and cuestas
Parent material: Eolian material and slope alluvium over residuum derived from sandstone
Slope range: 2 to 6 percent
Elevation: 6,800 to 8,000 feet
Mean annual air temperature: 46 to 49 degrees F
Mean annual precipitation: 13 to 16 inches
Frost-free period: 100 to 135 days

Typical Pedon

Arabrab gravelly fine sandy loam, in an area of mapping unit 332, Evpark-Arabrab complex, 2 to 6 percent slopes; McKinley County, New Mexico; Thoreau Quadrangle; 2,100 feet west and 200 feet north of the southeast corner of sec. 35, T. 15 N., R. 13 W.; latitude 35 degrees, 28 minutes, 52 seconds N . and longitude 108 degrees, 10 minutes, 54 seconds W.
The surface is covered by about 20 percent gravel, 2 percent cobbles, and 1 percent stones.
A—0 to 2 inches; brown (7.5YR 5/4) gravelly fine sandy loam, dark brown (7.5YR 3/4) moist; weak very fine granular structure; soft, very friable, nonsticky and nonplastic; many very fine and fine roots; few very fine tubular pores; about 20 percent gravel, 2 percent cobbles, and 1 percent stones; slightly alkaline (pH 7.4); abrupt smooth boundary.
Bt1-2 to 7 inches; brown (7.5YR 4/4) sandy clay loam, dark brown (7.5YR 3/4) moist; moderate fine and medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; common very fine, fine, and medium roots; few very fine tubular pores; many distinct clay films on faces of peds and bridging sand grains; about 5 percent gravel; slightly alkaline (pH 7.6); clear smooth boundary.
Bt2-7 to 12 inches; strong brown (7.5YR 5/6) clay loam, strong brown (7.5YR 4/6) moist; moderate fine and medium subangular blocky structure; hard, firm, sticky and plastic; common very fine, fine, and few medium roots; few very fine tubular pores; many prominent clay films on faces of
peds; about 5 percent gravel; slightly alkaline (pH 7.6); clear smooth boundary.

Btk-12 to 17 inches; brown (7.5YR 5/4) gravelly clay loam, dark brown (7.5YR 4/4) moist; moderate very fine and fine subangular blocky structure; very hard, very firm, sticky and plastic; few very fine, fine, and medium roots; few very fine tubular pores; many prominent clay films on faces of peds; about 40 percent gravel; slightly effervescent; few very fine and fine filaments and masses of calcium carbonate; slightly alkaline (pH 7.8); abrupt smooth boundary.

2R-17 inches; sandstone

Range in Characteristics

Particle-size control section: 18 to 35 percent clay Depth to lithic contact: 10 to 20 inches to sandstone

A horizon:

Hue: 5YR to 10YR
Value: 4 to 6 dry, 3 or 4 moist
Chroma: 2 to 4 moist
Rock fragments: 0 to 25 percent total; 0 to 25 percent gravel; 0 to 2 percent cobbles; 0 to 1 percent stones. All fragments are sandstone.
Reaction: neutral or slightly alkaline
Bt horizons:
Hue:5YR or 7.5YR
Value: 4 or 5 dry, 3 or 4 moist
Chroma: 4 or 6 dry, 3 to 6 moist
Texture: fine sandy loam, sandy clay loam, or clay loam
Rock fragments: 0 to 10 percent sandstone gravel
Reaction: neutral or slightly alkaline
Btk horizon:
Hue:5YR or 7.5YR
Texture: sandy clay loam or clay loam
Rock fragments: 0 to 40 percent sandstone channers or gravel
Calcium carbonate equivalent: 1 to 5 percent
Reaction: slightly to moderately alkaline

Asaayi Series

Taxonomic class: Loamy, mixed, active, frigid Lithic Haplustalfs
Depth class: Shallow
Drainage class: Well drained
Permeability: Moderately slow
Geomorphic position: Cuestas
Parent material: Slope alluvium derived from sandstone and shale
Slope range: 2 to15 percent

Elevation: 7,500 to 7,900 feet
Mean annual air temperature: 40 to 45 degrees F Mean annual precipitation: 16 to 20 inches
Frost-free period: 90 to 110 days

Typical Pedon

Asaayi very gravelly fine sandy loam, in an area of mapping unit 418, Asaayi-Osoridge complex, 2 to 15 percent slopes; McKinley County, New Mexico; Page Quadrangle; 3,000 feet west and 500 feet north of the southeast corner of sec. 11, T. 12 N., R. 16 W.; latitude 35 degrees, 16 minutes, 45 seconds N. and longitude 108 degrees, 29 minutes, 45 seconds W .
Oi-0 to 1 inches; slightly decomposed pine needles and oak leaves.
A-1 to 3 inches; brown (7.5YR 5/4) very gravelly fine sandy loam, dark brown (7.5YR 3/3) moist; weak very fine granular structure; soft, very friable, nonsticky and nonplastic; common very fine and fine roots; about 40 percent gravel, 10 percent cobbles; neutral; abrupt smooth boundary.
Bt1-3 to 5 inches; brown (7.5YR 5/4) fine sandy loam, brown (7.5YR 4/4) moist; weak very fine and fine subangular blocky structure; slightly hard, very friable, nonsticky and nonplastic; many very fine, fine, and few medium roots; few very fine irregular pores; few faint clay films bridging sand grains; about 2 percent gravel; neutral; abrupt smooth boundary.
Bt2-5 to 16 inches; light reddish brown (5YR 6/4) clay loam, reddish brown (5YR 5/4) moist; moderate very fine and fine subangular blocky structure; hard, firm, sticky and plastic; many very fine, fine, and few medium roots; few fine irregular pores; few distinct clay films on faces of peds; about 5 percent gravel; neutral; abrupt smooth boundary.
R-16 inches; sandstone-Chinle formation.

Range in Characteristics

Particle-size control section: 15 to 30 percent clay
Depth to lithic contact: 10 to 20 inches to sandstone Reaction: neutral
A horizon:
Hue: 5YR to 10YR
Value: 4 to 6 dry, 3 or 4 moist
Chroma: 3 or 4 dry and moist
Rock fragments: 0 to 40 percent total; 0 to 40 percent gravel; 0 to 10 percent cobbles; 0 to 5 percent stones. All fragments are sandstone.

Bt horizons:
Hue:5YR or 7.5YR
Value: 4 or 5 dry, 3 or 4 moist

Chroma: 2 or 4 dry or moist

Texture: fine sandy loam, sandy clay loam, or clay loam
Rock fragments: 0 to 10 percent total; 0 to 10 percent gravel, 0 to 5 percent cobbles. All fragments are sandstone.

Atarque Series

Taxonomic class: Loamy, mixed, superactive, mesic Lithic Haplustalfs
Depth class: Shallow
Drainage class: Well drained
Permeability: Moderate
Geomorphic position: Mesas and cuestas
Parent material: Eolian material and slope alluvium derived from sandstone and shale
Slope range: 1 to 8 percent
Elevation: 6,500 to 7,500 feet
Mean annual air temperature: 49 to 53 degrees F
Mean annual precipitation: 13 to 14 inches
Frost-free period: 115 to 135 days

Typical Pedon

Atarque sandy loam, in an area of mapping unit 305, Celavar-Atarque complex, 1 to 8 percent slopes; McKinley County, New Mexico; Thoreau NE Quadrangle; 600 feet south of the northeast corner of sec. 8, T. 14 N., R. 11 W.; latitude 35 degrees, 27 minutes, 44 seconds and longitude 108 degrees, 01 minute, 00 seconds.
A-0 to 3 inches; brown (7.5YR 5/4) sandy loam, dark brown (7.5YR 4/4) moist; weak fine granular structure; soft, very friable, nonsticky and nonplastic; few medium and fine and common very fine roots; common very fine irregular pores; neutral (pH 7.2); abrupt smooth boundary.
Bt1-3 to 9 inches; strong brown (7.5YR 4/6) sandy clay loam, dark brown (7.5YR 4/4) moist; moderate medium subangular blocky structure; soft, friable, slightly sticky and slightly plastic; few medium and fine and common very fine roots; few very fine tubular pores; common prominent clay films bridging sand grains and lining pores; slightly effervescent; slightly alkaline (pH 7.6); clear smooth boundary.
Bt2—9 to 14 inches; yellowish red (5YR 4/6) sandy clay loam, reddish brown (5YR 4/4) moist; moderate medium subangular blocky structure; soft, friable, slightly sticky and slightly plastic; few medium and fine and common very fine roots; few very fine tubular pores; common prominent clay films bridging sand grains and lining pores; slightly
effervescent; slightly alkaline (pH 7.6); abrupt smooth boundary.
2R-14 inches; sandstone.

Range in Characteristics

Particle-size control section: 18 to 35 percent clay
Depth to a lithic contact: 10 to 20 inches to sandstone
Reaction: neutral in the surface and slightly alkaline in the subsoil

A horizon:
Hue: 7.5YR or 10YR
Value: 5 dry, 3 to 5 moist
Chroma: 4 dry, 4 to 6 moist
Texture: fine sandy loam or sandy loam
Bt horizon:
Hue: 5YR to 10YR
Value: 4 dry, 3 or 4 moist
Chroma: 6 dry, 3 to 6 moist
Texture: sandy clay loam or clay loam

Atchee Series

Taxonomic class: Loamy-skeletal, mixed, active, calcareous, mesic Lithic Ustic Torriorthents
Depth class: Very shallow and shallow
Drainage class: Well drained
Permeability: Moderate to moderately slow
Geomorphic position: Mesas, cuestas, breaks, hills, and ridges
Parent material: Slope alluvium over residuum derived from sandstone and shale
Slope range: 2 to 20 percent
Elevation: 6,500 to 7,500 feet
Mean annual air temperature: 46 to 49 degrees F
Mean annual precipitation: 10 to 13 inches
Frost-free period: 100 to 135 days

Typical Pedon

Atchee fine sandy loam, in an area of mapping unit 258, Eagleye-Atchee-Rock outcrop complex, 2 to 35 percent slopes; McKinley County, New Mexico; Hunter's Point Quadrangle; about 1,700 feet west and 900 feet south of the northeast corner of sec. 23, T. 16 N., R. 21 W.; latitude 35 degrees, 36 minutes, 50 seconds and longitude 109 degrees, 02 minutes, 45 seconds.
A—0 to 2 inch; yellowish brown (10YR 5/4) fine sandy loam, dark yellowish brown (10YR 4/4) moist; weak very fine granular structure; soft, very friable, nonsticky and nonplastic; common very fine roots; 2 percent gravel; slightly effervescent; moderately alkaline (pH 8.0); abrupt smooth boundary.

C1—2 to 12 inches; light olive brown (2.5Y 5/4) extremely channery sandy clay loam, olive brown (2.5Y 4/4) moist; massive; slightly hard, friable, slightly sticky and slightly plastic; common very fine roots; few very fine irregular pores; 70 percent channers and 15 percent flagstones; slightly effervescent; slightly alkaline (pH 7.8); abrupt smooth boundary.
C2—12 to 14 inches; light olive brown (2.5Y 5/4) extremely channery sandy clay loam, olive brown (2.5Y 4/4) moist; massive; slightly hard, firm, slightly sticky and slightly plastic; common very fine and few medium roots; few very fine irregular pores; 70 percent channers and 15 percent flagstones; very slightly effervescent; slightly alkaline (pH 7.6); abrupt smooth boundary.
R-12 inches; fractured sandstone.

Range in Characteristics

Particle-size control section: 10 to 27 percent clay and 35 to 90 percent rock fragments
Depth to lithic contact: 5 to 20 inches to sandstone Calcium carbonate equivalent: 0 to 5 percent
Reaction: slightly or moderately alkaline

A horizon:

Hue: 10YR or 2.5 Y
Value: 5 or 6 dry; 4 or 5 moist
Chroma: 4 or 5 dry and moist
Rock fragments: 0 to 50 percent total; 0 to 50 percent channers and gravel; 0 to 20 percent flagstones and cobbles. All fragments are sandstone.
Chorizon:
Hue: 2.5Y
Value: 5 or 6 dry, 4 or 5 moist
Chroma: 4 or 5 dry and moist
Textures: sandy loam, fine sandy loam, sandy clay loam, clay loam, or loam
Rock fragments: 35 to 90 percent total; 35 to 90 percent channers and 0 to 20 percent flagstones. All fragments are sandstone.

Azabache Series

Taxonomic class: Fine-loamy, mixed, superactive, mesic Typic Natrargids
Depth class: Very deep
Drainage class: Well drained
Permeability: Very slow
Geomorphic position: Valley floors, lava plateaus, and volcanic cones
Parent material: Slope alluvium derived from basalt, sandstone, and shale.
Slope range: 2 to 8 percent

Elevation: 6,500 to 6,900 feet
Mean annual air temperature: 50 to 54 degrees F Mean annual precipitation: 8 to 10 inches
Frost-free period: 130 to 140 days

Typical Pedon

Azabache extremely gravelly clay loam, in an area of mapping unit 280, Azabache extremely gravelly clay loam, 2 to 8 percent slopes; McKinley County, New Mexico; Cerro Alesna Quadrangle; 1,900 feet south and 2,300 feet east of the northwest corner of sec. 2, T. 14 N., R. 7 W.; latitude 35 degrees, 28 minutes, 25 seconds and longitude 107 degrees, 32 minutes, 59 seconds.

The surface is covered by 75 percent gravel and 1 percent cobbles.

A—0 to 1 inches; very pale brown (10YR 7/3) extremely gravelly clay loam, brown (10YR 5/3) moist; strong medium and thick platy structure; slightly hard, friable, sticky and plastic; no observed roots; many very fine and fine vesicular pores; 75 percent gravel and 1 percent cobbles; moderately alkaline (pH 8.4); abrupt smooth boundary.
Btn-1 to 5 inches; reddish brown (5YR 4/4) clay, dark reddish brown (5YR 3/4) moist; moderate medium and coarse columnar structure; slightly hard, friable, very sticky and very plastic; common very fine and fine roots; common fine tubular pores; many distinct clay films on faces of peds; 1 percent gravel; EC of $4.9 \mathrm{mmhos} / \mathrm{cm}$; SAR of 22 ; moderately alkaline (pH 8.4); clear smooth boundary.
2Btknz1—5 to 17 inches; yellowish brown (10YR 5/4) gravelly sandy clay loam, dark yellowish brown (10YR 4/4) moist; moderate medium and coarse prismatic structure parting to moderate medium subangular blocky; very hard, very firm, sticky and very plastic; many very fine and fine and few medium roots; common fine tubular and few very fine vesicular pores; many prominent clay films bridging sand grains and on faces of peds; 30 percent gravel; violently effervescent; many very fine and fine masses of calcium carbonate and coating rock fragments; 9 percent calcium carbonate equivalent; common sodium sulfate crystals; EC of $8.9 \mathrm{mmhos} / \mathrm{cm}$; SAR of 21; strongly alkaline (pH 8.6); clear wavy boundary.
2Btknz2—17 to 25 inches; yellowish brown (10YR 5/4) extremely gravelly sandy clay loam, dark yellowish brown (10YR 4/4) moist; moderate fine angular blocky structure; extremely hard, very firm, sticky and very plastic; few very fine roots; common fine
tubular and vesicular pores; 70 percent gravel and 5 percent cobbles; violently effervescent; many fine and medium masses of calcium carbonate and coating rock fragments; 10 percent calcium carbonate equivalent; common sodium sulfate crystals; EC of $8.5 \mathrm{mmhos} / \mathrm{cm}$; SAR of 21; strongly alkaline (pH 8.6); gradual wavy boundary.
2Btknz3-25 to 32 inches; light yellowish brown (10YR $6 / 4$) extremely gravelly sandy clay loam, yellowish brown (10YR 5/4) moist; moderate fine angular blocky structure; extremely hard, very firm, slightly sticky and plastic; few very fine roots; common fine tubular and vesicular pores; 70 percent gravel and 5 percent cobbles; strongly effervescent; many fine and medium masses of calcium carbonate and coating rock fragments; 5 percent calcium carbonate equivalent; common sodium sulfate crystals; EC of 4.3 mmhos/cm; SAR of 27; strongly alkaline (pH 9.0); gradual wavy boundary.
2Btknz4-32 to 50 inches; light yellowish brown (10YR 6/4) extremely gravelly fine sandy loam, yellowish brown (10YR 5/4) moist; moderate fine angular blocky structure; extremely hard, very firm, slightly sticky and plastic; few very fine roots; common fine tubular and vesicular pores; 70 percent gravel and 5 percent cobbles; strongly effervescent; common fine and medium masses of calcium carbonate and coating rock fragments; 1 percent calcium carbonate equivalent; common sodium sulfate crystals; EC of $5.5 \mathrm{mmhos} / \mathrm{cm}$; SAR of 17; strongly alkaline (pH 9.0); clear wavy boundary.
2Btnz-50 to 62 inches; very pale brown (10YR 7/3) very gravelly fine sandy loam, yellowish brown (10YR 5/4) moist; massive; extremely hard, firm, slightly sticky and plastic; few very fine roots; few fine irregular pores; 35 percent gravel and 1 percent cobbles; strongly effervescent; very few fine masses of calcium carbonate; 1 percent calcium carbonate equivalent; common sodium sulfate crystals; EC of $5.5 \mathrm{mmhos} / \mathrm{cm}$; SAR of 17; strongly alkaline (pH 9.0).

Range in Characteristics

Particle-size control section: 20 to 35 percent clay with greater than 35 percent sand and less than 35 percent rock fragments
Depth to horizons with greater than 35 percent rock fragments: 15 to 40 inches
Depth to sodium sulfate crystals: 5 to 30 inches
A horizon:
Value: 6 or 7 dry, 4 or 5 moist
Chroma: 3 or 4 dry or moist

Rock fragments: 30 to 80 percent total; 30 to 75 percent gravel; 0 to 5 percent cobbles; 0 to 1 percent stones. All fragments are basalt.
Salinity: EC of 0 to $4 \mathrm{mmhos} / \mathrm{cm}$
Sodicity: SAR of 10 to 20
Reaction: slightly or moderately alkaline
Bt horizons:
Hue: 5YR, 7.5YR, or 10YR
Value: 4 to 7 dry, 3 to 5 moist
Chroma: 3 or 4 dry, 4 or 6 moist
Texture: clay, clay loam, or sandy clay in the upper part, with sandy clay loam and fine sandy loam in the lower part with particle size control section less than 35 percent clay
Rock fragments: 1 to 75 percent total; 1 to 70 percent gravel; 0 to 5 percent cobbles. All fragments are basalt.
Note: When a horizon has greater than 35 percent rock fragments, it is too thin or is too far below the particle size control section to affect the particle size class.
Calcium carbonate equivalent: 1 to 15 percent
Salinity: EC of 4 to 16 mmhos/cm
Sodicity: SAR of 20 to 30
Gypsum: 0 to 1 percent
Reaction: moderately through very strongly alkaline
Some pedons have a Bk horizon below the Bt horizons.

Bamac Series

Taxonomic class: Sandy-skeletal, mixed, mesic Aridic Ustorthents
Depth class: Very deep
Drainage class: Excessively drained
Permeability: Very rapid
Geomorphic position: Hills and ridges
Parent material: Slope alluvium derived from sandstone and conglomerate
Slope range: 5 to 50 percent
Elevation: 6,200 to 6,500 feet
Mean annual air temperature: 49 to 53 degrees F
Mean annual precipitation: 13 to 14 inches
Frost-free period: 115 to 135 days

Typical Pedon

Bamac extremely gravelly sandy loam, in an area of mapping unit 566, Bamac extremely gravelly sandy loam, 5 to 50 percent slopes; McKinley County, New Mexico; Tekapo Quadrangle; 1,200 feet west and 1,200 feet north of the southeast corner of sec. 1, T. 9
N., R. 20 W.; latitude 35 degrees, 02 minutes, 08 seconds and longitude 108 degrees, 53 minutes, 42 seconds.

The surface is covered by about 65 percent gravel and 5 percent cobbles.
A—0 to 2 inches; dark yellowish brown (10YR 4/4) extremely gravelly sandy loam, dark yellowish brown (10YR 3/4) moist; weak fine granular structure; soft, very friable, nonsticky and nonplastic; few medium and many very fine and fine roots; many fine irregular pores; 65 percent gravel and 5 percent cobbles; violently effervescent; 12 percent calcium carbonate equivalent; slightly alkaline; abrupt smooth boundary.
Ck1-2 to 8 inches; brown (7.5YR 5/4) gravelly sandy loam, dark brown (10YR 4/3) moist; massive; soft, very friable, nonsticky and nonplastic; few coarse and medium and many very fine and fine roots; many fine irregular pores; 20 percent gravel; violently effervescent; many fine filaments and few fine masses of calcium carbonate; 14 percent calcium carbonate equivalent; slightly alkaline; clear wavy boundary.
Ck2—8 to 30 inches; light brown (7.5YR 6/4) extremely gravelly coarse sand, brown (7.5YR 4/4) moist; massive; loose, very friable, nonsticky and nonplastic; common coarse, few medium and common very fine and fine roots; common very fine irregular pores; 80 percent gravel; violently effervescent; many fine filaments and concretions and few fine masses of calcium carbonate; 12 percent calcium carbonate equivalent; slightly alkaline; gradual wavy boundary.
Ck3-30 to 63 inches; light brown (7.5YR 6/4) very cobbly coarse sand, brown (7.5YR 5/4) moist; massive; loose, very friable, nonsticky and nonplastic; few medium and very fine roots; common very fine irregular pores; 25 percent gravel and 30 percent cobbles; violently effervescent; many fine filaments and concretions and few fine masses of calcium carbonate; 14 percent calcium carbonate equivalent; slightly alkaline.

Range in Characteristics

Particle-size control section: 2 to 5 percent clay and greater that 35 percent rock fragments
Percent calcium carbonate equivalent: 5 to 15 percent Reaction: slightly to moderately alkaline throughout

A horizon:

Value: 4 or 5 dry, 3 or 4 moist
Chroma: 3 or 4 moist

Rock fragments: 15 to 80 percent total; 15 to 65 percent gravel; 0 to 5 percent cobbles. All fragments are sandstone and siliceous gravel.

Ck horizons:
Hue: 7.5YR or 10YR
Value: 3 to 5 dry, 4 to 6 moist
Chroma: 4 to 6 dry, 3 to 6 moist
Texture: sandy loam, coarse sand, or sand
Rock fragments: 10 to 80 percent total; 10 to 80 percent gravel; 0 to 30 percent cobbles. All fragments are sandstone and siliceous gravel.

Banquito Series

Taxonomic class: Fine-loamy, mixed, superactive, mesic Calcidic Haplustalfs
Depth class: Moderately deep
Drainage class: Well drained
Permeability: Moderately slow
Geomorphic position: Lava plateaus
Parent material: Eolian material and slope alluvium over residuum derived from basalt
Slope range: 1 to 3 percent
Elevation: 7,200 to 7,800 feet
Mean annual air temperature: 47 to 53 degrees F
Mean annual precipitation: 13 to 16 inches
Frost-free period: 100 to 135 days

Typical Pedon

Banquito very fine sandy loam, in an area of mapping unit 390, Banquito very fine sandy loam, 1 to 3 percent slopes; McKinley County, New Mexico; Cerro Parido Quadrangle; latitude 35 degrees, 33 minutes, 38 seconds and longitude 107 degrees, 22 minutes, 29 seconds.

A—0 to 2 inches; brown (10YR 5/3) very fine sandy loam, brown (10YR 4/3) moist; moderate thin and medium platy structure; soft, very friable, nonsticky and nonplastic; common very fine and fine roots; many very fine and fine irregular pores; 10 percent gravel and 1 percent cobbles; slightly effervescent; slightly alkaline (pH 7.4); clear smooth boundary.
Btk1-2 to 9 inches; brown (7.5YR 5/3) clay loam, brown (7.5YR 4/3) moist; moderate fine and medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; many very fine and fine roots; common very fine and fine irregular pores; many distinct clay films bridging sand grains and on faces of peds; 1 percent gravel; violently effervescent; few fine masses and weakly cemented concretions of calcium carbonate; 11 percent calcium carbonate
equivalent; moderately alkaline (pH 8.0); clear wavy boundary.
Btk2-9 to 17 inches; grayish brown (10YR 5/2) loam, brown (7.5YR 4/3) moist; moderate fine and medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; many very fine and fine roots; common very fine and fine tubular pores; common distinct clay films bridging sand grains and on faces of peds; 5 percent gravel; violently effervescent; many medium weakly cemented concretions and few fine masses of calcium carbonate; 26 percent calcium carbonate equivalent; moderately alkaline (pH 8.2); clear irregular boundary.
Bk1-17 to 22 inches; grayish brown (10YR 5/2) sandy clay loam, brown (7.5YR 4/3) moist; massive; hard, firm, slightly sticky and slightly plastic; common very fine and fine roots; common fine irregular pores; 5 percent gravel; violently effervescent; many fine and medium weakly cemented concretions and masses of calcium carbonate; 45 percent calcium carbonate equivalent; moderately alkaline (pH 8.4); clear wavy boundary.
Bk2—22 to 30 inches; light gray (10YR 7.2) sandy loam, brown (10YR 5/3) moist; massive; hard, firm, slightly sticky and slightly plastic; few very fine and fine roots; few fine irregular pores; 5 percent gravel; violently effervescent; many medium weakly cemented concretions of calcium carbonate; 55 percent calcium carbonate equivalent; moderately alkaline (pH 8.4); clear wavy boundary.
2Bk3-30 to 36 inches; light gray (10YR 7.2) sandy loam, brown (10YR 5/3) moist; massive; hard, firm, slightly sticky and slightly plastic; few very fine and fine roots; few fine irregular pores; 10 percent gravel and 1 percent cobbles with common soft basalt fragments; violently effervescent; many medium weakly cemented concretions of calcium carbonate; 35 percent calcium carbonate equivalent; moderately alkaline (pH 8.4); abrupt irregular boundary.
2R-36 inches; basalt (with many very fine and fine coats of calcium carbonate at the upper contact).

Range in Characteristics

Particle-size control section: 20 to 35 percent clay and greater than 30 percent sand
Depth to lithic contact: 20 to 40 inches to basalt
Depth to calcic horizon: 9 to 25 inches with 15 to 55 percent calcium carbonate equivalent

Reaction: slightly alkaline in the surface and moderately alkaline in the subsoil

A horizon:
Hue: 5YR, 7.5YR, or 10YR
Value: 5 or 6 dry, 3 or 4 moist
Chroma: 3 or 4 dry or moist
Rock fragments: 5 to 15 percent total; 0 to 15 percent gravel; 0 to 2 percent cobbles. All fragments are basalt and sandstone.

Btk horizon:
Hue: 5YR, 7.5YR, or 10YR
Value: 4 or 5 dry, 3 to 5 moist
Chroma: 2 or 3 dry, 2 to 4 moist
Texture: clay loam, loam, or sandy clay loam
Rock fragments: 0 to 5 percent total; 0 to 5 percent gravel; 0 to 5 percent cobbles. All fragments are basalt and sandstone.
Calcium carbonate equivalent: 5 to 30 percent
Bk horizon:
Hue: 5YR, 7.5YR, or 10YR
Value: 5 to 7 dry, 4 or 5 moist
Chroma: 2 to 4 dry or moist
Texture: sandy loam, sandy clay loam or clay loam Rock fragments: 5 to 15 percent total; 5 to 15 percent gravel; 0 to 5 percent cobbles. All fragments are basalt.
Calcium carbonate equivalent: 15 to 55 percent

Barboncito Series

Taxonomic class: Loamy, mixed, superactive, mesic
Lithic Ustic Haplargids
Depth class: Very shallow and shallow
Drainage class: Well drained
Permeability: Moderately slow
Geomorphic position: Cuestas, hills, and ridges
Parent material: Eolian material and slope alluvium derived from sandstone and shale
Slope range: 1 to 3 percent
Elevation: 6,400 to 6,800 feet
Mean annual air temperature: 45 to 49 degrees F
Mean annual precipitation: 10 to 13 inches
Frost-free period: 100 to 135 days

Typical Pedon

Barboncito loamy fine sand, in an area of mapping unit 245, Buckle-Gapmesa-Barboncito complex, 1 to 6 percent slopes; McKinley County, New Mexico; Gallup West Quadrangle; 400 feet east and 2,200 feet south of sec. 18, T. 16 N., R. 18 W.; latitude 35 degrees, 37
minutes, 05 seconds N . and 108 degrees, 47 minutes, 30 seconds W.

A-0 to 2 inches; brown (10YR 5/3) loamy fine sand, brown (10YR 4/3) moist; weak very fine granular structure; loose, very friable, nonsticky and nonplastic; common very fine roots; 1 percent sandstone gravel; slightly alkaline (pH 7.8); abrupt smooth boundary.
Bt1-2 to 6 inches; yellowish brown (10YR 5/4) sandy clay loam, dark yellowish brown (10YR 4/4) moist; weak fine and medium subangular blocky structure; soft, very friable, slightly sticky and slightly plastic; common very fine roots; few very fine irregular pores; few faint clay films on faces of peds; slightly alkaline (pH 7.8); clear smooth boundary.
Btk-6 to 11 inches; yellowish brown (10 YR 5/4) clay loam, yellowish brown (10YR 5/4) moist; moderate fine and medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; common very fine roots; few very fine irregular pores; few faint clay films on faces of peds; common very fine and fine masses of calcium carbonate; strongly effervescent; moderately alkaline (pH 8.2); abrupt smooth boundary.
R—11 inches; sandstone.

Range in Characteristics

Particle-size control section: 18 to 35 percent clay Depth to lithic contact: 10 to 20 inches

A horizon:
Hue: 10YR
Value: 4 to 6 dry, 3 or 4 moist
Chroma: 3 dry and moist
Textures: loamy fine sand or fine sandy loam
Rock fragments: 0 to 5 percent sandstone gravel
Reaction: slightly alkaline
Bt horizon:
Hue: 10YR
Value: 4 or 5 dry, 3 or 4 moist
Chroma: 3 or 4 dry and moist
Calcium carbonate equivalent: 1 to 5 percent
Textures: fine sandy loam, loam, or sandy clay loam
Btk horizon:
Hue: 10YR
Value: 4 or 5 dry, 3 or 4 moist
Chroma: 3 dry and moist
Textures: sandy clay loam or clay loam
Rock fragments: 0 to 5 percent sandstone gravel Calcium carbonate equivalent: 1 to 5 percent Reaction: slightly to moderately alkaline

Some pedons have thin Cr horizons above the lithic contact.

Benally Series

Taxonomic class: Fine-loamy, mixed, superactive, mesic Typic Natrargids
Depth class: Deep and very deep
Drainage class: Well drained
Permeability: Moderately slow
Geomorphic position: Valley floors
Parent material: Stream alluvium derived from sandstone and shale
Slope range: 1 to 5 percent
Elevation: 5,800 to 6,800 feet
Mean annual air temperature: 50 to 55 degrees F
Mean annual precipitation: 7 to 9 inches
Frost-free period: 130 to 150 days

Typical Pedon

Benally sandy clay loam, in an area of mapping unit 116, Fajada-Huerfano-Benally complex, 1 to 5 percent slopes; McKinley County, New Mexico; Milk Lake Quadrangle; 508 feet west and 1,980 feet south of the northeast corner of sec. 10, T. 19 N., R. 13 W.; latitude 35 degrees, 53 minutes, 12 seconds and longitude 108 degrees, 12 minutes, 30 seconds.

A-0 to 2 inches; yellowish brown (10YR 5/6) sandy clay loam, yellowish brown (10YR 5/4) moist; moderate fine granular structure; soft, friable, slightly sticky and slightly plastic; few very fine and fine roots; common very fine irregular pores; strongly effervescent; moderately alkaline (pH 8.4); abrupt smooth boundary.
Btn-2 to 11 inches; yellowish brown (10YR 5/4) sandy clay loam, yellowish brown (10YR 5/4) moist; moderate medium columnar structure; hard, friable, slightly sticky and slightly plastic; few very fine and fine roots; common very fine irregular pores; common prominent clay films bridging sand grains and lining pores; strongly effervescent; very strongly alkaline (pH 9.2); clear smooth boundary.
Btkn-11 to 18 inches; dark yellowish brown (10YR 4/6) sandy clay loam, yellowish brown (10YR 5/6) moist; weak medium prismatic structure; hard, friable, slightly sticky and nonplastic; few medium, very fine and fine roots; few very fine irregular pores; common distinct clay films bridging sand grains and lining pores; strongly effervescent; few fine irregular filaments of calcium carbonate; very strongly alkaline (pH 9.2); clear smooth boundary.
Btknz—18 to 45 inches; yellowish brown (10YR 5/6) sandy clay loam, yellowish brown (10YR 5/6) moist; massive; hard, friable, slightly sticky and
nonplastic; few very fine and fine roots; common very fine irregular pores; common distinct clay films bridging sand grains; strongly effervescent; secondary gypsum, calcium carbonate, and sodium sulfate occurs as few fine irregular masses, filaments, and very fine crystals; moderately alkaline (pH 8.2); abrupt smooth boundary.
$2 \mathrm{Cr}-45$ inches; weathered sandstone.

Range in Characteristics

Particle-size control section: 18 to 35 percent clay
Depth to paralithic contact: 40 to more than 60 inches to weathered sandstone
Sodicity: SAR of 15 to 30
Calcium carbonate equivalent: 1 to 10 percent
A horizon:
Hues: 10YR or 2.5Y
Value: 5 or 6 dry; 4 or 5 moist
Chroma: 3 to 6 dry
Texture: sandy clay loam or sandy loam
Rock fragments: 0 to 15 percent sandstone gravel
Reaction: moderately alkaline
Btn horizon:
Hues: 10YR or 2.5Y
Value: 3 or 5 moist
Chroma: 3 or 4 moist
Rock fragments: 0 to 10 percent sandstone gravel
Reaction: strongly or very strongly alkaline
Btkn and Btknz horizon:
Hues: 10YR or 2.5Y
Chroma: 4 to 6 moist
Rock fragments: 0 to 10 percent sandstone gravel
Gypsum: 5 to 10 percent
Reaction: moderately to strongly alkaline
The Cr horizon may consist of either weathered sandstone or shale.

Some pedons are very deep, and do not have a paralithic contact above 60 inches.

Berryhill Series

Taxonomic class: Fine, mixed, superactive, mesic Chromic Gypsitorrerts
Depth class: Very deep
Drainage class: Well drained
Permeability: Very slow
Geomorphic position: Valley sides, valley floors, and hills
Parent material: Slope alluvium derived from shale Slope range: 2 to 8 percent

Elevation: 7,000 to 7,800 feet
Mean annual air temperature: 49 to 53 degrees F Mean annual precipitation: 10 to 13 inches Frost-free period: 120 to 140 days

Typical Pedon

Berryhill clay, in an area of mapping unit 380, BerryhillCasamero clays, 2 to 10 percent slopes; McKinley County, New Mexico; Goat Mountain Quadrangle; 1,000 feet west and 1,800 feet north of the southeast corner of sec. 3, T. 14 N., R. 11 W.; latitude 35 degrees, 28 minutes, 09 seconds and longitude 107 degrees, 59 minutes, 06 seconds (fig. 15).

A—0 to 2 inches; light olive brown (2.5Y 5/4) clay, olive brown ($2.5 \mathrm{Y} 4 / 4$) moist; moderate medium granular structure; soft, friable, very sticky and very plastic; common very fine and fine roots; common very fine vesicular and few fine irregular pores; few cracks 0.5 inch wide; 1 percent gypsum; strongly effervescent; slightly alkaline (pH 7.8); abrupt smooth boundary.
Bw-2 to 12 inches; yellowish brown (10YR 5/4) clay, dark yellowish brown (10YR 4/4) moist; moderate medium and coarse subangular blocky structure; very hard, very firm, very sticky and very plastic; many very fine and fine roots; common fine irregular and few fine vesicular pores; common pressure faces; few cracks 0.5 inch wide; 1 percent gypsum; strongly effervescent; slightly alkaline (pH 7.8); clear wavy boundary.
Bssyz1-12 to 26 inches; grayish brown (2.5Y 5/2) clay, dark grayish brown (2.5Y 4/2) moist; moderate medium and coarse subangular blocky structure; extremely hard, extremely firm, very sticky and very plastic; common very fine and few fine roots; few fine irregular pores; many pressure faces; common 0.5 -inch diameter slickensides; few cracks 0.5 inch wide extending to 25 inches; common medium gypsum and sodium sulfate crystals; 33 percent gypsum; strongly effervescent; slightly alkaline (pH 7.8); clear wavy boundary.
Bssyz2-26 to 39 inches; grayish brown (2.5Y 5/2) clay, dark grayish brown (2.5Y 4/2) moist; massive; extremely hard, extremely firm, very sticky and very plastic; few fine roots; few fine irregular pores; common pressure faces; few 0.5inch slickensides; few fine gypsum and sodium sulfate crystals; 2 percent gypsum; strongly effervescent; moderately alkaline (pH 8.0); gradual wavy boundary.
Bssyz3-39 to 70 inches; grayish brown (2.5Y 5/2) clay, dark grayish brown (2.5Y 4/2) moist; massive; extremely hard, extremely firm; very
sticky and very plastic; few very fine roots; few fine irregular pores; many pressure faces; common fine gypsum and sodium sulfate crystals; 7 percent gypsum; strongly effervescent; moderately alkaline (pH 8.0).

Range in Characteristics

Particle-size control section: 40 to 55 percent clay
Depth to gypsum and sodium sulfate accumulations: 3 to 32 inches
Depth to the gypsic horizon: 3 to 32 inches with 10 to 35 percent gypsum, gypsum content decreases in the underlying horizon
Reaction: slightly or moderately alkaline
Vertic properties: gilgai microrelief ranges up to 2 inches; cracks range from 0.5 to 2 inches in width and 2 to 30 inches vertically; few to many pressure faces and intersecting slickensides below 2 inches
A horizon:
Hue: 10YR or 2.5Y
Value: 5 or 6 dry
Chroma: 2 to 4 dry and moist
Rock fragments: 0 to 20 percent sandstone and shale gravel and channers
Salinity: EC of 0 to $2 \mathrm{mmhos} / \mathrm{cm}$
Sodicity: SAR of 0 to 2
Bw horizon:
Hue: 10YR or 2.5Y
Value: 3 or 4 moist
Chroma: 3 or 4 moist
Salinity: EC of 2 to $4 \mathrm{mmhos} / \mathrm{cm}$
Sodicity: SAR of 2 to 5
Bssyz1 horizon:
Hue: 10YR or 2.5 Y
Value: 4 or 5 dry, 3 or 4 moist
Chroma: 2 to 4 moist
Calcium carbonate equivalent: 1 to 10 percent
Gypsum and sodium sulfate: Few to common clusters of crystals
Percent gypsum: 10 to 35 percent
Salinity: EC of 2 to $4 \mathrm{mmhos} / \mathrm{cm}$
Sodicity: SAR of 2 to 5
Bssyz2 and Bssyz3 horizons:
Hue: 10YR or 2.5 Y
Value: 4 or 5 dry, 3 or 4 moist
Chroma: 2 to 4 moist
Calcium carbonate equivalent: 1 to 10 percent
Gypsum and sodium sulfate: Few to common clusters of crystals
Percent gypsum: 2 to 8 percent
Salinity: EC of 2 to 8 mmhos/cm
Sodicity: SAR of 2 to 8

Betonnie Series

Taxonomic class: Coarse-loamy, mixed, superactive, mesic Ustic Haplargids
Depth class: Very deep
Drainage class: Somewhat excessively drained
Permeability: Moderately rapid
Geomorphic position: Mesas, cuestas, valley sides, hills, and ridges
Parent material: Eolian material and fan and slope alluvium derived from sandstone
Slope range: 1 to 8 percent
Elevation: 6,400 to 6,900 feet
Mean annual air temperature: 46 to 49 degrees F
Mean annual precipitation: 9 to 10 inches
Frost-free period: 100 to 135 days

Typical Pedon

Betonnie sandy loam, in an area of mapping unit 11, Doakum-Betonnie complex, 1 to 8 percent slopes; McKinley County, New Mexico; Ojo Encino Mesa Quadrangle; 1,600 feet east and 200 feet south of the northwest corner of sec. 22, T. 20 N., R. 5 W.; latitude 35 degrees, 57 minutes, 24 seconds and longitude 107 degrees, 21 minutes, 29 seconds.

A-0 to 3 inches; brown (10YR 5/3) sandy loam, dark brown (10YR 4/3) moist; weak thin platy structure parting to moderate fine and medium granular structure; soft, very friable, nonsticky and nonplastic; common fine and many very fine roots; common very fine and fine irregular pores; neutral (pH 7.2); abrupt smooth boundary.
Bt1-3 to 11 inches; brown (7.5YR 5/4) sandy loam, dark brown (7.5YR 4/4) moist; weak medium subangular blocky structure; hard, very friable, nonsticky and nonplastic; common very fine and fine and few medium roots; common very fine irregular pores; common distinct clay films bridging sand grains; slightly alkaline (pH 7.4); clear smooth boundary.
Bt2—11 to 21 inches; brown (7.5YR 5/4) sandy loam, dark brown (7.5YR 4/4) moist; weak medium subangular blocky structure; hard, very friable, nonsticky and nonplastic; hard, very friable, nonsticky and nonplastic; few very fine and fine roots; common very fine irregular pores; few distinct clay films bridging sand grains; slightly alkaline (pH 7.4); gradual irregular boundary.
Bk1—21 to 29 inches; yellowish brown (10YR 5/8) loamy sand, dark yellowish brown (10YR 4/6) moist; massive; very hard, very friable, nonsticky and nonplastic; few very fine and fine roots; common very fine irregular pores; slightly
effervescent; slightly alkaline (pH 7.4); gradual smooth boundary.
Bk2—29 to 45 inches; yellowish brown (10YR 5/8) loamy sand, dark yellowish brown (10YR 4/6) moist; massive; very hard, very friable, nonsticky and nonplastic; few very fine roots; common very fine irregular pores; strongly effervescent; few fine irregular filaments of calcium carbonate; slightly alkaline (pH 7.6); gradual smooth boundary.
Bk3—45 to 52 inches; yellowish brown (10YR 5/8) sandy loam, dark yellowish brown (10YR 4/6) moist; massive; very hard, very friable, nonsticky and nonplastic; few very fine roots; common very fine irregular pores; strongly effervescent; few fine irregular seams and filaments of calcium carbonate; slightly alkaline (pH 7.6); clear smooth boundary.
Btkb—52 to 57 inches; yellowish brown (10YR 5/4) sandy loam, yellowish brown (10YR 5/4) moist; weak medium subangular blocky structure; very hard, friable, slightly sticky and slightly plastic; few very fine roots; common very fine irregular pores; common prominent clay films on ped faces; violently effervescent; common medium seams and filaments of calcium carbonate; slightly alkaline (pH 7.6); clear smooth boundary.
C—57 to 70 inches; brownish yellow (10YR 6/8) loamy sand, yellowish brown (10YR 5/6) moist; massive; very hard, very friable, nonsticky and nonplastic; few very fine roots; few very fine irregular pores; moderately alkaline (pH 8.0).

Range in Characteristics

Particle-size control section: 10 to 18 percent clay
Krotovinas: Cicada casts arranged vertically; extending from the surface to 40 inches and concentrated from 11 to 30 inches
Reaction: neutral in the surface and slightly to moderately alkaline in the subsoil

A horizon:
Hue: 7.5YR or 10YR
Value: 3 to 5 dry and moist
Chroma: 3 or 4 dry and moist
Bt horizons:
Hue: 7.5YR or 10YR
Value: 4 or 5 dry
Chroma: 4 to 6 dry and moist
Texture: sandy loam or fine sandy loam
Bk horizons:
Hue: 7.5YR or 10YR
Value: 5 to 7 dry; 4 to 6 moist
Chroma: 6 to 8 dry; 4 to 6 moist

Texture: sandy loam, fine sandy loam, loamy sand, or loamy fine sand
Calcium carbonate equivalent: 1 to 5 percent
C horizon:
Hue: 10YR
Value: 6 dry, 4 or 5 moist
Chroma: 4 to 6
Texture: loamy sand or sandy loam
Calcium carbonate equivalent: 1 to 5 percent

Blancot Series

Taxonomic class: Fine-loamy, mixed, superactive, mesic Ustic Haplargids
Depth class: Very deep
Drainage class: Well drained
Permeability: Moderately slow
Geomorphic position: Valley sides
Parent material: Fan alluvium derived from sandstone and shale
Slope range: 1 to 3 percent
Elevation: 6,400 to 6,800 feet
Mean annual air temperature: 46 to 49 degrees F
Mean annual precipitation: 9 to 10 inches
Frost-free period: 100 to 135 days

Typical Pedon

Blancot fine sandy loam, in an area of mapping unit 10, Tsosie-Councelor-Blancot fine sandy loams, 1 to 3 percent slopes; McKinley County, New Mexico; Ojo Encino Mesa Quadrangle; 1,000 feet east and 1,000 feet south of the northwest corner of sec. 9, T. 20 N., R. 5 W.; latitude 35 degrees, 58 minutes, 57 seconds and longitude 107 degrees, 22 minutes, 35 seconds.

A-0 to 3 inches; brown (10YR 5/3) fine sandy loam, dark brown (10YR 4/3) moist; weak fine granular structure; soft, very friable, nonsticky and nonplastic; few fine and common very fine roots; few very fine irregular pores; neutral (pH 7.2); abrupt smooth boundary.
Bt1-3 to 11 inches; dark yellowish brown (10YR 4/4) clay loam, dark brown (10YR 4/3) moist; strong medium angular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; few coarse and common fine and very fine roots; few fine tubular pores; many prominent clay films on faces of peds and lining pores; slightly alkaline (pH 7.4); abrupt smooth boundary.

Bt2—11 to 16 inches; yellowish brown (10YR 5/4) sandy clay loam, dark yellowish brown (10YR 4/4) moist; moderate medium subangular blocky structure; slightly hard, friable, slightly sticky and
nonplastic; few coarse and medium and common fine and very fine roots; few fine tubular pores; common faint clay films bridging sand grains; slightly alkaline (pH 7.6); clear smooth boundary.
C1-16 to 37 inches; brown (10YR $5 / 3$) sandy loam, dark brown (10YR 4/3) moist; massive; slightly hard, friable, nonsticky and nonplastic; few fine and common very fine roots; few very fine tubular pores; slightly alkaline (pH 7.6); clear smooth boundary.
C2-37 to 65 inches; brown (10YR 5/3) loamy sand, dark brown (10YR 3/3) moist; massive; soft, very friable, nonsticky and nonplastic; few fine and common very fine roots; few very fine irregular pores; very slightly effervescent; slightly alkaline (pH 7.6).

Range in Characteristics

Particle-size control section: 18 to 35 percent clay
Reaction: neutral in the surface and slightly to moderately alkaline in the subsoil
A horizon:
Hue:2.5Y or 10YR
Value: 5 to 7 dry and moist
Chroma: 3 or 4 moist
Bt horizons:
Hue:2.5Y or 10YR
Value: 4 or 5 dry and moist
Chroma: 3 to 6 moist
Texture: clay loam or sandy clay loam
Chorizons:
Hue:2.5Y or 10YR
Value: 3 to 5 moist
Chroma: 3 to 6 moist
Texture: sandy loam, loamy sand, or fine sandy loam
Calcium carbonate equivalent: 0 to 1 percent

Bluesky Series

Taxonomic class: Mixed, frigid Lithic Ustipsamments
Depth class: very shallow and shallow
Drainage class: Excessively drained
Permeability: Very rapid
Geomorphic position: Structural benches on escarpments of mesas and cuestas
Parent material: Eolian and slope alluvium derived from sandstone
Slope range: 5 to 20 percent
Elevation: 7,100 to 7,700 feet
Mean annual air temperature: 40 to 45 degrees F
Mean annual precipitation: 16 to 20 inches
Frost-free period: 90 to 110 days

Typical Pedon

Bluesky fine sand, in an area of mapping unit 416, Rock Outcrop-Bluesky complex, 5 to 80 percent slopes; McKinley County, New Mexico; Ramah Quadrangle; 800 feet east and 2,000 feet south of the northwest corner of sec. 14, T. 11 N., R. 16 W.; latitude 35 degrees, 11 minutes, 10 seconds and longitude 108 degrees, 29 minutes, 48 seconds.
A-0 to 5 inches; yellowish brown (10YR 5/4) fine sand, yellowish brown (10YR 5/4) moist; single grain; loose, loose, nonsticky and nonplastic; common very fine roots; neutral (pH 7.2); abrupt smooth boundary.
C-5 to 8 inches; gray (10YR 6/1) fine sand, gray (10YR 6/1) moist; single grain; loose, loose, nonsticky and nonplastic; common very fine and fine roots; neutral (pH 7.2); abrupt smooth boundary.
R-8 inches; Cowsprings and Entrada Sandstone.

Range in Characteristics

Particle-size control section: 1 to 5 percent clay Depth to a lithic contact: 5 to 20 inches to sandstone Reaction: Neutral to slightly alkaline
A horizon:
Hue:5YR or 10YR
Value: 5 dry, 4 or 5 moist
Chroma: 3 or 4
Textures: fine sand or loamy fine sand
Rock fragments: 0 to 20 percent total; 0 to 10 percent gravel; 0 to 10 percent cobbles; 0 to 5 percent stones. All fragments are sandstone.
Chorizon:
Hue:2.5YR or 10YR
Value: 3,4 , or 6 moist, 5 or 6 dry
Chroma: 1, 4, or 6
Textures: fine sand or loamy fine sand
Rock fragments: 0 to 25 percent sandstone gravel.

Bluewater Series

Taxonomic class: Fine-loamy, mixed, superactive, mesic Pachic Argiustolls
Depth class: Very deep
Drainage class: Somewhat poorly drained
Permeability: Very slow
Geomorphic position: Valley floors
Parent material: Stream alluvium derived from sandstone and shale
Slope range: 0 to 1 percent
Elevation: 7,200 to 7,600 feet
Mean annual air temperature: 48 to 53 degrees F

Mean annual precipitation: 13 to 16 inches Frost-free period: 100 to 135 days

Typical Pedon

Bluewater loam, in an area of mapping unit 312, Bluewater loam, 0 to 1 percent slopes; McKinley County, New Mexico; Pine Canyon Quadrangle; 600 feet east, 2,400 feet north of the southwest corner of sec. 26, T. 13 N., R. 13 W .; latitude 35 degrees, 19 minutes, 38 seconds and longitude 108 degrees, 11 minutes, 25 seconds.

A-0 to 2 inches; very dark grayish brown (10YR $3 / 2$) loam, very dark brown (10YR 2/2) moist; moderate very fine granular structure; slightly hard, very friable, slightly sticky and slightly plastic; many very fine, fine, and few medium roots; few fine irregular pores; slightly effervescent; 11 percent calcium carbonate equivalent; slightly alkaline (pH 7.8); abrupt smooth boundary.

Btk1-2 to 11 inches; dark grayish brown (10YR 4/2) clay loam, very dark grayish brown (10YR 3/2) moist; moderate fine subangular blocky structure; hard, friable, slightly sticky and slightly plastic; common very fine, fine, and few medium roots; common very fine and fine tubular pores; many prominent clay films on faces of peds; slightly effervescent; many very fine calcite crystals; 13 percent calcium carbonate equivalent; moderately alkaline (pH 8.2); clear smooth boundary.
Btk2-11 to 28 inches; dark grayish brown (10YR 4/2) clay loam, very dark grayish brown (10YR 3/2) moist; moderate medium subangular blocky structure; very hard, very firm, sticky and plastic; common very fine, fine, and few medium roots; common very fine tubular pores; common distinct clay films on faces of peds; strongly effervescent; many very fine calcite crystals; 19 percent calcium carbonate equivalent; moderately alkaline (pH 8.2); gradual wavy boundary.
Btk3-28 to 50 inches; grayish brown (10YR 5/2) clay loam, very dark grayish brown (10YR 3/2) moist; few very fine distinct brown 7.5YR 4/4 redox concentrations; moderate fine and medium subangular blocky structure; very hard, very firm, sticky and plastic; common very fine and fine roots; few very fine tubular pores; common distinct clay films on faces of peds; violently effervescent; common very fine masses and gravel size concretions of calcium carbonate; many very fine translucent calcite crystals; 28 percent calcium carbonate equivalent; moderately alkaline (pH 8.0); clear smooth boundary.
Btk4-50 to 70 inches; grayish brown (10YR 5/2) clay, very dark grayish brown (10YR 3/2) moist;
common fine distinct brown 7.5YR 4/4 redox concentrations; weak medium subangular blocky structure; extremely hard, extremely firm, very sticky and very plastic; few very fine and fine roots; few fine irregular pores; apparent water table at 50 inches; common faint clay films on faces of peds; violently effervescent; many very fine and fine concretions and filaments of calcium carbonate; many very fine translucent calcite crystals; 11 percent calcium carbonate equivalent; moderately alkaline (pH 8.0); gradual smooth boundary.
$B k-70$ to 80 inches; light brownish gray (10YR 6/2) clay, dark grayish brown (10YR 4/2) moist; common fine distinct strong brown (7.5YR 4/6) and few fine faint light gray (10YR 7/1) redox concentrations and depletions; massive; extremely hard, extremely firm, very sticky and very plastic; few very fine roots; few fine irregular pores; horizon is saturated by water table; violently effervescent; many very fine and fine masses and gravel-sized concretions of calcium carbonate; many very fine translucent calcite crystals; 26 percent calcium carbonate equivalent; moderately alkaline (pH 8.0).

Range in Characteristics

Particle-size control section: 25 to 35 percent clay Depth to calcic horizon: 10 to 35 inches and 15 to 30 percent calcium carbonate equivalent Thickness of mollic epipedon: 20 to 40 inches
Depth to water table: 30 to 51 inches
Salinity: EC of 0 to $2 \mathrm{mmhos} / \mathrm{cm}$
Redoximorphic features:

	Redox concentrations		Redox depletions
Depth:	23 to 45 inches		43 to 51 inches
Quantity:	few to many		few to common
Size:	very fine and fine		very fine and fine
Contrast:	distinct		faint or distinct
Hue:	5 YR to 10 YR		7.5 YR or 10 YR
Value:	4 or 5 moist		6 or 7 moist
Chroma:	4 or 6 moist		0 to 2 moist

A horizon:
Value: 3 or 4 dry, 2 or 3 moist
Chroma: 2 or 3 dry, 1 or 2 moist
Calcium carbonate equivalent: 5 to 15 percent
Reaction: neutral or slightly alkaline
Btk horizons:
Hue: 7.5YR or 10YR
Value: 3 to 5 dry, 2 or 3 moist
Chroma: 2 or 3
Texture: clay loam or clay

Rock fragments: 0 to 5 percent gravel-sized indurated calcium carbonate concretions
Calcium carbonate equivalent: 10 to 30 percent
Reaction: slightly or moderately alkaline
Bk horizon:
Hue: 5YR, 7.5YR, or 10YR
Value: 3 to 6 dry, 3 or 4 moist
Chroma: 2 or 3
Rock fragments: 0 to 5 percent gravel-sized indurated calcium carbonate concretions
Calcium carbonate equivalent: 5 to 30 percent
Reaction: slightly or moderately alkaline
Some pedons have a Bt horizon.

Bond Series

Taxonomic class: Loamy, mixed, superactive, mesic Lithic Ustic Haplargids
Depth class: Shallow
Drainage class: Well drained
Permeability: Moderate
Geomorphic position: Mesas, cuestas, hills, and ridges
Parent material: Eolian material and slope alluvium derived from sandstone
Slope range: 1 to 8 percent
Elevation: 6,500 to 7,200 feet
Mean annual air temperature: 49 to 54 degrees F
Mean annual precipitation: 10 to 13 inches
Frost-free period: 120 to 140 days

Typical Pedon

Bond fine sandy loam, in an area of mapping unit 220, Hagerwest-Bond fine sandy loams, 1 to 8 percent slopes; McKinley County, New Mexico; Heart Rock Quadrangle; 1,000 feet east and 600 feet north of the southwest corner of sec. 2, T. 16 N., R. 12 W.; latitude 35 degrees, 38 minutes, 24 seconds and longitude 108 degrees, 05 minutes.

A-0 to 2 inches; light brown (7.5YR 6/4) fine sandy loam, brown (7.5YR 5/4) moist; moderate fine granular structure; soft, very friable, nonsticky and nonplastic; few very fine and fine roots; common very fine irregular pores; 2 percent gravel; neutral; abrupt smooth boundary.
Bt1-2 to 5 inches; brown (7.5YR 5/4) fine sandy loam, dark brown (7.5YR 4/4) moist; weak medium subangular blocky structure; soft, very friable, nonsticky and nonplastic; common very fine and fine roots; common very fine irregular pores; few faint clay films bridging sand grains; 2 percent gravel; neutral, abrupt smooth boundary.
Bt2-5 to 14 inches; strong brown (7.5YR 5/6) sandy clay loam, strong brown (7.5YR 4/6) moist;
moderate medium subangular blocky structure; soft, friable, slightly sticky and nonplastic; common fine and many very fine roots; common very fine irregular pores; common distinct clay films on faces of peds, lining pores and bridging sand grains; 10 percent cobbles; neutral; abrupt smooth boundary.
$2 \mathrm{Cr}-14$ to 16 inches; weathered sandstone; abrupt smooth boundary.
2R-16 inches; sandstone.

Range in Characteristics

Particle-size control section: 18 to 35 percent clay Depth to a lithic contact: 10 to 20 inches to sandstone

A horizon:
Hue: 7.5YR or 10YR
Value: 5 or 6 dry; 4 or 5 moist
Chroma: 4 dry and moist
Rock fragments: 0 to 5 percent gravel-sized sandstone fragments.
Reaction: neutral or slightly alkaline
Bt horizon:
Hue: 7.5YR
Value: 5 or 6 dry; 4 or 5 moist
Chroma: 4 to 6 dry and moist
Texture: fine sandy loam, sandy clay loam, or sandy loam
Rock fragments: 0 to 10 percent total; 0 to 10 percent gravel; 0 to 10 percent cobbles. All fragments are sandstone.
Reaction: neutral to moderately alkaline
Calcium carbonate equivalent: 0 to 5 percent
Some pedons have a Btk or Bk horizon.

Bosonoak Series

Taxonomic class: Fine-loamy, mixed, superactive, mesic Aridic Haplustalfs
Depth class: Very deep
Drainage class: Well drained
Permeability: Moderately slow
Geomorphic position: Valley sides and drainageways
Parent material: Fan alluvium derived from siltstone and shale
Slope range: 1 to 5 percent
Elevation: 6,500 to 7,000 feet
Mean annual air temperature: 46 to 49 degrees F
Mean annual precipitation: 13 to 16 inches
Frost-free period: 100 to 135 days

Typical Pedon

Bosonoak loam, in an area of mapping unit 366,
Bosonoak loam, 1 to 5 percent slopes; McKinley

County, New Mexico; Vanderwagon Draw Quadrangle: 1,600 feet south and 500 feet east of the northwest corner of sec. 27, T. 11 N., R. 19 W.; latitude 35 degrees, 09 minutes, 30 seconds and longitude 108 degrees, 50 minutes, 15 seconds.
A-0 to 2 inches; reddish brown (5YR 5/4) loam, reddish brown (5YR 4/4) moist; weak medium and thick platy structure; soft, very friable, slightly sticky and slightly plastic; common very fine and fine roots; few fine irregular pores; slightly effervescent; slightly alkaline; abrupt smooth boundary.
Bt-2 to 5 inches; reddish brown (2.5YR 4/4) clay loam, dark reddish brown (2.5YR 3/4) moist; strong thick platy structure; slightly hard, friable, slightly sticky and slightly plastic; many very fine, fine, and few medium roots; few fine irregular pores; many distinct clay films on faces of peds; slightly effervescent; moderately alkaline; clear smooth boundary.
Btk1-5 to 28 inches; reddish brown (2.5YR 4/4) clay loam, dark reddish brown (2.5YR 3/4) moist; strong medium prismatic structure; hard, firm, very sticky and very plastic; common very fine, fine, and few medium roots; common fine irregular pores; many prominent clay films on faces of peds; strongly effervescent; common fine and medium filaments and masses of calcium carbonate; moderately alkaline; clear wavy boundary.
Btk2-28 to 40 inches; reddish brown (2.5YR 4/4) loam, reddish brown (2.5YR 3/4) moist; moderate medium and coarse prismatic structure; hard, firm, slightly sticky and slightly plastic; common very fine and fine roots; common fine irregular pores; many distinct clay films on faces of peds and bridging sand grains; strongly effervescent; common fine and medium filaments and masses of calcium carbonate; moderately alkaline; clear wavy boundary.
Btk3-40 to 63 inches; weak red (10R 5/4) loam, weak red (10R 4/4) moist; moderate medium and coarse subangular blocky structure; hard, firm, moderately sticky and moderately plastic; few very fine and fine roots; common fine irregular pores; common distinct clay films on faces of peds and bridging sand grains; strongly effervescent; common fine and medium filaments and masses of calcium carbonate; moderately alkaline; clear wavy boundary.
Btk4-63 to 80 inches; weak red (10R 5/4) silt loam, weak red (10R 4/4) moist; moderate medium coarse subangular blocky structure; hard, firm, moderately sticky and moderately plastic; few very fine and fine roots; common fine irregular pores;
common faint clay films on faces of peds and bridging sand grains; strongly effervescent; common fine and medium filaments and masses of calcium carbonate; moderately alkaline.

Range in Characteristics

Particle-size control section: 25 to 35 percent clay Depth to secondary calcium carbonate: 5 to 20 inches. Most profiles are calcareous to the surface.
Calcium carbonate equivalent: 0 to 1 percent in the surface and 1 to 10 percent in the lower horizons
Rock fragments: 0 to 5 percent siliceous gravel
Reaction: slightly alkaline to moderately alkaline
Salinity: EC of 0.5 to 2.5
A horizon:
Hue: 2.5YR or 5YR
Value: 4 or 5 dry, 3 or 4 moist
Textures: silt loam or loam
Bt horizon:
Hue: 2.5YR or 5YR
Value: 4 or 5 dry, 3 or 4 moist
Chroma: 4 or 6
Textures: silty clay loam or clay loam
Btk horizon:
Hue: 10R to 5YR
Value: 4 or 5 dry, 3 or 4 moist
Chroma: 4 or 6
Textures: silty clay loam, clay loam, or silt loam
Salinity: EC of 0.4 to 2.5

Breadsprings Series

Taxonomic class: Fine-loamy, mixed, superactive, mesic Ustifluventic Haplocambids
Depth class: Very Deep
Drainage class: Well drained
Permeability:Moderately slow
Geomorphic position: Valley floors
Parent material: Stream alluvium derived from sandstone and shale
Slope range: 0 to 2 percent
Elevation: 6,100 to 6,800 feet
Mean annual air temperature: 46 to 49 degrees F
Mean annual precipitation: 10 to 13 inches
Frost-free period: 100 to 135 days

Typical Pedon

Breadsprings loam, in an area of mapping unit 240, Breadsprings and Nahodish soils, 0 to 2 percent slopes; McKinley County, New Mexico; Manuelito Quadrangle; about 300 feet west and 500 feet south of the northeast corner of sec. 36, T. 15 N., R. 20 W. 35
degrees, 29 minutes, 35 seconds north latitude and 108 degrees, 53 minutes, 50 seconds west longitude.

A-0 to 3 inches; light olive brown ($2.5 \mathrm{Y} 5 / 3$) loam, olive brown ($2.5 \mathrm{Y} 4 / 3$) moist; weak fine granular structure; soft, very friable, slightly sticky and slightly plastic; many very fine and few medium roots; slightly effervescent; moderately alkaline (pH 8.0); abrupt smooth boundary.
Bw1-3 to 7 inches; light olive brown ($2.5 \mathrm{Y} 5 / 3$) loam, olive brown ($2.5 \mathrm{Y} 4 / 3$) moist; weak very fine and fine subangular blocky structure; slightly hard, very friable, sticky and plastic; many very fine and few medium roots; 1 percent gravel; slightly effervescent; slightly alkaline (pH 8.0); abrupt smooth boundary.
Bw2-7 to 14 inches; light olive brown (2.5Y 5/3) clay loam, olive brown (2.5Y 4/3) moist; weak very fine and fine subangular blocky structure; slightly hard, friable, sticky and plastic; many very fine roots; many very fine irregular pores; discontinuous thin stratification of very fine sand and silt loam; strongly effervescent; moderately alkaline (pH 8.0); abrupt wavy boundary.
Bk-14 to 22 inches; light olive brown (2.5Y 5/3) fine sandy loam, olive brown ($2.5 \mathrm{Y} 4 / 3$) moist; weak very fine subangular blocky structure; soft, very friable, nonsticky and nonplastic; common very fine roots; few very fine irregular pores; slightly effervescent; few fine masses of calcium carbonate; moderately alkaline (pH 8.2); clear wavy boundary.
Ck1-22 to 29 inches; light olive brown (2.5Y 5/3) silt loam, olive brown ($2.5 \mathrm{Y} 4 / 3$) moist; massive with pockets of thin stratification of silt and very fine sand; soft, very friable, slightly sticky and nonplastic; common very fine roots; few very fine irregular pores; few distinct yellowish brown (10YR 5/6), redox concentrations; slightly effervescent; few very fine masses and filaments of calcium carbonate; moderately alkaline (pH 8.2); abrupt wavy boundary.
Ck2-29 to 36 inches; light olive brown (2.5Y 5/3) loam, olive brown ($2.5 \mathrm{Y} 4 / 3$) moist; weak platy structure; soft, very friable, slightly sticky and slightly plastic; few very fine roots; few very fine irregular pores; common very fine coal fragments; very slightly effervescent; few very fine masses of calcium carbonate; moderately alkaline (pH 8.2); abrupt wavy boundary
Ck3-36 to 70 inches; light olive brown (2.5Y 5/3) silt loam, olive brown ($2.5 \mathrm{Y} 4 / 3$) moist; weak platy structure; soft, very friable, slightly sticky and nonplastic; few very fine roots; common very fine irregular pores; discontinuous stratification of fine
and medium sand; common distinct yellowish brown (10YR $5 / 6$) redox concentrations; very slightly effervescent; few very fine masses and filaments of calcium carbonate; moderately alkaline (pH 8.2).

Range in Characteristics

Particle-size control section: 20 to 34 percent clay Calcium carbonate equivalence: 0 to 15 percent. Gypsum percent: 0 to 2 percent
Rock fragments: 0 to 5 percent gravel
Sodicity: SAR of 0 to 5
Salinity: EC of 0 to $3 \mathrm{mmhos} / \mathrm{cm}$
Reaction: slightly alkaline in the surface to moderately alkaline in the subsoil

A horizon:

Hue:2.5Y or 10YR
Value: 4 to 6 dry, 3 to 5 moist
Chroma: 2 to 4 dry or moist
Textures: loam, sandy clay loam, silt loam, and silty clay loam
$B w$ and $B k$ horizon:
Hue: 2.5Y or 10YR
Value: 4 to 6 dry, 2 to 6 moist
Chroma: 3 or 4 dry or moist
Texture: sandy clay loam, loam, or clay loam.
C, Ck, or Cky horizons:
Hue: 2.5Y or 10YR
Value: 5 or 6 dry, 2 to 6 moist
Chroma: 3 to 6 dry or moist
Redox features: If present, they range from few to common, faint to distinct, 10YR $5 / 6$ or $6 / 6$ redox concentrations and occur predominantly as relict features.
Texture: silt loam, fine sandy loam, sandy clay loam, clay loam, or loam

Bryway Series

Taxonomic class: Fine, mixed, superactive, mesic Aridic Paleustalfs
Depth class: Moderately deep
Drainage class: Well drained
Permeability: Slow
Geomorphic position: Mesas, cuestas, hills, and ridges
Parent material: Slope alluvium over residuum derived from shale and sandstone
Slope range: 2 to 8 percent
Elevation: 6,800 to 7,600 feet
Mean annual air temperature: 46 to 49 degrees F
Mean annual precipitation: 13 to 16 inches
Frost-free period: 100 to 135 days

Typical Pedon

Bryway sandy loam, in an area of mapping unit 317, Highdye-Evpark-Bryway complex, 2 to 20 percent slopes; McKinley County, New Mexico; Pescado Quadrangle; 2,200 feet west and 1,900 feet north of the southeast corner of sec. 22, T. 10 N., R. 17 W.; latitude 35 degrees, 04 minutes, 50 seconds and longitude 108 degrees, 37 minutes, 01 seconds.

A-0 to 4 inches; yellowish brown (10YR $5 / 4$) sandy loam, dark brown (7.5YR 3/4) moist; weak medium subangular blocky structure; soft, friable, nonsticky and nonplastic; common very fine and fine roots; common fine irregular pores; 2 percent sandstone gravel; neutral (pH 6.8); abrupt smooth boundary.
Bt1-4 to 10 inches; reddish brown (5YR 4/4) clay, dark reddish brown (5YR 3/4) moist; strong fine and medium subangular blocky structure; hard, firm, very sticky and very plastic; many very fine and fine and common medium roots; common fine irregular pores; many prominent clay films on faces of peds; neutral (pH 6.8); clear smooth boundary.
Bt2-10 to 23 inches; brown (7.5YR 4/4) clay, dark brown (7.5YR 3/4) moist; strong fine and medium subangular blocky structure; hard, firm, very sticky and very plastic; few very fine and fine roots; few very fine irregular pores; many prominent clay films on faces of peds; few soft shale fragments; slightly alkaline (pH 7.4); clear smooth boundary.
$2 \mathrm{Cr}-23$ inches; shale.

Range in Characteristics

Particle-size control section: 35 to 55 percent clay Depth to paralithic contact: 20 to 40 inches to shale or shale interbedded with soft sandstone
Reaction: neutral in the surface and slightly to moderately alkaline in the subsoil

A horizon:
Hue:7.5YR or 10YR
Value: 5 or 6 dry, 3 or 4 moist
Chroma: 3 or 4
Texture: sandy loam or loam
Rock fragments: 0 to 10 percent sandstone gravel
Bt horizons:
Hue: 5YR, 7.5 YR, or 10YR
Value: 4 to 6 dry, 3 to 5 moist
Chroma: 3, 4, or 6 moist
Texture: dominantly clay and clay loam, but some sandy clay textures do occur

Btk or Bk horizons (when present):

Hue:7.5YR, 10YR, or 2.5Y
Value: 3 to 5 moist
Chroma: 3 or 4 moist
Textures: dominantly clay and clay loam, but some sandy clay textures do occur
Calcium carbonate equivalent: 0 to 5 percent

Buckle Series

Taxonomic class: Fine-loamy, mixed, superactive, mesic Ustic Haplargids
Depth class: Very deep
Drainage class: Well drained
Permeability: Moderately slow
Geomorphic position: Cuestas, valley sides, drainageways, hills, and ridges
Parent material: Eolian material and fan and slope alluvium derived from sandstone and shale
Slope range: 1 to 8 percent
Elevation: 6,400 to 6,800 feet
Mean annual air temperature: 45 to 49 degrees F
Mean annual precipitation: 10 to 13 inches
Frost-free period: 100 to 135 days

Typical Pedon

Buckle fine sandy loam, in an area of mapping unit 244, Buckle fine sandy loam, 1 to 8 percent slopes; McKinley County, New Mexico; Twin Lake Quadrangle; 2,600 feet west and 1,600 feet south of the northeast corner of sec. 1, T. 16 N., R. 19 W.; latitude 35 degrees, 38 minutes, 54 seconds and longitude 108 degrees, 48 minutes, 05 seconds.
A-0 to 4 inches; brown (10YR 5/3) fine sandy loam, dark brown (10YR 4/3) moist; weak fine granular structure; soft, very friable, nonsticky and nonplastic; many very fine roots; slightly alkaline (pH 7.6); clear smooth boundary.
Bt1-4 to 14 inches; brown (7.5YR 5/3) sandy clay loam, dark brown (7.5YR 4/3) moist; weak very fine subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; many very fine and fine roots; few distinct clay films on faces of peds; slightly alkaline (pH 7.6); abrupt smooth boundary.
Bt2-14 to 22 inches; brown (10YR 5/3) sandy clay loam, dark brown (10YR 4/3) moist; moderate medium prismatic parting to moderate very fine and fine subangular blocky structure; hard, firm, slightly sticky and slightly plastic; many very fine, fine and few medium roots; few very fine irregular pores; many distinct clay films on faces of peds; slightly alkaline (pH 7.6); abrupt wavy boundary.

Btk1-22 to 34 inches; brown (10YR 5/3) loam, dark yellowish brown (10YR 4/4) moist; weak very fine and fine subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; common very fine and fine roots; few very fine irregular pores; common distinct clay films on faces of peds; strongly effervescent; many very fine masses of calcium carbonate; moderately alkaline (pH 8.0); abrupt smooth boundary.
Btk2-34 to 48 inches; yellowish brown (10YR 5/4) clay loam; dark yellowish brown (10YR 4/4) moist; weak very fine and fine subangular blocky structure; slightly hard, friable, moderately sticky and moderately plastic; few very fine roots; few very fine irregular pores; few distinct clay films on faces of peds; strongly effervescent; common very fine masses of calcium carbonate; moderately alkaline (pH 8.0); clear smooth boundary.
Bk1-48 to 62 inches; yellowish brown (10YR 5/4) clay loam, dark yellowish brown (10YR 5/4) moist; weak very fine and fine subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; few very fine roots; few very fine irregular pores; very slightly effervescent; few very fine masses of calcium carbonate; moderately alkaline (pH 8.0); abrupt smooth boundary.
Bk2-62 to 75 inches; yellowish brown (10YR 5/4) clay loam, dark yellowish brown (10YR 4/4) moist; weak very fine and fine subangular blocky structure; hard, friable, sticky and plastic; few very fine roots; common very fine irregular pores; slightly effervescent; many very fine masses of calcium carbonate; moderately alkaline (pH 8.0).

Range in Characteristics

Particle-size control section: 18 to 35 percent clay and greater than 40 percent sand
Calcium carbonate equivalent: 0 to 1 percent in the surface and 1 to 10 percent in the lower subsoil
Reaction: slightly alkaline in the surface and slightly to moderately alkaline in the subsoil

A horizon:
Hue: 10YR
Value: 4 or 5 dry, 3 or 4 moist
Chroma: 3 or 4 dry and moist
Bt horizon:
Hue: 10YR
Value: 4 or 5 dry and moist
Chroma: 4 dry and moist
Texture: sandy clay loam or clay loam
Bk horizon:
Hue: 10YR

Value: 4 or 5 dry and moist
Chroma: 4 dry and moist
Texture: sandy clay loam, clay loam, or fine sandy loam

Cabezon Series

Taxonomic class: Clayey, smectitic, mesic Lithic Argiustolls
Depth class: Shallow
Drainage class: Well drained
Permeability: Slow
Geomorphic position: Lava plateau
Parent material: Eolian material over residuum derived from basalt
Slope range: 2 to 8 percent
Elevation: 6,800 to 8,000 feet
Mean annual air temperature: 47 to 53 degrees F
Mean annual precipitation: 14 to 16 inches
Frost-free period: 100 to 135 days

Typical Pedon

Cabezon very cobbly loam, in an area of mapping unit 395, Cabezon-Mcorreon complex, 2 to 8 percent slopes; McKinley County, New Mexico; Cerro Parido Quadrangle; latitude 35 degrees, 33 minutes, 08 seconds and longitude 107 degrees, 19 minutes, 59 seconds.

The surface is covered by about 30 percent gravel and 20 percent cobbles.
A-0 to 2 inches; brown (7.5YR 5/2) very cobbly loam, dark brown (7.5YR 3/2) moist; moderate thin and medium platy; soft, very friable, nonsticky and nonplastic; many very fine and fine roots; common fine vesicular pores; 30 percent gravel and 20 percent cobbles; slightly acid (pH 6.2); clear smooth boundary.
Bt1-2 to 6 inches; brown (7.5YR 4/2) clay loam, dark brown (7.5YR 3/2) moist; moderate fine and medium subangular blocky structure, hard, firm, sticky and plastic; common very fine, fine, and few medium roots; common fine tubular pores; many prominent clay films on faces of peds; slightly acid (pH 6.4); clear smooth boundary.
Bt2-6 to 14 inches; reddish brown (5YR 4/3) clay, dark reddish brown (5YR 3/3) moist; moderate fine and medium angular blocky structure; very hard, very firm, sticky and very plastic; common very fine, fine, and few medium roots; common fine tubular pores; many prominent clay films on ped faces; 10 percent gravel; neutral (pH 6.6); abrupt boundary.

Crk—14 to 17 inches; Weathered basalt with continuous calcium carbonate coating rock fragments.
R-17 inches; basalt bedrock.

Range in Characteristics

Particle-size control section: 35 to 50 percent clay
Depth to bedrock: 10 to 20 inches to basalt
Reaction: slightly acid to neutral
A horizon:
Hue: 7.5YR or 10YR
Value: 4 or 5 dry, 2 or 3 moist
Chroma: 2 or 3
Rock fragments: 5 to 50 percent gravel; 0 to 30 percent cobbles; 0 to 15 percent stones. All fragments are basalt.

Bt horizon:
Hue: 2.5YR to 7.5YR
Value: 4 or 5 dry, 2 to 4 moist
Chroma: 2 to 4 dry or moist
Texture: clay or clay loam
Rock fragments: 5 to 10 percent basalt gravel

Calladito Series

Taxonomic class: Mixed, mesic Ustic Torripsamments
Depth class: Very deep
Drainage class: Excessively drained
Permeability: Rapid
Geomorphic position: Dunes on valley sides, valley floors, hills, and ridges
Parent material: Eolian material derived from sandstone
Slope range: 1 to 8 percent
Elevation: 6,300 to 6,800 feet
Mean annual air temperature: 46 to 49 degrees F
Mean annual precipitation: 9 to 10 inches
Frost-free period: 100 to 135 days

Typical Pedon

Calladito loamy fine sand, in an area of mapping unit 12, Calladito-Elias association, 1 to 6 percent slopes; McKinley County, New Mexico; Star Lake Quadrangle; 1,100 feet east and 650 feet south of the northwest corner of sec. 29, T. 20 N., R. 6 W.; latitude 35 degrees, 56 minutes, 28 seconds and longitude 107 degrees, 29 minutes, 45 seconds.

A—0 to 2 inches; dark yellowish brown (10YR 4/4) loamy fine sand, dark brown (10YR 3/3) moist; weak very fine granular structure; loose, very friable, nonsticky and nonplastic; few medium and common fine and very fine roots; many very fine
irregular pores; slightly alkaline (pH 7.6); abrupt smooth boundary.
C1—2 to 26 inches; dark yellowish brown (10YR 4/4) loamy fine sand, dark brown (10YR 3/3) moist; single grain; loose, very friable, nonplastic and nonplastic; few medium and common fine and very fine roots; many very fine irregular pores; moderately alkaline (pH 8.0); clear smooth boundary.
C2—26 to 65 inches; yellowish brown (10YR 5/4) loamy fine sand, brown (10YR 4/3) moist; single grain; loose, very friable, nonsticky and nonplastic; few medium, fine and very fine roots; many very fine irregular pores; moderately alkaline (pH 7.8).

Range in Characteristics

Particle-size control section: 2 to 10 percent clay
Some pedons are calcareous within 3 inches of the surface.

A horizon:
Hue: 7.5YR or 10YR
Value: 4 or 5 dry; 3 to 5 moist
Chroma: 4 to 6 dry; 3 to 6 moist
Reaction: neutral or slightly alkaline

C horizon:

Hue: 7.5YR or 10YR
Value: 4 to 6 dry; 3 to 6 moist
Chroma: 4 to 6 dry; 3 to 6 moist
Texture: loamy fine sand or loamy sand
Reaction: slightly to moderately alkaline
Calcium carbonate equivalent: 0 to 1 percent

Canoneros Series

Taxonomic class: Clayey, mixed, superactive, frigid Lithic Argiustolls
Depth class: Shallow
Drainage class: Well drained
Permeability: Slow
Geomorphic position: Lava plateaus and cinder cones
Parent material: Slope alluvium over residuum derived from basalt
Slope range: 2 to 6 percent
Elevation: 7,800 to 9,000 feet
Mean annual air temperature: 40 to 45 degrees F
Mean annual precipitation: 16 to 20 inches
Frost-free period: 90 to 110 days

Typical Pedon

Canoneros very cobbly loam, in an area of mapping unit 425, Montillo-Canoneros complex, 2 to 6 percent slopes; McKinley County, New Mexico; Marquez Quadrangle; latitude 35 degrees, 21 minutes, 38
seconds and longitude 107 degrees, 20 minutes, 46 seconds.

The surface is covered by 10 percent gravel, 25 percent cobbles, and 5 percent stones.
A—0 to 2 inches; reddish brown (5YR 4/3) very cobbly loam, dark reddish brown (5YR 3/3) moist; moderate medium platy structure; soft, friable, slightly sticky and slightly plastic; common very fine and fine roots, few fine irregular pores; 10 percent gravel, 25 percent cobbles, 5 percent stones; slightly acid (pH 6.4); abrupt smooth boundary.
Bt1-2 to 8 inches; dark reddish brown (5YR 3/3) clay loam, dark reddish brown (5YR 3/2) moist; moderate medium subangular blocky structure; slightly hard, firm, sticky and plastic; many very fine and fine roots; common fine irregular pores; common prominent clay films on faces of peds; 8 percent gravel and 2 percent cobbles; neutral (pH 6.8); clear smooth boundary.

Bt2—8 to 13 inches; dark reddish brown (5YR 3/2) clay, very dusky red (2.5YR 2.5/2) moist; strong very fine and fine angular blocky structure; hard, firm, very sticky and very plastic; common very fine and fine roots; common fine irregular pores; many prominent clay films on faces of peds; 10 percent gravel and 2 percent cobbles with many soft weathered basalt fragments; neutral (pH 6.8); abrupt irregular boundary.
2R-13 inches; basalt bedrock.

Range in Characteristics

Particle-size control section: 35 to 50 percent clay with less than 35 percent rock fragments.
Depth to lithic contact: 10 to 20 inches to basalt
Mollic epipedon thickness: 10 to 20 inches
Reaction: slightly acid in the surface and neutral in the subsoil

A horizon:
Hue: 5YR or 7.5YR
Value: 4 or 5 dry
Chroma: 3 or 4 dry, 2 or 3 moist
Rock fragments: 15 to 50 percent total range; 5 to 15 percent gravel; 0 to 25 percent cobbles; 0 to 5 percent stones. Mostly basalt with some cinders.
Bt horizon:
Hue: 2.5YR, 5YR, or 7.5YR
Value: 3 or 4 dry, 2.5 or 3 moist
Chroma: 2 or 3
Texture: clay loam or clay
Rock fragments: 0 to 10 percent total range; 0 to 10
percent gravel; 0 to 5 percent cobbles. Mostly basalt with some cinders.

Casamero Series

Taxonomic class: Clayey, smectitic, mesic, shallow Leptic Haplotorrerts
Depth class: Shallow
Drainage class: Well drained
Permeability: Very slow
Geomorphic position: Valley sides and hills
Parent material: Slope alluvium over residuum derived from shale
Slope range: 2 to 10 percent
Elevation: 7,000 to 7,800 feet
Mean annual air temperature: 49 to 53 degrees F Mean annual precipitation: 10 to 13 inches
Frost-free period: 120 to 140 days

Typical Pedon

Casamero clay, in an area of mapping unit 380, Berryhill-Casamero clays, 2 to 10 percent slopes; McKinley County, New Mexico; Goat Mountain Quadrangle; 2,100 feet north and 1,600 feet west of the southeast corner of sec. 3, T. 14 N., R. 11 W.; latitude 35 degrees, 28 minutes, 11 seconds and longitude 107 degrees, 59 minutes, 12 seconds (fig. 16).

A-0 to 3 inches; light olive brown (2.5Y5/4) clay, olive brown (2.5Y 4/4) moist; moderate medium granular structure; soft, friable, very sticky and plastic; many very fine and fine and few medium roots; few fine vesicular and common very fine irregular pores; few cracks 0.5 inch wide; 10 percent sandstone and shale gravel and channers less than 3 inches in diameter; violently effervescent; moderately alkaline (pH 8.2); abrupt smooth boundary.
Bss-3 to 11 inches; light olive brown (2.5Y 5/4) clay, olive brown ($2.5 \mathrm{Y} 4 / 4$) moist; moderate coarse subangular blocky structure; very hard, very firm, sticky and very plastic; common very fine and few medium roots; few very fine irregular pores; many pressure faces and slickensides; few cracks 0.5 inch wide extending to 14 inches; few soft shale fragments 1 millimeter in diameter; violently effervescent; moderately alkaline (pH 8.2); clear irregular boundary.
Bssyz-11 to 18 inches; olive brown (2.5Y 4/4) clay, olive brown ($2.5 \mathrm{Y} 4 / 4$) moist; weak coarse subangular blocky structure; very hard, very firm, sticky and very plastic; few very fine roots; few very fine irregular pores; few pressure faces and
slickensides; many fine, soft shale fragments; 30 percent by volume clusters of gypsum and sodium sulfate crystals; 4 percent gypsum; EC of 4 mmhos/cm; strongly effervescent; moderately alkaline (pH 8.2); abrupt smooth boundary.
Cr-18 inches; weathered gypsiferous shale.

Range in Characteristics

Particle-size control section: 50 to 70 percent clay Depth to paralithic contact: 10 to 20 inches to shale Depth to gypsum and sodium sulfate accumulations: 6 to 14 inches
Calcium carbonate equivalent: 1 to 10 percent
Vertic properties: gilgai microrelief ranges up to 2
inches; vertical cracks 0.5 inches wide extend from surface to the paralithic contact; few to many pressure faces and intersecting slickensides occur from just below surface to the paralithic contact.
Reaction: slightly through strongly alkaline
A horizon:
Hue: 10YR or 2.5 Y
Value: 5 or 6 dry, 4 or 5 moist
Rock fragments: 0 to 25 percent sandstone and shale gravel and gravel-sized channers
Salinity: EC of 0 to $4 \mathrm{mmhos} / \mathrm{cm}$
Sodicity: SAR of 0 to 2
Bss and Bssyz horizons:
Hue: 10YR or 2.5 Y
Value: 3 or 4 moist
Chroma: 2 to 4 moist
Percent clay: 50 to 70 percent
Percent gypsum:1 to 5 percent
Salinity: EC of 2 to $8 \mathrm{mmhos} / \mathrm{cm}$
Sodicity: SAR of 2 to 5

Celavar Series

Taxonomic class: Fine-loamy, mixed, superactive, mesic Aridic Haplustalfs
Depth class: Moderately deep
Drainage class: Well drained
Permeability: Moderate
Geomorphic position: Mesas and Cuestas
Parent material: Eolian material and slope alluvium over residuum derived from sandstone and shale
Slope range: 1 to 8 percent
Elevation: 6,500 to 8,100 feet
Mean annual air temperature: 49 to 53 degrees F
Mean annual precipitation: 13 to 16 inches
Frost-free period: 115 to 135 days

Typical Pedon

Celavar sandy loam, in an area of mapping unit 368, Simitarq-Celavar sandy loams, 2 to 8 percent slopes; McKinley County, New Mexico; Continental Divide Quadrangle; 200 feet south and 200 feet east of the northwest corner of sec. 28, T. 14 N., R. 14 W.; latitude 35 degrees, 25 minutes, 21 seconds and longitude 108 degrees, 19 minutes, 58 seconds.
$\mathrm{Oi}-0$ to 1 inches; pinyon and oneseed juniper leaves, needles, twigs, and cones.
A-1 to 2 inches; brown (10YR 4/3) sandy loam, dark brown (10YR 3/3) moist; weak very fine granular structure; soft, very friable, slightly sticky and nonplastic; many very fine, fine, and few medium roots; common fine vesicular pores; 1 percent gravel; slightly alkaline (pH 7.6); abrupt smooth boundary.
Bt-2 to 11 inches; reddish brown (5YR 4/4) sandy clay loam, dark reddish brown (5YR 3/4) moist; moderate fine and medium subangular blocky structure; hard, friable, slightly sticky and slightly plastic; many very fine, fine, and few medium and coarse roots; few fine irregular pores; many distinct clay films bridging sand grains; slightly alkaline (pH 7.6); clear smooth boundary.
Btk1-11 to 27 inches; reddish brown (5YR 5/4) sandy clay loam, reddish brown (5YR 4/4) moist; strong fine and medium subangular blocky structure; hard, firm, sticky and plastic; common fine and few medium roots; common fine tubular pores; many prominent clay films on faces of peds and bridging sand grains; slightly effervescent; few fine and medium filaments of calcium carbonate; slightly alkaline (pH 7.8); clear smooth boundary.
Btk2—27 to 31 inches; reddish brown (5YR 5/4) sandy clay loam, reddish brown (5YR 4/4) moist; moderate fine and medium subangular blocky structure; hard, firm, sticky and plastic; common very fine and fine roots; common fine tubular pores; many prominent clay films on faces of peds and bridging sand grains; 1 percent gravel; slightly effervescent; common fine and medium masses and common fine filaments of calcium carbonate; slightly alkaline (pH 7.8); abrupt smooth boundary.
R-31 inches; sandstone.

Range in Characteristics

Particle-size control section: 20 to 35 percent clay
Depth to lithic contact: 20 to 40 inches to hard sandstone

Reaction: slightly alkaline throughout
A horizon:
Hue: 7.5YR or 10YR
Value: 5 or 6 dry; 3 or 4 moist
Chroma: 3 or 4 dry; 3 to 6 moist
Rock fragments: 0 to 2 percent sandstone gravel
Bt horizon:
Hue:5YR or 7.5YR
Value: 4 or 5 dry; 3 or 4 moist
Chroma: 4 to 6
Texture: sandy clay loam or clay loam
Rock fragments: 0 to 1 percent sandstone gravel
Btk horizon:
Hue: 5YR or 7.5YR
Value: 4 or 5 dry; 3 or 4 moist
Chroma: 4 to 6
Texture: sandy clay loam or clay loam
Rock fragments: 0 to 1 percent sandstone gravel Calcium carbonate equivalent: 1 to 5 percent

Chipeta Series

Taxonomic class: Clayey, mixed, active, calcareous, mesic, shallow Typic Torriorthents
Depth class: Very shallow and shallow
Drainage class: Well drained
Permeability: Slow
Geomorphic position: Mesas, cuestas, hills, and ridges
Parent material: Slope alluvium and colluvium over residuum derived from shale
Slope range: 5 to 30 percent
Elevation: 5,800 to 6,800 feet
Mean annual air temperature: 50 to 55 degrees F Mean annual precipitation: 7 to 9 inches Frost-free period: 130 to 150 days

Typical Pedon

Chipeta silty clay, in an area of mapping unit 118, Farb-Chipeta-Rock outcrop complex, 2 to 30 percent slopes; McKinley County, New Mexico; Seven Lakes NW Quadrangle; 800 feet west and 400 feet north of the southeast corner of sec. 7, T. 19 N., R. 10 W.; latitude 35 degrees, 53 minutes, 06 seconds and longitude 107 degrees, 56 minutes, 02 seconds.
A-0 to 2 inches; light olive brown ($2.5 \mathrm{Y} 5 / 4$) silty clay, olive brown ($2.5 \mathrm{Y} 4 / 4$) moist; moderate fine granular structure; slightly hard, friable, sticky and plastic; few very fine roots; many very fine irregular pores; 5 percent gravel and 5 percent cobbles; strongly effervescent; moderately alkaline (pH 8.4); abrupt smooth boundary.
Cyz-2 to 12 inches; light olive brown (2.5Y 5/4) silty
clay, olive brown (2.5Y 4/4) moist; massive; hard, firm, sticky and plastic; few fine and common very fine roots; many very fine irregular pores; 5 percent gravel; common soft shale fragments; few very fine gypsum and sodium sulfate crystals; strongly effervescent; strongly alkaline (pH 8.8); clear smooth boundary.
$\mathrm{Cr}-12$ inches; variegated gypsiferous shale.

Range in Characteristics

Particle-size control section: 35 to 50 percent clay
Depth to paralithic contact: 5 to 20 inches to shale Calcium carbonate equivalent: 0 than 10 percent Percent gypsum: 1 to 5 percent
A horizon:
Hue: 10YR or 2.5 Y
Value: 4 or 5 moist
Chroma: 3 or 4 moist
Rock fragments: 0 to 30 percent gravel; 0 to 5 percent cobbles; 0 to 5 percent stones. All fragments are siderite and sandstone.
Salinity: EC of 8 to $16 \mathrm{mmhos} / \mathrm{cm}$
Sodicity: SAR 5 to 10
Reaction: slightly or moderately alkaline
Byz horizon:
Hue: 10YR or 2.5 Y
Value: 3 or 4 moist
Chroma: 3 or 4 moist
Texture: silty clay, clay or clay loam
Rock fragments: 0 to 10 percent sandstone and siderite gravel
Salinity: EC of 8 to $16 \mathrm{mmhos} / \mathrm{cm}$
Sodicity: SAR 5 to 15
Reaction: moderately or strongly alkaline

Chivato Series

Taxonomic class: Fine, mixed, active, frigid Typic Haplusterts
Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Very slow
Geomorphic position: Playas on lava plateaus
Parent material: Lacustrine material derived from basalt
Slope range: 0 to 1 percent
Elevation: 8,100 to 8,600 feet
Mean annual air temperature: 40 to 45 degrees F
Mean annual precipitation: 16 to 20 inches
Frost-free period: 90 to 110 days

Typical Pedon

Chivato clay, in an area of mapping unit 440, Chivato
clay, 0 to 1 percent slopes; McKinley County, New Mexico; Marquez Quadrangle; latitude 35 degrees, 22 minutes, 09 seconds and longitude 107 degrees, 19 minutes, 59 seconds.

A-0 to 2 inches; gray (5Y 5/1) clay, very dark gray (5Y 3/1) moist; moderate medium platy structure parting to moderate very fine and fine granular; slightly hard, friable, very sticky and very plastic; common very fine and fine roots; common very fine irregular pores; few (<1 percent) cobble- and stone-sized volcanic bombs occur on the surface; slightly acid (pH 6.4); abrupt smooth boundary.
Bss1-2 to 13 inches; dark gray (5Y 5/1) clay, very dark gray ($5 \mathrm{Y} 3 / 1$) moist; weak medium and coarse angular blocky structure; extremely hard, extremely firm, very sticky and very plastic; common very fine and fine roots; few very fine irregular pores; many pressure faces; few slickensides; neutral (pH 6.6); clear smooth boundary.
Bss2-13 to 40 inches; dark gray ($5 \mathrm{Y} 5 / 1$) clay, very dark gray ($5 \mathrm{Y} 3 / 1$) moist; massive; extremely hard, extremely firm, very sticky and very plastic; common very fine and fine roots; few very fine irregular pores; many pressure faces; many slickensides; neutral (pH 7.2); clear smooth boundary.
Bss3-40 to 52 inches; gray (5Y 5/1) clay, very dark gray (5Y 3/1) moist; few fine distinct reddish yellow (7.5YR 6/8) moist redox concentrations; massive; extremely hard, extremely firm, very sticky and very plastic; few very fine and fine roots; few very fine irregular pores; many pressure faces; few slickensides; slightly alkaline (pH 7.4); gradual wavy boundary.
Bssg-52 to 65 inches; dark grayish brown (10YR 4/2) clay, very dark grayish brown (10YR 3/2) moist; common fine distinct reddish yellow (7.5YR 6/8) moist redox concentrations and dark gray (10YR 4/1) moist redox depletions; massive; extremely hard, extremely firm, very sticky and very plastic; few very fine and fine roots; few very fine irregular pores; many pressure faces; few slickensides; slightly alkaline (pH 7.4).

Range in Characteristics

Particle-size control section: 60 to 80 percent clay
Vertic Properties: gilgai microrelief ranges up to 6 inches; vertical cracks 0.5 inch in width range from the surface to 30 inches or more in depth; many
pressure faces and few to common slickensides from 2 to 30 inches in depth.
A horizon:
Hue: 10YR, 2.5Y, or 5 Y
Value: 4 or 5 dry
Reaction: slightly acid or neutral
B horizons:
Hue: 10YR, 2.5 Y , or 5 Y
Value: 4 to 6 dry; 3 to 5 moist
Chroma: 1 or 2
Redoximorphic features:

	Redox concentrations	Redox depletions
Depth:	3 to 40 inches	20 to 50 inches
Quantity:	few to many	few to many
Size:	fine and medium	fine and medium
Contrast:	distinct or prominent	distinct
Hue:	2.5 YR to 10YR	7.5YR, 10YR, 2.5Y
Value:	3 to 6 moist	3 or 4 moist
Chroma:	3 to 8 moist	0 to 2 moist

Reaction: neutral or slightly alkaline

Chunkmonk Series

Taxonomic class: Loamy-skeletal, mixed, superactive, mesic Lithic Haplustalfs
Depth class: Very shallow and shallow
Drainage class: Well drained
Permeability: Moderate
Geomorphic position: Cuestas
Parent material: Eolian material and slope alluvium over residuum derived from sandstone and limestone
Slope range: 2 to 10 percent
Elevation: 7,000 to 7,700 feet
Mean annual air temperature: 46 to 49 degrees F
Mean annual precipitation: 13 to 16 inches
Frost-free period: 100 to 135 days

Typical Pedon

Chunkmonk very gravelly fine sandy loam, in an area of mapping unit 367, Chunkmonk very gravelly fine sandy loam, 2 to 10 percent slopes; McKinley County, New Mexico; about 2 miles northeast of the village of Upper Nutria; Upper Nutria Quadrangle; 700 feet north and 2,300 feet east of the southwest corner of sec. 5, T. 12 N., R. 16 W.; latitude 35 degrees, 17 minutes, 32 seconds and longitude 108 degrees, 32 minutes, 52 seconds.

The surface is covered by 45 percent gravel and 5 percent cobbles. Fragments are dolomitic limestone and calcareous sandstone.

A-0 to 1 inches; brown (7.5YR 4/3) very gravelly fine sandy loam, dark brown (7.5YR 3/3) moist; moderate thin platy structure; soft, very friable, nonsticky and nonplastic; many very fine and fine roots; 45 percent gravel, 5 percent cobbles; slightly effervescent; few very fine and fine masses of calcium carbonate; slightly alkaline (pH 7.8); clear smooth boundary.

Btk1-1 to 4 inches; brown (5YR 4/3) very cobbly loam, dark reddish brown (5YR 3/3) moist; weak fine and medium subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; many very fine and fine roots; few faint clay films bridging sand grains; 15 percent gravel, 45 percent cobbles; strongly effervescent; common fine and medium masses of calcium carbonate; 5 percent calcium carbonate equivalent; moderately alkaline (pH 8.2); clear wavy boundary.
Btk2-4 to 8 inches; reddish brown (5YR 4/3) gravelly loam, dark reddish brown (5YR 3/4) moist; weak fine subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; common very fine and fine roots; few faint clay films bridging sand grains; 20 percent gravel, 5 percent cobbles; violently effervescent; common fine and medium masses and few fine concretions of calcium carbonate; 28 percent calcium carbonate equivalent; moderately alkaline (8.2); abrupt wavy boundary.
Btk3-8 to 10 inches; reddish brown (5YR 5/4) gravelly loam, reddish brown (5YR 4/4) moist; moderate fine subangular blocky structure; soft, very friable, slightly sticky and slightly plastic; few very fine, fine, and coarse roots; few distinct clay films bridging sand grains; 20 percent gravel, 5 percent cobbles; violently effervescent; many fine and medium masses and few fine and medium concretions of calcium carbonate; 38 percent calcium carbonate equivalent; moderately alkaline (pH 8.2); abrupt wavy boundary.
R-10 inches; San Andreas limestone.

Range in Characteristics

Particle-size control section: 10 to 25 percent clay Depth to lithic contact: 8 to 20 inches to dolomitic limestone
Depth to calcic: 2 to 14 inches
Reaction: slightly to moderately alkaline throughout
A horizon:
Hue:5YR or 7.5YR

Value: 3 dry, or 4 moist
Chroma: 3 or 4
Rock fragments: 25 to 60 percent total; 15 to 50 percent gravel, 0 to 20 percent cobbles, 0 to 1 percent stones. All fragments are limestone and sandstone.
Calcium carbonate equivalent: 0 to 5 percent
Btk horizon:
Hue: 5YR or 7.5YR
Value: 4 or 5 dry, 3 or 4 moist
Chroma: 3 or 4
Textures: loam or clay loam.
Rock fragments: 35 to 60 percent total; 15 to 25 percent gravel, 20 to 50 percent cobbles. All fragments are limestone and sandstone.
Calcium carbonate equivalent: 5 to 15 in the upper part and 15 to 40 percent in the lower part

Cinnadale Series

Taxonomic class: Loamy-skeletal, mixed, superactive, frigid Lithic Haplustepts
Depth class: Shallow
Drainage class: Well drained
Permeability: Moderately rapid
Geomorphic position: Cuestas, hogbacks, hills, and ridges
Parent material: Slope alluvium over residuum derived from sandstone
Slope range: 5 to 15 percent
Elevation: 7,200 to 8,200 feet
Mean annual air temperature: 40 to 45 degrees F
Mean annual precipitation: 16 to 20 inches
Frost-free period: 90 to 110 days

Typical Pedon

Cinnadale very channery fine sandy loam, in an area of mapping unit 407, Cinnadale-Heckly association, 5 to 40 percent slopes; McKinley County, New Mexico; Page Quadrangle; 1,500 feet west and 350 feet south of the northeast corner of sec. 13, T. 13 N., R. 16 W.; latitude 35 degrees, 21 minutes, 45 seconds and longitude 108 degrees, 28 minutes, 49 seconds.
The surface is covered by 40 percent channers, 5 percent flagstones.
A-0 to 2 inches; brown (7.5YR 5/3) very channery fine sandy loam, dark brown (7.5YR 3/3) moist; weak very fine granular structure; soft, very friable, nonsticky and nonplastic; many very fine, fine, and few medium roots; 40 percent channers, 5 percent flagstones; neutral (pH 7.0); abrupt smooth boundary.

Bw1-2 to 9 inches; light reddish brown (5YR 6/4) very channery fine sandy loam, reddish brown (5YR 5/4) moist; weak very fine granular structure; soft, very friable, nonsticky and nonplastic; common fine and few medium roots; 40 percent channers, 15 percent flagstones; neutral (pH 7.0); clear wavy boundary.
Bw2—9 to 15 inches; light reddish brown (5YR 6/4) very channery fine sandy loam, reddish brown (5YR 5/4) moist; weak very fine granular structure; soft, very friable, nonsticky and nonplastic; few fine and medium roots; 40 percent channers, 15 percent flagstones; neutral (pH 7.0); abrupt wavy boundary.
R-15 inches; Abo sandstone.

Range in Characteristics

Particle-size control section: 10 to 15 percent clay
Depth to lithic contact: 10 to 20 inches
Reaction: neutral to slightly alkaline
A horizon:
Hue: 5YR and 7.5YR
Value: 5 or 6 dry, 3 moist
Chroma: 2 or 3 dry and moist
Textures: fine sandy loam or loam
Rock fragments: 15 to 55 percent total; 15 to 45 percent channers and 5 to 10 percent flagstones. All rock fragments are sandstone.

Bw horizon:
Hue: 5YR or 7.5YR
Value: 4 or 5 moist
Chroma: 2 to 4 dry and moist
Textures: fine sandy loam or loam
Rock fragments: 35 to 60 percent total; 30 to 50 percent channers and 5 to 15 percent flagstones. All rock fragments are sandstone.

Concho Series

Taxonomic class: Fine, mixed, superactive, mesic Aridic Argiustolls
Depth class: Very Deep
Drainage class: Well drained
Permeability: Slow
Geomorphic position: Valley floors and drainageways
Parent material: Fan and stream alluvium derived from sandstone and shale
Slope range: 0 to 3 percent
Elevation: 6,600 to 7,000 feet
Mean annual air temperature: 46 to 49 degrees F
Mean annual precipitation: 13 to 16 inches
Frost-free period: 100 to 135 days

Typical Pedon

Concho clay loam, in an area of mapping unit 360, Hosta-Concho association, 0 to 5 percent slopes; McKinley County, New Mexico; Burned Timber Canyon Quadrangle; 200 feet north and 1,200 feet east of the southwest corner of sec. 29, T. 11 N., R. 16 W.; latitude 35 degrees, 08 minutes, 54 seconds and longitude 108 degrees, 33 minutes, 09 seconds.

Ap1-0 to 1 inches; brown (10YR 5/3), clay loam, very dark grayish brown (10YR 3/2) moist; strong thin platy structure parting to moderate fine granular; soft, very friable, sticky and plastic; many very fine and fine roots; many fine irregular and few fine vesicular pores; neutral; clear smooth boundary.
Ap2-1 to 5 inches; brown (10YR 5/3) clay, dark brown (10YR 3/3) moist; moderate medium subangular blocky structure; hard, firm, sticky and very plastic; many very fine and fine roots; many fine irregular pores; many prominent clay films coating faces of peds; neutral; clear smooth boundary.
Btss1—5 to 18 inches; yellowish brown (10YR 5/4) clay, dark brown (10YR 3/3) moist; moderate coarse prismatic structure parting to strong medium subangular blocky; very hard, very firm, sticky and very plastic; common very fine and fine roots; common fine irregular pores; many prominent clay films coating faces of peds; few slickensides; slightly effervescent; slightly alkaline; gradual wavy boundary.
Btss2—18 to 32 inches; brown (10YR 5/3) clay, dark brown (10YR 4/3) moist; weak very coarse subangular blocky structure; extremely hard, extremely firm; sticky and very plastic; few very fine and fine roots; common fine irregular pores; many prominent clay films coating faces of peds; many slickensides; very slightly effervescent; moderately alkaline; gradual irregular boundary.
Btkss-32 to 51 inches; brown (10YR 5/3) clay, dark brown (10YR 4/3) moist; weak fine and medium subangular blocky structure; extremely hard, extremely firm; sticky and very plastic; few very fine and fine roots; common fine irregular pores; many prominent clay films coating faces of peds; many slickensides; common fine irregular masses of calcium carbonate; slightly effervescent; slightly alkaline; clear irregular boundary.
Btkz—51 to 65 inches; dark brown (10YR 4/3) clay; dark brown (10YR 3/3) moist; weak fine and medium subangular blocky structure; extremely hard, extremely firm; sticky and very plastic; few very fine and fine roots; common fine irregular pores; common prominent clay films coating faces of peds; common fine clusters of salt crystals; few
fine irregular masses of calcium carbonate; slightly effervescent; slightly alkaline.

Range in Characteristics

Particle-size control section: 35 to 55 percent clay
Slickensides: (when present) occur from 5 to 50 inches
Cracks: 3 to 7 mm wide at 20 inches below the surface.
Salt accumulations: (when present) occur below 45 inches. Electrical conductivity ranges from 0 to 4 mmhos/cm.
Depth to calcium carbonate: 10 to 30 inches
A horizon:
Hue: 10YR or 2.5Y
Chroma: 2 or 3 moist
Rock fragments: 0 to 5 percent sandstone gravel
Reaction: neutral or slightly alkaline
Bt horizons:
Hue:7.5YR, 10YR or 2.5Y
Value: 4 or 5 dry, 3 or 4 moist
Chroma: 3 or 4 dry, 2 to 4 moist
Texture: clay or clay loam
Reaction: neutral or slightly alkaline
Btk or Bk horizons:
Hue: 10YR or 2.5 Y
Value: 4 or 5 dry, 3 or 4 moist
Chroma: 3 or 4 dry, 2 or 3 moist
Texture: clay loam or clay
Reaction: slightly or moderately alkaline
Calcium carbonate equivalent: 1 to 5 percent

Conchovar Series

Taxonomic class: Fine, mixed, superactive, mesic Pachic Argiustolls
Depth class: Very deep
Drainage class: Somewhat poorly drained
Permeability: Very slow
Geomorphic position: Valley floors and drainageways
Parent material: Fan and stream alluvium derived from sandstone and shale
Slope range: 0 to 1 percent
Elevation: 6,600 to 6,800 feet
Mean annual air temperature: 46 to 49 degrees F
Mean annual precipitation: 13 to 16 inches
Frost-free period: 100 to 135 days

Typical Pedon

Conchovar clay loam, in an area of mapping unit 47, Conchovar clay loam, 0 to 1 percent slopes; McKinley County, New Mexico; Pescado Quadrangle; 2,300 feet east and 100 feet north of the south west corner of
sec. 12, T. 10 N., R. 17 W.; latitude 35 degrees, 6 minutes, 26 seconds and longitude 108 degrees, 35 minutes, 3 seconds.

Ap1-0 to 3 inches; grayish brown (2.5Y 5/2) clay loam, very dark grayish brown (10YR 3/2) moist; strong very fine and fine subangular blocky structure; hard, firm, very sticky and very plastic; many very fine and fine roots; many fine irregular pores; strongly effervescent; slightly alkaline (pH 7.8); abrupt smooth boundary.

Ap2-3 to 9 inches; grayish brown (10YR $5 / 2$) clay, dark brown (10YR $3 / 3$) moist; strong fine and medium subangular blocky structure; very hard, very firm, very sticky and very plastic; many very fine and fine roots; common fine irregular pores; many prominent clay films on faces of peds; strongly effervescent; slightly alkaline (pH 7.6); clear smooth boundary.
Btz-9 to 26 inches; gray (10YR 5/1) clay, dark brown (10YR 3/2) moist; many fine and medium subangular blocky structure; very hard, very firm, very sticky and very plastic; common very fine and fine roots; few fine irregular pores; many prominent clay films on faces of peds; few vertical cracks 5 mm wide extend from 8 to 18 inches; common fine clusters of salt crystals; strongly effervescent; moderate alkaline (pH 8.2); gradual irregular boundary.
BCz-26 to 36 inches; gray (10YR 5/1) clay, dark gray (10YR 4/1) moist; massive; very hard, very firm, very sticky and very plastic; few very fine roots; few very fine irregular pores; common fine clusters of salt crystals; common pressure faces; slightly effervescent; many medium prominent (5YR 4/6) redox concentrations; moderately alkaline (pH 8.4); clear smooth boundary.
Cg-36 to 54 inches; gray (10YR 5/1) clay, dark gray (10YR 4/0) moist; massive; extremely hard, extremely firm, very sticky and very plastic; slightly effervescent; common medium and coarse prominent yellowish brown (10YR 5/6) redox concentrations; moderately alkaline (pH 8.4); abrupt smooth boundary.
$2 \mathrm{C}-54$ to 65 inches; mixed reddish brown (5YR 4/4), dark gray (10YR 4/1), and red (2.5YR 4/8) sandy clay; massive; very hard, very firm, very sticky and very plastic; water table occurs at 54 inches; non-effervescent; gray colors are redox depletions and reddish brown and red colors are redox concentrations; slightly alkaline (pH 7.8).

Range in Characteristics

Particle-size control section: 35 to 55 percent clay Depth to water table: 30 to 60 inches.

Depth to redoximorphic features: 20 to 40 inches
Depth to salt accumulations: 10 to 40 inches
Reaction: slightly to moderately alkaline throughout
Calcium carbonate equivalent: 0 to 1 percent
A horizon:
Hue: 10YR or 2.5 Y
Value: 3 to 5 dry, 3 or 4 moist
Chroma: 2 or 3
Salinity: EC of 1 to 4 mmhos/cm
Sodicity: SAR of 0 to 5
Bt horizon:
Value: 3 to 5 dry, 3 or 4 moist
Chroma: 2 or 3
Texture: clay or clay loam
Salinity: EC of 4 to $8 \mathrm{mmhos} / \mathrm{cm}$
Sodicity: SAR of 0 to 5
BCz horizon:
Hue: 10YR
Value: 3 to 6 dry, 3 to 5 moist
Chroma: 2 to 6
Salinity: EC of 4 to $8 \mathrm{mmhos} / \mathrm{cm}$
Sodicity: SAR of 0 to 5
Redoximorphic features: few to common, medium to coarse, distinct to prominent, 5YR redox concentrations

C horizon:
Hue: 10YR or 2.5Y
Value: 3 to 6 dry, 2 to 5 moist
Chroma: 2 to 8
Texture: sandy clay loam, clay loam, sandy clay, or clay
Salinity: EC of 0 to $4 \mathrm{mmhos} / \mathrm{cm}$
Sodicity: SAR of 0 to 5
Redoximorphic features: few, medium to coarse, distinct to prominent, 2.5YR redox concentrations and redox depletions

Corzuni Series

Taxonomic class: Coarse-loamy, mixed, superactive, mesic Typic Haplustalfs
Depth class: Very Deep
Drainage class: Somewhat excessively drained
Permeability: Moderately rapid
Geomorphic position: Cuestas and valley sides
Parent material: Eolian material and fan alluvium derived from sandstone
Slope range: 2 to 10 percent
Elevation: 7,000 to 7,500 feet
Mean annual air temperature: 45 to 48 degrees F
Mean annual precipitation: 16 to 20 inches

Frost-free period: 90 to 110 days

Typical Pedon

Corzuni loamy fine sand, in an area of mapping unit 414, Zunalei-Corzuni loamy fine sands, 2 to 10 percent slopes; McKinley County, New Mexico; Ramah Quadrangle; about 2,050 feet north and 2,500 feet west of the southeast corner of sec. 11, T. 11 N., R. 16 W.; latitude 35 degrees, 11 minutes, 50 seconds and longitude 108 degrees, 29 minutes, 40 seconds.

Oi-0 to 1 inches; slightly decomposed pine needles and grasses.
A-1 to 8 inches; brown (7.5YR 5/2) loamy fine sand, dark brown (7.5YR 3/2) moist; single grain structure; loose, loose, nonsticky and nonplastic; many very fine and fine roots; neutral (pH 7.0); abrupt smooth boundary.
Bt1-8 to 29 inches; brown (7.5YR 5/4) fine sandy loam, brown (7.5YR 4/4) moist; moderate fine subangular blocky structure; soft, very friable, nonsticky and nonplastic; common very fine and fine roots; few very fine irregular pores; few distinct clay films on faces of peds and bridging sand grains; neutral (pH 7.2); clear smooth boundary.
Bt2-29 to 45 inches; strong brown (7.5YR 5/6) fine sandy loam, strong brown (7.5YR 4/6) moist; weak very fine and fine subangular block structure; soft, very friable, nonsticky and nonplastic; few very fine roots; few distinct clay films on faces of peds and bridging sand grains; neutral (pH 7.2); abrupt smooth boundary.
Bk-45 to 70 inches; strong brown (7.5YR 5/6) fine sandy loam, strong brown (7.5YR 4/6) moist; weak very fine subangular blocky structure; soft, very friable, nonsticky and nonplastic; few very fine roots; very slightly effervescent; few very fine calcium carbonate masses; slightly alkaline (pH 7.8).

Range in Characteristics

Particle-size control section: 8 to 18 percent clay

A horizon:

Hue:7.5YR
Value: 5 dry, 3 moist
Chroma: 2
Texture: loamy fine sand or loamy sand
Reaction: Neutral to slightly alkaline
Bt horizon:
Hue:7.5YR
Value: 5 dry, 3 or 4 moist
Chroma: 4 or 6 dry, 3 to 6 moist
Texture: fine sandy loam

Reaction: Neutral to slightly alkaline

Bk horizon:
Hue: 5YR or 7.5YR
Value: 5 dry, 4 moist
Chroma: 6
Textures: fine sandy loam, sandy clay loam, silty clay loam, or silty clay
Reaction: slightly to moderately alkaline
Calcium carbonate equivalent: 1 to 5 percent

Councelor Series

Taxonomic class: Coarse-loamy, mixed, superactive, calcareous, mesic Ustic Torriorthents
Depth class: Very deep
Drainage class: Somewhat excessive and well drained
Permeability: Moderately rapid to moderately slow
Geomorphic position: Valley sides and valley floors
Parent material: Eolian material and fan and stream alluvium derived from sandstone and shale
Slope range: 1 to 10 percent
Elevation: 6,300 to 6,800 feet
Mean annual air temperature: 46 to 49 degrees F
Mean annual precipitation: 9 to 10 inches
Frost-free period: 100 to 135 days

Typical Pedon

Councelor fine sandy loam, in an area of mapping unit 10, Tsosie-Councelor-Blancot fine sandy loams, 1 to 3 percent slopes; McKinley County, New Mexico; Ojo Encino Mesa Quadrangle; 1,400 feet west and 400 feet south of the northeast corner of sec. 23, T. 20 N., R. 5 W.; latitude 35 degrees, 57 minutes, 19 seconds and longitude 107 degrees, 19 minutes, 49 seconds.

A-0 to 2 inches; brown (10YR $5 / 3$) fine sandy loam, dark brown (10YR 4/3) moist; weak fine granular structure; soft, very friable, nonsticky and nonplastic; common fine and very fine roots; few very fine irregular pores; slightly alkaline (pH 7.4); abrupt smooth boundary.
C1-2 to 8 inches; yellowish brown (10YR 5/4) fine sandy loam, dark yellowish brown (10YR 4/4) moist; weak fine subangular blocky structure; soft, very friable, nonsticky and nonplastic; common fine and very fine roots; few fine and very fine irregular pores; slightly alkaline (pH 7.6); clear smooth boundary.
C2-8 to 20 inches; yellowish brown (10YR 5/4) fine sandy loam, dark brown (10YR 4/3) moist; massive; soft, very friable, nonsticky and nonplastic; few fine and very fine roots; few very fine irregular pores; slightly alkaline (pH 7.6); clear smooth boundary.

C3-20 to 35 inches; brown (10YR 5/3) sandy loam, dark brown (10YR 4/3) moist; massive; soft, very friable, nonsticky and nonplastic; few very fine roots; few very fine irregular pores; slightly alkaline (pH 7.8); abrupt smooth boundary.
C4-35 to 47 inches; brown (10YR 5/3) sandy loam, grayish brown (10YR 5/2) moist; massive; soft, very friable, nonsticky and nonplastic; few very fine roots; few very fine irregular pores; slightly effervescent; moderately alkaline (pH 8.2); clear smooth boundary.
C5-47 to 65 inches; pale brown (10YR 6/3) silt loam, grayish brown (10YR 5/2) moist; massive; soft, very friable, nonsticky and nonplastic; few very fine roots; few very fine irregular pores; slightly effervescent; moderately alkaline (pH 8.2).

Range in Characteristics

Particle-size control section: 8 to 18 percent clay Reaction: Slightly alkaline or moderately alkaline Calcium carbonate equivalent: 1 to 10 percent
A horizon:
Hue: 10YR
Value: 3 or 4 moist
Chroma: 3 or 4 dry and moist
C horizon:
Hue: 10YR or 2.5 Y
Value: 4 to 6 dry; 3 to 5 moist
Chroma: 3 or 4 dry; 2 to 6 moist
Texture: fine sandy loam, sandy loam, loamy fine sand, loamy sand, silty clay loam, or silt loam

Doak Series

Taxonomic class: Fine-loamy, mixed, active, mesic Typic Haplargids
Depth class: Very deep
Drainage class: Well drained
Permeability: Moderate
Geomorphic position: Mesas, cuestas, and valley sides
Parent material: Eolian material and fan and slope alluvium derived from sandstone and shale
Slope range: 1 to 5 percent
Elevation: 5,800 to 6,800 feet
Mean annual air temperature: 50 to 55 degrees F
Mean annual precipitation: 7 to 9 inches
Frost-free period: 130 to 150 days

Typical Pedon

Doak fine sandy loam, in an area of mapping unit 120, Doak-Shiprock complex, 1 to 8 percent slopes;
McKinley County, New Mexico; Seven Lakes NW

Quadrangle; 800 feet north and 400 feet west of the southeast corner sec. 24, T. 20 N., R. 11W; latitude 35 degrees, 56 minutes, 40 seconds and longitude 107 degrees, 56 minutes, 56 seconds.
A—0 to 2 inches; yellowish brown (10YR 5/4) fine sandy loam, dark yellowish brown (10YR 4/4) moist; moderate fine granular structure; soft, friable, nonsticky and nonplastic; common very fine and fine roots; common fine irregular pores; slightly effervescent; slightly alkaline; (pH 7.6); abrupt smooth boundary.
Bt-2 to 8 inches; brown (7.5YR 5/4) sandy clay loam, dark brown (7.5YR 4/4) moist; moderate medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; common very fine and fine roots; common very fine tubular pores; common distinct clay films on faces of peds and lining pores; slightly alkaline (pH 7.6); abrupt smooth boundary.
Btk—8 to 12 inches; brown (7.5YR 5/4) sandy clay loam, brown (7.5YR 4/4) moist; moderate medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; common very fine and fine tubular pores; common distinct clay films on faces of peds and lining pores; slightly effervescent; few fine irregular seams and filaments of calcium carbonate; slightly alkaline (pH 7.6); clear smooth boundary.
Bk1-12 to 40 inches; brownish yellow (10YR 6/6) sandy clay loam, yellowish brown (10YR 5/6) moist; massive; slightly hard, friable, slightly sticky and nonplastic; common very fine roots; few very fine and fine irregular pores; violently effervescent; few fine irregular seams and filaments of calcium carbonate; moderately alkaline (pH 8.2); gradual smooth boundary.
Bk2—40 to 65 inches; brownish yellow (10YR 6/6) sandy clay loam, yellowish brown (10YR 5/6) moist; massive; slightly hard, friable, slightly sticky and nonplastic; few very fine roots; few very fine and fine irregular pores; violently effervescent; few fine irregular seams and filaments of calcium carbonate; moderately alkaline (pH 8.4).

Range in Characteristics

Particle-size control section: 18 to 35 percent clay
Reaction: neutral to slightly alkaline in the surface and slightly to moderately alkaline in the subsoil

A horizon:
Hue: 10YR or 7.5YR
Value: 4 to 6 dry and 3 to 5 moist
Chroma: 2 to 4 dry and moist
Textures: fine sandy loam, loam, or clay loam

Bt horizon:
Hue: 10YR to 5YR
Value: 5 to 6 dry and 4 to 6 moist
Chroma: 3 to 6 dry and moist
Textures: loam, sandy loam, clay loam, or silty clay loam

Btk or Bk horizons:
Hue: 10YR to 5YR
Value: 5 to 8 dry and 4 to 6 moist
Chroma: 3 to 6 dry and moist
Textures: loam, sandy loam, clay loam, or silty clay loam
Calcium carbonate equivalent: 1 to 10 percent
Some pedons have C horizons that are stratified below 40 inches.

Doakum Series

Taxonomic class: Fine-loamy, mixed, superactive, mesic Ustic Haplargids
Depth class: Very deep
Drainage class: Well drained
Permeability: Moderate
Geomorphic position: Mesas, cuestas, valley sides, hills, and ridges
Parent material: Eolian material and fan and slope alluvium derived from sandstone and shale
Slope range: 1 to 5 percent
Elevation: 6,400 to 6,900 feet
Mean annual air temperature: 46 to 49 degrees F
Mean annual precipitation: 9 to 10 inches
Frost-free period: 100 to 135 days

Typical Pedon

Doakum fine sandy loam, in an area of mapping unit 11, Doakum-Betonnie complex, 1 to 8 percent slopes; McKinley County, New Mexico; Ojo Encino Mesa Quadrangle; 1,200 feet south and 1,400 feet east of the northeast corner of sec. 22, T. 20 N., R. 5 W.; latitude 35 degrees, 57 minutes, 10 seconds and longitude 107 degrees, 21 minutes, 24 seconds (fig. 17).
A—0 to 2 inches; light brown (7.5YR 6/4) fine sandy loam, brown (7.5YR 4/4) moist; moderate fine granular structure; soft, very friable, nonsticky and nonplastic; many fine and very fine roots; many very fine irregular pores; neutral (pH 7.2); abrupt smooth boundary.
Bt1-2 to 8 inches; brown (7.5YR 5/4) sandy clay loam, strong brown (7.5YR 4/6) moist; moderate medium subangular blocky structure; slightly hard, friable, slightly sticky and nonplastic; few medium
and many fine and very fine roots; common fine tubular pores; common faint clay films bridging sand grains; neutral (pH 7.2); clear smooth boundary.
Bt2-8 to 13 inches; brown (7.5YR 5/4) sandy clay loam, dark brown (7.5YR 4/4) moist; moderate medium prismatic structure parting to moderate medium subangular blocky; slightly hard, friable, slightly sticky and nonplastic; few medium and common fine and very fine roots; common fine tubular pores; common distinct clay films on faces of peds and lining pores; slightly alkaline (pH 7.4); clear smooth boundary.
Bt3-13 to 21 inches; strong brown (7.5YR 5/6) sandy clay loam, brown (7.5YR 4/4) moist; moderate medium prismatic structure parting to moderate medium subangular blocky; slightly hard, friable, slightly sticky and nonplastic; few coarse and medium and common fine and very fine roots; common fine tubular pores; few distinct clay films on faces of peds and lining pores; slightly alkaline (pH 7.4); abrupt smooth boundary.
Bk1-21 to 42 inches; light yellowish brown (10YR 6/4) sandy clay loam, dark yellowish brown (10YR 4/6) moist; massive; slightly hard, friable, slightly sticky and nonplastic; few fine and very fine roots; common fine tubular pores; strongly effervescent; few fine irregular filaments of calcium carbonate; slightly alkaline (pH 7.6); clear smooth boundary.
Bk2—42 to 65 inches; light yellowish brown (10YR 6/4) sandy loam, dark yellowish brown (10YR 4/6) moist; massive; slightly hard, very friable, nonsticky and nonplastic; few very fine roots; common very fine irregular pores; strongly effervescent; few fine irregular filaments of calcium carbonate; slightly alkaline (pH 7.6).

Range in Characteristics

Particle-size control section: 18 to 35 percent clay
A horizon:
Hue: 7.5YR or 10YR
Value: 4 or 5 moist
Chroma: 3 or 4 moist
Reaction: neutral or slightly alkaline
Bt horizon:
Hue:7.5YR or 10YR
Value: 3 to 5 moist
Chroma: 4 to 6 dry; 3 to 6 moist
Texture: sandy clay loam or clay loam
Reaction: neutral to moderately alkaline
Bk horizon:
Hue: 7.5YR or 10YR

Value: 4 to 7 dry; 4 to 6 moist
Chroma: 4 to 6 dry and moist
Texture: sandy clay loam or sandy loam
Reaction: slightly to moderately alkaline
Calcium carbonate equivalent: 1 to 5 percent

Eagleye Series

Taxonomic class: Clayey, mixed, active, nonacid, mesic, shallow Ustic Torriorthents
Depth class: Very shallow and shallow
Drainage class: Well drained
Permeability: Slow
Geomorphic position: Mesas, cuestas, hills, and ridges
Parent material: Slope alluvium over residuum derived from shale
Slope range: 5 to 60 percent
Elevation: 6,500 to 7,000 feet
Mean annual air temperature: 46 to 49 degrees F
Mean annual precipitation: 10 to 13 inches
Frost-free period: 100 to 135 days

Typical Pedon

Eagleye gravelly clay loam, in an area of mapping unit 258, Eagleye-Atchee-Rock outcrop complex, 2 to 35 percent slopes; McKinley County, New Mexico; Hunter's Point Quadrangle; about 1,600 feet west and 800 feet south of the northeast corner of sec. 23, T. 16 N., R. 21 W.; latitude 35 degrees, 36 minutes, 49 seconds and longitude 109 degrees, 02 minutes, 46 seconds.

A—0 to 2 inches; light olive brown (2.5Y 5/3) gravelly clay loam, olive brown ($2.5 \mathrm{Y} 4 / 3$) moist; strong very fine granular structure; slightly hard, firm, sticky and plastic; common very fine roots; 16 percent gravel; slightly alkaline (pH 7.8); abrupt smooth boundary.
Cy-2 to 10 inches; light olive brown (2.5Y 5/3) clay, olive brown (2.5Y 4/3) moist; massive; very hard, very firm, moderately sticky and moderately plastic; few very fine roots; few very fine irregular pores; 5 percent gravel and 10 to 20 percent soft shale fragments; few very fine masses gypsum; slightly alkaline (pH 7.8); clear smooth boundary. Cr -10 inches; gray fractured shale.

Range in Characteristics

Particle-size control section: 35 to 50 percent clay
Depth to paralithic contact: 6 to 20 inches to shale
Percent gypsum: 0 to 2 percent in the surface and 1 to 5 percent in the lower horizons
Reaction: Slightly alkaline

A horizon:
Hue: 2.5Y
Value: 4 or 5 dry and moist
Chroma: 3 to 6 dry and moist
Rock fragments: 0 to 30 percent channers. All
fragments are sandstone.
Salinity: EC of 0 to $4 \mathrm{mmhos} / \mathrm{cm}$
Sodicity: SAR 0 to 2
By horizon:
Hue: 2.5Y
Value: 4 or 5 dry, 3 or 4 moist
Chroma: 3 or 4 dry and moist
Texture: silty clay, clay, or clay loam
Rock fragments: 0 to 10 percent sandstone gravel
Salinity: EC of 0 to $4 \mathrm{mmhos} / \mathrm{cm}$
Sodicity: SAR 0 to 4
Other features: 10 to 20 percent soft shale fragments.
Fragments increase with depth.

Eldado Series

Taxonomic class: Fine-loamy over sandy or sandyskeletal, mixed, superactive, mesic Ustic Calciargids
Depth class: Very deep
Drainage class: Well drained
Permeability: Moderate
Geomorphic position: Valley floors
Parent material: Eolian material and stream alluvium derived from basalt and sandstone
Slope range: 1 to 5 percent
Elevation: 6,300 to 7,300 feet
Mean annual air temperature: 49 to 54 degrees F
Mean annual precipitation: 10 to 13 inches
Frost-free period: 120 to 140 days

Typical Pedon

Eldado gravelly fine sandy loam, in an area of mapping unit 275, Eldado gravelly fine sandy loam, 1 to 5 percent slopes; McKinley County, New Mexico; Mesa Cortada Quadrangle; 4,200 feet north and 1,800 feet east of the southwest corner of sec. 14, T. 15 N., R. 6 W.; latitude 35 degrees, 32 minutes, 00 seconds and longitude 107 degrees, 26 minutes, 38 seconds (fig. 18).
A-0 to 2 inches; brown (10YR 5/3) gravelly fine sandy loam, brown (10YR 4/3) moist; moderate thin platy structure parting to weak fine granular structure: soft, very friable, nonsticky and nonplastic; many very fine and fine roots; common fine irregular pores; 13 percent gravel, 1 percent cobbles, and 1
percent stones; slightly effervescent; neutral (pH 7.2); clear smooth boundary.

Btk1-2 to 9 inches; brown (7.5YR 5/4) sandy clay loam, brown (7.5YR 4/3) moist; moderate fine and medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; many very fine and fine roots; common fine irregular pores; many distinct clay films bridging sand grains and on ped faces; 5 percent gravel, 1 percent cobbles, and 1 percent stones; slightly effervescent; common very fine and fine masses of calcium carbonate and coating rock fragments; 6 percent calcium carbonate equivalent; slightly alkaline (pH 7.8); clear wavy boundary.
Btk2-9 to 13 inches; pale brown (10YR 6/3) sandy clay loam, brown (10YR 5/3) moist; moderate fine and medium subangular blocky structure; hard, firm, slightly sticky and slightly plastic; common very fine and fine roots; common fine irregular pores; common distinct clay films bridging sand grains; 10 percent gravel and 2 percent cobbles; violently effervescent; 35 percent calcium carbonate equivalent; moderately alkaline (pH 8.0); clear wavy boundary.
Bk1-13 to 25 inches; light gray (10YR 7.2) sandy clay loam, pale brown (10YR 6/3) moist; weak medium and coarse subangular blocky structure; hard, firm, slightly sticky and slightly plastic; common very fine and fine roots; common fine irregular pores; 10 percent gravel and 1 percent cobbles; violently effervescent; 45 percent calcium carbonate equivalent; strongly alkaline (pH 8.6); gradual wavy boundary.
2Bk2-25 to 43 inches; light brown (7.5YR 6/3) extremely gravelly loamy coarse sand, brown (7.5YR 5/3) moist; single grained; loose, loose, nonsticky and nonplastic; common very fine and fine roots; 55 percent gravel, 15 percent cobbles, and 5 percent stones; strongly effervescent; many very fine and fine masses of calcium carbonate and coating rock fragments; 5 percent calcium carbonate equivalent; strongly alkaline (pH 8.8); gradual wavy boundary.
2C-43 to 72 inches; light brown (7.5YR 6/3) extremely gravelly coarse sand, brown (7.5YR 5/3) moist; single grained; loose, loose, nonsticky and nonplastic; few very fine and fine roots; 60 percent gravel, 5 percent cobbles, and 1 percent stones; slightly alkaline (pH 7.6).

Range in Characteristics

Particle-size control section: 20 to 35 percent clay and less than 35 percent rock fragments in the upper
part; and less than 10 percent clay and greater than 35 percent rock fragments in the lower part. Depth to calcic horizon: 5 to 15 inches with 15 to 55 percent calcium carbonate equivalent Depth to horizons with greater than 35 percent rock fragments: 10 to 30 inches
Reaction: neutral to slightly alkaline in the surface and slightly to strongly alkaline
A horizon:
Value: 4 or 5 dry, 3 or 4 moist
Chroma: 3 or 4 dry
Texture: fine sandy loam or loam
Rock fragments: 10 to 40 percent total; 10 to 40 percent gravel; 0 to 1 percent cobbles; 0 to 1 percent stones. All fragments are basalt and sandstone.
Calcium carbonate equivalent: 1 to 5 percent
Bt or Btk horizons:
Hue: 7.5YR or 10YR
Value: 5 or 6 dry, 3 to 5 moist
Chroma: 3 or 4 dry or moist
Texture: sandy clay loam, loam, or clay loam
Rock fragments: 2 to 25 percent total; 2 to 20 percent gravel; 0 to 5 percent cobbles; 0 to 1 percent stones. All fragments are basalt and sandstone.
Calcium carbonate equivalent: 5 to 35 percent
Bk horizon (when present):
Hue: 7.5YR or 10YR
Chroma: 2 to 4 dry or moist
Rock fragments: 5 to 20 percent total range; 5 to 20
percent gravel; 0 to 1 percent cobbles. All fragments are basalt and sandstone.
Calcium carbonate equivalent: 15 to 50 percent
2Bk horizons:
Hue: 7.5YR or 10YR
Value: 5 to 8 dry, 3 through 8 moist
Chroma: 1 to 4 dry, 3 or 4 moist
Texture: sandy clay loam, coarse sandy loam, or loamy coarse sand
Rock fragments: 35 to 90 percent total range; 35 to 70 percent gravel; 10 to 30 percent cobbles; 0 to 5 percent stones. All fragments are basalt and sandstone.
Calcium carbonate equivalent: 5 to 55 percent
C horizon (when present):
Hue: 7.5YR, 10YR, or 2.5YR
Chroma: 2 or 3 dry or moist
Texture: sand or coarse sand
Rock fragments: 5 to 70 percent total range; 5 to 60 percent gravel; 0 to 5 percent cobbles; 0 to 1
percent stones. All fragments are basalt and sandstone.
Calcium carbonate equivalent: 0 to 5 percent

Elias Series

Taxonomic class: Fine-loamy, mixed, superactive, mesic Ustic Natrargids
Depth class: Very deep
Drainage class: Well drained
Permeability: Slow
Geomorphic position: Valley sides
Parent material: Fan alluvium derived from sandstone and shale
Slope range: 1 to 6 percent
Elevation: 6,300 to 6,800
Mean annual air temperature: 46 to 49 degrees F
Mean annual precipitation: 9 to 10 inches
Frost-free period: 100 to 135 days

Typical Pedon

Elias fine sandy loam, in an area of mapping unit 12, Calladito-Elias association, 1 to 6 percent slopes; McKinley County, New Mexico; Pueblo Alto Trading Post Quadrangle; 1,300 feet west and 300 feet south of the northeast corner of sec. 19, T. 19 N., R. 6 W.; latitude 35 degrees, 57 minutes, 24 seconds and longitude 107 degrees, 30 minutes, 43 seconds.
E-0 to 1 inches; light yellowish brown (10YR 6/4) fine sandy loam, yellowish brown (10YR 5/4) moist; weak fine granular structure; soft, very friable, nonsticky and nonplastic; few very fine and fine roots; common very fine pores; 5 percent siderite gravel; strongly effervescent; moderately alkaline (pH 8.0); abrupt smooth boundary.
Btn1-1 to 3 inches; pale brown (10YR 6/3) sandy clay loam, brown (10YR 5/3) moist; moderate fine prismatic; hard, friable, slightly sticky and nonplastic; few very fine and fine roots; common fine pores; common distinct clay films on faces of peds and lining pores; strongly effervescent; strongly alkaline (pH 9.0); abrupt smooth boundary.
Btn2—3 to 10 inches; yellowish brown (10YR 5/4) sandy clay loam, dark yellowish brown (10YR 4/4) moist; weak fine prismatic structure parting moderate medium subangular blocky; hard, friable, slightly sticky and nonplastic; few very fine and fine roots; common fine pores; common distinct clay films on faces of peds and lining pores; 5 percent siderite gravel; strongly effervescent; strongly alkaline (pH 8.8); clear smooth boundary.

Bkn1-10 to 18 inches; light yellowish brown (10YR 6/4) loamy fine sand, light yellowish brown (10YR 6/4) moist; massive; hard, very friable, non-sticky and nonplastic; few very fine and fine roots; few very fine pores; slightly effervescent; few fine irregular masses of calcium carbonate; strongly alkaline (pH 8.6); clear smooth boundary.
Bkn2-18 to 33 inches; light olive gray ($5 \mathrm{Y} 6 / 2$) sandy clay loam, olive gray ($5 \mathrm{Y} 5 / 2$) moist; massive; hard, firm, slightly sticky and slightly plastic; few very fine and fine roots; common fine pores; slightly effervescent; few fine irregular masses of calcium carbonate; moderately alkaline (pH 8.0); clear smooth boundary.
Bkn3-33 to 65 inches; pale olive ($5 \mathrm{Y} 6 / 4$) clay loam, olive (5Y 5/4) moist; massive; hard, firm, sticky and plastic; few fine pores; slightly effervescent; strongly alkaline (pH 8.8).

Range in Characeristics

Particle-size control section: 18 to 35 percent clay Depth to secondary calcium carbonate: 5 to 15 inches. Calcium carbonate equivalent: 5 to 15 percent

E horizon:

Value: 6 dry; 4 or 5 moist
Chroma: 2 to 4 dry; 3 or 4 moist
Texture: sandy clay loam or loam
Rock fragments: 0 to 10 percent siderite gravel
Reaction: moderately to strongly alkaline
Salinity: EC of 0 to $2 \mathrm{mmhos} / \mathrm{cm}$
Sodicity: SAR of 5 to 10
Btn horizon:
Hue: 10YR to $5 Y$
Value: 4 to 6 dry; 3 to 5 moist
Chroma: 2 to 4
Texture: sandy clay loam, loam, or clay loam
Rock fragments: 0 to 10 percent siderite gravel
Reaction: strongly to very strongly alkaline
Salinity: EC of 0 to 4 mmhos
Sodicity: SAR of 13 to 30
Bkn horizon:
Hue: 10YR to 5 Y
Value: 4 to 6;
Chroma: 2 to 4
Texture: loamy sand, very fine sandy loam, loam, loamy fine sand, sandy clay loam, or clay loam
Rock fragments: 0 to 10 percent siderite gravel
Reaction: moderately to very strongly alkaline
Salinity: EC of 0 to 4 mmhos
Sodicity: SAR of 13 to 30
Some pedons have a C horizon below the Bkn horizon.

Escawetter Series

Taxonomic class: Sandy, mixed, mesic Oxyaquic Torrifluvents
Depth class: Very Deep
Drainage class: Moderately well drained
Permeability: Rapid to moderate
Geomorphic position: Flood plains on valley floors
Parent material: Stream alluvium derived from sandstone and shale
Slope range: 0 to 1 percent
Elevation: 5,500 to 6,900 feet
Mean annual air temperature: 46 to 55 degrees F
Mean annual precipitation: 7 to 13 inches
Frost-free period: 100 to 150 days

Typical Pedon

Escawetter fine sand in an area of mapping unit 160, Escawetter-Riverwash-Razito, 0 to 5 percent slopes; Navajo Reservation; San Juan County, New Mexico; The Pillar 3 NE Quadrangle; Flood plains along the Chaco River; latitude 36 degrees, 10 minutes, 01 seconds and longitude 108 degrees, 16 minutes, 45 seconds.

C1-0 to 1 inches; pale brown (10YR 6/3) fine sand, brown (10YR 5/3) moist; weak thin platy structure and single grain; loose, nonsticky and nonplastic; moderately alkaline (pH 8.0); abrupt smooth boundary.
C2-1 to 7 inches; pale brown (10YR 6/3) fine sand, brown (10YR 5/3) moist; single grain; loose, nonsticky and nonplastic; few very fine roots; moderately alkaline (pH 8.0); abrupt wavy boundary.
C3-7 to 16 inches; pale brown and light yellowish brown (10YR 6/3) and 2.5Y 6/3) laminated very fine sand and silt, brown and light olive brown (10YR $5 / 3$) and (2.5Y 5/3) moist; massive; loose and soft, very friable, slightly sticky and slightly plastic; common very fine and fine roots; few very fine irregular pores; slightly effervescent; moderately alkaline (pH 8.0); clear wavy boundary.
C4-16 to 22 inches; light yellowish brown ($2.5 \mathrm{Y} 6 / 3$) laminated very fine sands and silt, light olive brown (2.5Y 5/3) moist; massive; soft, very friable, slightly sticky and nonplastic; few very fine and fine roots; few very fine irregular pores; moderately alkaline (pH 8.0); abrupt wavy boundary.
C5-22 to 52 inches; light yellowish brown ($2.5 \mathrm{Y} 6 / 3$) fine sand, light olive brown ($2.5 \mathrm{Y} 5 / 3$) moist; single grain; loose, nonsticky and nonplastic; few very fine roots; moderately alkaline (pH 8.0); abrupt wavy boundary.

C6—52 to 70 inches; light yellowish brown (2.5Y 6/3) coarse sand, light olive brown (2.5Y 5/3) moist; single grain; loose, nonsticky and nonplastic; few very fine roots; water saturated conditions at 52 inches; moderately alkaline (pH 8.0).

Range in Characteristics

Particle-size control section: 2 to 10 percent clay
Rock fragment content: 0 to 5 percent sandstone gravel
Depth to seasonal water table: 40 to 60 inches
Calcium carbonate equivalent: 0 to 5 percent; some pedons are calcareous to the surface.
Redoximorphic features: none to many, fine to medium, and faint to distinct, dark yellowish brown, redox concentrations. Redox depletions are present below 40 inches and generally in finer textured horizons or strata.
Salinity: EC of 0 to $4 \mathrm{mmhos} / \mathrm{cm}$
Sodicity: SAR of 0 to 5
Reaction: slightly to moderately alkaline
C horizons:
Hue: 10YR or 2.5Y.
Value: 5 to 7 dry, 4 to 6 moist.
Chroma: 2 to 4.
Texture: stratified coarse sand to silty clay; most horizons are dominantly fine sand, loamy fine sand, and sand, with laminations and thin strata of very fine sand, loamy very fine sand, silt loam and silty clay; individual horizons are laterally discontinuous and cross laminated.

Eslendo Series

Taxonomic class: Loamy, mixed, superactive, calcareous, mesic, shallow Ustic Torriorthents
Depth class: Very shallow and shallow
Drainage class: Well drained
Permeability: Moderately slow
Geomorphic position: Hills and ridges
Parent material: Slope alluvium over residuum derived from sandstone and shale
Slope range: 2 to 25 percent
Elevation: 6,300 to 6,800 feet
Mean annual air temperature: 46 to 49 degrees F
Mean annual precipitation: 9 to 10 inches
Frost-free period: 100 to 135 days

Typical Pedon

Eslendo loam, in an area of mapping unit 14, Councelor-Eslendo-Calladito complex, 2 to 25 percent slopes; McKinley County, New Mexico; Ojo Encino Mesa Quadrangle; 500 feet west and 200 feet north of
the southeast corner of sec. 2, T. 20 N., R. 5 W.; latitude 35 degrees, 59 minutes, 09 seconds and longitude 107 degrees, 19 minutes, 40 seconds.

A-0 to 2 inches; light olive brown (2.5Y 5/4) loam, dark yellowish brown (10YR 3/4) moist; weak fine granular structure; soft, very friable, nonsticky and nonplastic; few fine and very fine roots; common very fine irregular pores; slightly effervescent; neutral (pH 7.2); abrupt smooth boundary.
C1-2 to 6 inches; light olive brown (2.5Y 5/6) silty clay loam, light olive brown (2.5Y 5/4) moist; massive; slightly hard, friable, slightly sticky and nonplastic; few medium, fine and very fine roots; few very fine irregular pores; 2 percent gravel-sized angular shale fragments; strongly effervescent; slightly alkaline (pH 7.6); clear smooth boundary.
C2—6 to 11 inches; light brownish gray (2.5Y 6/2) silty clay loam, olive brown (2.5Y 4/4) moist; massive; slightly hard, friable, slightly sticky and slightly plastic; few medium, fine and very fine roots; few very fine irregular pores; 10 percent gravel-sized angular shale fragments; strongly effervescent; moderately alkaline (pH 8.0); clear smooth boundary.
$2 \mathrm{Cr}-11$ inches; weathered shale.

Range in Characteristics

Particle-size control section: 18 to 35 percent clay Depth to a paralithic contact: 4 to 20 inches to shale
Rock fragments: 0 to 15 percent gravel. All fragments are sandstone.
Calcium carbonate equivalent: 1 to 5 percent in the surface and 5 to 10 in the subsoil
Reaction: neutral in the surface and slightly to moderately alkaline in the substratum

A horizon:

Hue: 10YR or 2.5Y
Value: 3 to 5 moist
Chroma: 4 dry and moist
C horizon:
Hue:2.5Y
Value: 5 or 6 dry; 4 or 5 moist
Chroma: 2 to 6 dry
Texture: silty clay loam or clay loam

Evpark Series

Taxonomic class: Fine-loamy, mixed, superactive, mesic Aridic Haplustalfs
Depth class: Moderately deep
Drainage class: Well drained
Permeability: Moderately slow

Geomorphic position: Mesas, cuestas, and ridges
Parent material: Eolian material and slope alluvium derived from sandstone and shale
Slope range: 2 to 8 percent
Elevation: 6,800 to 8,000 feet
Mean annual air temperature: 46 to 49 degrees F
Mean annual precipitation: 13 to 16 inches
Frost-free period: 100 to 135 days

Typical Pedon

Evpark fine sandy loam, in an area of mapping unit 555, Parkelei-Evpark fine sandy loams, 2 to 8 percent slopes; Cibola County, New Mexico; Plumasano Basin Quadrangle; 1,600 feet south and 1,200 feet west of the northeast corner of sec. 12, T. 8 N., R. 19 W.; latitude 34 degrees, 56 minutes, 22 seconds and longitude 108 degrees, 47 minutes, 13 seconds.
A-0 to 3 inches; brown (7.5YR 5/4) fine sandy loam, dark brown (7.5YR 3/4) moist; weak fine granular structure; soft, very friable, nonsticky and nonplastic; many very fine and common fine roots; few fine tubular pores; neutral (pH 7.2); abrupt smooth boundary.
Bt1-3 to 16 inches; brown (7.5YR 4/4) clay loam, dark brown (7.5YR 3/4) moist; weak medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; common very fine and fine and few medium roots; few fine tubular pores; common distinct clay films bridging sand grains; neutral (pH 7.2); clear smooth boundary.
Bt2—16 to 20 inches; brown (7.5YR 4/4) clay loam, strong brown (7.5YR 4/6) moist; strong medium prismatic structure; hard, firm, sticky and slightly plastic; common very fine and few fine roots; few fine tubular pores; many prominent clay films on faces of peds; neutral (pH 7.2); clear smooth boundary.
Bt3-20 to 29 inches; strong brown (7.5YR 4/6) sandy clay loam, strong brown (7.5YR 4/6) moist; strong medium prismatic structure; hard, firm, slightly sticky and slightly plastic; few very fine and fine roots; few very fine tubular pores; many prominent clay films on faces of peds and bridging sand grains; slightly alkaline (pH 7.4); abrupt smooth boundary.
Btk—29 to 35 inches; strong brown (7.5YR 4/6) sandy clay loam, brown (7.5YR 5/4) moist; weak medium prismatic structure; hard, friable, slightly sticky and slightly plastic; few very fine and fine roots; few very fine tubular pores; common prominent clay films on faces of peds and bridging sand grains; strongly effervescent; common fine seams and filaments of calcium carbonate; slightly alkaline (pH 7.6); abrupt smooth boundary.

2R-35 inches; sandstone

Range in Characteristics

Particle-size control section: 20 to 35 percent clay and greater than 35 percent sand
Depth to lithic contact: 20 to 40 inches to sandstone
Reaction: neutral to slightly alkaline in the surface and neutral to moderately alkaline in the subsoil
A horizon:
Hue: 7.5YR or 10YR
Value: 3 or 4 moist
Chroma: 3 or 4 moist
Texture: fine sandy loam or loam
Rock fragments: 0 to 10 percent sandstone gravel
Bt horizons:
Hue: 5YR or 7.5YR
Value: 4 or 5 dry, 3 to 5 moist
Texture: sandy clay loam or clay loam
Rock fragments: 0 to 5 percent sandstone gravel
Btk horizon (when present):
Value: 4 or 5
Chroma: 4 or 6
Calcium carbonate equivalent: 1 to 10 percent
Some pedons have a Bk horizon above the lithic contact.

Fajada Series

Taxonomic class: Fine-loamy, mixed, superactive, mesic Typic Natrargids
Depth class: Moderately deep
Drainage class: Well drained
Permeability: Slow
Geomorphic position: Valley floors and cuestas
Parent material: Alluvial material derived from sandstone and shale
Slope range: 1 to 5 percent
Elevation: 5,800 to 6,800 feet
Mean annual air temperature: 50 to 55 degrees F
Mean annual precipitation: 7 to 9 inches
Frost-free period: 130 to 150 days

Typical Pedon

Fajada gravelly sandy clay loam, in an area of mapping unit 116, Fajada-Huerfano-Benally complex, 1 to 5 percent slopes; McKinley County, New Mexico; Seven Lakes NW Quadrangle; 200 feet west and 2,100 feet north of the southeast corner of sec. 25, T. 20 N., R. 11 W.; latitude 35 degrees, 56 minutes, 40 seconds and longitude 107 degrees, 56 minutes, 55 seconds.
E—0 to 2 inches; light yellowish brown (10YR 6/4)
gravelly sandy clay loam, dark yellowish brown (IOYR 4/6) moist; moderate fine granular structure; soft, friable, slightly sticky and nonplastic; few fine and very fine roots; common fine vesicular pores; 30 percent gravel; slightly effervescent; moderately alkaline (pH 8.0); abrupt smooth boundary.
Btkn1-2 to 6 inches; yellowish brown (10YR 5/4) clay loam yellowish brown (IOYR 5/6) moist; moderate fine prismatic structure; hard, firm, sticky and slightly plastic; few medium, fine and very fine roots; many fine irregular pores; common prominent clay films on faces of peds and lining pores; strongly effervescent; very few very fine and fine masses of calcium carbonate; very strongly alkaline (pH 9.4); abrupt smooth boundary.
Btkn2—6 to 12 inches; yellowish brown (10YR 5/6) sandy clay loam, dark yellowish brown (10YR 4/6) moist; weak medium prismatic structure parting to weak medium subangular blocky; hard, friable, slightly sticky and nonplastic; few medium, fine and very fine roots; few fine tubular pores; common distinct clay films bridging sand grains; strongly effervescent; few fine masses and seams of calcium carbonate; very strongly alkaline (pH 9.6); clear smooth boundary.

Btknz-12 to 16 inches; light yellowish brown (10YR 6/4) sandy clay loam, dark yellowish brown (10YR 4/6) moist; weak medium subangular blocky structure; hard, friable, slightly sticky and nonplastic; few fine and very fine roots; few fine tubular pores; few distinct clay films bridging sand grains; few clusters of very fine and fine sodium sulfate crystals; EC of 3.7 mmhos/cm; strongly effervescent; few fine masses, seams and filaments of calcium carbonate; very strongly alkaline (pH 9.4); clear smooth boundary.
Bkyz-16 to 28 inches; light yellowish brown (IOYR 6/ 4) clay loam (10YR 5/6) yellowish brown moist, massive, hard, firm, sticky and plastic; few very fine irregular pores; many clusters of very fine and fine sodium sulfate and gypsum crystals; EC of 10.6 mmhos/cm; 2 percent gypsum; strongly effervescent; very few very fine and fine masses of calcium carbonate; moderately alkaline (pH 8.2); clear smooth boundary.
$2 \mathrm{Cr}-28$ inches; soft sandstone interbedded with soft shale.

Range in Characteristics

Particle-size control section: 20 to 35 percent clay and greater than 35 percent sand
Depth to paralithic contact: 20 to 40 inches to interbedded soft sandstone and shale

Depth to sodium sulfate and/or gypsum accumulations: 10 to 25 inches. Sodium sulfate is present in all pedons. Gypsum may be absent, or insignificant, in some pedons.
E horizon:
Value: 3 to 6 dry, 3 to 5 moist
Chroma: 3 to 6
Rock fragments: 5 to 35 percent siderite and sandstone gravel
Reaction: moderately or strongly alkaline
Btkn horizon:
Hue: 10YR or 2.5 Y
Value: 3 to 6 dry, 3 to 5 moist
Chroma: 3 to 6
Texture: clay loam or sandy clay loam
Rock fragments: 0 to 5 percent siderite and sandstone gravel
Calcium carbonate equivalent: 1 to 15 percent
Sodicity: SAR of 13 to 35
Salinity: EC of 1 to $4 \mathrm{mmhos} / \mathrm{cm}$
Reaction: strongly or very strongly alkaline
Bkyz horizon:
Hue: 10YR or 2.5Y
Value: 4 to 6 dry and moist
Chroma: 4 to 6
Texture: clay loam or sandy clay loam
Rock fragments: 0 to 5 percent siderite and sandstone gravel
Calcium carbonate equivalent: 1 to 15 percent
Sodicity: SAR of 5 to 13
Salinity: EC of 4 to 16 mmhos/cm
Gypsum: 5 to 10 percent
Reaction: moderately to strongly alkaline

Farb Series

Taxonomic class: Loamy, mixed, superactive, calcareous, mesic Lithic Torriorthents
Depth class: Very shallow and shallow
Drainage class: Somewhat excessively drained
Permeability: Moderately rapid
Geomorphic position: Cuestas mesas, hills, and ridges
Parent material: Eolian material over residuum derived from sandstone
Slope range: 2 to 15 percent
Elevation: 5,800 to 6,800 feet
Mean annual air temperature: 50 to 55 degrees F
Mean annual precipitation: 7 to 9 inches
Frost-free period: 130 to 150 days

Typical Pedon

Farb sandy loam, in an area of mapping unit 118, Farb-

Chipeta-Rock outcrop complex, 2 to 30 percent slopes; McKinley County, New Mexico; Seven Lakes NW Quadrangle; 1,100 feet west and 1,600 feet north of the southeast corner of sec. 6, T. 19 N., R. 10 W.; latitude 35 degrees, 54 minutes, 12 seconds and longitude 107 degrees, 56 minutes, 9 seconds.
A-0 to 2 inches; light yellowish brown (10YR 6/4) sandy loam, yellowish brown (10YR 5/4) moist; weak fine granular structure; soft, very friable, nonsticky and nonplastic; few very fine roots; few very fine irregular pores; slightly effervescent; slightly alkaline (pH 7.4); abrupt smooth boundary.
C-2 to 9 inches; light yellowish brown (10YR 6/4) sandy loam, yellowish brown (10YR 5/4) moist; massive; soft, very friable, nonsticky and nonplastic; few fine and common very fine roots; few very fine irregular pores; 5 percent gravel; slightly effervescent; slightly alkaline (pH 7.8); abrupt smooth boundary.
2R-9 inches; sandstone.

Range in Characteristics

Particle-size control section: 5 to 18 percent clay Depth to a lithic contact: 5 to 20 inches to sandstone Calcium carbonate equivalent: 1 to 10 percent Reaction: slightly alkaline
A horizon:
Hue: 10YR or 2.5 Y
Value: 4 or 5 moist
Chroma: 3 or 4 moist
Rock fragments: 0 to 60 percent sandstone gravel
C horizon:
Hue: 10YR or 2.5 Y
Value: 4 or 5 moist
Chroma: 3 or 4 moist
Rock fragments: 0 to 15 percent sandstone gravel

Farview Series

Taxonomic class: Loamy, mixed, active, calcareous, mesic Lithic Ustic Torriorthents
Depth class: Very shallow and shallow
Drainage class: Somewhat excessively drained
Permeability: Moderately rapid
Geomorphic position: Cuestas
Parent material: Eolian material derived from sandstone
Slope range: 2 to 15 percent
Elevation: 6,500 to 6,900 feet
Mean annual air temperature: 46 to 49 degrees F
Mean annual precipitation: 10 to 13 inches
Frost-free period: 100 to 135 days

Typical Pedon

Farview loamy fine sand, in an area of mapping unit 255, Farview-Rock outcrop complex, 2 to 15 percent slopes; McKinley County, New Mexico; Navajo Reservation; Oak Spring Quadrangle; T. 17N, R. 15 W.; latitude 35 degrees, 43 minutes, 53 seconds and longitude 108 degrees, 28 minutes, 51 seconds.
A-0 to 1 inches; yellowish brown (10YR 5/4) loamy fine sand, dark yellowish brown (10YR 4/4) moist; weak very fine granular structure; loose, very friable, nonsticky and nonplastic; common very fine roots; 5 percent gravel; very slightly effervescent; moderately alkaline (pH 8.0); abrupt smooth boundary.
C-1 to 10 inches; strong brown (7.5YR 5/6) fine sandy loam, strong brown (7.5YR 4/6) moist; massive; soft, very friable, nonsticky and nonplastic; common very fine, fine, and few medium roots; 1 percent gravel; slightly effervescent; moderately alkaline (pH 8.0); clear smooth boundary.
Ck-10 to 17 inches; strong brown (7.5YR 5/6) fine sandy loam, strong brown (7.5YR 4/6) moist; massive; soft, very friable, nonsticky and nonplastic; many very fine and fine roots; 1 percent gravel; slightly effervescent; few very fine masses of calcium carbonate; moderately alkaline (pH 8.0); abrupt smooth boundary.
2R-17 inches; sandstone bedrock

Range in Characteristics

Particle-size control section: 10 to 18 percent clay
Rock fragments: 0 to 10 percent gravel and 0 to 5 percent cobbles. All fragments are sandstone.
Depth to lithic contact: 5 to 20 inches to sandstone
Calcium carbonate equivalent: 1 to 10 percent
Reaction: slightly alkaline in the surface and moderately alkaline in the substratum
A horizon:
Hue:7.5YR or 10YR
Value: 5 or 6 dry, 4 or 5 moist
Chroma: 4 dry or moist
Chorizon:
Hue:7.5YR or 10YR
Value: 5 or 6 dry, 4 or 5 moist
Chroma: 4 to 6 , dry and moist

Fikel Series

Taxonomic class: Fine, mixed, superactive, mesic Aridic Haplustalfs
Depth class: Very deep

Drainage class: Well drained
Permeability: Slow
Geomorphic position: Valley sides
Parent material: Fan alluvium derived from sandstone and shale
Slope range: 1 to 6 percent
Elevation: 7,000 to 7,600 feet
Mean annual air temperature: 49 to 53 degrees F
Mean annual precipitation: 13 to 16 inches
Frost-free period: 115 to 135 days

Typical Pedon

Fikel clay loam, in an area of mapping unit 308, FikelVenzuni complex, 1 to 6 percent slopes; McKinley County, New Mexico; Pine Canyon Quadrangle; 600 feet east, 1,400 feet south of the northwest corner of sec. 9, T. 13 N., R. 13 W.; latitude 35 degrees, 22 minutes, 28 seconds and longitude 108 degrees, 13 minutes, 39 seconds.
A- 0 to 3 inches; reddish brown (5YR 4/3) clay loam, dark reddish brown (5YR 3/3) moist; moderate fine granular structure; soft, friable, slightly sticky and slightly plastic; many very fine and fine roots; 3 percent siliceous gravel; neutral (pH 7.2); abrupt smooth boundary (1 to 3 inches thick).
Bt-3 to 14 inches; reddish brown (5YR 4/3) clay, dark reddish brown (5YR 3/3) moist; moderate fine and medium subangular blocky structure; hard, firm, sticky and plastic; common very fine and fine roots; few fine irregular pores; many prominent clay films on faces of peds; slightly effervescent; slightly alkaline (pH 7.8); abrupt smooth boundary (5 to 21 inches thick).
Btk1-14 to 32 inches; reddish brown (5YR 4/3) clay, dark reddish brown (5YR $3 / 3$) moist; moderate fine and medium subangular blocky structure; very hard, very firm, sticky and plastic; common very fine and fine roots; few very fine irregular pores; many prominent clay films on faces of peds; few fine masses of calcium carbonate; strongly effervescent; moderately alkaline (pH 8.0); clear smooth boundary.
Btk2-32 to 50 inches; reddish brown (5YR 4/3) sandy clay loam, reddish brown (5YR 4/3) moist; moderate fine subangular blocky structure; hard, firm, slightly sticky and slightly plastic; few very fine roots; common distinct clay films on faces of peds; common fine and medium masses of calcium carbonate; violently effervescent (6 percent calcium carbonate equivalent); moderately alkaline (pH 8.0); clear smooth boundary.
Btk3-50 to 65 inches; reddish brown (5YR 4/3) clay, dark reddish brown (5YR 4/3) moist; moderate fine subangular blocky structure; very hard, very firm,
sticky and plastic; few very fine roots; common distinct clay films on faces of peds; few very fine masses of calcium carbonate; strongly effervescent; moderately alkaline (pH 8.0); clear smooth boundary.
Btk4-65 to 70 inches; reddish brown (5YR 4/3) sandy clay loam, dark reddish brown (5YR 4/3) moist; moderate fine subangular blocky structure; hard, very firm, slightly sticky and slightly plastic; few very fine roots; common distinct clay films on faces of peds; few very fine masses of calcium carbonate; very slightly effervescent; moderately alkaline (pH 8.0). (The combined thickness of the Btk horizons is 28 to 60 inches.)

Range in Characteristics

Particle-size control section: 35 to 50 percent clay and greater than 30 percent sand
Depth to secondary calcium carbonate: 7 to 28 inches, with some pedons calcareous to the surface
Salinity: 0 to $2 \mathrm{mmhos} / \mathrm{cm}$
Sodicity: SAR of 0 to 5
Reaction: neutral to slightly alkaline in the surface and slightly to moderately alkaline in the subsoil

A horizon:

Hue: 2.5YR to 7.5YR
Value: 3 to 5 dry, 2.5 or 3 moist
Chroma: 2 or 3
Rock fragments: 0 to 5 percent siliceous gravel
Calcium carbonate equivalent: 0 to 5 percent
Bt horizon:
Hue: 2.5YR to 5YR
Value: 3 to 5 dry, 2.5 or 3 moist
Chroma: 2 or 3 moist
Rock fragments: 0 to 10 percent siliceous gravel Calcium carbonate equivalent: 0 to 5 percent
Btk horizons:
Hue: 2.5YR or 5YR
Value: 3 to 6 dry, 2.5 to 4 moist
Chroma: 3 or 4 dry, 2 to 4 moist
Texture: clay, clay loam, sandy clay, or sandy clay loam
Rock fragments: 0 to 10 percent siliceous gravel
Calcium carbonate equivalent: 3 to 10 percent

Flugle Series

Taxonomic class: Fine-loamy, mixed, superactive, mesic Aridic Haplustalfs
Depth class: Very deep
Drainage class: Well drained
Permeability: Moderate or moderately slowly

Geomorphic position: Mesas, cuestas, hills, ridges, and valley sides
Parent material: Eolian material and slope alluvium derived from sandstone and shale
Slope range: 1 to 8 percent
Elevation: 6,200 to 7,300 feet
Mean annual air temperature: 49 to 53 degrees F
Mean annual precipitation: 13 to 14 inches
Frost-free period: 115 to 135 days

Typical Pedon

Flugle loam, in an area of mapping unit 315, FlugleFragua complex, 1 to 10 percent slopes; McKinley County, New Mexico; Thoreau Quadrangle; 800 feet south and 1,000 feet west of the northeast corner of sec. 17, T. 14 N., R. 12 W.; latitude 35 degrees, 26 minutes, 54 seconds and longitude 108 degrees, 7 minutes, 31 seconds.
A-0 to 3 inches; light brown (7.5YR 6/4) loam, dark brown (7.5YR 3/4) moist, moderate fine platy structure parting to moderate fine granular; soft, friable, slightly sticky and slightly plastic; many very fine and fine roots; common fine vesicular and irregular pores; strongly effervescent; moderately alkaline; abrupt smooth boundary.
Bt1-3 to 10 inches; dark brown (7.5YR 4/4) sandy clay loam, dark brown (7.5YR 3/4) moist; moderate fine and medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; common very fine and fine roots; few very fine irregular pores; many distinct clay films on ped faces and bridging sand grains; strongly effervescent; moderately alkaline; abrupt smooth boundary.
Bt2-10 to 28 inches; reddish brown (5YR 4/3) clay loam, dark reddish brown (5 YR $3 / 3$) moist; moderate fine and medium subangular blocky structure; very hard, firm, slightly sticky and slightly plastic; common very fine and fine roots; few very fine irregular pores; strongly effervescent; moderately alkaline; abrupt smooth boundary.
Bk-28 to 65 inches; light yellowish brown (10YR 6/4) sandy loam, dark yellowish brown (10YR 3/4) moist; massive; soft, very friable, nonsticky and nonplastic; few very fine roots; few very fine irregular pores; strongly effervescent; many very fine and fine masses of calcium carbonate; moderately alkaline.

Range in Characteristics

Particle-size control section: 18 to 35 percent clay and greater than 35 percent sand
Reaction: neutral to moderately alkaline

A horizon:
Hue:7.5YR or 10YR
Value: 4 to 6 dry; 3 or 4 moist
Chroma: 3 or 4 dry; 3 to 6 moist
Texture: fine sandy loam or loam
Rock fragments: 0 to 5 percent sandstone gravel
Calcium carbonate equivalent: 0 to 5 percent
Bt horizon:
Hue: 5YR to 10YR
Value: 4 or 5 dry; 3 to 5 moist
Chroma: 3 to 6
Texture: sandy clay loam or clay loam
Calcium carbonate equivalent: 0 to 5 percent
Bk or C horizon:
Hue:7.5YR or 10YR
Value: 3 to 5 moist
Chroma: 4 to 6 moist
Texture: sandy loam or sandy clay loam
Calcium carbonate equivalent: 5 to 10 percent

Fortwingate Series

Taxonomic class: Fine, mixed, superactive, frigid Vertic Haplustalfs
Depth class: Moderately deep
Drainage class: Well drained
Permeability: Slow
Geomorphic position: Cuestas, hogbacks, hills, and ridges
Parent material: Slope alluvium over residuum derived from sandstone, shale, or dolomitic limestone
Slope range: 2 to 45 percent
Elevation: 7,200 to 8,200 feet
Mean annual air temperature: 40 to 45 degrees F
Mean annual precipitation: 16 to 20 inches
Frost-free period: 90 to 110 days

Typical Pedon

Fortwingate loam, in an area of mapping unit 405, Fortwingate-Owlrock complex, 2 to 8 percent slopes; McKinley County, New Mexico; Upper Nutria Quadrangle; 1,650 feet east, 750 feet south of the northwest corner of sec. 22, T. 13 N., R. 16 W.; latitude 35 degrees, 20 minutes, 53 seconds and longitude 108 degrees, 31 minutes, 25 seconds.
Oi-0 to 1 inches; slightly decomposed pine needles, oak leaves, and grass.
A-1 to 4 inches; dark reddish gray (5YR 4/2) loam, dark reddish brown (5YR 3/2) moist; weak thin platy structure; slightly hard, very friable, slightly sticky and nonplastic; many very fine, fine, and few medium roots; 2 percent gravel size sandstone
fragments; neutral (pH 7.0); abrupt smooth boundary.
Bt-4 to 9 inches; reddish brown (5YR 4/3) clay loam, dark reddish brown (5YR 3/3) moist; moderate fine and medium subangular blocky structure; hard, firm, slightly sticky and slightly plastic; common very fine, fine, and few medium roots; few very fine irregular pores; common distinct clay films on faces of peds; 2 percent gravel; neutral (pH 7.2); abrupt smooth boundary.
Btss-9 to 26 inches; reddish brown (2.5YR 4/4) clay, dark reddish brown (2.5YR 3/4) moist; strong fine and medium prismatic structure; very hard, very firm, very sticky and very plastic; few fine and medium roots; few very fine irregular pores; the bottom 1.5 inches is weathered sandstone; few pressure faces and slickensides; few vertical cracks 1 mm wide; many prominent clay films on faces of peds; 1 percent gravel; neutral (pH 7.2); abrupt smooth boundary.
2R-26 inches; San Andreas limestone.

Range in Characteristics

Particle-size control section: 35 to 50 percent clay Depth to lithic contact: 20 to 40 inches to dolomitic limestone. Some pedons contact a locally present sandstone bed in the San Andreas formation.
Vertic features: pressure faces and slickensides evident between 5 and 40 inches depth. Some pedons have few vertical cracks less than 5 mm wide.
Reaction: Neutral to slightly alkaline
A horizon:
Hue: 5YR or 7.5YR
Value: 4 or 5 dry, 3 moist
Chroma: 2 or 3
Rock fragments: 0 to 25 percent total; 0 to 20 percent gravel, 0 to 5 percent cobbles, and 0 to 1 percent stones. All fragments are sandstone and limestone.
Reaction: neutral
Bt horizon:
Hue: 2.5YR or 5YR
Chroma: 3 or 4
Textures: clay loam or clay
Rock fragments: 0 to 5 percent sandstone gravel
Reaction: neutral or slightly alkaline
Btss horizon:
Hue: 2.5YR or 5YR
Chroma: 3 or 4
Textures: clay loam, sandy clay, or clay

Rock fragments: 0 to 5 percent sandstone gravel Reaction: neutral or slightly alkaline

Some pedons have a Btk or Bk horizon immediately above the lithic contact.

Fragua Series

Taxonomic class: Coarse-loamy, mixed, superactive, mesic Aridic Haplustalfs
Depth class: Very deep
Drainage class: Somewhat excessively drained
Permeability: Moderately rapid
Geomorphic position: Mesas, cuestas, and valley sides
Parent material: Eolian material and slope alluvium derived from sandstone
Slope range: 1 to 10 percent
Elevation: 6,400 to 7,300 feet
Mean annual air temperature: 49 to 53 degrees F
Mean annual precipitation: 13 to 14 inches
Frost-free period: 115 to 135 days

Typical Pedon

Fragua loamy fine sand, in an area of mapping unit 315, Flugle-Fragua complex, 1 to 10 percent slopes; McKinley County, New Mexico; Thoreau NE Quadrangle; about 200 feet south and 800 feet west of the northeast corner of sec. 17, T. 14 N., R. 12 W.; latitude 35 degrees, 26 minutes, 54 seconds and longitude 108 degrees, 7 minutes, 31 seconds.
A—0 to 2 inches; light brown (7.5YR 6/4) loamy fine sand, dark brown (7.5YR 3/4) moist; moderate medium platy structure parting to moderate fine granular; soft, very friable, nonsticky and nonplastic; many very fine and fine roots; common fine vesicular and irregular pores; strongly effervescent; moderately alkaline (pH 7.6); abrupt smooth boundary.
Btk—2 to 19 inches; reddish brown (5YR 4/4) sandy loam, dark reddish brown (5YR 3/4) moist; moderate fine and medium subangular blocky structure; slightly hard, very friable, nonsticky and nonplastic; common very fine and fine roots; few very fine irregular pores; many distinct clay films bridging sand grains; violently effervescent; few very fine masses of calcium carbonate; moderately alkaline (pH 8.0); abrupt smooth boundary.
Bk—19 to 65 inches; brown (7.5YR 5/4) sandy loam, dark brown (7.5YR 3/4) moist; massive; slightly hard, very friable, nonsticky and nonplastic; few
very fine roots; few very fine irregular pores; violently effervescent; few very fine masses of calcium carbonate; moderately alkaline (pH 8.0).

Range in Characteristics

Particle-size control section: 10 to 18 percent clay Calcium carbonate equivalent: less than 10 percent Reaction: neutral to moderately alkaline

A horizon:
Hue:7.5YR or 10YR
Value: 5 or 6 dry; 3 or 4 moist
Chroma: 2 to 4 moist
Bt horizon:
Hue:5YR or 7.5YR
Value: 4 or 5 dry; 3 to 5 moist
Chroma: 4 to 6 dry; 3 to 6 moist
Bk horizon:
Hue:7.5YR or 10YR
Value: 3 to 6 moist
Chroma: 4 to 6 dry or moist
Some pedons have a sandy C horizon below the Bk horizon.

Fraguni Series

Taxonomic class: Coarse-loamy, mixed, superactive, mesic Aridic Haplustalfs
Depth class: Very deep
Drainage class: Somewhat excessively drained
Permeability: Moderate
Geomorphic position: Mesas, cuestas, plateaus, and valley sides
Parent material: Eolian material and slope alluvium derived from sandstone
Slope range: 1 to 8 percent
Elevation: 6,500 to 7,500 feet
Mean annual air temperature: 46 to 49 degrees F
Mean annual precipitation: 13 to 16 inches
Frost-free period: 100 to 135 days

Typical Pedon

Fraguni loamy fine sand, in an area of mapping unit 320, Parkelei-Fraguni complex, 1 to 8 percent slopes; McKinley County, New Mexico; Vanderwagen Draw Quadrangle; 2,000 feet north and 2,600 feet west of the southeast corner of sec. 31, T. 12 N., R. 18 W.; latitude 35 degrees, 13 minutes, 26 seconds and longitude 108 degrees, 46 minutes, 39 seconds.

A—0 to 4 inches; brown (7.5YR 5/3) loamy fine sand,
dark brown (7.5YR 3/3) moist; single grain structure; loose, very friable, nonsticky and nonplastic; many very fine and few fine roots; slightly alkaline (pH 7.4); abrupt smooth boundary.
Bt1-4 to 20 inches; brown (7.5YR $5 / 3$) fine sandy loam, dark brown (7.5YR 4/3) moist; moderate fine and medium subangular blocky structure; slightly hard, very friable, nonsticky and nonplastic; few very fine and common fine and medium roots; few very fine and fine irregular pores; few distinct clay films on faces of peds and bridging sand grains; slightly alkaline (pH 7.4); abrupt smooth boundary.
Bt2-20 to 46 inches; light brown (7.5YR 6/4) loamy fine sand, brown (7.5YR 5/4) moist; weak very fine and fine subangular blocky structure; slightly hard, very friable, nonsticky and nonplastic; few very fine, fine, and medium roots; few very fine irregular pores; few distinct clay films on faces of peds and bridging sand grains; slightly alkaline (pH 7.4); abrupt smooth boundary.
Bt3-46 to 58 inches; reddish brown (5YR 5/4) sandy clay loam, reddish brown (5YR 4/4) moist; strong fine and medium subangular blocky structure; hard, firm, moderately sticky and slightly plastic; few very fine and fine roots; few very fine irregular pores; common distinct clay films on faces of peds; neutral (pH 6.8); abrupt smooth boundary.
BC-58 to 70 inches; yellowish red (5YR 5/6) fine sandy loam, yellowish red (5YR 4/6) moist; moderate very fine and medium subangular blocky structure; slightly hard, very friable, slightly sticky and nonplastic; few very fine roots; slightly alkaline (pH 7.6).

Range in Characteristics

Particle-size control section: 10 to 18 percent clay and greater than 35 percent sand
Reaction: neutral or slightly alkaline

A horizon:

Hue:7.5YR or 10YR
Value: 5 or 6 dry, 3 or 4 moist
Chroma: 3 or 4
Bt horizon:
Hue: 5YR to 10YR
Value: 4 to 6 dry, 3 or 4 moist
Chroma: 3 to 6 dry, 3 or 4 moist
Texture: sandy loam, fine sandy loam, loamy fine sand, or sandy clay loam

BC horizon:

Hue:5YR or 7.5YR
Value: 4 to 6 dry, 3 or 4 moist

Chroma: 4 to 6 dry, 4 to 6 moist
Texture: sandy loam, fine sandy loam, or sandy clay loam

Some pedons have a Btk horizon.

Fruitland Series

Taxonomic class: Coarse-loamy, mixed, superactive, calcareous, mesic Typic Torriorthents
Depth class: Very deep
Drainage class: Somewhat excessively drained
Permeability: Moderately rapid
Geomorphic position: Valley floors
Parent material: Eolian material and stream alluvium derived from sandstone
Slope range: 1 to 5 percent
Elevation: 5,800 to 6,800 feet
Mean annual air temperature: 50 to 55 degrees F
Mean annual precipitation: 7 to 9 inches
Frost-free period: 130 to 150 days

Typical Pedon

Fruitland loamy fine sand, in an area of mapping unit 110, Benally-Fruitland association, 1 to 5 percent slopes; Navajo Reservation; San Juan County, New Mexico; Red Lake Well Quadrangle; T. 19 N., R. 14 W.; latitude 35 degrees, 52 minutes, 25 seconds and longitude 108 degrees, 19 minutes, 18 seconds.
A-0 to 3 inches; light yellowish brown (10YR 6/4) loamy fine sand, yellowish brown (10YR 5/4) moist; single grain; loose, very friable, nonsticky and nonplastic; many very fine roots; very slightly effervescent; slightly alkaline (pH 7.4); abrupt smooth boundary.
C1-3 to 10 inches; light yellowish brown (10YR 6/4) loamy fine sand, yellowish brown (10YR 6/4) moist; massive; slightly hard, very friable, nonsticky and nonplastic; common very fine and fine roots; very slightly effervescent; slightly alkaline (pH 7.6); clear smooth boundary.
C2-10 to 19 inches; light yellowish brown (10YR 6/4)
loamy fine sand, yellowish brown (10YR 5/4)
moist; massive; slightly hard, very friable, nonsticky and nonplastic; common very fine, fine, and medium roots; few very fine irregular pores; slightly effervescent; slightly alkaline (pH 7.8); clear smooth boundary.
Ck1-19 to 29 inches; light yellowish brown (10YR 6/4) loamy fine sand, yellowish brown (10YR 5/4) moist; massive; slightly hard, very friable, nonsticky and nonplastic; few very fine and fine roots; few very fine irregular pores; slightly effervescent; few very fine masses of calcium
carbonate; slightly alkaline (pH 7.6); abrupt smooth boundary.
Ck2-29 to 65 inches; light yellowish brown (10YR 6/4) fine sandy loam, yellowish brown (10YR 5/4) moist; massive; slightly hard, very friable, nonsticky and nonplastic; few very fine roots; few very fine irregular pores; strongly effervescent; few very fine masses of calcium carbonate; moderately alkaline (pH 8.0).

Range in Characteristics

Particle-size control section: 5 to 18 percent clay

A horizon:

Hue: 10YR or 2.5 Y
Value: 5 or 6 dry; 4 or 5 moist
Chroma: 4 to 6, dry and moist
Calcium carbonate equivalent: 0 to 1 percent
Reaction: slightly alkaline
C horizon:
Hue: 10YR
Value: 5 or 6, dry and moist
Chroma: 4 to 6, dry and moist
Texture: loamy sand or loamy fine sand
Calcium carbonate equivalent: 0 to 1 percent
Reaction: slightly or moderately alkaline
Ck horizon:
Hue: 10YR
Value: 5 or 6, dry and moist
Chroma: 4 to 6, dry and moist
Calcium carbonate equivalent: 1 to 10 percent
Reaction: moderately alkaline

Galzuni Series

Taxonomic class: Fine, mixed, superactive, mesic Aridic Paleustalfs
Depth class: Very deep
Drainage class: Well drained
Permeability: Slow
Geomorphic position: Mesas, cuestas, and hills
Parent material: Eolian material and slope alluvium derived from shale and sandstone
Slope range: 1 to 8 percent
Elevation: 6,800 to 7,600 feet
Mean annual air temperature: 46 to 49 degrees F
Mean annual precipitation: 13 to 16 inches
Frost-free period: 100 to 135 days

Typical Pedon

Galzuni loam, in an area of mapping unit 550, BrywayGalzuni loams, 1 to 8 percent slopes; Cibola County, New Mexico; Shoemaker Canyon Quadrangle; 2,000
feet east and 800 feet north of the southwest corner of sec. 2, T. 8 N., R. 17 W.; latitude 34 degrees, 56 minutes, 47 seconds and longitude 108 degrees, 35 minutes, 59 seconds.

A-0 to 2 inches; yellowish brown (10YR 5/6) loam, dark yellowish brown (10YR 4/4) moist; weak medium platy structure; soft, very friable, nonsticky and nonplastic; common very fine and fine roots; common fine vesicular pores; 5 percent gravel; slightly alkaline (pH 7.4); abrupt smooth boundary.
Bt1-2 to 4 inches; dark yellowish brown (10YR 4/4) clay, dark yellowish brown (10YR 3/6) moist; moderate fine subangular blocky structure; hard, firm, sticky and plastic; common very fine and fine roots; common very fine irregular pores; common distinct clay films on faces of peds; slightly alkaline (pH 7.4); abrupt smooth boundary.
Bt2-4 to 14 inches; strong brown (7.5YR 5/6) clay, brown (7.5YR 4/4) moist; strong medium prismatic structure; very hard, very firm, sticky and plastic; few very fine, fine, and medium roots; few fine tubular pores; many prominent clay films on faces of peds; slightly alkaline (pH 7.4); clear smooth boundary.
Bt3-14 to 23 inches; yellowish brown (10YR 5/6) clay, brown (7.5YR 4/4) moist; weak coarse prismatic structure; very hard, very firm, sticky and plastic; few very fine and fine roots; few fine tubular pores; many prominent clay films on faces of peds; slightly alkaline (pH 7.8); abrupt smooth boundary.
Btk-23 to 32 inches; strong brown (7.5YR 5/6) clay loam, brown (7.5YR 4/4) moist; weak medium prismatic structure; hard, firm, sticky and plastic; few very fine roots; few very fine irregular pores; common distinct clay films bridging sand grains and on faces of peds; slightly effervescent; few fine irregular filaments of calcium carbonate; slightly effervescent; slightly alkaline (pH 7.8); clear smooth boundary.
Bk1-32 to 52 inches; yellowish brown (10YR 5/6) sandy clay, dark yellowish brown (10YR 4/4) moist; massive; hard, firm, sticky and plastic; few very fine roots; common very fine irregular pores; slightly effervescent; few fine irregular filaments of calcium carbonate; slightly alkaline (pH 7.6); clear smooth boundary.
Bk2-52 to 65 inches; yellowish brown (10YR 5/6) sandy clay loam, dark yellowish brown (10YR 4/4) moist; massive; slightly hard, friable, slightly sticky and slightly plastic; few very fine roots; common very fine irregular pores; slightly effervescent; few fine irregular filaments of calcium carbonate; slightly alkaline (pH 7.6).

Range in Characteristics

Particle-size control section: 35 to 50 percent clay
Depth to calcium carbonate: 10 to 30 inches
Reaction: neutral to slightly alkaline in the surface and slightly to moderately alkaline in the subsoil

A horizon:

Value: 3 or 4 moist
Chroma: 3 to 6 dry, 3 or 4 moist
Rock fragments: 0 to 10 percent sandstone gravel

Bt horizons:

Textures: clay or clay loam
Btk horizon:
Hue: 7.5YR or 10YR
Calcium carbonate equivalent: 1 to 5 percent
Bk horizons:
Hue: 7.5YR or 10YR
Value: 4 or 5 moist
Chroma: 4 or 6 moist
Texture: sandy clay, sandy clay loam, or clay loam
Calcium carbonate equivalent: 1 to 5 percent

Gapmesa Series

Taxonomic class: Fine-loamy, mixed, superactive, mesic Ustic Haplargids
Depth class: Moderately deep
Drainage class: Well drained
Permeability: Moderately slow
Geomorphic position: Cuestas, hills, and ridges
Parent material: Eolian material and slope alluvium derived from sandstone and shale
Slope range: 1 to 3 percent
Elevation: 6,400 to 6,800
Mean annual air temperature: 46 to 49 degrees F
Mean annual precipitation: 10 to 13 inches
Frost-free period: 100 to 135 days

Typical Pedon

Gapmesa fine sandy loam, in an area of mapping unit 245, Buckle-Gapmesa-Barboncito complex, 1 to 6 percent slopes; McKinley County, New Mexico; Gallup West Quadrangle; 350 feet west and 2,200 feet south of the northwest corner of sec. 18, T. 16 N., R. 18 W.; latitude 35 degrees, 38 minutes, 24 seconds and longitude 108 degrees, 04 minutes, 55 seconds.

A-0 to 1 inches; brown (10YR $5 / 3$) fine sandy loam, brown (10YR 4/4) moist; weak very fine granular structure; soft, very friable, nonsticky and nonplastic; few very fine roots; slightly alkaline (pH 7.6); abrupt smooth boundary.

Bt-1 to 9 inches; yellowish brown (10YR 5/4) loam,
dark yellowish brown (10YR 4/4) moist; weak medium subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; many very fine and fine roots; few faint clay films on faces of peds and bridging sand grains; very slightly effervescent; slightly alkaline (pH 7.8); clear smooth boundary.
Btk1-9 to 20 inches; light yellowish brown (10YR 6/4) loam, yellowish brown (10YR 5/4) moist; weak fine subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; common very fine, fine and few medium roots; few very fine irregular pores; common distinct clay films on faces of peds; strongly effervescent; common very fine and fine masses of calcium carbonate; moderately alkaline (pH 8.0); clear wavy boundary.
Btk2-20 to 31 inches; light yellowish brown (10YR $6 / 6$) clay loam, yellowish brown (10YR 5/4) moist; moderate very fine and fine subangular blocky structure; hard, friable, sticky and plastic; few very fine and fine roots; few very fine irregular pores; 1 percent gravel; common distinct clay films on faces of peds; strongly effervescent; many fine masses of calcium carbonate; moderately alkaline (pH 8.0); abrupt smooth boundary.
R-31 inches; sandstone bedrock.

Range in Characteristics

Particle-size control section: 18 to 35 percent clay
Rock fragments: 0 to 5 percent sandstone gravel
Depth to a lithic contact: 20 to 40 inches to sandstone
Depth to calcium carbonate: 8 to 17 inches
A horizon:
Hue: 10YR
Value: 5 dry and 4 or 5 moist
Chroma: 4 to 6 dry and moist
Reaction: slightly alkaline
Bt horizon:
Hue: 7.5YR or 10YR
Value: 4 or 5 dry and 4 moist
Chroma: 4 to 6 dry and moist
Texture: sandy clay loam, fine sandy loam, or loam
Reaction: slightly alkaline
Btk horizon:
Hue: 7.5YR or 10YR
Value: 5 or 6 dry and 4 or 5 moist
Chroma: 4 to 6 dry and moist
Texture: sandy clay loam or clay loam
Reaction: moderately alkaline
Calcium carbonate equivalent: 1 to 5 percent

Gish Series

Classification: Fine, mixed, superactive, mesic Ustic Haplocambids
Depth class: Very deep
Drainage class: Well drained
Permeability: Slow
Geomorphic position: Valley sides and drainageways
Parent material: Fan alluvium derived from shale
Slope range: 1 to 8 percent
Elevation: 6,100 to 7,200 feet
Mean annual air temperature: 45 to 49 degrees F
Mean annual precipitation: 10 to 13 inches
Frost-free period: 100 to 135 days

Typical Pedon

Gish clay loam, in an area of mapping unit 242, GishMentmore complex, 1 to 8 percent slopes; McKinley County, New Mexico; Gallup East Quadrangle; 2,600 feet west, 900 feet north of the southeast corner sec. 21, T. 16 N., R. 17 W. latitude 35 degrees, 35 minutes, 52 seconds and longitude 108 degrees, 38 minutes, 37 seconds.

A—0 to 3 inches; light olive brown (2.5Y 5/3) clay loam, olive brown (2.5Y 4/3) moist; thin surface crust above strong very fine granular structure; slightly hard, firm, slightly sticky and slightly plastic; many very fine roots; moderately alkaline (pH 8.0); abrupt smooth boundary.
Bw-3 to 13 inches; light olive brown (2.5Y 5/4) clay, olive brown (2.5Y 4/4) moist; strong very fine, fine and medium angular blocky structure; very hard, very firm, moderately sticky and moderately plastic; many very fine roots; few very fine irregular pores; few sand coatings on ped faces; few pressure faces; slightly alkaline (pH 7.8); abrupt smooth boundary.
Bky1-13 to 27 inches; grayish brown (2.5Y 5/2) clay, dark grayish brown (2.5Y 4/2) moist; weak very fine and fine subangular blocky structure; very hard, very firm, moderately sticky and moderately plastic; common very fine and few fine roots; few very fine irregular pores; 1 percent gravel; very slightly effervescent; few very fine masses of calcium carbonate; common very fine masses of gypsum; slightly alkaline (pH 7.8); abrupt wavy boundary.
Bky2—27 to 55 inches; olive brown (2.5Y 4/4) and ($2.5 \mathrm{Y} 3 / 2$) clay, olive brown (2.5Y 4/4) moist; weak medium and coarse subangular blocky structure; very hard, very firm, moderately sticky and
moderately plastic; few very fine roots; few very fine irregular pores; few pressure faces; very slightly effervescent; few very fine masses of calcium carbonate; common very fine masses of gypsum; slightly alkaline (pH 7.8); clear smooth boundary.
Bky3-55 to 64 inches; grayish brown (2.5Y $5 / 2$) clay loam, dark grayish brown (2.5Y 4/2) moist; massive; very hard, very firm, moderately sticky and moderately plastic; few very fine roots; few very fine irregular pores; 4 percent gravel; very slightly effervescent; few very fine masses of calcium carbonate; few very fine masses of gypsum; slightly alkaline (pH 7.6); clear smooth boundary.
Bky4-64 to 70 inches; grayish brown (2.5Y 5/2) clay, dark grayish brown (2.5Y 4/2) moist; massive; very hard, very firm, moderately sticky and moderately plastic; few very fine roots; 1 percent gravel; very slightly effervescent; few very fine masses of calcium carbonate; few very fine masses of gypsum; slightly alkaline (pH 7.6).

Range in Characteristics

Particle-size control section: 35 to 50 percent clay
Calcium carbonate equivalence: 0 to 2 percent in the upper part of the soil and 1 to 10 percent in the lower subsoil.
Gypsum percent: 0 to 2 percent in the By horizons
Salinity: 0 to 2 mmhos/cm
Reaction: Slightly to moderately alkaline
A horizon:
Hue:2.5Y or 10YR
Value: 4 or 5 dry, 3 or 4 moist
Chroma: 3 or 4 dry and moist
Rock fragments: 0 to 10 percent gravel
Bw horizon:
Hue:2.5Y
Value: 4 to 6 dry, 4 or 5 moist
Chroma: 2 to 4 dry and moist
Texture: clay or clay loam.
Bky and Bk horizons:
Hue:2.5Y
Value: 4 to 6 dry or moist
Chroma: 2 to 4 dry and moist
Texture: clay, clay loam, loam, or silt loam

Hagerwest Series

Taxonomic class: Fine-loamy, mixed, superactive, mesic Ustic Haplargids

Depth class: Moderately deep
Drainage class: Well drained
Permeability: Moderate
Geomorphic position: Mesas, cuestas, hills, and ridges
Parent material: Eolian material and slope alluvium derived from sandstone and shale
Slope range: 1 to 5 percent
Elevation: 6,500 to 7,200 feet
Mean annual air temperature: 49 to 54 degrees F
Mean annual precipitation: 10 to 13 inches
Frost-free period: 120 to 140 days

Typical Pedon

Hagerwest fine sandy loam, in an area of mapping unit 220, Hagerwest-Bond fine sandy loams, 1 to 8 percent slopes; McKinley County, New Mexico; Heart Rock Quadrangle; 1,600 feet east and 600 feet north of the southwest corner of sec. 2, T. 16 N., R. 12 W.; latitude 35 degrees, 38 minutes, 24 seconds and longitude 108 degrees, 4 minutes, 55 seconds.
A-0 to 2 inches; light brown (7.5YR 6/4) fine sandy loam, brown (7.5YR 4/4) moist; moderate fine granular structure; soft, very friable, nonsticky and nonplastic; few medium and common fine and very fine roots; many very fine irregular pores; neutral (pH 7.2); abrupt smooth boundary.
Bt1-2 to 7 inches; brown (7.5YR 5/4) sandy clay loam, brown (7.5YR 4/4) moist; weak medium subangular blocky structure; slightly hard, friable, slightly sticky and nonplastic; few medium and common fine and very fine roots; common very fine irregular pores; few faint clay films bridging sand grains; neutral (pH 7.2); clear smooth boundary.
Bt2-7 to 13 inches; strong brown (7.5YR 4/6) sandy clay loam, strong brown (7.5YR 4/6) moist; moderate medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; common fine and very fine roots; common very fine irregular pores; common distinct clay films on faces of peds, lining pores and bridging sand grains; slightly effervescent; neutral (pH 7.2); abrupt smooth boundary.
Btk-13 to 19 inches; reddish yellow (7.5YR 6/6) sandy clay loam, strong brown (7.5YR 5/6) moist; massive; slightly hard, friable, slightly sticky and nonplastic; few fine and common very fine roots; common very fine irregular pores; 2 percent gravel; strongly effervescent; slightly alkaline (pH 7.6); abrupt smooth boundary.
Bk-19 to 35 inches; very pale brown (10YR 7/3) sandy loam, pale brown (10YR 6/3) moist; massive; hard, friable, nonsticky and nonplastic;
common very fine irregular pores; 10 percent gravel; strongly effervescent; moderately alkaline (pH 8.4); abrupt smooth boundary.
2R-35 inches; hard sandstone.

Range in Characteristics

Particle-size control section: 18 to 35 percent clay
Rock fragments: 0 to 15 percent sandstone gravel
Depth to a lithic contact: 20 to 40 inches to hard sandstone
Depth to calcium carbonate: 8 to 23 inches
Other features: C horizons are present in some pedons. A few of these C horizons have hues of 2.5Y.

A horizon:
Hue: 7.5YR or 10 YR
Value: 5 or 6 dry; 3 to 5 moist
Chroma: 4 to 6 dry and moist
Reaction: neutral or slightly alkaline
Bt horizon:
Hue: 7.5YR or 10YR
Value: 4 or 5 dry; 3 to 5 moist
Chroma: 4 to 6 dry; 3 to 6 moist
Texture: sandy clay loam or clay loam
Reaction: neutral or slightly alkaline
Btk and Bk horizon:
Hue: 7.5YR or 10YR
Value: 5 or 7 dry; 4 to 6 moist
Chroma: 3 to 6 dry and moist
Texture: sandy clay loam, sandy loam, or clay loam
Reaction: moderately alkaline
Calcium carbonate equivalent: 1 to 10 percent

Hamburn Series

Taxonomic class: Fine-loamy, mixed, superactive, calcareous, mesic Ustic Torrifluvents
Depth class: Very deep
Drainage class: Well drained
Permeability: Moderately slow
Geomorphic position: Valley floors
Parent material: Stream alluvium derived from sandstone and shale
Slope range: 0 to 2 percent
Elevation: 5,600 to 6,000 feet
Mean annual air temperature: 50 to 55 degrees F
Mean annual precipitation: 7 to 9 inches
Frost-free period: 130 to 150 days

Typical Pedon

Hamburn clay loam, in an area of mapping unit 235, Notal-Hamburn complex, 0 to 2 percent slopes; San

Juan County, New Mexico; Navajo Reservation; The Pillar 3 SE Quadrangle; latitude 36 degrees, 04 minutes, 18 seconds and longitude 108 degrees, 21 minutes, 53 seconds.

AC—0 to 3 inches; olive brown (2.5Y 4/4) clay loam, olive brown (2.5Y 4/4) moist; massive; slightly hard, very friable, sticky and plastic; many very fine and fine roots; very slightly effervescent; moderately alkaline (pH 8.0); abrupt smooth boundary.
C1-3 to 8 inches; light olive brown (2.5Y 5/6) sandy clay loam, light olive brown (2.5Y 5/6) moist; massive; slightly hard, friable, sticky and plastic; many very fine and fine roots; vertical crack from a depth of 5 to 14 inches and less than 5 mm wide; pockets of finely stratified silt and very fine sand; slightly effervescent; moderately alkaline (pH 8.0); abrupt wavy boundary.
C2—8 to 29 inches; light olive brown (2.5Y 5/4) clay loam, olive brown (2.5Y 4/4) moist; massive; hard, firm, sticky and plastic; many very fine and fine roots; vertical crack less than 5 mm wide to a depth of 14 inches; slightly effervescent; moderately alkaline (pH 8.4); abrupt wavy boundary.
C3-29 to 40 inches; light olive brown (2.5Y 5/4) sandy clay loam, olive brown (2.5Y 4/4) moist; massive; hard, firm, sticky and plastic; common very fine and fine roots; slightly effervescent; moderately alkaline (pH 8.0); clear smooth boundary.
Cky1—40 to 52 inches; light olive brown (2.5Y 5/4) sandy clay loam, olive brown (2.5Y 4/4) moist; massive; hard, firm, sticky and plastic; few very fine and fine roots; slightly effervescent; common very fine masses of calcium carbonate; few very fine masses of gypsum; strongly alkaline (pH 8.8); abrupt smooth boundary.
Cky2—52 to 70 inches; light olive brown (2.5Y 5/4) clay loam, light olive brown (2.5Y 5/4) moist; hard, firm, sticky and plastic; few very fine and fine roots; slightly effervescent; common very fine masses of calcium carbonate; few very fine masses of gypsum; moderately alkaline (pH 8.2).

Range in Characteristics

Particle-size control section: 27 to 35 percent clay Calcium carbonate equivalent: 1 to 5 percent
Gypsum: 0 to 5 percent
Salinity: EC of 1 to $6 \mathrm{mmhos} / \mathrm{cm}$
Sodicity: SAR of 0 to 10 . SAR increases with depth.
A and AC horizons:
Hue: 10YR or 2.5Y
Value: 5 or 6 dry; 4 or 5 moist

Chroma: 4 dry and moist
Textures: sandy clay loam or clay loam
Reaction: moderately alkaline
C and Cky horizons:
Hue: 10YR or 2.5 Y
Value: 5 or 6 dry; 4 or 5 moist
Chroma: 3 or 4 , dry and moist
Texture: clay loam, sandy clay loam, silty clay loam, silt loam, or sandy loam
Reaction: moderately to strongly alkaline

Hawaikuh Series

Taxonomic class: Fine, mixed, superactive, mesic Ustic Haplargids
Depth class: Very deep
Drainage class: Well drained
Permeability: Moderately slow and slow
Geomorphic position: Valley sides and valley floors
Parent material: Fan and stream alluvium derived from sandstone and shale
Slope range: 1 to 5 percent
Elevation: 6,000 to 6,900 feet
Mean annual air temperature: 49 to 54 degrees F
Mean annual precipitation: 10 to 13 inches
Frost-free period: 120 to 140 days

Typical Pedon

Hawaikuh silt loam, in an area of mapping unit 225, Aquima-Hawaikuh silt loams, 1 to 5 percent slopes; McKinley County, New Mexico; Tekapo Quadrangle; 1,200 feet south and 1,500 feet west of the northeast corner of sec. 12, T. 9 N., R. 20 W.; latitude 35 degrees, 1 minute, 45 seconds and longitude 108 degrees, 53 minutes, 44 seconds.

A-0 to 3 inches; yellowish red (5YR 4/6) silt loam, dark reddish brown (5YR 3/4) moist; weak medium granular structure; soft, friable, nonsticky and slightly plastic; few medium and many fine and very fine roots; common fine irregular pores; slightly effervescent; slightly alkaline (pH 7.6); abrupt smooth boundary.
Btk1-3 to 12 inches; red (2.5YR 4/6) silty clay loam, reddish brown (2.5YR 4/4) moist; moderate medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; many fine and very fine roots; common fine irregular pores; many prominent clay films on faces of peds; strongly effervescent; few fine irregular masses of calcium carbonate; moderately alkaline (pH 8.0); clear smooth boundary.
Btk2—12 to 29 inches; red (2.5YR 4/6) clay loam, dark
reddish brown (2.5YR 3/4) moist; moderate medium subangular blocky structure; hard, firm, slightly sticky and slightly plastic; common fine and very fine roots; few very fine tubular pores; common prominent clay films on faces of peds; strongly effervescent; common fine irregular filaments and masses of calcium carbonate; moderately alkaline (pH 8.0); clear smooth boundary.
Bk1—29 to 39 inches; red (2.5YR 5/6) sandy clay loam, reddish brown (2.5YR 4/4) moist; massive; slightly hard, friable, slightly sticky and slightly plastic; few very fine roots; few very fine tubular pores; strongly effervescent; common fine irregular filaments and masses of calcium carbonate; moderately alkaline (pH 8.2); clear smooth boundary.
Bk2—39 to 54 inches; reddish brown (2.5YR 5/4) sandy loam, reddish brown (2.5YR 4/4) moist; massive; soft very friable, nonsticky and slightly plastic; few very fine roots; few very fine irregular pores; strongly effervescent; common fine irregular filaments and masses of calcium carbonate; moderately alkaline (pH 8.4); clear smooth boundary.
Bk3-54 to 65 inches; light red (2.5YR 6/6) silty clay loam, reddish brown (2.5YR 4/4) moist; massive; slightly hard, friable, slightly sticky and slightly plastic; few very fine roots; few very fine irregular pores; violently effervescent; common fine irregular filaments and masses of calcium carbonate; moderately alkaline (pH 8.4).

Range in Characteristics

Particle-size control section: 35 to 50 percent clay and greater than 20 percent sand
Rock fragments: 0 to 5 percent sandstone gravel

Calcium carbonate equivalent: 3 to 14 percent

A horizon:
Hue:2.5YR or 5YR
Chroma: 4 or 6 dry
Texture: silt loam or clay loam
Reaction: neutral to slightly alkaline
Bt horizons:
Hue: 2.5YR or 5YR
Value: 3 or 4 moist
Texture: silty clay loam, clay loam, or sandy clay
Reaction: slightly or moderately alkaline
Bk horizons:
Hue:2.5YR or 5YR
Value: 3 to 5 moist, 4 to 6 dry

Chroma: 3 or 4 moist, 4 or 6 dry
Texture: clay loam, silty clay loam, clay, sandy clay loam, or sandy loam
Reaction: moderately or strongly alkaline

Heckly Series

Taxonomic class: Fine, mixed, superactive, frigid Typic Haplustalfs
Depth class: Moderately deep
Drainage class: Well drained
Permeability: Slow
Geomorphic position: Hills and ridges
Parent material: Slope alluvium over residuum derived from sandstone and siltstone
Slope range: 5 to 40 percent
Elevation: 7,800 to 8,200 feet
Mean annual air temperature: 40 to 45 degrees F
Mean annual precipitation: 16 to 20 inches
Frost-free period: 90 to 110 days

Typical Pedon

Heckly extremely channery sandy loam, in an area of mapping unit 407, Cinnadale-Heckly association, 5 to 40 percent slopes; McKinley County, New Mexico; Page Quadrangle; 2,050 feet south and 700 feet west of the northeast corner of sec. 29, T. 13 N., R. 15 W.; latitude 35 degrees, 19 minutes, 46 seconds and longitude 108 degrees, 26 minutes, 34 seconds.
A—0 to 3 inches; reddish brown (2.5YR 5/4) extremely channery sandy loam, dark reddish brown (2.5YR $3 / 4$) moist; moderate very fine granular structure; soft, very friable, slightly sticky and slightly plastic; common very fine and fine roots; 55 percent channers, 10 percent flagstones; slightly alkaline (pH 7.4); abrupt smooth boundary.
Bt1—3 to 15 inches; reddish brown (2.5YR 4/4) channery clay, dark reddish brown (2.5YR 3/4) moist; strong very fine and fine subangular blocky structure; very hard, very firm, very sticky and very plastic; many very fine, fine, and few medium roots; few very fine irregular pores; many prominent clay films on faces of peds; 25 percent channers; slightly alkaline (pH 7.4); gradual wavy boundary.
Bt2—15 to 38 inches; reddish brown (2.5YR 4/4) very channery silty clay loam, dark reddish brown (2.5YR 3/4) moist; moderate very fine and fine subangular blocky structure; very hard, very firm, sticky and plastic; common very fine and fine roots; common prominent clay films on faces of
peds and coating rock fragments; 40 percent channers; slightly alkaline (pH 7.4); abrupt smooth boundary.
R-38 inches; very fine-grained sandstone and siltstone of the Abo formation.

Range in Characteristics

Particle-size control section: 35 to 45 percent clay and 20 to 35 percent rock fragments
Depth to lithic contact: 20 to 40 inches
Reaction: neutral to slightly alkaline

A horizon:

Hue: 2.5YR to 7.5YR
Rock fragments: 10 to 70 percent total; 10 to 55 percent channers; 0 to 10 percent flagstones. All fragments are sandstone.
Bt horizon:
Hue:2.5YR or 5YR
Textures: clay loam, silty clay loam, or clay
Rock fragments: 10 to 35 percent total; 10 to 30 percent channers; 0 to 10 percent flagstones. All fragments are sandstone and siltstone.

Heshotauthla Series

Taxonomic class: Fine, mixed, active, mesic Aridic Natrustolls
Depth class: Very deep
Drainage class: Well drained
Permeability: Very slow
Geomorphic position: Valley floors
Parent material: Stream alluvium derived from sandstone and shale
Slope range: 0 to 1 percent
Elevation: 6,300 to 7,000 feet
Mean annual air temperature: 46 to 49 degrees F
Mean annual precipitation: 13 to 16 inches
Frost-free period: 100 to 135 days

Typical Pedon

Heshotauthla clay, in an area of mapping unit 357, Heshotauthla clay, 0 to 1 percent slopes; McKinley County, New Mexico; Horsehead Canyon NW Quadrangle; 2,000 feet north and 200 feet west of the southeast corner of sec. 5, T. 11 N., R. 17 W.; latitude 35 degrees, 12 minutes, 43 seconds and longitude 108 degrees, 38 minutes, 43 seconds.
ABn-0 to 3 inches; brown (10YR 5/5) clay, dark brown (10YR 3/3) moist; moderate medium prismatic structure; very hard, very firm, very sticky and very plastic; few very fine roots; many fine and
medium vesicular pores; strongly effervescent; moderately alkaline (pH 8.2); abrupt smooth boundary.
Btn1-3 to 9 inches; brown (10YR 5/3) clay, dark brown (10YR 3/3) moist; weak coarse prismatic structure parting to moderate coarse subangular blocky; extremely hard, very firm, very sticky and very plastic; common very fine and fine roots; few very fine irregular pores; many prominent clay films on faces of peds; common slickensides up to 2 inches in diameter; strongly effervescent; strongly alkaline (pH 8.6); clear wavy boundary.
Btn2-9 to 18 inches; brown (10YR 5/3) clay dark brown (10YR 3/3) moist; moderate medium and coarse subangular blocky structure; extremely hard, very firm, very sticky and very plastic; few very fine roots; few very fine irregular pores; many prominent clay films on faces of peds; strongly effervescent; strongly alkaline (pH 9.0); gradual wavy boundary.
Btkz—18 to 32 inches; brown (10YR 5/3) clay, dark brown (10YR 3/3) moist; weak medium subangular blocky structure; extremely hard, very firm, very sticky and very plastic; few very fine roots; few very fine irregular pores; common distinct clay films on faces of peds; strongly effervescent; few fine masses of calcium carbonate; few fine salt crystals; moderately alkaline (pH 8.2); gradual irregular boundary.
Bkz-32 to 65 inches; brown (10YR 5/3) clay, dark brown (10YR 3/3) moist; massive; extremely hard, very firm, very sticky and very plastic; few very fine roots; few very fine irregular pores; strongly effervescent; few fine masses of calcium carbonate; common fine and medium salt crystals; moderately alkaline (pH 8.2).

Range in Characteristics

Particle-size control section: 48 to 60 percent clay
Depth to salt (mostly sodium sulfate) crystals: 18 to 35 inches
Reaction: moderately to very strongly alkaline
A horizon:
Value: 4 or 5 dry
Chroma: 2 or 3
Calcium carbonate equivalent: 0 to 5 percent
Sodicity: SAR of 10 to 20
Salinity: EC of 1 to 2 mmhos/cm
Btn horizons:
Hue: 7.5YR or 10YR
Value: 4 or 5 dry
Chroma: 2 or 4
Calcium carbonate equivalent: 0 to 5 percent

Sodicity: SAR of 20 to 40
Salinity: EC of 2 to 4 mmhos/cm
Bkz horizon:
Hue: 7.5YR or 10YR
Value: 4 or 5 dry, 3 or 4 moist
Chroma: 3 or 4
Calcium carbonate equivalent: 1 to 5 percent
Sodicity: SAR of 15 to 35
Salinity: EC of 5 to $10 \mathrm{mmhos} / \mathrm{cm}$

Highdye Series

Taxonomic class: Clayey, mixed, superactive, mesic Lithic Haplustalfs
Depth class: Very shallow and shallow
Drainage class: Well drained
Permeability: Slow
Geomorphic position: Mesas, cuestas, hills, and ridges
Parent material: Eolian material and slope alluvium over residuum derived from sandstone and shale
Slope range: 2 to 20 percent
Elevation: 6,800 to 7,600 feet
Mean annual air temperature: 46 to 49 degrees F
Mean annual precipitation: 13 to 16 inches
Frost-free period: 100 to 135 days

Typical Pedon

Highdye fine sandy loam, in an area of mapping unit 317, Highdye-Evpark-Bryway complex, 2 to 20 percent slopes; McKinley County, New Mexico; Pescado Quadrangle; 2,100 feet west and 1,700 feet north of the southeast corner of sec. 22, T. 10 N., R. 17 W.; latitude 35 degrees, 04 minutes, 49 seconds and longitude 108 degrees, 37 minutes, 00 seconds.

A—0 to 3 inches; yellowish brown (10YR 5/6) fine sandy loam, brown (7.5YR 4/4) moist; weak fine and medium granular structure; soft, friable, nonsticky and nonplastic; few very fine and fine roots; common fine irregular pores; 10 percent gravel; neutral (pH 6.6); clear smooth boundary.
Bt1-3 to 5 inches; yellowish brown (10YR 5/4) clay loam, dark brown (7.5YR 3/4) moist; weak fine and medium subangular blocky structure; hard, firm, sticky and plastic; common very fine and fine roots; few fine irregular pores; common distinct clay films on faces of peds and bridges; slightly acid (pH 6.4); clear smooth boundary.
2Bt2— 5 to 12 inches; brown (7.5YR 5/4) clay, strong brown (7.5YR 4/6) moist; moderate fine and medium subangular blocky structure; very hard, very firm, very sticky and very plastic; common very fine and fine and few medium roots; few fine irregular pores; 5 percent gravel; many prominent
clay films on faces of peds; moderately acid (pH 6.0); abrupt smooth boundary.

2R-12 inches; sandstone-weathered in the upper part.

Range in Characteristics

Depth to the lithic contact: 6 to 20 inches to sandstone Particle-size control section: 35 to 55 percent clay
Reaction: neutral in the surface and slightly acid to moderately acid in the subsoil

A horizon:

Hue: 7.5YR or 10YR
Value: 4 or 5 dry, 3 or 4 moist
Chroma: 2 to 6 dry, 2 to 4 moist
Rock fragments: 0 to 30 percent total; 0 to 15 percent gravel; 0 to 20 percent cobbles or channers. All fragments are sandstone.
Bt horizon:
Hue: 5YR or 7.5YR
Value: 4 to 6 dry, 3 to 5 moist
Chroma: 3 to 6 dry, 3 to 6 moist
Texture: clay loam, clay, or sandy clay
Rock fragments: 0 to 10 percent total; 0 to 10 percent gravel; 0 to 10 percent cobbles. All fragments are sandstone.

Some pedons have a paralithic contact of interbedded shale and sandstone above the lithic contact.

Hospah Series

Taxonomic class: Clayey, mixed, superactive, calcareous, mesic, shallow Ustic Torriorthents
Depth class: Very shallow and shallow
Drainage class: Well drained
Permeability: Slow
Geomorphic position: Breaks, hills, and ridges
Parent material: Colluvium and residuum derived from sandstone and shale
Slope range: 2 to 35 percent slopes
Elevation: 6,400 to 7,000
Mean annual air temperature: 49 to 54 degrees F
Mean annual precipitation: 10 to 13 inches
Frost-free period: 120 to 140 days

Typical Pedon

Hospah extremely cobbly clay loam, in an area of mapping unit 250, Hospah-Skyvillage-Rock outcrop complex, 2 to 35 percent slopes; McKinley County, New Mexico; Kin Nahzin Ruins Quadrangle; 300 feet south and 1,000 feet west of the northeast corner of sec. 26, T. 18N, R. 9W latitude 35 degrees, 46
minutes, 02 seconds and longitude 107 degrees, 45 minutes, 21 seconds.

The surface is covered by 30 percent cobbles, 20 percent channers and 30 percent stones.
A—0 to 3 inches; light yellowish brown (2.5Y 6/4) extremely cobbly clay loam, light olive brown (2.5Y 5/4) moist; thin surface crust; weak fine and medium granular structure; soft, very friable, sticky and plastic; common very fine and fine roots; common very fine and fine irregular pores; 30 percent cobbles, 20 percent channers, 30 percent stones; strongly effervescent; moderately alkaline (pH 8.2); abrupt wavy boundary.
2BC-3 to 15 inches; dark grayish brown (2.5Y 4/2) clay, very dark grayish brown (2.5Y 3/2) moist, with light olive brown (2.5Y 5/4) surface material occurring along cracks and ped faces; moderate coarse subangular blocky structure parting to moderate fine and medium subangular blocky; extremely hard, extremely firm, very sticky and very plastic; common very fine and fine and few medium roots; few very fine and fine irregular pores; 1 cm wide vertical cracks extend from 5 to 13 inches; common soft shale fragments; slightly effervescent; strongly alkaline (pH 8.8); clear wavy boundary.
2Cr-15 inches; gypsiferous, noncalcareous shale with common fine and medium seams of secondary gypsum crystals occurring in the top 3 inches and primary gypsum crystals occurring below.

Range in Characteristics

Particle-size control section: 40 to 60 percent clay, 10 to 25 percent rock fragments
Depth to paralithic contact: 4 to 20 inches to gypsiferous, noncalcareous shale
Salinity: EC of 0 to $4 \mathrm{mmhos} / \mathrm{cm}$
Calcium carbonate equivalent: 1 to 5 percent
Gypsum: 1 to 5 percent
Reaction: moderately to very strongly alkaline
A horizon:
Hue:2.5Y or 10YR
Value: 4 to 6 dry, 3 to 5 moist
Chroma: 2 to 4
Rock fragments: 50 to 85 percent total; 5 to 30 percent stones, 5 to 30 percent cobbles, and 15 to 65 percent channers. All fragments are sandstone.
Sodicity: SAR of 2 to 5
BC or C horizons:
Hue: 2.5Y or 10YR
Value: 4 or 5 dry, 3 or 4 moist

Chroma: 2 to 4

Rock fragments: 0 to 20 percent total; 0 to 10 percent cobbles, 0 to 20 percent channers. All fragments are sandstone.
Sodicity: SAR of 5 to 13

Hosta Series

Taxonomic class: Fine, mixed, superactive, mesic Aridic Haplustalfs
Depth class: Very deep
Drainage class: Well drained
Permeability: Slow
Geomorphic position: Valley sides and drainageways
Parent material: Fan alluvium derived from sandstone and shale
Slope range: 1 to 5 percent
Elevation: 6,800 to 7,000 feet
Mean annual air temperature: 46 to 49 degrees F
Mean annual precipitation: 13 to 16 inches
Frost-free period: 100 to 135 days

Typical Pedon

Hosta loam, in an area of mapping unit 360, HostaConcho association, 0 to 5 percent slopes; McKinley County, New Mexico; Horsehead Canyon Quadrangle; 400 feet north and 2,600 feet west of the southeast corner of sec. 5, T. 10 N., R. 17 W.; latitude 35 degrees, 7 minutes, 12 seconds and longitude 108 degrees, 39 minutes, 11 seconds.
A—0 to 2 inches; pale brown (10YR 6/3) loam, brown (10YR 4/3) moist; moderate medium platy structure; soft, very friable, nonsticky and slightly plastic; few very fine and fine roots; many fine vesicular pores; neutral (pH 7.2); abrupt smooth boundary.
Bt-2 to 4 inches; brown (10YR 4/3) clay loam, dark brown (10YR 3/3) moist; weak fine granular structure; soft friable, sticky and plastic; many very fine and common fine roots; common fine irregular pores; few faint bridges of clay films; slightly alkaline (pH 7.4); abrupt smooth boundary.
Btk1-4 to 11 inches; dark yellowish brown (10YR 4/4) clay loam, dark yellowish brown (10YR 3/4) moist; strong medium subangular blocky structure; very hard, very firm, sticky and plastic; common very fine and few fine and medium roots; common fine irregular pores; many prominent clay films on faces of peds; slightly effervescent; few fine filaments and masses of calcium carbonate; slightly alkaline (pH 7.6); clear smooth boundary.
Btk2—11 to 24 inches; yellowish brown (10YR 5/4) clay loam, dark yellowish brown (10YR 4/4) moist;
strong medium subangular blocky structure; very hard, very firm, sticky and plastic; common very fine and few fine roots; common fine irregular pores; common prominent clay films on faces of peds; strongly effervescent; common fine filaments and masses of calcium of carbonate; slightly alkaline (pH 7.8); clear smooth boundary.
Btk3-24 to 37 inches; dark yellowish brown (10YR
4/4) clay, dark brown (10YR 3/3) moist; weak medium subangular blocky structure; very hard, very firm, very sticky and very plastic; few very fine roots; few fine irregular pores; common prominent clay films on faces of peds; slightly effervescent; few fine masses of calcium carbonate; slightly alkaline (pH 7.8); clear smooth boundary.
Btk4-37 to 51 inches; yellowish brown (10YR 5/4) clay, dark yellowish brown (10YR 4/4) moist; weak medium subangular blocky structure; very hard, very firm, very sticky and very plastic; few very fine roots; few very fine irregular pores; common distinct clay films on faces of peds; slightly effervescent; few fine masses of calcium carbonate; slightly alkaline (pH 7.8); clear smooth boundary.
Bk—51 to 65 inches; yellowish brown (10YR 5/4) sandy clay loam, dark yellowish brown (10YR 4/6) moist; massive; hard, firm, slightly sticky and slightly plastic; few very fine roots; few very fine irregular pores; strongly effervescent; common fine filaments of calcium carbonate; slightly alkaline (pH 7.8).

Range in Characteristics

Particle-size control section: 35 to 55 percent clay
Reaction: neutral to slightly alkaline in the surface and slightly to moderately alkaline in the subsoil

A horizon:
Hue: 10YR or 2.5 Y
Value: 4 to 6 dry, 3 or 4 moist
Chroma: 3 or 4 dry, 2 to 4 moist
Rock fragments: 0 to 5 percent sandstone gravel
Bt horizons:
Hue: 7.5YR to 2.5Y
Value: 4 or 5 dry, 3 or 4 moist
Chroma: 3 or 4 dry or moist
Texture: clay loam, clay, or sandy clay loam
Rock fragments: 0 to 5 percent sandstone gravel
Btk and Bk horizons:
Hue: 7.5YR to 2.5Y
Value: 4 or 5 dry, 3 or 4 moist
Chroma: 4 or 5 dry, 3 to 6 moist

Texture: sandy clay loam, clay loam, or clay Calcium carbonate equivalent: 1 to 5 percent

Huerfano Series

Taxonomic class: Loamy, mixed, superactive, mesic, shallow Typic Natrargids
Depth class: Shallow
Drainage class: Well drained
Permeability: Slow
Geomorphic position: Valley floors and cuestas
Parent material: Alluvial material derived from sandstone and shale
Slope range: 1 to 5 percent
Elevation: 5,800 to 6,800 feet
Mean annual air temperature: 50 to 55 degrees F Mean annual precipitation: 7 to 9 inches
Frost-free period: 130 to 150 days
Typical Pedon
Huerfano loam, in an area of mapping unit 116, Fajada-Huerfano-Benally complex, 1 to 5 percent slopes; McKinley County, New Mexico; Seven Lakes NW Quadrangle; 260 feet east and 660 feet north of the southwest corner of sec. 3, T. 19 N., R. 10 W.; latitude 35 degrees, 54 minutes, 01 second and longitude 107 degrees, 53 minutes, 39 seconds.

A-0 to 2 inches; pale brown (10YR 6/3) loam, brown (10YR 4/3) moist; weak fine granular structure; soft, friable, slightly sticky and slightly plastic; few fine and very fine roots; few very fine irregular pores; 10 percent gravel; slightly effervescent; moderately alkaline (pH 8.4); abrupt smooth boundary.
Btkn—2 to 17 inches; yellowish brown (10YR 5/4) clay loam, dark yellowish brown (10YR 4/4) moist; moderate medium columnar structure; hard, firm, sticky and plastic; few fine and very fine roots; common very fine irregular pores; common prominent clay films on faces of peds and lining pores; 5 percent gravel; strongly effervescent; few fine masses of calcium carbonate; very strongly alkaline (pH 9.6); clear wavy boundary.
2 Cr -17 inches; gypsiferous shale.

Range in Characteristics

Particle-size control section: 18 to 35 percent clay Depth to a paralithic contact: 10 to 20 inches to shale

A horizon:
Hue: 10YR or 2.5 Y
Value: 4 or 5 moist
Chroma: 3 or 4 moist

Rock fragments: 5 to 20 percent sandstone and siderite gravel
Salinity: EC of 0 to 4 mmhos/cm
Sodicity: SAR of 15 to 30
Calcium carbonate: 1 to 5 percent
Reaction: moderately or strongly alkaline
Btn horizon:
Hue: 10YR or 2.5Y
Value: 3 to 6 moist
Chroma: 2 to 4 moist
Texture: clay loam or sandy clay loam
Rock fragments: 0 to 15 percent sandstone and siderite gravel
Salinity: EC of 4 to 16 mmhos/cm
Sodicity: SAR of 15 to 40
Calcium carbonate: 1 to 10 percent
Reaction: moderately to very strongly alkaline

Kimnoli Series

Taxonomic class: Loamy, mixed, active, mesic Lithic Haplargids
Depth class: Very shallow and shallow
Drainage class: Well drained
Permeability: Moderate
Geomorphic position: Mesas, cuestas, hills, and ridges
Parent material: Eolian material and slope alluvium derived from sandstone and shale
Slope range: 1 to 6 percent
Elevation: 6,000 to 6,800 feet
Mean annual air temperature: 50 to 55 degrees F
Mean annual precipitation: 7 to 9 inches
Frost-free period: 130 to 150 days

Typical Pedon

Kimnoli fine sandy loam, in an area of mapping unit 100, Norkiki-Kimnoli complex, 1 to 8 percent slopes; McKinley County, New Mexico; Nose Rock Quadrangle; 2,064 feet west and 2,064 feet south of the northeast corner of sec. 18, T. 20 N., R. 11 W.; latitude 35 degrees, 58 minutes, 02 seconds and longitude 108 degrees, 02 minutes, 42 seconds.
A-0 to 2 inches; dark yellowish brown (10YR 4/4) fine sandy loam, dark brown (10YR 3/3) moist; weak very fine granular structure; soft, very friable, nonsticky and nonplastic; common fine and very fine roots; many fine irregular pores; neutral (pH 7.2); abrupt smooth boundary.

Bt-2 to 7 inches; yellowish brown (10YR 5/4) sandy loam, dark yellowish brown (10YR 4/4) moist; moderate fine subangular blocky structure; soft, very friable, nonsticky and nonplastic; common
fine and very fine roots; common fine irregular pores; few faint clay films bridging sand grains; neutral (pH 7.2); clear smooth boundary.
Btk-7 to 14 inches; strong brown (7.5YR 4/6) sandy clay loam, dark brown (7.5YR 4/4) moist; moderate medium subangular blocky structure; slightly hard, firm, slightly sticky and slightly plastic; common fine and very fine roots; many fine irregular pores; common distinct clay films on faces of peds and bridging sand grains; 5 percent gravel and 5 percent cobbles; strongly effervescent; common fine irregular masses of calcium carbonate; slightly alkaline (pH 7.8); abrupt smooth boundary.
2R—14 inches; sandstone.

Range in Characteristics

Particle-size control section: 20 to 30 percent clay and greater than 45 percent sand
Depth to lithic contact: 10 to 20 inches to sandstone Calcium carbonate equivalent: 0 to 15 percent
Rock fragments: 0 to 10 percent total; 0 to 5 percent gravel; 0 to 5 percent cobbles. All fragments are sandstone.
Reaction: neutral to slightly alkaline
A horizon:
Hue: 7.5YR or 10YR
Value: 4 through 6 dry; 3 through 4 moist
Chroma: 3 to 6 moist
Bt horizon:
Hue: 7.5YR or 10YR
Value: 4 or 5 dry, 3 or 4 moist
Chroma: 3 to 6 dry and moist
Texture: sandy loam or sandy clay loam

Knifehill Series

Taxonomic class: Fine, mixed, superactive, mesic Pachic Argiustolls
Depth class: Very deep
Drainage class: Well drained
Permeability: Slow
Geomorphic position: Valley floors and valley sides
Parent material: Fan and stream alluvium derived from sandstone and shale
Slope range: 1 to 5 percent
Elevation: 6,900 to 7,500 feet
Mean annual air temperature: 46 to 49 degrees F
Mean annual precipitation: 13 to 16 inches
Frost-free period: 100 to 135 days

Typical Pedon

Knifehill loam, in an area of mapping unit 354, Knifehill loam, 1 to 5 percent slopes; McKinley County, New Mexico; Pescado Quadrangle; 2,500 feet east and 200 feet north of the southwest corner of sec 10. T. 9 N., R. 17 W.; latitude 35 degrees, 01 minute, 04 seconds and longitude 108 degrees, 37 minutes, 06 seconds.

A—0 to 2 inches; grayish brown (10YR 5/2) loam, very dark grayish brown (10YR 3/2) moist; weak medium platy structure; soft, very friable, slightly sticky and nonplastic; common fine and many very fine roots; many medium vesicular pores; slightly alkaline (pH 7.6); abrupt smooth boundary.
Bw-2 to 6 inches; brown (10YR 5/3) clay loam, dark brown (10YR 3/3) moist; weak fine subangular blocky structure; slightly hard, friable, slightly sticky and nonplastic; common fine and many very fine roots; common fine irregular pores; neutral (pH 7.2); clear smooth boundary.

Bt1-6 to 11 inches; dark grayish brown (10YR 4/2) clay loam, very dark grayish brown (10YR 3/2) moist; strong medium subangular blocky structure; slightly hard, friable, sticky and plastic; few medium and common fine and very fine roots; common fine irregular pores; common distinct clay films on faces of peds and lining pores; neutral (pH 7.2); clear smooth boundary.

Bt2-11 to 26 inches; very dark grayish brown (10YR
$3 / 2$) clay, very dark grayish brown (10YR 3/2)
moist; strong medium prismatic structure; hard, firm, very sticky and very plastic; common fine and very fine roots; few fine tubular pores; many prominent clay films on faces of peds and lining pores; neutral (pH 7.2); abrupt smooth boundary.
Btk-26 to 35 inches; brown (10YR 5/3) clay, dark brown (10YR 3/3) moist; weak medium angular blocky structure; hard, firm, very sticky and very plastic; few medium and very fine roots; few very fine irregular pores; few faint clay films on faces of peds; strongly effervescent; few very fine irregular filaments and masses of calcium carbonate; 1 percent calcium carbonate equivalent; slightly alkaline (pH 7.4); clear smooth boundary.
Bk-35 to 65 inches; yellowish brown (10YR 5/4) clay, dark grayish brown (10YR 4/2) moist; massive; hard, firm, very sticky and very plastic; few very fine roots; few very fine irregular pores; strongly effervescent; few very fine irregular filaments and
masses of calcium carbonate; 4 percent calcium carbonate equivalent; slightly alkaline (pH 7.8).

Range in Characteristics

Particle-size control section: 35 to 50 percent clay
Mollic epipedon: 20 to 40 inches thick
A horizon:
Hue: 10YR or 7.5YR
Value: 4 or 5 dry
Chroma: 2 or 3
Reaction: neutral or slightly alkaline
Bt horizon:
Hue: 10YR or 7.5YR
Value: 3 to 5 dry
Chroma: 2 or 3
Texture: clay loam or clay
Reaction: neutral or slightly alkaline
Bk horizon:
Value: 3 or 4 moist
Chroma: 2 to 4 moist
Texture: clay loam or clay
Calcium carbonate equivalent: 1 to 15 percent
Reaction: slightly to moderately alkaline

Kwakina Series

Taxonomic class: Sandy, mixed, mesic Ustic Torrifluvents
Depth class: Very deep
Drainage class: Somewhat excessively drained
Permeability: Moderately rapid
Geomorphic position: Valley sides and valley floors
Parent material: Fan and stream alluvium derived from sandstone
Slope range: 0 to 2 percent
Elevation: 6,000 to 7,300 feet
Mean annual air temperature: 49 to 53 degrees F Mean annual precipitation: 10 to 13 inches
Frost-free period: 120 to 140 days

Typical Pedon

Kwakina loamy fine sand, in an area of mapping unit 51, Kwakina loamy fine sand, 0 to 2 percent slopes; McKinley County, New Mexico; Zuni Quadrangle; 1,500 feet west and 1,300 feet north of the southeast corner of sec. 17, T. 9 N., R. 18 W.; latitude 35 degrees, 00 minutes, 54 seconds and longitude 108 degrees, 45 minutes, 18 seconds.

A-0 to 7 inches; brown (10YR 5/3) loamy fine sand, brown (10YR 4/3) moist; weak fine granular structure; loose, loose, nonsticky and nonplastic; common very fine and fine roots; common fine
irregular pores; strongly effervescent; slightly alkaline (pH 7.6); abrupt smooth boundary.
C1—7 to 11 inches; yellowish brown (10YR 5/4) loamy fine sand, dark yellowish brown (10YR 4/4) moist; massive; hard, very friable, nonsticky and nonplastic; common very fine and fine roots; common fine irregular pores; violently effervescent; strongly alkaline (pH 8.8); abrupt smooth boundary.
C2-11 to 23 inches; brown (10YR 5/3) fine sand, brown (10YR 5/3) moist; single grain; loose, loose, nonsticky and nonplastic; common very fine and fine roots; few fine irregular pores; strongly effervescent; strongly alkaline (pH 8.8); clear smooth boundary.
C3-23 to 33 inches; brown (7.5YR 5/4) sandy loam, dark brown (7.5YR 4/4) moist; weak fine subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; few very fine roots; few fine irregular pores; violently effervescent; strongly alkaline (pH 8.8); clear smooth boundary.
C4-33 to 53 inches; light yellowish brown (10YR 6/4) loamy fine sand, yellowish brown (10YR 5/4) moist; single grain; loose, loose, nonsticky and nonplastic; few very fine roots; few fine irregular pores; violently effervescent; strongly alkaline (pH 8.8); gradual smooth boundary.

Ck—53 to 65 inches; light yellowish brown (10YR 6/4) loamy fine sand, yellowish brown (10YR 5/4) moist; single grain; loose, loose, nonsticky and nonplastic; few very fine roots; few fine irregular pores; violently effervescent; few very fine masses of calcium carbonate; strongly alkaline (pH 8.8).

Range in Characteristics

Particle-size control section: 5 to 18 percent clay and greater than 40 percent sand
Reaction: slightly to strongly alkaline
A horizon:
Hue: 2.5YR to 10YR
Value: 3 to 6
Chroma: 3 to 8
Calcium carbonate equivalent: 0 to 5 percent
Salinity: EC of 0 to 2 mmhos/cm
C horizons:
Hue:2.5YR to 10YR
Value: 3 to 6
Chroma: 3 to 8
Texture: stratified layers of loamy fine sand, loamy sand, fine sand, sand, sandy loam, fine sandy loam, and silt loam.
Calcium carbonate equivalent: 5 to 10 percent

Salinity: EC of 1 to 2 mmhos/cm

Lavodnas Series

Taxonomic class: Loamy, mixed, superactive, mesic, shallow Leptic Haplogypsids
Depth class: Shallow
Drainage class: Well drained
Permeability: Slow
Geomorphic position: Hills and ridges
Parent material: Slope alluvium derived from shale
Slope range: 2 to 15 percent
Elevation: 6,600 to 7,200 feet
Mean annual air temperature: 49 to 54 degrees F
Mean annual precipitation: 10 to 13 inches
Frost-free period: 120 to 140 days

Typical Pedon

Lavodnas loam, in an area of mapping unit 22, Querencia-Lavodnas association, 2 to 15 percent slopes; McKinley County, New Mexico; Tinian Quadrangle; 1,200 feet west and 2,200 feet south of the northeast corner of sec. 2, T. 18 N., R. 5 W.; latitude 35 degrees, 49 minutes, 19 seconds and longitude 107 degrees, 19 minutes, 55 seconds.

A—0 to 3 inches; light yellowish brown (2.5Y 6/4) gypsiferous loam, olive brown (2.5Y 4/4) moist; moderate medium granular structure; soft, very friable, slightly sticky and nonplastic; few fine and common very fine roots; common very fine irregular pores; strongly effervescent; slightly alkaline (pH 7.4); abrupt smooth boundary.
By1—3 to 9 inches; pale yellow (2.5Y 7/4) gypsiferous clay loam, olive brown (2.5Y 4/4) moist; massive; soft, very friable, slightly sticky and slightly plastic; few medium and common fine and very fine roots; common very fine irregular pores; 2 percent gravel; many medium clusters of gypsum crystals; strongly effervescent; slightly alkaline (pH 7.4); clear smooth boundary.
By2-9 to 13 inches; light yellowish brown (2.5Y 6/4) gypsiferous clay, olive brown (2.5Y 4/4) moist; massive; hard, friable sticky and plastic; few fine and common very fine roots; common very fine irregular pores; 5 percent gravel; common large clusters of gypsum crystals; slightly effervescent; neutral (pH 7.2); gradual smooth boundary.
$\mathrm{Cr}-13$ to 28 inches; gypsiferous shale and sandstone. 2R-28 inches; sandstone.

Range in Characteristics

Particle-size control section: 18 to 35 percent clay

Depth to a paralithic contact: 10 to 20 inches to gypsiferous shale
Calcium carbonate equivalent: 1 to 5 percent Reaction: slightly to moderately alkaline
A horizon:
Hue: 10YR or 2.5 Y
Value: 5 or 6 dry, 4 or 5 moist
Chroma: 4 or 6 moist
Rock fragments: 0 to 5 percent sandstone gravel
By horizon:
Value: 5 to 7 dry; 4 or 5 moist
Chroma: 2 or 4 moist
Texture: clay loam or clay
Gypsum: 10 to 35 percent
Rock fragments: 0 to 5 percent sandstone gravel

Ligocki Series

Taxonomic class: Fine, mixed, superactive, frigid Typic Haplustalfs
Depth class: Very deep
Drainage class: Well drained
Permeability: Slow
Geomorphic position: Valley sides
Parent material: Fan alluvium derived from sandstone, shale, and granite
Slope range: 1 to 5 percent
Elevation: 7,700 to 8,000 feet
Mean annual air temperature: 40 to 45 degrees F
Mean annual precipitation: 16 to 20 inches
Frost-free period: 90 to 110 days

Typical Pedon

Ligocki fine sandy loam, in an area of mapping unit 411, Ligocki-Robolata complex, 1 to 5 percent slopes; McKinley County, New Mexico; Page Quadrangle; 700 feet north and 500 feet west of the southeast corner of sec. 32, T. 13 N., R. 15 W.; latitude 35 degrees, 18 minutes, 31 seconds and longitude 108 degrees, 26 minutes, 35 seconds.

A-0 to 3 inches; brown (7.5YR 5/2) fine sandy loam, dark brown (7.5YR 3/2) moist; weak thin platy structure; soft, very friable, nonsticky and nonplastic; many very fine and fine roots; neutral (pH 7.2); abrupt smooth boundary.
AB-3 to 9 inches; brown (7.5YR 5/2) fine sandy loam, dark brown (7.5YR 3/2) moist; weak fine and medium subangular blocky structure; soft, very friable, nonsticky and nonplastic; many very fine and fine roots; neutral (pH 7.2); clear smooth boundary.

Bt1-9 to 20 inches; reddish brown (5YR 4/4) clay, dark reddish brown (5YR 3/4) moist; strong fine and medium subangular blocky structure; very hard, very firm, sticky and plastic; common very fine, fine, and few medium roots; few fine and medium irregular pores; many prominent clay films on faces of peds; slightly alkaline (pH 7.4); abrupt wavy boundary.
2Btk1-20 to 30 inches; red (2.5YR 5/6) clay loam, red (2.5YR 4/6) moist; moderate medium subangular blocky structure; very hard, very firm, sticky and plastic; common very fine and fine roots; few very fine irregular pores; 4 percent gravel; many prominent clay films on faces of peds; strongly effervescent; common fine masses and concretions of calcium carbonate; 10 percent calcium carbonate equivalent; moderately alkaline (pH 8.2); clear wavy boundary.
2Btk2-30 to 48 inches; red (2.5YR 5/6) gravelly sandy clay loam, red (2.5YR 4/6) moist; moderate fine subangular blocky structure; hard, firm, slightly sticky and slightly plastic; few very fine and fine roots; 20 percent gravel-sized limestone fragments; common distinct clay films on faces of peds; slightly effervescent; few very fine masses and concretions of calcium carbonate; calcium carbonate equivalent 11 percent; moderately alkaline (pH 8.2); clear wavy boundary.
3Btk3-48 to 70 inches; red (2.5YR 5/6) sandy clay loam, red (2.5YR 4/6) moist; weak medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; few very fine roots; few distinct clay films bridging sand grains; very slightly effervescent; few very fine masses of calcium carbonate; 5 percent calcium carbonate equivalent; slightly alkaline (pH 7.8).

Range in Characteristics

Particle-size control section: 35 to 50 percent clay
A and AB horizons:
Hue:7.5YR
Value: 4 or 5 dry, 3 moist
Chroma: 2 or 3
Textures: fine sandy loam or silt loam
Rock fragments: 0 to 5 percent gravel. All fragments are granite, sandstone, or limestone.
Reaction: neutral
Bt horizon:
Hue: 2.5YR or 5YR
Value: 4 or 5 dry, 3 or 4 moist
Chroma: 4 or 6
Texture: clay

Rock fragments: 0 to 5 percent gravel. All fragments are granite, sandstone, or limestone.
Reaction: slightly alkaline
Btk horizon:
Hue: 2.5YR or 5YR
Value: 5 or 6 dry, 4 moist
Chroma: 6
Textures: clay loam or sandy clay loam
Rock fragments: 0 to 20 percent gravel. All fragments are granite, sandstone, or limestone.
Calcium carbonate equivalent: 5 to 15 percent
Reaction: moderately alkaline

Lockerby Series

Taxonomic class: Fine, smectitic, mesic Ustertic Haplocambids
Depth class: Moderately deep
Drainage class: Well drained
Permeability: Very slow
Geomorphic position: Hills and ridges
Parent material: Residuum derived from shale
Slope range: 5 to 15 percent
Elevation: 6,500 to 7,200
Mean annual air temperature: 46 to 49 degrees F
Mean annual precipitation: 10 to 13 inches
Frost-free period: 100 to 135 days

Typical Pedon

Lockerby silty clay loam, in an area of mapping unit 338, Zyme-Lockerby association, 5 to 35 percent slopes; McKinley County, New Mexico; Pinedale Quadrangle; about 1,950 feet east and 450 feet south of the northwest corner of sec. 27, T. 16 N., R. 15 W. latitude 35 degrees, 35 minutes, 35 seconds and longitude 108 degrees, 24 minutes, 27 seconds.

A-0 to 1 inches; light olive brown (2.5Y 5/4) silty clay loam, olive brown (2.5Y 4/4) moist; weak very fine granular structure; soft, very friable, moderately sticky and moderately plastic; few very fine roots; 5 percent gravel; very slightly effervescent; moderately alkaline (pH 8.0); abrupt smooth boundary.
$B w-1$ to 11 inches; light olive brown ($2.5 \mathrm{Y} 5 / 4$) clay, olive brown (2.5Y 4/4) moist; weak very fine subangular blocky structure; very hard, very firm, very sticky and very plastic; many very fine and fine roots; few to many pressure faces; 1 percent gravel; very slightly effervescent; slightly alkaline (pH 7.6); clear wavy boundary.
Bss-11 to 15 inches; light olive brown and dark grayish brown (2.5Y 5/4) and (2.5Y 4/2) clay, olive
brown and very dark grayish brown (2.5Y 4/4) and (2.5Y 3/2) moist; weak fine subangular blocky structure; very hard, very firm, very slightly effervescent; slightly alkaline (pH 7.6); abrupt wavy boundary.
Bssy-15 to 26 inches; light olive brown and dark grayish brown (2.5Y 5/4) and (2.5Y 4/2) clay, olive brown and very dark grayish brown (2.5Y4/4) and (2.5Y 3/2) moist; weak fine subangular blocky structure; very hard, very firm, very sticky and very plastic; few very fine roots; few nonintersecting slickensides; many very fine and fine masses of gypsum; non-effervescent; slightly alkaline (pH 7.6); abrupt smooth boundary.
Cr-26 inches; shale.

Range in Characteristics

Particle-size control section: 40 to 50 percent clay
Depth to paralithic contact: 20 to 40 inches Vertic features: pressure faces and slickensides Calcium carbonate equivalent: 1 to 5 percent Reaction: slightly to moderately alkaline

A horizon:
Hue: 2.5 Y or 10YR
Value: 4 or 5 dry, 3 or 4 moist
Chroma: 3 or 4 , dry and moist
Textures: silty clay loam or clay loam
Bw horizon:
Hue: 2.5Y or 10YR
Value: 5 to 6 dry, 4 to 5 moist
Chroma: 3 or 4 , dry and moist
Textures: clay or silty clay
Bss and Bssy horizon:
Hue: 2.5Y or 10YR
Value: 4 to 6 dry, 3 to 5 moist
Chroma: 2 to 4, dry and moist
Textures: clay or silty clay

Marianolake Series

Taxonomic class: Fine-loamy, mixed, active, mesic Ustic Haplargids
Depth class: Very Deep
Drainage class: Well drained
Permeability: Moderately slow
Geomorphic position: Valley sides, mesas, cuestas, and drainageways
Parent material: Slope and fan alluvium derived from sandstone and shale
Slope range: 1 to 8 percent
Elevation: 6,200 to 7,300 feet
Mean annual air temperature: 49 to 54 degrees F

Mean annual precipitation: 10 to 13 inches Frost-free period: 120 to 140 days

Typical Pedon

Marianolake fine sandy loam, in an area of mapping unit 208, Marianolake fine sandy loam, 1 to 8 percent slopes; McKinley County, New Mexico; Casamero Lake Quadrangle; about 1,000 feet west and 1,500 feet south of the northeast corner of sec. 17, T. 15 N., R. 11 W.; latitude 35 degrees, 32 minutes, 05 seconds and longitude 108 degrees, 01 minutes, 02 seconds.

A—0 to 2 inches; light olive brown (2.5Y 5/3) fine sandy loam, olive brown (2.5Y 4/3) moist; weak very fine granular structure; soft, very friable, nonsticky and nonplastic; common very fine roots; 3 percent gravel; very slightly effervescent; slightly alkaline (pH 7.8); abrupt smooth boundary.
Bt1-2 to 8 inches; light olive brown (2.5Y 5/4) loam, olive brown (2.5Y 4/4) moist; weak fine and medium subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; many very fine roots; 1 percent gravel; few faint clay films on faces of peds; slightly effervescent; moderately alkaline (pH 8.0); abrupt smooth boundary.
Bt2—8 to 14 inches; light olive brown (2.5Y 5/3) clay loam, olive brown (2.5Y 4/3) moist; strong very fine and fine subangular blocky structure; hard, firm, sticky and plastic; common very fine roots; common very fine irregular pores; 1 percent gravel; many distinct clay films on faces of peds; slightly effervescent; moderately alkaline (pH 8.0); clear smooth boundary.
Bt3-14 to 24 inches; light olive brown (2.5Y 5/4) fine sandy loam, olive brown (2.5Y 4/3) moist; moderate medium prismatic parting to moderate very fine subangular blocky structure; hard, firm, slightly sticky and slightly plastic; common very fine roots; few very fine irregular pores; 2 percent gravel; very few pockets of remnant alluvial stratification; few faint clay films on faces of peds; slightly effervescent; moderately alkaline (pH 8.0); clear wavy boundary.
Bk-24 to 39 inches; light yellowish brown (2.5Y 6/4) fine sandy loam, olive brown (2.5Y 5/4) moist; weak coarse subangular blocky structure; slightly hard, friable, nonsticky and nonplastic; common very fine roots; many very fine irregular pores; very few pockets of remnant alluvial stratification; slightly effervescent; few very fine masses of calcium carbonate; moderately alkaline (pH 8.0); clear smooth boundary.
C-39 to 70 inches; light olive brown (2.5Y 5/4) loamy
sand, olive brown (2.5Y 5/4) moist; massive; soft, very friable, nonsticky and nonplastic; few very fine roots; 5 percent gravel; slightly effervescent; moderately alkaline (pH 8.0).

Range in Characteristics

Particle-size control section: 18 to 34 percent clay
Calcium carbonate equivalence: 0 to 10 percent.
Gypsum percent: 0 to 2 percent
Rock fragments: 0 to 10 percent gravel. All fragments are sandstone.
Reaction: slightly alkaline in the surface to moderately alkaline in the subsoil

A horizon:
Hue: 2.5 Y or 10 YR
Value: 4 or 5 dry, 3 or 4 moist
Chroma: 3 or 4 dry or moist
Textures: loam or fine sandy loam
Bt or Btk horizons:
Hue: 2.5Y or 10YR
Value: 4 or 5 dry, 3 to 5 moist
Chroma: 2 to 4 dry or moist
Texture: sandy clay loam, loam, silt loam, silty clay, silty clay loam, or clay loam.
$B C$ and C horizons:
Hue: 2.5Y
Value: 4 or 5 dry and moist
Chroma: 2 to 4 dry and moist
Textures: loamy sand, fine sandy loam, or loam

Mcorreon Series

Taxonomic class: Fine, smectitic, mesic Calcidic Argiustolls
Depth class: Very deep
Drainage class: Well drained
Permeability: Slow
Geomorphic position: Lava Plateaus
Parent material: Eolian material and slope alluvium over residuum derived from basalt
Slope range: 2 to 40 percent
Elevation: 6,500 to 8,600 feet
Mean annual air temperature: 47 to 53 degrees F
Mean annual precipitation: 13 to 16 inches
Frost-free period: 100 to 135 days

Typical Pedon

Mcorreon loam, in an area of mapping unit 395, Cabezon-Mcorreon complex, 2 to 8 percent slopes; McKinley County, New Mexico; Cerro Parido Quadrangle; 11,300 feet south and 1,600 feet west of the southeast corner of sec. 26, T. 16 N., R. 5 W.;
latitude 35 degrees, 33 minutes, 07 seconds and longitude 107 degrees, 19 minutes, 50 seconds.

The surface is covered by about 10 percent gravel, 2 percent cobbles, and 1 percent stones.
A—0 to 2 inches; grayish brown (10YR 5/2) loam, very dark grayish brown (10YR 3/2) moist; moderate thin and medium platy structure; soft, very friable, nonsticky and nonplastic; common very fine and fine roots; many fine and medium vesicular pores; 10 percent gravel, 2 percent cobbles, and 1 percent stones; neutral (pH 7.2); clear smooth boundary.
Bt1-2 to 13 inches; very dark grayish brown (10YR 3/2) clay, dark brown (7.5YR 3/2) moist; strong fine angular blocky structure; hard, firm, sticky and plastic; many very fine and fine, and few medium roots; common fine tubular pores; many prominent clay films on faces of peds; 2 percent gravel; neutral (pH 7.2); clear smooth boundary.
Bt2—13 to 19 inches; dark brown (7.5YR 3/3) clay, dark brown (7.5YR 3/2) moist; moderate medium prismatic parting to moderate medium angular blocky structure; very hard, very firm, very sticky and very plastic; common very fine and fine roots; common fine tubular pores; many prominent clay films on faces of peds; 10 percent gravel, 2 percent cobbles; slightly alkaline (pH 7.4); gradual irregular boundary.
Btk-19 to 27 inches; light brownish gray (10YR 6/2) clay loam, grayish brown (10YR 5/2) moist; moderate fine and medium subangular blocky structure; hard, firm, sticky and plastic; few very fine and fine roots; common fine irregular pores; common distinct clay films on faces of peds; 5 percent gravel; violently effervescent; 37 percent calcium carbonate equivalent; moderately alkaline (pH 8.0); clear smooth boundary.
Bk-27 to 70 inches; pinkish gray (7.5YR 7/2) clay loam, pinkish gray (7.5YR 6/2) moist; massive; hard, firm, sticky and plastic; few very fine and fine roots; common fine irregular pores; 5 percent gravel and 1 percent cobbles; violently effervescent; 43 percent calcium carbonate equivalent; moderately alkaline (pH 8.4).
R—70 inches; Basalt bedrock.

Range in Characteristics

Particle-size control section: 35 to 60 percent clay
Depth to calcic horizon: 15 to 40 inches
Depth to lithic contact: 60 to 80 inches to basalt
A horizon:
Hue: 7.5YR or 10YR

Value: 4 or 5 dry, 2 or 3 moist
Chroma: 2 or 3 dry or moist
Textures: loam, clay loam, or silty clay loam
Rock fragments: 0 to 60 percent total; 10 to 60 percent gravel, 0 to 40 percent cobbles, 0 to 1 percent stones. Rock fragments are basalt.
Reaction: neutral
Bt horizon
Hue: 7.5YR or 10YR
Value: 4 to 6 dry, 3 or 4 moist
Chroma: 2 to 4 dry or moist
Textures: clay loam or clay
Rock fragments: 0 to 15 percent total; 0 to 10 percent gravel, 0 to 5 percent cobbles. Rock fragments are basalt.
Reaction: neutral to slightly alkaline
Btk and Bk horizons:
Hue: 7.5YR or 10YR
Value: 4 to 6 dry, 3 or 4 moist
Chroma: 2 to 4 dry or moist
Textures: clay loam or clay
Rock fragments: 0 to 15 percent total; 0 to 10 percent gravel, 0 to 5 percent cobbles. Rock fragments are basalt.
Calcium carbonate equivalent: 15 to 45 percent
Reaction: Slightly to moderately alkaline

Mentmore Series

Taxonomic class: Fine-loamy, mixed, superactive, mesic Ustic Haplargids
Depth class: Very deep
Drainage class: Well drained
Permeability: Moderately slow
Geomorphic position: Cuestas, drainageways, and valley sides
Parent material: Slope and fan alluvium derived from sandstone and shale
Slope range: 1 to 8 percent
Elevation: 6,100 to 7,200 feet
Mean annual air temperature: 45 to 49 degrees F Mean annual precipitation: 10 to 13 inches
Frost-free period: 100 to 135 days

Typical Pedon

Mentmore fine sandy loam, in an area of mapping unit 242, Gish-Mentmore complex, 1 to 8 percent slopes; McKinley County, New Mexico; Gallup East Quadrangle; 2,100 feet west, 1,400 feet north of the southeast corner sec. 21, T. 16 N., R. 17 W.; latitude 35 degrees, 35 minutes, 58 seconds and longitude 108 degrees, 38 minutes, 30 seconds.

A—0 to 2 inches; light olive brown (2.5Y 5/4) fine sandy loam, olive brown (2.5Y 4/4) moist; weak medium subangular blocky parting to weak very fine granular structure; soft, very friable, nonsticky and nonplastic; many very fine roots; slightly alkaline (pH 7.6); abrupt smooth boundary (2 to 4 inches thick).
Bt1-2 to 4 inches; light olive brown (2.5Y 5/4) clay loam, olive brown (2.5Y 4/4) moist; strong very fine subangular blocky structure; hard, firm, sticky and plastic; many very fine roots; few very fine irregular pores; few faint clay films on faces of peds; slightly alkaline (pH 7.6); abrupt smooth boundary.
Bt2—4 to 13 inches; light olive brown (2.5Y 5/4) clay loam, olive brown (2.5Y 4/4) moist; strong fine and medium subangular blocky structure; hard, firm, sticky and plastic; many very fine roots; few very fine irregular pores; many distinct clay films on faces of peds; very slightly effervescent; slightly alkaline (pH 7.8); clear smooth boundary.
Bt3-13 to 24 inches; light olive brown (2.5Y 5/3) clay loam, olive brown (2.5Y 5/3) moist; moderate fine and medium subangular blocky structure; hard, firm, sticky and plastic; common very fine and few medium roots; common very fine irregular pores; common distinct clay films on faces of peds; 2 percent gravel; few krotovinas; common distinct clay films and very fine sand coating faces of peds; very slightly effervescent; slightly alkaline (pH 7.8); clear smooth boundary.
Bk1-24 to 44 inches; grayish brown (2.5Y 5/2) clay loam, dark grayish brown (2.5Y 4/2) moist; weak very fine and fine subangular blocky structure; hard, firm, sticky and plastic; common very fine roots; few very fine irregular pores; 1 percent gravel; few pockets of finely stratified material; slightly effervescent; few very fine masses of calcium carbonate; moderately alkaline (pH 8.0); clear smooth boundary.
Bk2—44 to 62 inches; grayish brown (2.5Y 5/2) clay loam, dark grayish brown (2.5Y 4/2) moist; weak fine and medium subangular blocky structure; hard, firm, sticky and plastic; few very fine roots; common very fine irregular pores; 3 percent gravel and 1 percent cobbles; few pockets of finely stratified material; slightly effervescent; few very fine masses of calcium carbonate; moderately alkaline (pH 8.0).
By-62 to 70 inches; grayish brown (2.5Y 5/2) clay loam, dark grayish brown (2.5Y 4/2) moist; weak fine and medium subangular blocky structure; very hard, very firm, sticky and plastic; few very fine roots; 3 inch strata of fine sandy loam;
noneffervescent; common very fine masses and filaments of gypsum; slightly alkaline (pH 7.6).

Range in Characteristics

Particle-size control section: 20 to 35 percent clay. The clay content of the Bt1 horizon can range up to 39 percent but is too thin to affect the particlesize family.
Calcium carbonate equivalent: 0 to 2 percent in the upper part and 2 to 10 percent in the lower subsoil
Gypsum percent: 0 to 2 percent in the lower subsoil
Reaction: slightly alkaline in the upper part and moderately alkaline in the lower subsoil.

A horizon:
Hue: 10YR or 2.5Y
Value: 5 to 7 dry, 3 to 5 moist
Chroma: 2 to 4 dry and moist
Rock fragments: 0 to 5 percent sandstone gravel
Texture: fine sandy loam, loam, or silt loam
Bt and Btk horizons:
Hue: 2.5Y
Value: 4 to 5 dry, 3 to 5 moist
Chroma: 2 to 4 dry and moist
Rock fragments: 0 to 5 percent sandstone gravel and 0 to 1 percent cobbles
Texture: loam, sandy clay loam or clay loam
Bk horizon:
Hue: 2.5Y
Value: 5 or 6 dry, 3 to 5 moist
Chroma: 2 to 4 dry and moist
Texture: clay loam or loam
Some pedons have By horizons.

Mido Series

Taxonomic class: Mixed, mesic Ustic Torripsamments Depth class: Very deep
Drainage class: Excessively drained
Permeability: Rapid
Geomorphic position: Valley sides and valley floors
Parent material: Eolian material derived from sandstone
Slope range: 1 to 6 percent
Elevation: 6,300 to 6,700 feet
Mean annual air temperature: 49 to 53 degrees F
Mean annual precipitation: 10 to 13 inches
Frost-free period: 120 to 140 days

Typical Pedon

Mido loamy fine sand, in an area of mapping unit 353, Mido loamy fine sand, 1 to 6 percent slopes; McKinley

County, New Mexico; Zuni Quadrangle; 2,400 feet north and 100 feet east of sec. 20, T. 10 N., R. 19 W.; latitude 35 degrees, 04 minutes, 55 seconds and longitude 108 degrees, 52 minutes, 22 seconds.
A-0 to 3 inches; reddish brown (5YR 5/4) loamy fine sand, reddish brown (5YR 4/4) moist; weak medium platy structure; soft, very friable, nonsticky and nonplastic; common fine and many very fine roots; common very fine irregular pores; strongly effervescent; slightly alkaline (pH 7.8); abrupt smooth boundary.
C1-3 to 16 inches; yellowish red (5YR 5/6) loamy fine sand, reddish brown (5YR 4/4) moist; massive; soft, very friable, nonsticky and nonplastic; many fine and very fine roots; common very fine irregular pores; strongly effervescent; slightly alkaline (pH 7.8); gradual smooth boundary.

C2—16 to 65 inches; yellowish red (5YR 5/6) loamy fine sand, yellowish red (5YR 4/6) moist; massive; soft, very friable, nonsticky and nonplastic; common fine and very fine roots; common very fine irregular pores; strongly effervescent; slightly alkaline (pH 7.8).

Range in Characteristics

Particle-size control section: 2 to 10 percent clay
Reaction: slightly or moderately alkaline
Calcium carbonate equivalent: 0 to 1 percent
A horizon:
Hue:2.5YR or 5YR
Value: 4 or 5 dry, 4 moist
Chroma: 4 to 6 dry and moist
C horizon:
Hue: 2.5YR or 5YR
Value: 4 or 5 moist
Chroma: 4 or 6 moist
Texture: loamy fine sand or fine sand

Mirabal Series

Taxonomic class: Loamy-skeletal, mixed, superactive, nonacid, frigid Typic Ustorthents
Depth class: Moderately deep
Drainage class: Well drained
Permeability: Moderately rapid
Geomorphic position: Igneous domes of mountains
Parent material: Colluvial material over residuum derived from gneissic-granite
Slope range: 5 to 40 percent
Elevation: 7,800 to 8,200 feet
Mean annual air temperature: 40 to 45 degrees F
Mean annual precipitation: 16 to 20 inches

Frost-free period: 90 to 110 days

Typical Pedon

Mirabal extremely gravelly loamy sand, in an area of mapping unit 408, Mirabal-Zuni complex, 1 to 40 percent slopes; McKinley County, New Mexico; Upper Nutria Quadrangle; 2,000 feet east and 1,050 feet south of the northwest corner of sec. 23, T. 13 N., R. 16 W .; latitude 35 degrees, 20 minutes, 50 seconds and longitude 108 degrees, 30 minutes, 07 seconds.

The surface is covered by 60 percent gravel, 15 percent cobbles, and 15 percent stones.

Oi-0 to 1 inches; slightly decomposed pine needles.
A-1 to 2 inches; grayish brown (10YR $5 / 2$) extremely gravelly loamy sand, very dark grayish brown (10 3/2) moist; single grain; soft, loose, nonsticky and nonplastic; common very fine and fine roots; 60 percent gravel, 15 percent cobbles, 15 percent stones; slightly acid (pH 6.4); abrupt smooth boundary.
AC-2 to 6 inches; dark grayish brown (10YR 4/2) gravelly sandy loam, very dark brown (10YR 2/2) moist; weak very fine and fine granular structure; soft, very friable, nonsticky and nonplastic; many fine and common medium roots; 20 percent gravel, 5 percent cobbles; slightly acid (pH 6.4); abrupt wavy boundary.
C1-6 to 13 inches; yellowish brown (10YR 5/4) very gravelly sandy loam, dark yellowish brown (10YR 3/4) moist; massive; soft, very friable, nonsticky and nonplastic; common fine and medium roots; 40 percent gravel, 10 percent cobbles, 1 percent stones; neutral (pH 6.8); clear wavy boundary.
C2-13 to 30 inches; yellowish brown (10YR $5 / 4$) extremely gravelly sandy loam, dark yellowish brown (10YR 3/4) moist; massive; soft, very friable, nonsticky and nonplastic; few fine roots; 50 percent gravel, 10 percent cobbles, 10 percent stones; neutral (pH 6.8); abrupt smooth boundary.
R-30 inches; gneissic-granite.

Range in Characteristics

Particle size control section: 12 to 18 percent clay with 35 to 80 percent rock fragments
Depth to a lithic contact: 20 to 40 inches
A and $A C$ horizons:
Hue: 5YR to 10YR
Value: 4 or 5 dry, 2 or 3 moist
Chroma: 2 or 3
Textures: sandy loam or loamy sand
Rock fragments: 80 percent total; 40 to 60 percent gravel, 5 to 15 percent cobbles, 0 to 15 percent stones. All fragments are gneissic-granite.

Reaction: slightly acid or neutral
C horizons:
Hue: 5YR to 10YR
Value: 5 or 6 dry, 3 or 4 moist
Chroma: 3 or 4
Textures: sandy loam or loamy sand
Rock fragments: 80 percent total: 40 to 60 percent gravel, 5 to 15 percent cobbles, 0 to 15 percent stones. All fragments are gneissic-granite.
Reaction: neutral

Moncisco Series

Taxonomic class: Loamy-skeletal over fragmental, mixed, active, mesic Typic Haplocalcids
Depth class: Very deep
Drainage class: Excessively drained
Permeability: Moderate over very rapid
Geomorphic position: Hills and ridges
Parent material: Eolian material from sandstone over residuum from porcelanite
Slope range: 2 to 45 percent
Elevation: 5,800 to 6,300 feet
Mean annual air temperature: 50 to 55 degrees F Mean annual precipitation: 7 to 9 inches
Frost-free period: 130 to 150 days

Typical Pedon

Moncisco extremely channery sandy clay loam in an area of mapping unit 130, Chipeta-Badland-Moncisco complex, 2 to 45 percent slopes; San Juan County, New Mexico; The Pillar 3 NE Quadrangle; latitude 36 degrees, 06 minutes, 27 seconds and longitude 108 degrees, 16 minutes, 57 seconds.

A-0 to 3 inches; pale brown (10YR 6/3) extremely channery sandy clay loam, dark brown (10YR 4/3) moist; weak medium platy parting to moderate fine granular structure; soft, very friable, slightly sticky and slightly plastic; few very fine and fine roots; 65 percent channers and 5 percent flagstones; slightly effervescent; slightly alkaline (pH 7.6); clear smooth boundary.
Bk-3 to 13 inches; pinkish gray (7.5YR 7/2) extremely channery sandy loam, brown (7.5YR 5/4) moist; weak very fine granular structure; soft, very friable, slightly sticky and nonplastic; common very fine, fine, and few medium roots; 75 percent channers and 5 percent flagstones; violently effervescent; common very fine and fine masses of calcium carbonate; slightly alkaline (pH 7.8); clear wavy boundary.
2BCky-13 to 27 inches; brownish yellow (10YR 6/6) fragmental, yellowish brown (10YR 5/6) moist;
massive; loose; common very fine and few fine roots; 85 percent channers and 10 percent cobbles; strongly effervescent; few very fine and fine masses of calcium carbonate and gypsum crystals; clear wavy boundary.
2C1-27 to 39 inches; light red (2.5YR 6/6) fragmental, red (2.5YR 5/6) moist; massive; loose; few very fine and fine roots; 80 percent channers and 10 percent cobbles; gradual irregular boundary.
2C2—39 to 60 inches; light red (2.5YR 6/6) fragmental, red (2.5YR 5/6) moist; massive; loose; few very fine roots; 5 percent flagstones.

Range in Characteristics

Particle-size control section: 12 to 25 percent clay in the fine earth fraction and more than 35 percent rock fragments
Soil depth: more than 60 inches to bedrock
Depth to fragmental material: 11 to 20 inches
Reaction: slightly to moderately alkaline
A horizon:
Value: 5 or 6 dry
Chroma: 3 or 4
Calcium carbonate equivalence: 1 to 3 percent
Salinity: EC of 0 to $2 \mathrm{mmhos} / \mathrm{cm}$
Rock fragments: 60 to 75 percent total; 0 to 10 percent gravel, 60 to 70 percent channers less than 3 inches long, 0 to 5 percent flagstones less than 10 inches long. All fragments are sandstone and porcelanite.
Bk horizon:
Hue: 5YR or 7.5YR
Value: 6 or 7 dry, 4 or 5 moist
Chroma: 2 to 4
Calcium carbonate equivalent: 5 to 20 percent. (In those profiles with sandy clay loam textures, the carbonates exceed 15 percent, and in those with sandy loam textures, the carbonate percentage may range as low as 5 percent.)
Salinity: EC of 4 to 8 mmhos/cm
Texture: sandy clay loam or sandy loam
Rock fragments: 70 to 85 percent total; 0 to 5 percent gravel; 65 to 75 percent channers with 10 to 15 percent greater than 3 inches long; 0 to 10 percent flagstones with 0 to 5 percent greater than 10 inches long.

2BCky or 2C horizons:
Hue: 10R to 5YR
Value: 4 to 7 dry, 4 to 6 moist
Chroma: 4 to 8
Calcium carbonate equivalent: 0 to 1 percent
Gypsum content: 0 to 1 percent
Salinity: EC of 0 to $2 \mathrm{mmhos} / \mathrm{cm}$

Texture: fragmental material
Rock fragments: 90 to 100 percent total; 0 to 10 percent gravel, 60 to 85 percent channers with 10 to 15 percent greater than 3 inches long, 5 to 20 percent angular cobbles or flagstones with 0 to 5 percent greater than 10 inches long, 0 to 5 percent stones.
Other features: some pedons have horizons of loamy sand or sandy loam below 40 inches.

Monpark Series

Taxonomic class: Fine, smectitic, mesic Leptic Haplotorrerts
Depth class: Moderately deep
Drainage class: Well drained
Permeability: Very slow
Geomorphic position: Hills and valley sides
Parent material: Slope alluvium over residuum derived from shale
Slope range: 2 to 8 percent
Elevation: 6,000 to 7,000 feet
Mean annual air temperature: 49 to 53 degrees F
Mean annual precipitation: 10 to 13 inches
Frost-free period: 120 to 140 days

Typical Pedon

Monpark silty clay in an area of mapping unit 361 Monpark silty clay, 2 to 8 percent slopes; McKinley County, New Mexico; Zuni Quadrangle; about 2.9 miles southwest of Zuni Pueblo; 1,900 feet east and 1,700 feet south of the northwest corner of Sec. 8, T. 9 N., R. 19 W.; latitude 35 degrees, 01 minutes, 40 seconds and longitude 108 degrees, 54 minutes, 32 seconds.

A—0 to 4 inches; red (2.5YR 4/6) silty clay, dark red (2.5YR 3/6) moist; strong thin platy structure parting to strong fine granular; soft, very friable, sticky and plastic; common very fine and fine roots; common fine irregular pores; vertical cracks 1 cm wide extend from surface to 20 inches; strongly effervescent; moderately alkaline (pH 8.0); clear smooth boundary.
BC—4 to 7 inches; red (2.5YR 4/6) silty clay, dark red (2.5YR 3/6) moist; moderate fine and medium subangular blocky structure; hard, firm, sticky and plastic; many very fine and fine roots; common fine irregular pores; many pressure faces; strongly effervescent; moderately alkaline (pH 8.4); abrupt smooth boundary.
2BCss—7 to 27 inches; red (2.5YR 4/6) clay, dark red (2.5YR 3/6) moist; massive; extremely hard, extremely firm, very sticky and very plastic; few very fine and fine roots; few fine irregular pores; 5
percent shale fragments; many pressure faces and few 1 - to 2 -inch-diameter slickensides; strongly effervescent; strongly alkaline (pH 8.6); gradual wavy boundary.
$2 \mathrm{Cr}-27$ inches; shale.

Range in Characteristics

Particle-size control section: 40 to 60 percent clay Depth to paralithic contact: 20 to 40 inches to shale Calcium carbonate equivalent: 1 to 10 percent

A horizon:

Hue:2.5YR or 5YR
Value: 3 to 5 dry, 3 or 4 moist
Chroma: 3 to 6
Salinity: EC of 0 to $2 \mathrm{mmhos} / \mathrm{cm}$
Sodicity: SAR of 0 to 2
Reaction: slightly or moderately alkaline
BC horizons:
Hue: 2.5YR or 5YR
Value: 3 to 5 dry, 3 or 4 moist
Chroma: 3 to 6
Texture: silty clay or clay
Salinity: EC of 0 to $4 \mathrm{mmhos} / \mathrm{cm}$
Sodicity: SAR of 2 to 5
Reaction: slightly to strongly alkaline

Montillo Series

Taxonomic class: Fine, mixed, superactive, frigid Vertic Argiustolls
Depth class: Moderately deep
Drainage class: Well drained
Permeability: Slow
Geomorphic position: Lava plateaus and cinder cones
Parent material: Eolian material and slope alluvium over residuum derived from basalt
Slope range: 2 to 15 percent
Elevation: 7,800 to 9,000 feet
Mean annual air temperature: 40 to 45 degrees F
Mean annual precipitation: 16 to 20 inches
Frost-free period: 90 to 110 days

Typical Pedon

Montillo very gravelly loam in an area of mapping unit 410, Montillo-Tsoodzil complex, 5 to 35 percent slopes; McKinley County, New Mexico; Marquez Quadrangle; latitude 35 degrees, 20 minutes, 05 seconds and longitude 107 degrees, 20 minutes, 07 seconds.

A—0 to 3 inches; reddish brown (5YR4/3), very
gravelly loam, dark reddish brown (5YR3/2) moist; moderate thin and medium platy structure; soft, very friable, nonsticky and slightly plastic; common very fine and fine roots; common fine irregular pores; 25 percent gravel, 10 percent cobbles, and 1 percent stones; slightly acid (pH 6.4); clear smooth boundary.

Bt1-3 to 8 inches; dark reddish brown (5YR3/2), silty clay loam, dark reddish brown (5YR3/2) moist; moderate medium granular structure; hard, firm, sticky and very plastic; many very fine and fine roots; common fine irregular pores; common distinct clay films on faces of peds; 5 percent gravel and 2 percent cobbles; neutral (pH 6.6); clear smooth boundary.
Btss1-8 to 15 inches; dark reddish brown (5YR3/2) silty clay, dark reddish brown (5YR3/2) moist; moderate fine and medium angular blocky structure; very hard, very firm, sticky and very plastic; common very fine and fine and few medium roots; common fine tubular pores; few slickensides and pressure faces; few vertical cracks greater than 5 mm wide occur from 8 to 27 inches; many prominent clay films on faces of peds; 5 percent gravel and 5 percent cobbles; slightly alkaline (pH 7.4); clear smooth boundary.
Btss2-15 to 27 inches; dark reddish brown (5YR 3/4) clay, dark reddish brown (5YR 3/3) moist; strong medium angular blocky structure; very hard, very firm, sticky and very plastic; common very fine and fine and few medium roots; common fine tubular pores; common slickensides and pressure faces; few vertical cracks greater than 5 mm wide occur from 8 to 27 inches; many prominent clay films on faces of peds; 5 percent gravel; slightly alkaline (pH 7.4); clear smooth boundary.
2Bt2—27 to 32 inches; reddish brown (5YR 4/3) very gravelly clay, dark reddish brown (5YR 3/3) moist; strong medium subangular blocky structure; very hard, very firm, sticky and very plastic; common very fine and fine roots; common fine tubular pores; many prominent clay films on faces of peds; 35 percent gravel and 1 percent cobbles; slightly alkaline (pH 7.6); abrupt irregular boundary.
2R-32 inches; basalt with few thin discontinuous coats of calcium carbonate at the upper contact.

Range in Characteristics

Particle-size control section: 40 to 60 percent clay with 0 to 30 percent rock fragments
Depth to lithic contact: 20 to 40 inches to basalt
Mollic epipedon thickness: 18 to 38 inches

Vertic features: Depth to slickensides and pressure faces is 8 to 13 inches; subsurface vertical cracks occur from 5 to 30 inches

A horizon:

Hue:5YR, 7.5YR, or 10YR
Value: 3 or 4 dry, 2.5 or 3 moist
Chroma: 2 or 3 dry
Rock fragments: 5 to 40 percent total; 5 to 25 percent gravel, 0 to 10 percent cobbles, and 0 to 1 percent stones. All fragments are basalt and cinders.
Reaction: slightly acid to neutral
Bt horizons:
Hue: 5YR or 7.5YR
Value: 3 to 5 dry, 2.5 to 4 moist
Chroma: 2 to 6 dry, 1 to 4 moist
Texture: clay, silty clay, or clay loam and silty clay loam
Rock fragments: 0 to 45 percent total; 0 to 30 percent gravel, 0 to 25 percent cobbles, and 0 to 5 percent stones. All fragments are basalt and cinders.
Note: When a Bt horizon has greater than 35 percent rock fragments, it is either too thin or is too far below the particle size control section to affect the particle size class.
Reaction: neutral to slightly alkaline

Morclay Series

Taxonomic class: Fine, mixed, superactive, frigid Chromic Haplusterts
Depth class: Very deep
Drainage class: Well drained
Permeability: Very slow
Geomorphic position: Valley sides and floors
Parent material: Slope alluvium over residuum derived from shale
Slope range: 1 to 5 percent
Elevation: 7,400 to 7,800 feet
Mean annual air temperature: 40 to 45 degrees F
Mean annual precipitation: 16 to 20 inches
Frost-free period: 90 to 110 days

Typical Pedon

Morclay silty clay, in an area of mapping unit 413, Morclay silty clay, 1 to 5 percent slopes; McKinley County, New Mexico; Upper Nutria Quadrangle; about 1,500 feet south and 1,100 feet west of the northwest corner of sec. 14, T. 12 N., R. 16 W.; latitude 35 degrees, 16 minutes, 24 seconds and longitude 108 degrees, 30 minutes, 00 seconds.
A-0 to 1 inches; reddish brown (2.5YR 4/3) silty clay, dark reddish brown (2.5YR 3/3) moist; strong very fine granular structure; slightly hard, friable, sticky
and plastic; common very fine and fine roots; slightly effervescent; slightly alkaline (pH 7.8); abrupt smooth boundary.
Bk1-1 to 5 inches; reddish brown (2.5YR 4/3) clay, dark reddish brown (2.5YR 3/3) moist; moderate thick platy structure; very hard, very firm, very sticky and very plastic; many very fine and fine roots; few very fine irregular pores; few pressure faces; few vertical cracks 1 cm wide; slightly effervescent; few very fine masses of calcium carbonate; slightly alkaline (pH 7.6); clear wavy boundary.
Bssk-5 to 48 inches; reddish brown (2.5YR 4/3) clay, dark reddish brown (2.5YR 3/3) moist; wedgeshaped aggregates; extremely hard, extremely firm, very sticky and very plastic; common very fine and fine roots; few very fine irregular pores; many pressure faces and intersecting slickensides; few vertical cracks more than 1 cm wide visible to a depth of 42 inches; slightly effervescent; few very fine masses of calcium carbonate; slightly alkaline (pH 7.6); gradual wavy boundary.
2Ck1—48 to 56 inches; pale red (2.5YR 6/2) clay, weak red (2.5YR 5/2) moist; massive; very hard, very firm, sticky and plastic; few very fine and fine roots; slightly effervescent; few very fine masses of calcium carbonate; slightly alkaline (pH 7.6); gradual wavy boundary.
2Ck2—56 to 70 inches; light gray (5YR 7/1) clay, gray (5YR 6/1) moist; massive; few very fine roots; 70 to 80 percent small (2 to 5 mm) soft shale fragments; slightly effervescent; few very fine masses of calcium carbonate; moderately alkaline (pH 8.0); gradual irregular boundary.
Cr-70 to 80 inches; dark gray (7.5YR 4/1) Chinle Shale.

Range in Characteristics

Particle-size control section: 40 to 60 percent clay
Vertic properties: slight gilgai microrelief on the surface, 0.5 inch-wide vertical cracks extend from the surface to 42 inches or more, pressure faces and slickensides are present below 2 inches.
Salinity: 0-2 mmhos/cm
Sodicity: SAR of 0 to 1
Calcium carbonate equivalent: 0 to 1 percent in the surface and 1 to 5 percent in the subsoil
Reaction: neutral to moderately alkaline
A horizons:
Hue: 2.5YR or 5YR
Value: 4 or 5 dry and 3 or 4 moist
Chroma: 3 dry and moist
Rock fragments: 0 to 5 percent sandstone gravel

Bssk horizons:
Hue: 2.5YR or 5YR
Value: 3 or 4 moist
Chroma: 3 dry and moist
Texture: clay or silty clay
Ck horizons:
Hue:2.5YR or 5YR
Value: 6 or 7 dry, 5 or 6 moist
Chroma: 1 or 2

Nahodish Series

Taxonomic class: Fine, mixed, superactive, mesic Ustifluventic Haplocambids
Depth class: Very deep
Drainage class: Well drained
Permeability: Slow
Geomorphic position: Valley floors
Parent material: Stream alluvium derived from sandstone and shale
Slope range: 0 to 2 percent
Elevation: 6,100 to 6,800 feet
Mean annual air temperature: 46 to 49 degrees F
Mean annual precipitation: 10 to 13 inches
Frost-free period: 100 to 135 days

Typical Pedon

Nahodish silt loam, in an area of mapping unit 240, Breadsprings and Nahodish soils, 0 to 2 percent slopes; McKinley County, New Mexico; 900 feet north and 200 feet east of the southwest corner of sec $25, \mathrm{~T}$. 16 N., R. 20 W.; latitude 35 degrees 34 minutes 50 seconds and longitude 108 degrees 55 minutes 05 seconds.

A—0 to 1 inches; light olive brown (2.5Y 5/3) silt loam, olive brown ($2.5 \mathrm{Y} 4 / 3$) moist; thin surface crust and massive; soft, very friable, slightly sticky and slightly plastic; few very fine roots; slightly alkaline (pH 7.8); abrupt smooth boundary.
Bw1-1 to 9 inches; light olive brown (2.5Y 5/3) silty clay loam, olive brown (2.5Y 4/3) moist; weak fine subangular blocky structure; hard, friable, moderately sticky and moderately plastic; common very fine and fine roots; few very fine irregular pores; slightly alkaline (pH 7.8); abrupt smooth boundary.
Bw2—9 to 17 inches; light olive brown (2.5Y 5/4) silty clay, olive brown (2.5Y 4/4) moist; weak fine and medium subangular blocky structure; very hard, firm, moderately sticky and moderately plastic; many very fine and fine roots; common very fine irregular pores; few pressure faces and nonintersecting slickensides; very slightly
effervescent; slightly alkaline (pH 7.8); gradual smooth boundary.
Bk1-17 to 31 inches; light olive brown (2.5Y 5/4) silty clay, olive brown (2.5Y 4/4) moist; weak fine and medium subangular blocky structure; very hard, firm, moderately sticky and moderately plastic; many very fine and fine roots; common very fine irregular pores; few pressure faces; few very fine masses of calcium carbonate; slightly effervescent; slightly alkaline (pH 7.8); abrupt smooth boundary.
Bk2—31 to 36 inches; light olive brown (2.5Y 5/4) clay loam, olive brown (2.5Y 4/4) moist; weak fine subangular blocky structure; hard, firm, moderately sticky and moderately plastic; common very fine roots; few very fine irregular pores; few very fine masses of calcium carbonate; very slightly effervescent; slightly alkaline (pH 7.8); abrupt smooth boundary.
Bk3-36 to 58 inches; light olive brown (2.5Y 5/4) silt loam, olive brown (2.5Y 4/4) moist; massive; slightly hard, very friable, slightly sticky and slightly plastic; few very fine roots; few very fine strata of silt loam; few very fine masses of calcium carbonate; strongly effervescent; moderately alkaline (pH 8.0); abrupt smooth boundary.
Bky-58 to 70 inches; light olive brown (2.5Y 5/4) clay, olive brown (2.5Y 4/4) moist; massive; very hard, very firm, moderately sticky and moderately plastic; few very fine roots; few very fine masses of calcium carbonate and gypsum; slightly effervescent; moderately alkaline (pH 8.0).

Range in Characteristics

Particle-size control section: 35 to 50 percent clay
Depth to calcium carbonate: 10 to 30 inches
Percent calcium carbonate equivalent: less than 10 percent
Depth to gypsum accumulation: 21 to 58 inches
Percent gypsum: 1 to 10 percent
Reaction: Slightly to moderately alkaline
Salinity: EC of 0 to $4 \mathrm{mmhos} / \mathrm{cm}$
Sodicity: SAR of 1 to 10.
Thin stratification occurs in some horizons.
A horizon:
Hue:2.5Y
Value: 4 to 6 dry and 4 moist
Chroma: 2 or 3 dry and moist
Textures: silt loam or silty clay loam
Bw horizons:
Hue:2.5Y
Value: 4 or 5 dry and moist

Chroma: 2 to 4 dry and moist
Textures: clay, silty clay loam, clay loam, or silty clay
Bk and Bky horizons:
Hue:2.5Y
Value: 4 to 6 dry and 4 or 5 moist
Chroma: 3 or 4 dry or moist
Textures: clay, silty clay loam, silt loam, or clay loam
Some pedons are calcareous to the surface and have Bss horizons.

Norkiki Series

Taxonomic class: Fine-loamy, mixed, active, mesic Typic Haplargids
Depth class: Moderately deep
Drainage class: Well drained
Permeability: Moderate
Geomorphic position: Mesas, cuestas, hills, and ridges
Parent material: Eolian material and slope alluvium derived from sandstone and shale
Slope range: 1 to 8 percent
Elevation: 6,000 to 6,800 feet
Mean annual air temperature: 50 to 55 degrees F Mean annual precipitation: 7 to 9 inches
Frost-free period: 130 to 150 days

Typical Pedon

Norkiki loamy sand, in an area of mapping unit 100, Norkiki-Kimnoli complex, 1 to 8 percent slopes; McKinley County, New Mexico; Becenti Lake Quadrangle; 300 feet north and 1,900 feet west of the southeast corner of sec 26. T. 19 N., R. 12 W.; latitude 35 degrees, 50 minutes, 30 seconds and longitude 108 degrees, 04 minutes, 47 seconds.

A-0 to 3 inches; brown (10YR 4/3) loamy sand, dark brown (10YR $3 / 3$) moist; weak fine granular structure; soft, very friable, nonsticky and nonplastic; common fine and very fine roots; common fine irregular pores; neutral (pH 7.2); abrupt smooth boundary.
Bt1-3 to 13 inches; brown (7.5YR 4/4) sandy clay loam, dark brown (7.5YR 3/4) moist; moderate medium subangular blocky structure; soft, friable, slightly sticky and slightly plastic; common fine and very fine roots; common medium irregular pores; common distinct clay films bridging sand grains and lining pores; slightly alkaline (pH 7.4); clear smooth boundary.
Bt2—13 to 19 inches; strong brown (7.5YR 4/6) sandy loam, dark brown (7.5YR 3/4) moist; moderate fine subangular blocky structure; soft, very friable, nonsticky and nonplastic; common fine and very
fine roots; common medium irregular pores; few faint clay films bridging sand grains; slightly alkaline (pH 7.4); clear smooth boundary.
Btk-19 to 28 inches; brown (7.5YR 5/4) sandy clay loam, dark brown (7.5YR 4/4) moist; moderate medium subangular blocky structure; hard, firm, sticky and plastic; common fine and very fine roots; common medium irregular pores; common faint clay films bridging sand grains and lining pores; 5 percent cobbles; strongly effervescent; common medium irregular seams of calcium carbonate; slightly alkaline (pH 7.6); abrupt smooth boundary.
2R-28 inches; hard sandstone.

Range in Characteristics

Particle-size control section: 18 to 30 percent clay
Depth to bedrock: 20 to 40 inches to hard sandstone.
Depth to secondary calcium carbonates: 13 to 25 inches.
Calcium carbonate equivalence: 0 to 5 percent in the surface and 5 to 15 percent in the subsoil.

A horizon:

Hue: 7.5YR or 10YR
Value: 4 or 5 dry, 3 or 4 moist
Chroma: 3 or 4 dry and moist
Rock fragments: 0 to 10 percent gravel
Bt horizon:
Hue: 7.5YR or 10YR
Value: 4 or 5 dry, 3 to 5 moist
Chroma: 4 or 6 dry and moist
Texture: sandy clay loam, fine sandy loam, sandy loam, or clay loam.
Btk and Bk horizons:
Hue: 7.5YR or 10YR
Value: 5 to 7 dry, 4 to 6 moist
Chroma: 4 or 6 dry and moist
Texture: sandy clay loam, clay loam, or loamy fine sand

Notal Series

Taxonomic class: Fine, mixed, active, calcareous, mesic Typic Torriorthents
Depth class: Very deep
Drainage class: Well drained
Permeability: Very slow
Geomorphic position: Valley floors
Parent material: Stream alluvium derived from sandstone and shale
Slope range: 0 to 2 percent
Elevation: 5,600 to 6,000 feet

Mean annual air temperature: 50 to 55 degrees F Mean annual precipitation: 7 to 9 inches
Frost-free period: 130 to 150 days

Typical Pedon

Notal loam, in an area of mapping unit 235, NotalHamburn complex, 0 to 2 percent slopes; McKinley County, New Mexico; Mesa Cortada Quadrangle; 7,600 feet south and 1,500 feet west of the southeast corner of sec. 26, T. 16 N., R. 6 W.; latitude 35 degrees, 33 minutes, 43 seconds and longitude 107 degrees, 26 minutes, 20 seconds.

A—0 to 1 inches; light yellowish brown (2.5Y 6/3) loam, olive brown (2.5Y 4/3) moist; strong medium thick platy structure; slightly hard, friable, sticky and plastic; few very fine and fine roots; common very fine and fine vesicular pores; SAR of 10; EC of 1.3 mmhos/cm; slightly effervescent; strongly alkaline (pH 8.8); abrupt smooth boundary.
C-1 to 3 inches; light olive brown ($2.5 \mathrm{Y} 5 / 3$) clay loam, olive brown (2.5Y 4/3) moist; moderate medium and thick platy structure; extremely hard, extremely firm, very sticky and very plastic; common very fine and fine roots; common fine irregular pores; SAR is 8 ; EC is $0.8 \mathrm{mmhos} / \mathrm{cm}$; slightly effervescent; strongly alkaline (pH 8.8); clear wavy boundary.
Cn1-3 to 13 inches; olive brown (2.5Y 4/4) sandy clay loam, olive brown (2.5Y 4/3) moist; weak thin and medium platy structure; very hard, very firm, slightly sticky and plastic; common very fine and fine roots; common fine irregular pores; SAR of 15; EC of $1.8 \mathrm{mmhos} / \mathrm{cm}$; slightly effervescent; strongly alkaline (pH 9.0); clear wavy boundary.
Cn2-13 to 21 inches; light olive brown (2.5Y 5/3) clay loam, olive brown (2.5Y 4/3) moist; weak medium and thick platy structure; extremely hard, extremely firm, very sticky and very plastic; common very fine and fine roots; common fine irregular pores; SAR of 15; EC of 2.0; slightly effervescent; strongly alkaline (pH 8.7); clear smooth boundary.
Cnkz1—21 to 27 inches; light olive brown (2.5Y 5/3) clay loam, olive brown (2.5Y 4/3) moist; weak medium and thick platy structure; extremely hard, extremely firm, very sticky and very plastic; common very fine and fine roots; common fine irregular pores; SAR of 11; EC of 5.4 mmhos/cm; trace percent of gypsum; common fine filaments of sodium sulfate; slightly effervescent; very few very fine masses of calcium carbonate; strongly alkaline (pH 8.6); gradual wavy boundary.
Cnkz2—27 to 44 inches; light olive brown (2.5Y 5/3) silty clay, olive brown (2.5Y4/3) moist; strong fine
and medium subangular blocky structure; extremely hard, extremely firm, very sticky and very plastic; few very fine and fine roots; common fine tubular pores; SAR of 13; EC of $5.3 \mathrm{mmhos} /$ cm ; common fine filaments of sodium sulfate; slightly effervescent; very few very fine masses of calcium carbonate; moderately alkaline (pH 8.2); clear wavy boundary.
Cnkz3—44 to 65 inches; light olive brown (2.5Y 5/4) sandy clay loam, olive brown (2.5Y 4/4) moist; weak very thick platy structure; very hard, very firm, sticky and plastic; few very fine and fine roots; few fine irregular pores; SAR of 15; EC of 2.2 mmhos/cm; common fine filaments and masses of sodium sulfate; strongly effervescent; very few very fine masses of calcium carbonate; strongly alkaline (pH 8.8).

Range in Characteristics

Particle-size control section: 35 to 55 percent clay
Calcium carbonate equivalent: 0 to 5 percent
Rock fragments: 1 to 5 percent gravel
Reaction: slightly to very strongly alkaline
A horizon:
Hue: 10YR or 2.5 Y
Value: 5 or 6 dry, 4 or 5 moist
Chroma: 2 or 3
Salinity: EC of 0 to $4 \mathrm{mmhos} / \mathrm{cm}$
Sodicity: SAR of 5 to 13
C horizons:
Hue: 10YR or 2.5 Y
Value: 4 to 6 dry, 4 or 5 moist
Chroma: 3 or 4
Texture: clay loam, sandy clay loam, silty clay, or clay
Salinity: EC of 2 to $16 \mathrm{mmhos} / \mathrm{cm}$
Sodicity: SAR of 8 to 30
Some pedons have thin strata of silt loam, very fine sandy loam, or loam.

Nuffel Series

Taxonomic class: Fine-silty, mixed, superactive, calcareous, mesic Ustic Torrifluvents
Depth class: Very deep
Drainage class: Well drained
Permeability: Moderately slow and slow
Geomorphic position: Valley floors
Parent material: Stream alluvium derived from siltstone and shale
Slope range: 0 to 3 percent
Elevation: 6,100 to 6,500 feet
Mean annual air temperature: 49 to 54 degrees F

Mean annual precipitation: 10 to 13 inches Frost-free period: 120 to 140 days

Typical Pedon

Nuffel silt loam, in an area of mapping unit 336, NuffelVenadito complex, 1 to 3 percent slopes; McKinley County, New Mexico; Tekapo Quadrangle; 1,200 feet north and 600 feet east of the southwest corner of sec. 16, T. 9 N., R. 20 W.; latitude 35 degrees, 00 minutes, 13 seconds and longitude 108 degrees, 58 minutes, 09 seconds.

A—0 to 2 inches; light red (2.5YR 6/6) silt loam, reddish brown (2.5YR 4/4) moist; moderate medium platy structure; soft, very friable, slightly sticky and slightly plastic; few medium and common fine and very fine roots; common fine tubular pores; violently effervescent; moderately alkaline (pH 8.0); abrupt smooth boundary.
C1-2 to 10 inches; reddish brown (2.5YR 5/4) sandy loam, reddish brown (2.5YR 4/4) moist; massive; soft, very friable, nonsticky and nonplastic; few medium and common fine and very fine roots; few very fine irregular pores; strongly effervescent; moderately alkaline (pH 8.0); abrupt wavy boundary.
C2—10 to 17 inches; reddish brown (2.5YR 5/4) silt loam, reddish brown (2.5YR 4/4) moist; massive; soft, very friable, slightly sticky and slightly plastic; common fine and very fine roots; common fine tubular pores; violently effervescent; moderately alkaline (pH 8.0); clear smooth boundary.
C3-17 to 20 inches; red (2.5YR 4/6) loam, reddish brown (2.5YR 4/4) moist; massive; slightly hard, friable, slightly sticky and nonplastic; common fine and very fine roots; common fine tubular pores; strongly effervescent; moderately alkaline (pH 8.0); clear smooth boundary.
C4—20 to 47 inches; red (2.5YR 5/6) silty clay loam, reddish brown (2.5YR 4/4) moist; massive; slightly hard, friable slightly sticky and slightly plastic; common fine and very fine roots; common fine tubular pores; violently effervescent; moderately alkaline (pH 8.0); clear smooth boundary.
$2 \mathrm{Ab}-47$ to 65 inches; red (2.5YR 4/6) silty clay, dark red (2.5YR $3 / 6$) moist; massive; very hard, very firm, very sticky and very plastic; few fine and very fine roots; few very fine irregular pores; violently effervescent; moderately alkaline (pH 8.0).

Range in Characteristics

Particle-size control section: 18 to 35 percent clay and less than 15 percent fine sand or coarser

Calcium carbonate equivalent: 5 to 10 percent
Sodicity: SAR of 0 to 5
Reaction: slightly to strongly alkaline

A horizon:

Hue: 2.5YR or 5YR

Value: 4 to 6 dry, 3 or 4 moist
Chroma: 4 or 6
C horizons:
Hue: 2.5YR or 5YR
Value: 4 or 5 dry, 3 or 4 moist
Chroma: 4 or 6
Texture: Highly stratified layers of silt loam, silty clay loam, and loam in the particle-size control section and fine sandy loam, sandy loam, loam, sandy clay loam, silty clays, and clay loams in the lower C horizons.

Nutreeah Series

Taxonomic class: Fine, mixed, superactive, mesic Pachic Argiustolls
Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Very slow
Geomorphic position: Valley floors
Parent material: Stream alluvium derived from sandstone and shale
Slope range: 0 to 2 percent
Elevation: 6,600 to 7,000 feet
Mean annual air temperature: 46 to 49 degrees F
Mean annual precipitation: 13 to 16 inches
Frost-free period: 100 to 135 days

Typical Pedon

Nutreeah clay loam, in an area of mapping unit 45, Nutreeah clay loam, 0 to 2 percent slopes; McKinley County, New Mexico; Upper Nutria Quadrangle; 800 feet north and 100 feet east of the southwest corner of sec. 24, T. 12 N., R. 17 W.; latitude 35 degrees, 15 minutes, 08 seconds and longitude 108 degrees, 35 minutes, 30 seconds.

Ap1-0 to 5 inches; reddish brown (5YR 4/4) clay loam, dark reddish brown (5YR 3/2) moist; strong medium granular structure; slightly hard, friable, slightly sticky and slightly plastic; many very fine and fine roots; many very fine irregular and few fine tubular pores; slightly effervescent; slightly alkaline (pH 7.6); clear smooth boundary.
Ap2—5 to 10 inches; reddish brown (5YR 4/3) clay loam, dark reddish brown (5YR 3/2) moist; strong medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; many
very fine and fine roots; many very fine irregular and few fine tubular pores; common prominent clay films on faces of peds; slightly effervescent; slightly alkaline (pH 7.6); clear smooth boundary.
Bt1-10 to 16 inches; reddish brown (5YR 4/3) clay loam, dark reddish brown (5YR 3/2) moist; strong coarse subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; many very fine and fine roots; many very fine irregular and common medium tubular pores; common prominent clay films on faces of peds; slightly effervescent; slightly alkaline (pH 7.6); clear smooth boundary.
Btk-16 to 24 inches; reddish brown (5YR 4/3) clay, dark reddish brown (5YR 3/2) moist; strong coarse subangular blocky structure; hard, firm, sticky and plastic; many very fine and fine roots; many very fine irregular and few fine tubular pores; common prominent clay films on faces of peds; slightly effervescent; few fine irregular filaments of calcium carbonate; slightly alkaline (pH 7.6); clear smooth boundary.
Btz-24 to 40 inches; dark reddish brown (5YR 3/3) clay, dark reddish brown (5YR 3/2) moist; weak medium subangular blocky structure; very hard, very firm, sticky and plastic; common very fine and fine roots; few very fine irregular pores; common prominent clay films on faces of peds; common fine clusters of salt crystals; slightly effervescent; slightly alkaline (pH 7.6); abrupt wavy boundary.
C-40 to 65 inches; dark brown (10YR $3 / 3$) clay, very dark grayish brown (10YR $3 / 2$) moist; common fine distinct dark yellowish brown (10 YR 3/6) and few fine faint gray mottles; massive; very hard, very firm, very sticky and very plastic; few very fine roots; few very fine irregular pores; few small slickensides and few pressure faces; slightly effervescent; slightly alkaline (pH 7.6).

Range in Characteristics

Particle-size control section: 35 to 55 percent clay
Depth to salt crystals: 20 to 35 inches
Water table: Intermittent below 40 inches during March through June
Reaction: Slightly to moderately alkaline
A horizon:
Value: 3 to 5 dry
Chroma: 3 or 4 dry, 2 or 3 moist
Bt horizons:
Value: 3 to 5 dry, 3 or 4 moist
Chroma: 2 to 4 dry, 2 or 3 moist
Texture: clay loam or clay

Salinity: EC of 0 to $2 \mathrm{mmhos} / \mathrm{cm}$ in the upper part and 2 to $4 \mathrm{mmhos} / \mathrm{cm}$ in the lower part.
Sodicity: SAR of 0 to 5
Chorizon:
Hue: 5YR, 7.5 YR or 10YR
Value: 3 or 4 dry or moist
Chroma: 2 to 4 dry or moist
Texture: clay loam or clay
Reaction: slightly or moderately alkaline
Salinity: EC of 2 to $8 \mathrm{mmhos} / \mathrm{cm}$
Sodicity: SAR of 0 to 5

Orlie Series

Taxonomic class: Fine-loamy, mixed, superactive, mesic Aridic Haplustalfs
Depth class: Very deep
Drainage class: Well drained
Permeability: Moderately slow
Geomorphic position: Mesas and cuestas
Parent material: Eolian material and slope alluvium derived from sandstone and shale
Slope range: 1 to 5 percent
Elevation: 6,800 to 7,500 feet
Average annual air temperature: 46 to 49 degrees F Average annual precipitation: 13 to 14 inches
Frost-free period: 100 to 135 days

Typical Pedon

Orlie fine sandy loam, in an area of mapping unit 30, Orlie-Tinian complex, 1 to 6 percent slopes; McKinley County, New Mexico; Rincon Marquez Quadrangle; 1,200 feet east and 500 feet south of the northwest corner of sec. 7, T. 18 N., R. 5 W.; latitude 35 degrees, 49 minutes, 29 seconds and longitude 107 degrees, 24 minutes, 15 seconds.

A-0 to 2 inches; brown (10YR 5/3) fine sandy loam, dark brown (7.5YR 4/3) moist; weak fine granular structure; soft, very friable, nonsticky and nonplastic; common fine and very fine roots; many very fine irregular pores; neutral (pH 7.2); abrupt smooth boundary.
BA-2 to 5 inches; brown (10YR 4/3) loam, dark brown (7.5YR 3/4) moist; weak medium subangular blocky structure; soft, friable, nonsticky and nonplastic; common fine and very fine roots; common fine irregular pores; neutral; abrupt smooth boundary.
Bt-5 to 15 inches; brown (7.5YR 4/4) clay loam, dark brown (7.5YR 3/4) moist; weak medium subangular blocky structure; slightly hard, firm, slightly sticky and slightly plastic; common fine and very fine roots; common medium and fine irregular pores;
many distinct clay films on faces of peds and lining pores; neutral (pH 7.2); abrupt smooth boundary.
Bk1-15 to 36 inches; yellowish brown (10YR 5/4) sandy clay loam, dark yellowish brown (10YR 4/4) moist; massive; hard, firm, slightly sticky and nonplastic; common fine and very fine roots; common fine irregular pores; strongly effervescent; common fine irregular seams and filaments of calcium carbonate; 10 percent calcium carbonate equivalent; slightly alkaline (pH 7.8); clear smooth boundary.
Bk2—36 to 50 inches; brown (10YR 4/3) silty clay loam, dark brown (10YR 3/3) moist; massive; slightly hard, friable sticky and slightly plastic; few fine and very fine roots; common fine irregular pores; slightly effervescent; few very fine seams of calcium carbonate; moderately alkaline (pH 8.4); clear smooth boundary.
Bk3—50 to 62 inches; yellowish brown (10YR 5/4) clay loam, dark yellowish brown (10YR 4/4) moist; massive; hard, firm, slightly sticky and slightly plastic; common very fine irregular pores; slightly effervescent; few very fine seams of calcium carbonate; slightly alkaline (pH 7.6).

Range in Characteristics

Particle-size control section: 27 to 35 percent clay Rock fragments: 0 to 5 percent sandstone gravel
A horizon:
Hue: 7.5YR or 10YR
Value: 4 or 5 dry and moist
Chroma: 3 or 4 moist
Reaction: neutral to slightly alkaline
Bt horizons:
Hue: 7.5YR or 10YR
Value: 3 or 4 moist
Chroma: 4 dry and moist
Texture: clay loam or silty clay loam
Reaction: neutral to slightly alkaline
Bk horizons:
Hue: 7.5YR or 10YR
Value: 4 or 5 dry, 3 to 5 moist
Chroma: 3 or 4 dry, 3 to 6 moist
Texture: sandy clay loam, silty clay loam, or clay loam
Calcium carbonate equivalent: 5 to 10 percent
Reaction: slightly alkaline to moderately alkaline

Osoridge Series

Taxonomic class: Clayey, mixed, superactive, frigid Lithic Haplustalfs

Depth class: Shallow
Drainage class: Well drained
Permeability: Slow
Geomorphic position: Cuestas
Parent material: Slope alluvium over residuum derived from sandstone and shale
Slope range: 2 to 15 percent
Elevation: 7,500 to 7,900 feet
Mean annual air temperature: 40 to 45 degrees F
Mean annual precipitation: 16 to 20 inches
Frost-free period: 90 to 110 days

Typical Pedon

Osoridge very gravelly clay loam, in an area of mapping unit 418, Asaayi-Osoridge complex, 2 to 15 percent slopes; McKinley County, New Mexico; Page Quadrangle; 2,550 feet west and 700 feet south of the northeast corner of sec. 12, T. 12 N., R. 16 W.; latitude 35 degrees, 17 minutes, 26 seconds and longitude 108 degrees, 28 minutes, 33 seconds.
The surface is covered by 30 percent gravel, 5 percent cobbles, and 5 percent stones.

A—0 to 2 inches; reddish brown (2.5YR 4/3) very gravelly clay loam, dark reddish brown (2.5YR 3/3) moist; weak fine granular structure; slightly hard, friable, moderately sticky and moderately plastic; few very fine and fine roots; common fine vesicular pores; 30 percent gravel, 5 percent cobbles, and 5 percent stones; neutral; abrupt smooth boundary.
Bt1-2 to 6 inches; reddish brown (2.5YR 4/4) clay, dark reddish brown (2.5YR 3/4) moist; moderate fine subangular blocky structure; hard, firm, very sticky and very plastic; common very fine and fine roots; common fine irregular pores; many distinct clay films on faces of peds; 10 percent gravel and 2 percent cobbles; neutral; clear smooth boundary.
Bt2-6 to 18 inches; red (2.5YR 4/6) clay, dark red (2.5YR 3/6) moist; strong moderate and coarse subangular blocky structure; very hard, very firm, very sticky and very plastic; few very fine and fine roots; few fine irregular pores; many prominent clay films on faces of peds; neutral; abrupt smooth boundary.
R-18 inches; Chinle sandstone.

Range in Characteristics

Particle-size control section: 35 to 50 percent clay Depth to lithic contact: 10 to 20 inches to sandstone Reaction: slightly acid or neutral

A horizon:
Hue: 2.5YR to 7.5YR
Value: 3 or 4 dry and moist
Chroma: 3 or 4

Rock fragments: 15 to 70 percent total; 15 to 50 percent gravel, 0 to 5 percent cobbles, 0 to 5 percent stones. All fragments are sandstone.

Bt horizon:
Hue: 10R to 5YR
Value: 3 or 4 dry and moist
Chroma: 4 or 6
Textures: clay loam or clay
Rock fragments: 0 to 15 percent total; 0 to 15 percent gravel, 0 to 5 percent cobbles. All fragments are sandstone.

OwIrock Series

Taxonomic class: Loamy-skeletal, mixed, superactive, frigid Lithic Argiustolls
Depth class: Very shallow and shallow
Drainage class: Well drained
Permeability:Moderate
Geomorphic position: Cuestas
Parent material: Residuum derived from dolomitic limestone
Slope range: 2 to 8 percent
Elevation: 7,200 to 8,200 feet
Mean annual air temperature: 40 to 45 degrees F
Mean annual precipitation: 16 to 20 inches
Frost-free period: 90 to 110 days

Typical Pedon

Owlrock very gravelly loam, in an area of mapping unit 405, Fortwingate-Owlrock complex, 2 to 8 percent slopes; McKinley County, New Mexico; Upper Nutria Quadrangle; 2,200 feet east and 1,250 feet south of the northwest corner of sec. 22, T. 13 N., R. 16 W.; latitude 35 degrees, 20 minutes, 51 seconds and longitude 108 degrees, 31 minutes, 18 seconds.

The surface is covered by 40 percent gravel, 10 percent cobbles, and 5 percent stones.
A-0 to 1 inch ; grayish brown (10YR 5/2) very gravelly loam, very dark grayish brown (10YR 3/2) moist; weak very fine granular structure; soft, very friable, slightly sticky and nonplastic; many very fine and fine roots; few very fine irregular pores; 40 percent gravel, 10 percent cobbles, 5 percent stones; strongly effervescent; 14 percent calcium carbonate equivalent; moderately alkaline (8.2); abrupt smooth boundary.
Btk1-1 to 6 inches; grayish brown (10YR 5/2) very cobbly loam, very dark grayish brown (10YR 3/2) moist; weak very fine and fine subangular blocky structure; slightly hard, very friable, slightly sticky
and nonplastic; common very fine, fine, and few medium roots; few very fine irregular pores; few distinct clay films on faces of peds; 10 percent gravel, 50 percent cobbles, 5 percent stones; slightly effervescent; few very fine and fine concretions and masses of calcium carbonate; 10 percent calcium carbonate equivalent; moderately alkaline (8.0); abrupt smooth boundary.
Btk2-6 to 13 inches; brown (7.5YR 5/2) very cobbly loam, dark brown (7.5YR 3/2) moist; weak very fine and fine subangular blocky structure; soft, very friable, slightly sticky and nonplastic; few very fine, fine, and medium roots; 10 percent gravel, 50 percent cobbles, 5 percent stones; strongly effervescent; common very fine and fine concretions of calcium carbonate; 14 percent calcium carbonate equivalent; moderately alkaline (8.0); abrupt smooth boundary.

R-13 inches; San Andreas limestone.

Range in Characteristics:

Particle-size control section: 15 to 30 percent clay and 35 to 75 percent rock fragments
Mollic epipedon: 4 to 15 inches thick
Depth to lithic contact: 7 to 20 inches to limestone Calcium carbonate equivalent: 5 to 15 percent Reaction: slightly to moderately alkaline

A horizon:
Hue:5YR, 7.5YR, or 10YR
Value: 4 or 5 dry
Chroma: 2 or 3
Rock fragments: 50 to 80 percent total; 35 to 40 percent gravel, 10 to 40 percent cobbles, 0 to 5 percent stones. All fragments are limestone.

Btk1 horizon:

Hue: 5YR, 7.5YR, or 10YR
Value: 4 or 5 dry
Chroma: 2 through 4
Rock fragments: 35 to 75 percent total; 5 to 10 percent gravel, 25 to 50 percent cobbles, and 5 to 10 percent stones. All fragments are limestone.

Btk2 horizon:

Hue: 5 YR or 7.5 YR
Value: 4 or 5 dry
Chroma: 2 or 3
Textures: loam or clay loam
Rock fragments: 35 to 75 percent total; 5 to 10 percent gravel, 25 to 50 percent cobbles, and 5 to 10 percent stones. All fragments are limestone.

Some pedons have a Bk horizon above the lithic contact.

Parkelei Series

Taxonomic class: Fine-loamy, mixed, superactive, mesic Aridic Haplustalfs
Depth class: Very deep
Drainage class: Well drained
Permeability: Moderate and moderately slow
Geomorphic position: Mesas, cuestas, plateaus, drainageways, and valley sides
Parent material: Eolian material and slope alluvium derived from sandstone and shale
Slope range: 1 to 8 percent
Elevation: 6,500 to 8,000 feet
Mean annual air temperature: 46 to 49 degrees F Mean annual precipitation: 13 to 16 inches
Frost-free period: 100 to 135 days

Typical Pedon

Parkelei fine sandy loam, in an area of mapping unit 320, Parkelei-Fraguni complex, 1 to 8 percent slopes; McKinley County, New Mexico; Vanderwagon Draw Quadrangle; 1,700 feet north and 2,600 feet west of the southeast corner of sec. 31, T. 12 N., R. 18 W.; latitude 35 degrees, 13 minutes, 25 seconds and longitude 108 degrees, 46 minutes, 08 seconds.
A—0 to 4 inches; brown (7.5YR 5/3) fine sandy loam, dark brown (7.5YR 4/3) moist; weak very fine granular structure; soft, very friable, nonsticky and nonplastic; many very fine, fine, and few medium roots; few very fine irregular pores; neutral (pH 6.8); abrupt smooth boundary.

Bt1-4 to 18 inches; reddish brown (5YR 4/4) sandy clay loam, dark reddish brown (5YR 3/4) moist; moderate fine and medium subangular blocky structure; hard, friable, slightly sticky and slightly plastic; many very fine, fine, and few medium roots; few very fine irregular pores; common distinct clay films on faces of peds; neutral (pH 7.0); clear smooth boundary.

Bt2-18 to 28 inches; yellowish red (5YR 5/6) sandy clay loam, yellowish red (5YR 4/6) moist; moderate medium subangular blocky structure; hard, friable, slightly sticky and slightly plastic; few fine and medium roots; few very fine irregular pores; common distinct clay films on faces of peds; slightly alkaline (pH 7.4); clear smooth boundary. Bt3-28 to 39 inches; reddish brown (5YR 5/4) sandy clay loam, reddish brown (5YR 4/4) moist; weak fine and medium subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; few very fine roots; few faint clay films on faces of peds and bridging sand grains; 1 percent sandstone gravel; slightly alkaline (pH 7.6); abrupt smooth boundary.

Btk-39 to 52 inches; reddish brown (5YR 5/4) sandy clay loam, reddish brown (5YR 4/4) moist; weak fine and medium subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; few very fine roots; few faint clay films on faces of peds and bridging sand grains; very slightly effervescent; common fine masses of calcium carbonate; moderately alkaline (pH 8.0); clear smooth boundary.
Bk-52 to 70 inches; light reddish brown (5YR 6/4) fine sandy loam, reddish brown (5YR 5/4) moist; weak very fine subangular blocky structure; soft, very friable, nonsticky and nonplastic; very slightly effervescent; few very fine masses of calcium carbonate; moderately alkaline (pH 8.0).

Range in Characteristics

Particle-size control section: 20 to 35 percent clay greater than 35 percent sand
A horizon:
Hue: 7.5YR or 10YR
Value: 3 to 6 dry, 3 or 4 moist
Chroma: 3 or 4 dry, 2 or 4 moist
Texture: fine sandy loam, sandy loam, or loam
Rock fragments: 0 to 10 percent sandstone gravel or channers
Reaction: neutral to slightly alkaline
Bt horizons:
Hue: 5YR to 10YR
Value: 4 to 6 dry, 3 or 4 moist
Chroma: 3 to 6
Texture: sandy clay loam or clay loam
Rock fragments: 0 to 10 percent sandstone gravel or channers
Reaction: neutral to moderately alkaline
Btk or Bk horizons:
Hue: 5YR to 10YR
Value: 3 to 6 dry, 4 to 7 moist
Chroma: 4 to 6 dry, 2 to 6 moist
Texture: sandy clay loam, clay loam, or sandy loam
Rock fragments: 0 to 10 percent sandstone gravel or channers
Calcium carbonate equivalent: 2 to 10 percent
Reaction: moderately alkaline
Some pedons have a C horizon.

Penistaja Series

Taxonomic class: Fine-loamy, mixed, superactive, mesic Ustic Haplargids
Depth class: Very deep
Drainage class: Well drained

Permeability:Moderate
Geomorphic position: Mesas, cuestas, drainageways, and valley sides
Parent material: Eolian material and slope alluvium derived from sandstone and shale
Slope range: 1 to 5 percent
Elevation: 6,200 to 7,100 feet
Mean annual air temperature: 49 to 54 degrees F
Mean annual precipitation: 10 to 13 inches
Frost-free period: 120 to 140 days

Typical Pedon

Penistaja sandy loam, in an area of mapping unit 205, Penistaja-Tintero complex, 1 to 10 percent slopes; McKinley County, New Mexico; Bluewater Quadrangle; 700 feet west and 700 feet north of the southeast corner of sec. 32, T. 13 N., R. 10 W.; latitude 35 degrees, 18 minutes, 25 seconds and longitude 107 degrees, 54 minutes, 45 seconds.
A-0 to 3 inches; brown (7.5YR 5/4) sandy loam, dark brown (7.5YR 4/4) moist; moderate fine granular structure; soft, very friable, nonsticky and nonplastic; common fine and very fine roots; common very fine irregular pores; neutral (pH 7.2); abrupt smooth boundary.
Bt1-3 to 12 inches; dark brown (7.5YR 4/4) sandy clay loam, strong brown (7.5YR 4/6) moist; moderate medium subangular blocky structure; slightly hard, friable, slightly sticky and nonplastic; few medium and common fine and very fine roots; few fine tubular pores; common distinct clay films bridging sand grains and lining pores; neutral (pH 7.2); clear smooth boundary.

Bt2-12 to 19 inches; strong brown (7.5YR 4/6) sandy clay loam, strong brown (7.5YR 4/6) moist; moderate medium subangular blocky structure; slightly hard, friable, slightly sticky and nonplastic; common fine and very fine roots; few fine tubular pores; few distinct clay films bridging sand grains and lining pores; neutral (pH 7.2); abrupt smooth boundary.
Bk1-19 to 40 inches; strong brown (7.5YR 5/6) sandy clay loam, strong brown (7.5YR 4/6) moist; massive; slightly hard, friable, slightly sticky and nonplastic; few fine and common very fine roots; few very fine irregular pores; violently effervescent; few medium irregular seams and masses of calcium carbonate; slightly alkaline (pH 8.0); clear smooth boundary.
Bk2-40 to 65 inches; strong brown (7.5YR 5/6) sandy clay loam; strong brown (7.5YR 4/6) moist; massive; slightly hard, friable, slightly sticky and
nonplastic; few very fine roots; few very fine irregular pores; violently effervescent; few fine irregular seams and filaments of calcium carbonate; slightly alkaline (pH 8.0).

Range in Characteristics

Particle-size control section: 20 to 35 percent clay and greater than 40 percent sand
Rock fragments: 0 to 5 percent sandstone gravel
A horizon:
Hue:7.5YR
Value: 5 or 6 dry, 4 or 5 moist
Chroma: 4 or 6
Texture: sandy loam or fine sandy loam
Reaction: neutral or slightly alkaline
Bt horizon:
Hue:7.5YR
Value: 4 to 6 dry, 4 or 5 moist
Chroma: 4 or 6
Texture: sandy clay loam or clay loam
Reaction: neutral to slightly alkaline
Bk horizon:
Hue:7.5YR
Value: 5 or 6 dry, 4 or 5 moist

Chroma: 4 or 6

Texture: sandy clay loam or fine sandy loam
Calcium carbonate equivalent: 1 to 10 percent
Reaction: slightly to moderately alkaline

Pescado Series

Taxonomic class: Loamy, mixed, superactive, mesic Lithic Haplustalfs
Depth class: Very shallow and shallow
Drainage class: Well drained
Permeability:Moderately slow
Geomorphic position: Lava flows on valley floors
Parent material: Eolian material derived from sandstone
Slope range: 1 to 8 percent
Elevation: 6,400 to 7,000 feet
Mean annual air temperature: 46 to 49 degrees F
Mean annual precipitation: 13 to 16 inches
Frost-free period: 100 to 135 days

Typical Pedon

Pescado fine sandy loam, in an area of mapping unit 575, Ramah-Pescado association, 1 to 8 percent slopes; McKinley County, New Mexico; Pescado Quadrangle; 600 feet south and 400 feet east of the
northwest corner of sec. 17, T. 10 N., R. 16 W.; latitude 35 degrees, 06 minutes, 10 seconds and longitude 108 degrees, 33 minutes, 20 seconds.

A-0 to 3 inches; brown (7.5YR 5/4) fine sandy loam, dark brown (7.5YR 3/4) moist; weak fine subangular blocky structure; soft, very friable, nonsticky and nonplastic; many very fine and fine roots; few fine irregular pores; neutral (pH 6.8); clear smooth boundary.
Bt1-3 to 10 inches; reddish brown (5YR 4/4) sandy clay loam, dark reddish brown (5YR 3/4) moist; moderate fine subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; common very fine and fine roots; few fine irregular pores; many prominent clay films bridging sand grains and on faces of peds; 1 percent gravel; neutral (pH 6.8); clear smooth boundary.
Bt2-10 to 16 inches; reddish brown (5YR 4/4) clay loam, dark reddish brown (5YR 3/4) moist; moderate fine and medium subangular blocky structure; hard, firm, sticky and plastic; few very fine and fine roots; few fine irregular pores; many prominent clay films bridging sand grains and on faces of peds; 1 percent gravel; matrix is very slightly effervescent with a violently effervescent 1-inch layer above the lithic contact with basalt; slightly alkaline (pH 7.4); abrupt smooth boundary. 2R-16 inches; basalt.

Range in Characteristics

Particle-size control section: 20 to 35 percent clay and greater than 35 percent sand
Depth to bedrock: 7 to 20 inches to basalt
A horizon:
Value: 3 or 4 moist
Rock fragments: 0 to 10 percent basalt gravel
Reaction: neutral
Bt horizons:
Hue: 7.5YR or 5YR
Rock fragments: 0 to 5 percent basalt gravel
Textures: sandy clay loam or clay loam
Reaction: neutral and slightly alkaline

Plumasano Series

Taxonomic class: Coarse-loamy, mixed, superactive, mesic Aridic Haplustepts
Depth class: Very deep
Drainage class: Somewhat excessive and well drained Permeability: Moderate or moderately rapid
Geomorphic position: Cuestas, plateaus, valley sides, hills, and ridges

Parent material: Eolian material and fan and slope alluvium derived from sandstone
Slope range: 2 to 40 percent
Elevation: 6,200 to 7,200 feet
Mean annual air temperature: 49 to 53 degrees F
Mean annual precipitation: 13 to 14 inches
Frost-free period: 115 to 135 days

Typical Pedon

Plumasano sandy loam, in an area of mapping unit 561, Flugle-Plumasano association, 2 to 8 percent slopes; Cibola County, New Mexico; Plumasano Basin Quadrangle; 1,900 feet south and 800 feet east of the northwest corner of sec. 10, T. 8 N., R. 19 W.; latitude 34 degrees, 56 minutes, 24 seconds and longitude 108 degrees, 49 minutes, 59 seconds.
A—0 to 2 inches; dark yellowish brown (10YR 4/4) sandy loam, dark yellowish brown (10YR 3/4) moist; weak fine granular structure; soft, very friable, nonsticky and nonplastic; common fine and very fine roots; common very fine irregular pores; slightly effervescent; slightly alkaline (pH 7.6); abrupt smooth boundary.
Bw-2 to 11 inches; brown (7.5YR 4/4) sandy loam, dark brown (7.5YR 3/4) moist; weak medium subangular blocky structure; soft, very friable, nonsticky and nonplastic; few medium and many fine and very fine roots; few very fine tubular pores; slightly effervescent; slightly alkaline (pH 7.6); clear smooth boundary.

Bk1-11 to 27 inches; light brown (7.5YR 6/4) sandy loam, brown (7.5YR 5/4) moist; massive; hard, friable, nonsticky and nonplastic; few fine and very fine roots; few fine tubular pores; violently effervescent; common medium filaments, seams and masses of calcium carbonate; slightly alkaline (pH 7.6); clear smooth boundary.
Bk2—27 to 43 inches; strong brown (7.5YR 5/6) fine sandy loam, brown (7.5YR 5/4) moist; massive; slightly hard, very friable, nonsticky and nonplastic; few very fine roots; few very fine irregular pores; violently effervescent; few medium masses and seams of calcium carbonate; slightly alkaline (pH 7.4); clear smooth boundary.
Bk3-43 to 53 inches; light reddish brown (5YR 6/4) fine sandy loam, reddish brown (5YR 5/4) moist; massive; slightly hard, friable, slightly sticky and slightly plastic; few very fine roots; few very fine irregular pores; violently effervescent; common medium masses, filaments and seams of calcium carbonate; slightly alkaline (pH 7.8); clear smooth boundary.
Bk4—53 to 65 inches; light brown (7.5YR 6/4) sandy
clay loam, brown (7.5YR 5/4) moist; massive; hard, friable, slightly sticky and slightly plastic; few very fine roots; few very fine irregular pores; violently effervescent; few medium filaments and masses of calcium carbonate; slightly alkaline (pH 7.6).

Range in Characteristics

Particle-size control section: 5 to 18 percent clay
Depth to calcium carbonate: 5 to 25 inches
Depth to bottom of cambic: 11 to 24 inches
Reaction: neutral or slightly alkaline in the surface and slightly to moderately alkaline in the subsoil

A horizon:
Hue:7.5YR or 10YR
Value: 4 to 6 dry, 3 to 5 moist
Chroma: 3 or 4 dry, 2 to 4 moist
Bw horizon:
Hue: 7.5YR or 10YR
Value: 4 or 6 dry, 3 or 4 moist
Chroma: 3 or 4 dry, 2 to 6 moist
Texture: sandy loam or fine sandy loam
Bk horizons:
Hue:5YR, 7.5YR or 10YR
Value: 5 or 6 dry, 3 to 5 moist
Chroma: 3 to 6 dry, 2 to 4 moist
Texture: sandy loam, fine sandy loam, sandy clay loam, or loamy sand
Calcium carbonate equivalent: 1 to 15 percent

Polich Series

Taxonomic class: Fine-loamy, mixed, superactive, frigid Cumulic Haplustolls
Depth class: Very deep
Drainage class: Somewhat poorly drained
Permeability: Moderately slow
Geomorphic position: Valley floors
Parent material: Stream alluvium derived from sandstone, granite, and limestone
Slope range: 0 to 3 percent
Elevation: 7,600 to 8,000 feet
Mean annual air temperature: 40 to 45 degrees F
Mean annual precipitation: 16 to 20 inches
Frost-free period: 90 to 110 days

Typical Pedon

Polich silt loam, in an area of mapping unit 406, Polich silt loam, 0 to 3 percent slopes; McKinley County, New Mexico; Page Quadrangle; 1,950 feet north and 200 feet west of the southeast corner of sec. 34, T. 13 N .,
R. 15 W.; latitude 35 degrees, 18 minutes, 40 seconds and longitude 108 degrees, 24 minutes, 19 seconds.

A1-0 to 5 inches; very dark grayish brown (10YR $3 / 2$) silt loam, very dark brown (10YR 2/2) moist; moderate fine granular structure; hard, friable, slightly sticky and nonplastic; many very fine and fine roots; slightly effervescent; 5 percent calcium carbonate equivalent; moderately alkaline (pH 8.2); clear smooth boundary.
A2-5 to 13 inches; brown (7.5YR 4/2) silt loam, dark brown (7.5YR $3 / 2$) moist; strong medium granular structure; hard, friable, slightly sticky and nonplastic; common fine and medium roots; strongly effervescent; 7 percent calcium carbonate equivalent; moderately alkaline (pH 8.2); clear smooth boundary.
Bw-13 to 23 inches; brown (7.5YR 4/2) loam, dark brown (7.5YR $3 / 2$) moist; strong medium subangular blocky structure; hard, friable, slightly sticky and nonplastic; few fine roots; many very fine irregular pores; strongly effervescent; 10 percent calcium carbonate equivalent; moderately alkaline (pH 8.2); clear smooth boundary.
Bk1-23 to 40 inches; dark brown (7.5YR 4/3) clay loam, dark brown (7.5YR 3/3) moist; few very fine distinct yellowish red (5YR 4/6) moist redox concentrations; weak medium subangular blocky structure; hard, firm, sticky and plastic; few medium roots; violently effervescent; common very fine and fine masses and concretions of calcium carbonate; 13 percent calcium carbonate equivalent; moderately alkaline (pH 8.2); clear smooth boundary.
Bk2-40 to 48 inches; brown (5YR 5/3) clay loam, dark brown (5YR 3/3) moist; common very fine distinct yellowish red (5YR 4/6) moist redox concentrations; weak medium subangular blocky structure parting to weak fine granular; hard, firm, sticky and plastic; few fine roots; slightly effervescent; few very fine masses and concretions of calcium carbonate; moderately alkaline (pH 8.0); gradual smooth boundary.
2BCk1-48 to 58 inches; reddish brown (5YR 5/4) clay loam, dark reddish brown (5YR 3/4) moist; common very fine and fine distinct yellowish red (5YR 4/6) moist redox concentrations and few very fine manganese concretions; massive; very hard, very firm, very sticky and very plastic; few very fine roots; slightly effervescent; few very fine masses and concretions of calcium carbonate; slightly alkaline (pH 7.8); clear smooth boundary.
2BCk2-58 to 70 inches; reddish brown (5YR 5/4) loam, dark reddish brown (5YR 3/4) moist; few
very fine faint yellowish red (5YR 4/6) redox concentrations; massive; hard, firm, slightly sticky and slightly plastic; apparent water table at a depth of 58 inches; slightly effervescent; slightly alkaline (pH 7.8).

Range in Characteristics

Particle-size control section: 25 to 35 percent clay. Mollic epipedon: 20 to 45 inches thick Calcium carbonate equivalent: 5 to 15 percent. Depth to water table: 15 to 60 inches; water table is highest during March and April (after snow melt) and during August and September after the summer rains.
Depth to redox concentrations: 20 to 35 inches; few to common, faint to distinct, yellowish red redox concentrations.
Reaction: Slightly to moderately alkaline
A horizon:
Hue: 7.5YR or 10YR
Value: 2 or 3 moist, 3 to 5 dry
Chroma: 2 or 3
Bw and Bk horizons:
Hue: 5YR, 7.5YR or 10YR
Value: 3 to 5 dry, 2 or 3 moist
Chroma: 1 to 3
Texture: clay loam, silty clay loam, silt loam, or loam
2BCk horizon:
Hue: 5YR to 10YR
Value: 3 or 4 moist
Chroma: 2 to 4
Texture: clay loam, clay, silty clay loam, or loam

Querencia Series

Taxonomic class: Fine-loamy, mixed, superactive, mesic Ustic Haplocambids
Depth class: Very deep
Drainage class: Well drained
Permeability: Moderately slow
Geomorphic position: Drainageways and valley sides
Parent material: Fan alluvium derived from sandstone and shale
Slope range: 2 to 10 percent
Elevation: 6,600 to 7,200 feet
Mean annual air temperature: 49 to 54 degrees F
Mean annual precipitation: 10 to 13 inches
Frost-free period: 120 to 140 days

Typical Pedon

Querencia fine sandy loam, in an area of mapping unit

22, Querencia-Lavodnas association, 2 to 15 percent slopes; McKinley County, New Mexico; Tinian Quadrangle; 1,000 feet west and 1,800 feet south of the northeast corner of sec. 2, T. 18 N., R. 5 W.; latitude 35 degrees, 49 minutes, 22 seconds and longitude 107 degrees, 19 minutes, 48 seconds.
A—0 to 2 inches; light yellowish brown ($2.5 \mathrm{Y} 6 / 4$) fine sandy loam, olive brown (2.5Y 4/4) moist; moderate fine granular structure; soft, very friable, nonsticky and nonplastic; common fine and very fine roots; common very fine irregular pores; neutral (pH 7.2); abrupt smooth boundary.
Bw1-2 to 9 inches; light olive brown (2.5Y 5/4) clay loam, olive brown (2.5Y 4/4) moist; weak medium subangular blocky structure; soft, very friable, slightly sticky and nonplastic; common fine and many very fine roots; few fine tubular and common very fine irregular pores; violently effervescent; slightly alkaline (pH 7.6); clear smooth boundary.
Bw2-9 to 15 inches; light yellowish brown (2.5Y 6/4) clay loam, olive brown (2.5Y 4/4) moist; weak medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; common fine and very fine roots; few fine tubular and common very fine irregular pores; violently effervescent; moderately alkaline (pH 8.2); clear smooth boundary.
Bk1-15 to 42 inches; light yellowish brown (2.5Y 6/4) clay loam, olive brown (2.5Y 4/4) moist; massive; slightly hard, friable, slightly sticky and slightly plastic; few fine and very fine roots; few fine tubular and common very fine irregular pores; 10 percent gravel; violently effervescent; moderately alkaline (pH 8.2); clear smooth boundary.
Bk2-42 to 65 inches; light yellowish brown (2.5Y 6/4) clay loam, olive brown (2.5Y 4/4) moist; massive; slightly hard, firm, sticky and slightly plastic; few very fine roots; common very fine irregular pores; 10 percent gravel; violently effervescent; few fine irregular filaments and seams of calcium carbonate and coating gravel; moderately alkaline (pH 8.0).

Range in Characteristics

Particle-size control section: 18 to 35 percent clay Rock fragments: 0 to 10 percent sandstone gravel Calcium carbonate equivalent: 0 to 1 percent in the surface and 1 to 15 percent in the subsoil

A horizon:

Hue: 10YR or 2.5 Y
Value: 5 or 6 dry, 4 moist
Chroma: 4 dry and moist
Reaction: neutral or slightly alkaline

Bw horizon:
Hue: 10YR or 2.5Y
Value: 5 or 6 dry, 4 moist
Chroma: 4 dry and moist
Texture: clay loam, sandy clay loam, or loam
Reaction: slightly or moderately alkaline
Bk horizon:
Hue: 10YR or 2.5 Y
Value: 5 or 6 dry, 4 moist
Chroma: 2 to 4 dry
Texture: clay loam, sandy clay loam, or loam
Reaction: slightly or moderately alkaline

Ramah Series

Taxonomic class: Fine, mixed, superactive, mesic Calcidic Haplustalfs
Depth class: Very deep
Drainage class: Well drained
Permeability: Moderately slow
Geomorphic position: Lava flows on valley floors
Parent material: Eolian and alluvial material derived from sandstone
Slope range: 1 to 4 percent
Elevation: 6,400 to 7,000 feet
Mean annual air temperature: 46 to 49 degrees F
Mean annual precipitation: 13 to 14 inches
Frost-free period: 100 to 135 days

Typical Pedon

Ramah sandy loam, in an area of mapping unit 575, Ramah-Pescado association, 1 to 8 percent slopes; McKinley County, New Mexico; Pescado Quadrangle; 800 feet south and 1,300 feet east of the northwest corner of sec. 17, T. 10 N., R. 16 W.; latitude 35 degrees, 06 minutes, 08 seconds and longitude 108 degrees, 33 minutes, 11 seconds.

A—0 to 3 inches; brown (10YR 5/3) sandy loam, dark yellowish brown (10YR 3/4) moist; weak fine subangular blocky structure; soft, very friable, nonsticky and nonplastic; many very fine and fine roots; few fine irregular pores; neutral (pH 7.2); clear smooth boundary.
Bt1-3 to 8 inches; brown (7.5YR 4/4) sandy clay loam, dark brown (7.5YR 3/4) moist; moderate fine subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; many very fine and common fine roots; few fine irregular pores; common distinct clay films bridging sand grains; neutral (pH 7.2); clear smooth boundary.
Bt2-8 to 15 inches; reddish brown (5YR 4/4) clay loam, dark reddish brown (5YR 3/4) moist; moderate fine and medium subangular blocky
structure; hard, firm, very sticky and very plastic; common very fine and fine roots; common fine irregular pores; many prominent clay films bridging sand grains and on faces of peds; neutral (pH 7.2); abrupt smooth boundary.
Btk-15 to 23 inches; brown (7.5YR 5/4) clay loam, strong brown (7.5YR 4/6) moist; moderate fine and medium subangular blocky structure; hard, firm, very sticky and very plastic; common very fine and few fine roots; few fine irregular pores; many prominent clay films bridging sand grains and on faces of peds; violently effervescent; 9 percent calcium carbonate equivalent; moderately alkaline (pH 8.2); clear smooth boundary.
Bk1-23 to 33 inches; light brown (7.5YR 6/4) clay loam, brown (7.5YR 5/4) moist; massive; hard, firm, sticky and plastic; few very fine roots; few very fine irregular pores; violently effervescent; common fine and medium seams and masses of calcium carbonate; 12 percent calcium carbonate equivalent; moderately alkaline (pH 8.2); gradual irregular boundary.
Bk2-33 to 41 inches; pink (5 YR 7/4) clay loam, yellowish red (5YR 5/6) moist; massive; hard, firm, sticky and plastic; few very fine roots; few very fine irregular pores; violently effervescent; many fine and medium seams, masses and common fine and medium concretions of calcium carbonate; 17 percent calcium carbonate equivalent; moderately alkaline (pH 8.2); clear smooth boundary.
Bk3-41 to 62 inches; yellowish red (5YR 5/6) sandy clay loam, yellowish red (5YR 4/6) moist; massive; slightly hard, friable, slightly sticky and slightly plastic; few very fine roots; few very fine irregular pores; violently effervescent; common fine seams and masses of calcium carbonate; 5 percent calcium carbonate equivalent; moderately alkaline (pH 8.0).

Range in Characteristics

Particle-size control section: 35 to 40 percent clay and greater than 30 percent sand
Depth to calcic horizon: 25 to 45 inches
Calcium carbonate equivalent: 0 to 15 percent and 15 to 30 percent in the calcic horizon

A horizon:
Hue: 7.5YR or 10YR
Value: 4 or 5 dry, 3 or 4 moist
Reaction: neutral
Bt horizons:
Hue:5YR, 7.5YR, or 10YR
Value: 4 or 5 dry, 3, 4, or 6 moist

Chroma: 4 or 5 dry, 3, 4, or 6 moist
Textures: Typically clay loam, with some pedons having thin upper sandy clay loam Bt horizons Reaction: neutral to slightly alkaline
Bk horizons:
Hue: 5YR, 7.5YR, or 10YR
Value: 4 or 5 dry, 3, 4, or 6 moist
Chroma: 4 or 5 dry, 3, 4, or 6 moist
Reaction: moderately alkaline

Rauster Series

Taxonomic class: Fine, mixed, superactive, frigid Vertic Argiustolls
Depth class: Deep
Drainage class: Well drained
Permeability: Very slow
Geomorphic position: Cuestas, hills, and ridges
Parent material: Slope alluvium over residuum from sandstone and shale
Slope range: 5 to 35 percent
Elevation: 7,100 to 8,000 feet
Mean annual air temperature: 40 to 45 degrees F
Mean annual precipitation: 16 to 20 inches
Frost-free period: 90 to 110 days

Typical Pedon

Rauster clay loam, in an area of mapping unit 409, Rauster-Rock outcrop complex, 5 to 35 percent slopes; McKinley County, New Mexico; Page Quadrangle; about 2,800 feet west and 2,600 feet north of the southeast corner of sec. 14, T. 12 N., R. 16 W.; latitude 35 degrees, 16 minutes, 13 seconds and longitude 108 degrees, 29 minutes, 50 seconds.

A-0 to 1 inches; dark reddish brown (5YR 3/3) clay loam, dark reddish brown (5YR 3/3) moist; moderate very fine granular structure; slightly hard, friable, moderately sticky and moderately plastic; few very fine and fine roots; 2 percent gravel; slightly alkaline (pH 7.4); abrupt smooth boundary.
$\mathrm{Bt}-1$ to 5 inches; dark reddish brown (5YR 3/3) clay, dark reddish brown (5YR $3 / 3$) moist; strong very fine and fine angular blocky structure; extremely hard, extremely firm, very sticky and very plastic; many very fine, fine, and few medium roots; few very fine irregular pores; few small pressure faces; few vertical cracks 0.25 inches wide; many distinct clay films on faces of peds; slightly alkaline (pH 7.4); clear smooth boundary.

Bssk-5 to 28 inches; weak red (10R 4/2) clay, dusky red (10R 3/2) moist; wedge-shaped aggregates; extremely hard, extremely firm, very sticky and very plastic; common very fine, fine, and few
medium and coarse roots; few very fine irregular pores; many intersecting slickensides; few vertical cracks 0.5 inches wide extending to 27 inches in depth; slightly effervescent; few very fine masses of calcium carbonate; slightly alkaline (pH 7.6); clear wavy boundary.
Bk-28 to 55 inches; weak red (10R 4/2) clay, weak red (10R 4/2) moist; massive; extremely hard, extremely firm, very sticky and very plastic; few very fine and fine roots; few very fine irregular pores; few pressure faces; strongly effervescent; few very fine and fine masses of calcium carbonate; slightly alkaline (pH 7.8); clear smooth boundary.
$\mathrm{Cr}-55$ inches; Purple and red shale -Chinle formation.

Range in Characteristics

Particle-size control section: 40 to 50 percent clay
Depth to a paralithic contact: 40 to 60 inches
Depth to vertic features: 2 to 50 inches
Thickness of mollic epipedon: 15 to 35 inches
Rock fragments: 0 to 5 percent sandstone, limestone, and siliceous gravel
Reaction: neutral to slightly alkaline

A horizon:

Hue: 5YR to 10YR
Value: 3 or 4 dry, 3 moist
Chroma: 2 or 3 dry and moist
Bt horizon:
Hue: 2.5YR to 7.5YR
Value: 3 or 4 dry, 2 to 4 moist
Chroma: 2 to 4 dry and moist
Texture: clay loam or clay
Bssk horizon:
Hue: 10R to 5YR
Value: 3 or 4 dry, 3 moist
Chroma: 2 to 4 dry and moist
Calcium carbonate equivalent: 1 to 5 percent
Bk or BCk horizons:
Hue: 10R to 2.5YR
Value: 3 or 4 dry, 3 moist
Chroma: 2 to 4 dry and moist
Calcium carbonate equivalent: 1 to 10 percent

Razito Series

Taxonomic class: Mixed, mesic Typic Torripsamments Depth class: Very deep
Drainage class: Excessively drained
Permeability: Rapid

Geomorphic position: Dunes on mesas, cuestas, valley sides, and valley floors
Parent material: Eolian material derived from sandstone
Slope range: 1 to 8 percent
Elevation: 5,500 to 6,800 feet
Mean annual air temperature: 50 to 55 degrees F
Mean annual precipitation: 7 to 9 inches
Frost-free period: 130 to 150 days

Typical Pedon

Razito loamy sand, in an area of mapping unit 115, Razito-Shiprock complex, 3 to 8 percent slopes; McKinley County, New Mexico; Nose Rock Quadrangle; 1,400 feet south and 300 feet east of the northwest corner of sec. 19, T. 20 N., R. 11 W.; latitude 35 degrees, 57 minutes, 15 seconds and longitude 108 degrees, 03 minutes, 18 seconds.
A—0 to 4 inches; yellowish brown (10YR $5 / 4$) loamy sand, dark yellowish brown (10YR 4/4) moist; single grain; loose, very friable, nonsticky and nonplastic; few fine and very fine roots; many very fine irregular pores; slightly alkaline (pH 7.4); abrupt smooth boundary.
C1-4 to 15 inches; dark yellowish brown (10YR 4/4) loamy sand, dark yellowish brown (10YR 4/4) moist; massive; soft, very friable, nonsticky and nonplastic; few fine and very fine roots; many very fine irregular pores; slightly alkaline (pH 7.4); clear smooth boundary.
C2-15 to 34 inches; yellowish brown (10YR 5/4) loamy sand, dark yellowish brown (10YR 4/4) moist; massive; soft, very friable, nonsticky and nonplastic; few fine and very fine roots; many very fine irregular pores; slightly alkaline (pH 7.4); abrupt smooth boundary.
Ck-34 to 65 inches; light yellowish brown (10YR 6/4) loamy sand, dark yellowish brown (10YR 4/4) moist; massive; soft, very friable, nonsticky and nonplastic; many very fine irregular pores; violently effervescent; few fine irregular masses and filaments of calcium carbonate; slightly alkaline (pH 7.8).

Range in Characteristics

Particle-size control section: 2 to 6 percent clay Salinity: EC of 0 to 2 mmhos/cm
A horizon:
Hue: 10YR or 2.5 Y
Value: 5 or 6 dry; 4 or 5 moist
Chroma: 4 to 6 moist
Reaction: slightly alkaline

C and Ck horizons:
Hue: 10YR or 2.5 Y
Value: 4 or 5 dry and moist
Chroma: 4 to 6 moist
Texture: loamy sand or loamy fine sand
Reaction: slightly or moderately alkaline

Redpen Series

Taxonomic class: Fine-loamy, mixed, superactive, mesic Ustic Haplargids
Depth class: Very deep
Drainage class: Well drained
Permeability: Moderately slow
Geomorphic position: Valley sides
Parent material: Eolian and fan alluvium derived from sandstone and shale
Slope range: 0 to 2 percent
Elevation: 6,000 to 6,500 feet
Mean annual air temperature: 49 to 54 degrees F
Mean annual precipitation: 10 to 13 inches
Frost-free period: 120 to 140 days

Typical Pedon

Redpen sandy clay loam, in an area of mapping unit 60, Redpen sandy clay loam, 0 to 2 percent slopes; McKinley County, New Mexico; Zuni Quadrangle; 1,000 feet north and 1,200 feet east of the southwest corner of sec. 16, T. 10 N., R. 19 W.; latitude 35 degrees, 05 minutes, 33 seconds and longitude 108 degrees, 51 minutes, 07 seconds.
Ap-0 to 4 inches; reddish brown (2.5YR 4/4) sandy clay loam, dark reddish brown (2.5YR 3/4) moist; weak fine granular structure; slightly hard, friable, slightly sticky and slightly plastic; common very fine and fine roots; many very fine irregular pores; violently effervescent; slightly alkaline (pH 7.6); clear smooth boundary.
Btk1-4 to 15 inches; reddish brown (2.5YR 4/4) sandy clay loam, dark reddish brown (2.5YR 3/4) moist; moderate medium and coarse prismatic structure; slightly hard, friable, slightly sticky and slightly plastic; many very fine and fine roots; common fine irregular pores; many prominent clay films bridging sand grains; violently effervescent; few fine irregular filaments of calcium carbonate; slightly alkaline (pH 7.6); clear smooth boundary. Btk2-15 to 24 inches; reddish brown (2.5YR 4/4) sandy clay loam, dark reddish brown (2.5YR 3/4) moist; moderate medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; few very fine and fine roots;
common fine irregular pores; common prominent clay films bridging sand grains; violently effervescent; many medium irregular filaments of calcium carbonate; moderately alkaline (pH 8.4); clear smooth boundary.
Bk1-24 to 52 inches; reddish brown (2.5YR 4/4) sandy clay loam, dark reddish brown (2.5YR 3/4) moist; massive; slightly hard, friable, slightly sticky and slightly plastic; few very fine roots; common fine irregular pores; violently effervescent; many medium irregular masses of calcium carbonate; moderately alkaline (pH 8.4); clear smooth boundary.
Bk2-52 to 65 inches; reddish brown (2.5YR 4/4) clay loam, dark reddish brown (2.5YR 3/4) moist; massive; slightly hard, friable, slightly sticky and slightly plastic; few very fine roots; common fine irregular pores; violently effervescent; few fine irregular filaments of calcium carbonate; moderately alkaline (pH 8.4).

Range in Characteristics

Particle-size control section: 27 to 35 percent clay and greater than 40 percent sand
Percent calcium carbonate equivalent: 5 to 10 percent, calcareous in all parts
Reaction: slightly alkaline in the surface and moderately alkaline in the subsoil
Ap or A horizon:
Hue: 2.5YR or 5YR
Value: 3 or 4 moist
Chroma: 4 or 6 moist
Rock fragments: 0 to 5 percent sandstone gravel
Bt or Btk horizon:
Value: 3 or 4 moist
Chroma: 4 or 6 moist
Texture: sandy clay loam or clay loam
Rock fragments: 0 to 10 percent sandstone gravel
Bk horizon:
Value: 3 or 4
Chroma: 4 or 6 moist
Texture: sandy clay loam or clay loam
Rock fragments: 0 to 10 percent sandstone gravel
Some pedons have a C horizon with highly stratified, calcareous, silt loam, fine sandy loam, clay loam, or sandy clay loam.

Regracic Series

Taxonomic class: Fine, mixed, superactive, mesic Aridic Paleustalfs
Depth class: Very deep

Drainage class: Well drained
Permeability: Slow
Geomorphic position: Valley floors
Parent material: Stream alluvium derived from shale, sandstone, and conglomerate
Slope range: 2 to 6 percent
Elevation: 7,400 to 7,700 feet
Mean annual air temperature: 47 to 53 degrees F
Mean annual precipitation: 13 to 16 inches
Frost-free period: 100 to 135 days

Typical Pedon

Regracic gravelly sandy clay loam, in an area of mapping unit 300, Regracic gravelly sandy clay loam, 2 to 6 percent slopes; McKinley County, New Mexico; Pine Canyon Quadrangle; 2,200 feet south and 300 feet west of the northeast corner of sec. 20, T. 13 N., R. 13 W.; latitude 35 degrees, 20 minutes, 36 seconds and longitude 108 degrees, 13 minutes, 46 seconds.
The surface is covered by 30 percent gravel and 1 percent cobbles.

A-0 to 2 inches; brown (7.5YR 5/4) gravelly sandy clay loam, dark brown (7.5YR 3/3) moist; weak fine granular structure; slightly hard, friable, nonsticky and nonplastic; many very fine and fine roots; few fine vesicular pores; 30 percent gravel and 1 percent cobbles; noneffervescent; neutral (pH 7.2); abrupt smooth boundary.
Bt-2 to 19 inches; reddish brown (2.5YR 4/3) clay, dark reddish brown (2.5YR 3/4) moist; strong fine and medium subangular blocky structure; very hard, very firm, very sticky and very plastic; common very fine and fine roots; common fine tubular pores; many prominent clay films on faces of peds; 2 percent gravel; slightly alkaline (pH 7.6); abrupt smooth boundary.
Btk1-19 to 31 inches; reddish brown (2.5YR 4/3) clay loam, dark reddish brown (2.5YR 3/4) moist; moderate medium prismatic structure; very hard, very firm, sticky and plastic; common very fine and fine roots; common fine tubular pores; common distinct clay films coating faces of peds; 2 percent gravel; strongly effervescent; many very fine and fine masses and filaments of calcium carbonate; 8 percent calcium carbonate equivalent; moderately alkaline (pH 8.2); clear smooth boundary.
2Btk2-31 to 45 inches; reddish brown (2.5YR 4/3) very gravelly sandy clay, dark reddish brown (2.5YR 3/4) moist; weak very fine and fine subangular blocky structure; hard, friable, sticky and plastic; few very fine and fine roots; few fine irregular pores; common distinct clay films on
faces of peds and bridging sand grains; 55 percent gravel; violently effervescent; many very fine and fine masses and filaments, common fine concretions of calcium carbonate and coating rock fragments; 22 percent calcium carbonate equivalent; moderately alkaline (pH 8.0); abrupt smooth boundary.
2Btk3-45 to 50 inches; yellowish red (5YR 5/6) clay loam, yellowish red (5YR 4/6) moist; weak very fine and fine subangular blocky structure; hard, firm, slightly sticky and slight plastic; few very fine and fine roots; common fine irregular pores; common distinct clay films on faces of peds and bridging sand grains; 5 percent gravel; strongly effervescent; many very fine and fine masses and filaments, few fine concretions of calcium carbonate and coating rock fragments; 8 percent calcium carbonate equivalent; moderately alkaline (pH 8.2); abrupt smooth boundary.
2Btk4—50 to 56 inches; yellowish red (5YR 5/6) very gravelly sandy clay loam, yellowish red (5YR 4/6) moist; weak very fine and fine subangular blocky structure parting to weak very fine granular; hard, friable, slightly sticky and slightly plastic; few very fine and fine roots; few medium irregular pores; few faint clay films bridging sand grains and coating rock fragments; 55 percent gravel; slightly effervescent; few fine masses and filaments of calcium carbonate; 3 percent calcium carbonate equivalent; slightly alkaline (pH 7.8); abrupt smooth boundary.
2Btk5-56 to 60 inches; reddish brown (2.5YR 5/4) clay loam, dark reddish brown (2.5YR 3/4) moist; moderate fine subangular blocky structure; hard, firm, slightly sticky and slight plastic; few very fine and fine roots; common fine irregular pores; common faint clay films on faces of peds and bridging sand grains; 5 percent gravel; strongly effervescent; common fine masses and filaments and few fine concretions of calcium carbonate; 6 percent calcium carbonate equivalent; slightly alkaline (pH 7.8); abrupt smooth boundary.
3BCk—60 to 80 inches; reddish brown (5YR 4/4) gravelly sandy loam, dark reddish brown (5YR 3/4) moist; weak very fine and fine granular structure; slightly hard, very friable, nonsticky and nonplastic; few very fine and fine roots; common medium pores; 25 percent gravel; slightly effervescent; few very fine and fine masses of calcium carbonate; 3 percent calcium carbonate equivalent; slightly alkaline (pH 7.8).

Range in Characteristics

Particle-size control section: 35 to 55 percent clay and greater than 30 percent sand
Depth to secondary calcium carbonate: 12 to 26 inches
Depth to calcic horizon: 15 to 35 inches and 6 to 37 inches thick

A horizon:
Hue: 5YR or 7.5YR
Value: 4 or 5 dry
Chroma: 3 or 4
Rock fragments: 10 to 40 percent total; 10 to 40 percent gravel; 0 to 1 percent cobbles. All fragments are siliceous, sandstone, and some petrified wood.
Reaction: neutral or slightly alkaline
Bt horizon:
Hue: 2.5YR, 5YR, or 7.5YR
Chroma: 3 or 4 dry
Texture: clay or sandy clay
Rock fragments: 0 to 5 percent siliceous gravel
Reaction: neutral or slightly alkaline

Btk horizon:

Hue: 2.5YR, 5YR, or 7.5YR
Value: 4 to 7 dry, 3 to 6 moist
Chroma: 3 to 6
Texture: clay loam, clay, sandy clay, or sandy clay loam
Rock fragments: 0 to 60 percent siliceous gravel
Calcium carbonate equivalent: 3 to 40 percent, with the calcic horizon ranging from 15 to 40 percent
Reaction: slightly or moderately alkaline
BCk horizon (when present):
Hue: 2.5YR, 5YR, or 7.5YR
Value: 4 to 6 dry, 3 to 5 moist
Chroma: 3 or 4
Texture: sandy loam or fine sandy loam
Rock fragments: 5 to 30 percent gravel and 0 to 1 percent cobbles. All fragments are siliceous.
Calcium carbonate equivalent: 0 to 5 percent
Reaction: moderately alkaline

Rehobeth Series

Taxonomic class: Fine, mixed, superactive, mesic Chromic Gypsitorrerts
Depth class: Very Deep
Drainage class: Well drained

Permeability: Slow

Geomorphic position: Valley floors
Parent material: Stream alluvium from gypsiferous shale
Slope range: 0 to 1 percent
Elevation: 6,600 to 6,800 feet
Mean annual air temperature: 46 to 49 degrees F
Mean annual precipitation: 10 to 13 inches
Frost-free period: 100 to 135 days

Typical Pedon

Rehobeth silty clay loam in an area of mapping unit 212, Rehobeth silty clay loam, 0 to 1 percent slopes; McKinley County, New Mexico; Church Rock Quadrangle; T. 15 N., R. 16 W.; latitude 35 degrees, 30 minutes, 12 seconds and longitude 108 degrees, 32 minutes, 11 seconds.
A—0 to 2 inches; reddish brown (2.5YR 4/3) silty clay loam, reddish brown (2.5YR 4/3) moist; moderate very fine granular structure; soft, very friable, sticky and plastic; few very fine roots; few vertical cracks 0.4 inch wide; gypsum >5.0 percent; SAR of 4.3; EC of 0.4 mmhos/cm; strongly effervescent; moderately alkaline (pH 8.4); abrupt smooth boundary.
Bw-2 to 5 inches; reddish brown (2.5YR 4/3) silty clay loam, reddish brown (2.5YR 4/3) moist; strong very fine granular structure; hard, very firm, moderately sticky and moderately plastic; few very fine roots; common very fine irregular pores; few vertical cracks 0.5 inch wide; gypsum >5.0 percent; SAR of 3.1; EC of 0.4 mmhos/cm; slightly effervescent; moderately alkaline (pH 8.4); abrupt wavy boundary.
Bss—5 to 12 inches: reddish brown (2.5YR 4/3) clay, reddish brown (2.5YR 4/3) moist; strong medium and coarse wedge-shaped aggregates; extremely hard, extremely firm, very sticky and very plastic; common very fine and few fine roots; few common very fine and fine irregular pores; many pressure faces; many intersecting slickensides; few vertical cracks 0.5 inch wide; gypsum >5.0 percent; SAR of 4.09; EC of 0.5 mmhos $/ \mathrm{cm}$; slightly effervescent; moderately alkaline (pH 8.2); abrupt irregular boundary.
Bssny1—12 to 18 inches; reddish brown (2.5YR 4/3) clay, dark reddish brown (2.5YR 3/3) moist; strong medium and coarse wedge-shaped aggregates; extremely hard, extremely firm, very sticky and very plastic; common very fine and few fine roots; few very fine irregular pores; many intersecting slickensides; few vertical cracks; few very fine masses and crystals of gypsum and sodium sulfate; gypsum >5.0 percent; SAR of 11.3; EC of
0.5 mmhos/cm; slightly effervescent; moderately alkaline (pH 8.2); abrupt irregular boundary.
Bssny2—18 to 32 inches; reddish brown (2.5YR 5/4) clay, reddish brown (2.5YR 4/4) moist; strong medium and coarse wedge-shaped aggregates; very hard, very firm; very sticky and very plastic; few very fine, fine, and medium roots; few very fine irregular pores; common intersecting slickensides; few vertical cracks; many fine and medium masses and crystals of gypsum and sodium sulfate; gypsum >5.0 percent; SAR of 12.8; EC of $1.6 \mathrm{mmhos} / \mathrm{cm}$; slightly effervescent; moderately alkaline (pH 8.2); clear wavy boundary.
Bssny3-32 to 80 inches; reddish brown (2.5YR 5/4) clay, reddish brown (2.5YR 4/4) moist; strong coarse wedge-shaped aggregates; very hard, very firm, very sticky and very plastic; few very fine roots; few very fine irregular pores; common intersecting slickensides; many masses and crystals of gypsum and sodium sulfate; gypsum 1.3 percent; SAR of 14 ; EC of 6.6 mmhos/cm; slightly effervescent; moderately alkaline (pH 8.2).

Range in Characteristics

Particle-size control section: 40 to 55 percent clay
Depth to the gypsic horizon (with sodium sulfate accumulations): 12 to 80 inches with 5 to 10 percent gypsum, gypsum content decreases in the underlying horizon
Calcium carbonate equivalent: 1 to 5 percent
Vertic properties: slight gilgai microrelief ranges up to 2 inches; cracks 0.5 to 1 inches in width range from 2 to 30 inches vertically; few to many pressure faces and intersecting slickensides below 2 inches.
Rock fragments: 0 to 1 percent sandstone and siliceous gravel
Reaction: Moderately alkaline throughout

A horizon:

Hue:2.5YR
Value: 4 dry or moist
Chroma: 3 dry or moist
Salinity: EC of 0 to $2 \mathrm{mmhos} / \mathrm{cm}$
Sodicity: SAR of 2 to 5
Bw horizon:
Hue:2.5YR
Value: 4 dry or moist
Chroma: 3 dry or moist
Salinity: EC of 0 to $2 \mathrm{mmhos} / \mathrm{cm}$
Sodicity: SAR of 2 to 5
Bss horizon:
Hue:2.5YR
Value: 5 dry, 4 moist

Chroma: 2 dry or moist
Calcium carbonate equivalent: 1 to 10 percent
Gypsum and sodium sulfate: Few to common clusters of crystals
Percent gypsum: 5 to 10 percent
Salinity: 0-2 mmhos/cm
Sodicity: 2-5 SAR
Bssny horizon:
Hue:2.5YR
Value: 4 or 5 dry, 3 or 4 moist
Chroma: 4 dry or moist
Calcium carbonate equivalent: 1 to 10 percent
Percent gypsum: 5 to 10 percent
Salinity: EC of 2 to $8 \mathrm{mmhos} / \mathrm{cm}$
Sodicity: SAR of 5 to 14

Rionutria Series

Taxonomic class: Clayey-skeletal, mixed, superactive, frigid Typic Argiustolls
Depth class: Moderately deep
Drainage class: Well drained
Permeability: Moderately slow
Geomorphic position: Cuestas
Parent material: Slope alluvium and colluvium over residuum derived from sandstone, shale, and limestone
Slope range: 5 to 20 percent
Elevation: 7,000 to 7,600 feet
Mean annual air temperature: 40 to 45 degrees F
Mean annual precipitation: 16 to 20 inches
Frost-free period: 90 to 110 days

Typical Pedon

Rionutria very gravelly loam, in an area of mapping unit 412, Rock outcrop-Rionutria-Zaster association, 15 to 80 percent slopes; McKinley County, New Mexico; Upper Nutria Quadrangle; about 1,050 feet east and 900 feet north of the southwest corner of sec. 34, T. 13 N., R. 16 W.; latitude 108 degrees, 31 minutes, 30 seconds and longitude 35 degrees, 18 minutes, 30 seconds.
The surface is covered by about 25 percent gravel, 10 percent cobbles, 5 percent stones, and 3 percent cobbles.

A-0 to 3 inches; reddish gray (5YR 5/2) very gravelly loam, dark reddish brown (5YR 3/2) moist; weak very fine granular structure; soft, very friable, nonsticky and nonplastic; many very fine and fine roots; 25 percent gravel, 10 percent cobbles, 5 percent stones, and 3 percent boulders; slightly alkaline (pH 7.6); abrupt smooth boundary.

Btk1-3 to 12 inches; reddish brown (5YR 5/3) very cobbly clay loam, dark reddish brown (5YR 3/3) moist; weak medium subangular blocky structure; slightly hard, firm, sticky and plastic; many very fine, fine, and few medium roots; few very fine irregular pores; few distinct clay films on faces of peds; 20 percent gravel, 25 percent cobbles, 5 percent stones; very slightly effervescent; few very fine concretions of calcium carbonate; slightly alkaline (pH 7.8); clear smooth boundary.
Btk2—12 to 24 inches; light reddish brown (5YR 6/3) very cobbly clay loam, reddish brown (5YR 4/3) moist; moderate medium subangular blocky structure; very hard, very firm, sticky and plastic; few very fine, fine, and medium roots; few very fine irregular pores; common distinct clay films on faces of peds; 10 percent gravel, 30 percent cobbles, 5 percent stones; slightly effervescent; common very fine concretions of calcium carbonate; moderately alkaline (pH 8.0); abrupt wavy boundary.
R-24 inches; San Andreas limestone.

Range in Characteristics

Particle-size control section: 33 to 40 percent clay and 35 to 50 percent rock fragments
Depth to a lithic contact: 20 to 40 inches
Calcium carbonate equivalent: 5 to 10 percent
Reaction: Slightly to moderately alkaline

A horizon:

Rock fragments: 20 to 45 percent total; 20 to 25 percent gravel, 5 to 10 percent cobbles, 5 to 10 percent stones. All fragments are limestone.

Btk horizons:

Chroma: 3 or 4

Textures: clay loam or clay
Rock fragments: 35 to 50 percent total; 20 percent gravel, 10 to 25 percent cobbles, 5 to 10 percent stones. All fragments are limestone.

Rizno Series

Taxonomic class: Loamy, mixed superactive, calcareous, mesic Lithic Ustic Torriorthents
Depth class: Very shallow and shallow
Drainage class: Somewhat excessively drained
Permeability: Moderately rapid
Geomorphic position: Mesas, cuestas, and ridges
Parent material: Eolian material over residuum derived from sandstone
Slope range: 2 to 20 percent
Elevation: 6,200 to 6,700 feet

Mean annual air temperature: 49 to 54 degrees F Mean annual precipitation: 10 to 13 inches Frost-free period: 120 to 140 days

Typical Pedon

Rizno fine sandy loam, in an area of mapping unit 355, Rizno-Tekapo-Rock outcrop complex, 2 to 45 percent slopes; McKinley County, New Mexico; Ojo Caliente Reservoir Quadrangle; 1,800 feet north and 900 feet east of the southwest corner of sec. 33, T. 9 N., R. 20 W.; latitude 34 degrees, 57 minutes, 53 seconds and longitude 108 degrees, 57 minutes, 29 seconds.

A—0 to 3 inches; reddish brown (5YR 4/4) fine sandy loam, dark reddish brown (5YR 3/4) moist; weak fine granular structure; soft, very friable, nonsticky and nonplastic; few medium, fine and very fine roots; few very fine irregular pores; 5 percent channers; slightly effervescent; slightly alkaline (pH 7.4); abrupt smooth boundary.
C-3 to 8 inches; reddish brown (2.5YR 4/4) sandy loam, dark reddish brown (2.5YR 3/4) moist; massive; soft, very friable, nonsticky and nonplastic; few coarse and medium and common fine and very fine roots; few very fine irregular pores; 10 percent channers; strongly effervescent; slightly alkaline (pH 7.6); abrupt smooth boundary.
$2 R-8$ inches; red sandstone.

Range in Characteristics

Particle-size control section: 10 to 18 percent clay Depth to lithic contact: 5 to 20 inches to sandstone Calcium carbonate equivalent: 5 to 10 percent
A horizon:
Hue: 2.5YR or 5YR
Value: 4 or 5 dry; 3 or 4 moist
Chroma: 3 or 4 moist
Rock fragments: 0 to 20 percent gravel-sized sandstone channers

C horizon:
Hue: 2.5YR or 5YR
Value: 3 or 4 moist
Texture: sandy loam or fine sandy loam
Rock fragments: 0 to 15 percent gravel-sized sandstone channers
Some pedons have a thin Cr horizon of weathered sandstone above the lithic contact.

Robolata Series

Taxonomic class: Fine, mixed, superactive, frigid Pachic Argiustolls
Depth class: Very deep

Drainage class: Well drained
Permeability: Slow
Geomorphic position: Valley floors
Parent material: Stream alluvium derived from sandstone, shale, and granite
Slope range: 1 to 5 percent
Elevation: 7,700 to 8,000 feet
Mean annual air temperature: 40 to 45 degrees F
Mean annual precipitation: 16 to 20 inches
Frost-free period: 90 to 110 days

Typical Pedon

Robolata loam, in an area of mapping unit 411, LigockiRobolata complex, 1 to 5 percent slopes; McKinley County, New Mexico; Page Quadrangle; 2,050 feet south and 100 feet west of the northeast corner of sec. 32, T. 13 N., R. 15 W.; latitude 35 degrees, 18 minutes, 56 seconds and longitude 108 degrees, 26 minutes, 28 seconds.
A—0 to 6 inches; reddish brown (5YR 4/3) loam, dark reddish brown (5YR 3/3) moist; moderate thin platy structure; soft, very friable, nonsticky and nonplastic; many very fine and fine roots; slightly alkaline (pH 7.6); abrupt smooth boundary.
Bt1-6 to 12 inches; reddish brown (5YR 4/3) loam, dark reddish brown (5YR 3/3) moist; moderate fine and medium subangular blocky structure; slightly hard, friable, slightly sticky and nonplastic; many very fine, fine, and few medium roots; common very fine and few fine irregular pores; few wormcasts; common distinct clay films on faces of peds; slightly alkaline (pH 7.6); abrupt wavy boundary.
Bt2—12 to 20 inches; dark reddish brown (5YR 3/3) clay, dark reddish brown (5YR 3/2) moist; strong medium angular blocky structure; very hard, very firm, sticky and plastic; common very fine, fine, and few medium roots; common very fine and few fine irregular pores; many prominent clay films on faces of peds; 1 percent gravel; slightly alkaline (pH 7.6); abrupt wavy boundary.
2Bt3-20 to 30 inches; dark red (2.5YR 3/6) clay loam, dark reddish brown (2.5YR 3/4) moist; strong medium angular blocky structure; very hard, very firm, sticky and plastic; common very fine and fine roots; few very fine irregular pores; many prominent clay films on faces of peds; 1 percent gravel; slightly alkaline (pH 7.8); clear wavy boundary.
2Btk-30 to 50 inches; red (2.5YR 5/6) sandy clay loam, red (2.5YR 4/6) moist; weak fine subangular blocky structure; hard, firm, slightly sticky and nonplastic; few very fine roots; few very fine irregular pores; few faint clay films on faces of
peds and bridging sand grains; 12 percent gravel; slightly effervescent; few very fine masses of calcium carbonate; 6 percent calcium carbonate equivalent; slightly alkaline (pH 7.8); clear wavy boundary.
2BC—50 to 70 inches; red (2.5YR 5/6) very gravelly sandy loam, red (2.5YR 4/6) moist; weak very fine subangular blocky structure; soft, very friable, nonsticky and nonplastic; few very fine roots; 55 percent gravel; slightly effervescent; slightly alkaline (pH 7.8).

Range in Characteristics

Particle-size control section: 35 to 50 percent clay Thickness of the mollic epipedon: 16 to 26 inches Depth to secondary carbonates: 20 to 40 inches

A horizon:
Hue: 5YR or 7.5YR
Value: 4 dry, 3 moist
Chroma: 2 or 3
Reaction: slightly alkaline
Bt horizon:
Hues: 2.5YR or 5YR
Value: 3 or 4 dry, 3 moist
Chroma: 2 to 6
Textures: loam, clay loam, or clay
Rock fragments: 0 to 5 percent sandstone gravel
Reaction: slightly alkaline
Btk horizon:
Hues: 2.5YR or 5YR
Value: 5 dry, 3 or 4 moist
Chroma: 4 or 6
Textures: sandy clay loam, clay loam, or clay
Rock fragments: 0 to 25 percent sandstone gravel
Reaction: slightly to moderately alkaline
BCk horizon:
Hue: 2.5YR or 5YR
Value: 5 dry, 3 or 4 moist
Chroma: 4 or 6
Textures: fine sandy loam or loam
Rock fragments: 0 to 55 percent sandstone gravel
Reaction: slightly to moderately alkaline

Royosa Series

Taxonomic class: Mixed, mesic Aridic Ustipsamments Depth class: Very deep
Drainage class: Excessively drained
Permeability: Rapid
Geomorphic position: Dunes
Parent material: Eolian material derived from sandstone

Slope range: 1 to 15 percent
Elevation: 6,400 to 7,000 feet
Mean annual air temperature: 46 to 49 degrees F
Mean annual precipitation: 13 to 16 inches
Frost-free period: 100 to 135 days

Typical Pedon

Royosa loamy fine sand, in an area of mapping unit 316, Royosa loamy fine sand, 1 to 15 percent slopes; McKinley County, New Mexico; High Lonesome Well Quadrangle; 1,000 feet south and 1,200 feet west of the northeast corner of sec 12, T. 10 N., R. 21 W.; latitude 35 degrees 06 minutes 52 seconds and longitude 109 degrees 00 minutes 05 seconds. A1-0 to 2 inches; pale brown (10YR 6/3) loamy fine sand, brown (10YR 4/3) moist; single grain; loose, very friable, nonsticky and nonplastic; common fine and many very fine roots; many very fine irregular pores; neutral (pH 7.2); abrupt smooth boundary.
A2-2 to 6 inches; dark grayish brown (10YR 4/4) loamy fine sand, dark yellowish brown (10YR 3/4) moist; weak medium subangular blocky structure; soft, very friable, nonsticky and nonplastic; few medium and many fine and very fine roots; many very fine irregular pores; slightly alkaline (pH 7.4); clear smooth boundary.
C—6 to 65 inches; brown (7.5YR 4/4) loamy fine sand, brown (7.5YR 4/4) moist; massive; soft, very friable, nonsticky and nonplastic; few medium and fine and common very fine roots; many very fine irregular pores; slightly alkaline (pH 7.4).

Range in Characteristics

Particle-size control section: 3 to 10 percent clay
Reaction: neutral or slightly alkaline

A horizon:

Hue: 7.5YR or 10YR
Value: 6 or 7 dry; 3 to 5 moist
Chroma: 3 or 4 dry; 3 to 6 moist
C horizons:
Hue: 7.5YR or 10YR
Value: 3 to 6 moist
Chroma: 4 to 6 moist
Texture: loamy fine sand, loamy sand, or fine sand

San Mateo Series

Taxonomic class: Fine-loamy, mixed, superactive, calcareous, mesic Ustic Torrifluvents
Depth class: Very deep
Drainage class: Well drained
Permeability: Moderately slow

Geomorphic position: Valley sides and valley floors
Parent material: Fan and stream alluvium derived from sandstone and shale
Slope range: 0 to 3 percent
Elevation: 6,300 to 6,900 feet
Mean annual air temperature: 49 to 54 degrees F Mean annual precipitation: 10 to 13 inches Frost-free period: 120 to 140 days

Typical Pedon

San Mateo clay loam, in an area of mapping unit 230, Sparank-San Mateo-Zia complex, 0 to 3 percent slopes; McKinley County, New Mexico; Mesa de los Toros Quadrangle; 10,500 feet west and 800 feet south of the northeast corner of sec. 1, T. 15 N., R. 9 W.; latitude 35 degrees, 33 minutes, 27 seconds and longitude 107 degrees, 47 minutes, 02 seconds.
A-0 to 2 inches; grayish brown (10YR 5/2) clay loam, dark grayish brown (10YR 4/2) moist; strong very fine granular structure; soft, friable, sticky and plastic; few fine and very fine roots; many very fine irregular pores; slightly effervescent; slightly alkaline (pH 7.8); abrupt smooth boundary.
C1-2 to 15 inches; grayish brown (10YR $5 / 2$) clay loam, dark grayish brown (10YR 4/2) moist; massive; slightly hard, firm, sticky and plastic; few fine and very fine roots; few very fine irregular pores; slightly effervescent; moderately alkaline $(\mathrm{pH} 8.0)$; gradual smooth boundary.
C2-15 to 30 inches; brown (10YR 5/3) sandy clay loam, brown (10YR 4/3) moist; massive; soft, friable, slightly sticky and nonplastic; few fine and very fine roots; common fine irregular pores; strongly effervescent; moderately alkaline (pH 8.0); clear smooth boundary.
C3-30 to 39 inches; brown (10YR 5/3) clay loam, dark grayish brown (10YR 4/2) moist; massive; soft, friable, slightly sticky and slightly plastic; few very fine roots; common fine irregular pores; strongly effervescent; slightly alkaline (pH 7.6); clear smooth boundary.
C4-39 to 45 inches; pale brown (10YR 6/3) sandy loam, brown (10YR 4/3) moist; massive; soft, very friable, nonsticky and nonplastic; few very fine roots; many fine irregular pores; strongly effervescent; slightly alkaline (pH 7.6); clear smooth boundary.
C5-45 to 65 inches; light brownish gray (10YR 6/2) clay loam, dark grayish brown (10YR 4/2) moist; massive; soft, friable, slightly sticky and slightly plastic; few very fine roots; common fine irregular pores; strongly effervescent; slightly alkaline (pH 7.8).

Range in Characteristics

Particle-size control section: 20 to 34 percent clay Calcium carbonate equivalent: 1 to 5 percent

A horizon:

Hue: 10YR or 2.5 Y
Value: 5 or 6 dry; 3 or 4 moist
Chroma: 2 or 3 dry; 2 to 4 moist
Salinity: EC of 1 to $2 \mathrm{mmhos} / \mathrm{cm}$
Reaction: slightly or moderately alkaline

C horizon:

Hue: 10YR or 2.5 Y
Value: 5 or 6 dry; 3 or 4 moist
Chroma: 2 to 4
Texture: clay loam, sandy clay loam, silty clay loam, or sandy loam
Salinity: EC of 2 to $4 \mathrm{mmhos} / \mathrm{cm}$
Sodicity: SAR 5 to 10
Reaction: slightly to strongly alkaline

Sanfeco Series

Taxonomic class: Fine, mixed, superactive, mesic Typic Haplargids
Depth class: Very deep
Drainage class: Well drained
Permeability: Slow
Geomorphic position: Valley floors
Parent material: Stream alluvium derived from sandstone and shale
Slope range: 0 to 2 percent
Elevation: 6,400 to 6,800 feet
Mean annual air temperature: 50 to 55 degrees F
Mean annual precipitation: 7 to 9 inches
Frost-free period: 130 to 150 days

Typical Pedon

Sanfeco fine sandy loam, in an area of mapping unit 125, Sanfeco fine sandy loam, 0 to 2 percent slopes; McKinley County, New Mexico; El Dado Quadrangle; 400 feet south and 600 feet west of the northeast corner of sec. 19, T. 15 N., R. 7 W.; latitude 35 degrees, 31 minutes, 16 seconds and longitude 107 degrees, 36 minutes, 45 seconds (fig. 19).
A-0 to 2 inches; yellowish brown (10YR 5/4) fine sandy loam, dark yellowish brown (10YR 3/4) moist; moderate thin and medium platy structure parting to moderate fine granular; soft, very friable, slightly sticky and slightly plastic; many very fine and few fine roots; few fine vesicular and irregular pores; slightly effervescent; moderately alkaline (pH 7.4); abrupt smooth boundary.

Bt-2 to 10 inches; brown (10YR 5/3) clay loam, brown (10YR 4/3) moist; moderate very thin and thin platy structure parting to moderate medium subangular blocky; slightly hard, firm, sticky and plastic; many very fine and fine roots; common fine irregular pores; common prominent clay films on faces of peds; strongly effervescent; moderately alkaline (pH 7.8); clear wavy boundary.
Btk 1 -10 to 27 inches; brown (10YR 5/3) clay, dark brown (10YR 3/3) moist; strong fine and medium prismatic structure; hard, very firm, sticky and very plastic; many very fine and fine roots; common fine irregular pores; many prominent clay films on faces of peds; common fine filaments and masses of calcium carbonate; strongly effervescent; moderately alkaline (pH 7.8); clear wavy boundary.
2Btk2—27 to 35 inches; dark yellowish brown (10YR 4/4) sandy clay, dark yellowish brown (10YR 3/4) moist; moderate medium subangular blocky structure; very hard, very firm, sticky and plastic; common very fine and fine roots; common fine irregular pores; common prominent clay films on faces of peds and bridging sand grains; violently effervescent; common fine filaments and masses of calcium carbonate; moderately alkaline (pH 8.0); clear wavy boundary.
2Btk3-35 to 39 inches; dark yellowish brown (10YR 4/4) sandy clay loam, dark yellowish brown (10YR 3/4) moist; weak fine and medium subangular blocky structure; hard, firm, sticky and plastic; common very fine and fine roots; few fine irregular pores; common distinct clay films bridging sand grains; violently effervescent; common fine filaments and masses of calcium carbonate; moderately alkaline (pH 8.0); clear wavy boundary.
3Bk1-39 to 50 inches; yellowish brown (10YR 5/4) loamy coarse sand, dark yellowish brown (10YR 4/4) moist; massive; slightly hard, friable, nonsticky and nonplastic; few very fine and fine roots; few fine irregular pores; strongly effervescent; common fine masses of calcium carbonate; moderately alkaline (pH 8.0); clear wavy boundary.
3Bk2—50 to 65 inches; yellowish brown (10YR 5/4) loamy sand, dark yellowish brown (10YR 4/4) moist; massive; slightly hard, friable, nonsticky and nonplastic; few very fine and fine roots; few fine irregular pores; 1 percent gravel and 1 percent cobbles; slightly effervescent; calcium carbonate coats rock fragments; moderately alkaline (pH 8.0).

Range in Characteristics

Particle-size control section: 35 to 50 percent clay and greater than 25 percent sand
Depth to secondary calcium carbonate: 5 to 25 inches
Calcium carbonate equivalent: 3 to 5 percent in the surface and 5 to 15 percent in the subsoil
Salinity: EC of 0 to $4 \mathrm{mmhos} / \mathrm{cm}$
Sodicity: SAR of 0 to 2 in the surface and 2 to 5 in the subsoil
Reaction: moderately alkaline throughout

A horizon:

Value: 5 or 6 dry; 3 or 4 moist
Chroma: 3 or 4
Bt or Btk horizons:
Value: 4 or 5 dry, 3 or 4 moist
Chroma: 3 or 4
Texture: clay loam, clay, sandy clay, or sandy clay loam

Bk horizon:
Hue: 10YR or 2.5 Y
Value: 5 or 6 dry
Texture: loamy coarse sand, loamy sand, sandy loam, or clay loam
Rock fragments: 0 to 5 percent total; 0 to 3 percent gravel; 0 to 2 percent cobbles. All fragments are sandstone.

Some pedons have a C horizon below the Btk horizons.

Seco Series

Taxonomic class: Very fine, mixed, superactive, frigid Vertic Argiustolls
Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Very slow
Geomorphic position: Valley floors
Parent material: Slope alluvium derived from basalt
Slope range: 1 to 5 percent
Elevation: 8,000 to 8,400 feet
Mean annual air temperature: 40 to 45 degrees F
Mean annual precipitation: 16 to 20 inches
Frost-free period: 90 to 110 days

Typical Pedon

Seco clay loam, in an area of mapping unit 420, Seco clay loam, 1 to 5 percent slopes; McKinley County, New Mexico; Marquez Quadrangle; latitude 35
degrees, 22 minutes, 27 seconds and longitude 107 degrees, 20 minutes, 23 seconds.

A-0 to 3 inches; grayish brown (10YR 5/2) clay loam, very dark grayish brown (10YR 3/2) moist; moderate medium and thick platy structure; slightly hard, friable, sticky and plastic; common very fine and fine roots; common fine irregular pores; slightly acid (pH 6.4); clear smooth boundary.
Bt—3 to 11 inches; dark grayish brown (10YR 4/2) clay, very dark brown (10YR 2/2) moist; strong very fine and fine subangular blocky structure; very hard, very firm, very sticky and very plastic; many prominent clay films on faces of peds; neutral (pH 7.2); abrupt wavy boundary.
Btss-11 to 23 inches; brown (7.5YR 4/2) clay, dark brown (7.5YR 3/2) moist; moderate fine and medium prismatic structure parting to strong fine angular blocky; extremely hard, extremely firm, very sticky and very plastic; common very fine and fine roots; few fine tubular pores; many prominent clay films on faces of peds; common slickensides and pressure faces; vertical cracks less than $1 / 4$ inch wide extend from 11 to 28 inches; slightly alkaline (pH 7.4); gradual irregular boundary.
Btkss-23 to 58 inches; brown (7.5YR 4/4) clay, dark brown (7.5YR 3/4) moist; common fine and medium distinct dark grayish brown (10YR 4/2) and very dark grayish brown (10YR 3/2) moist redox depletions; moderate medium angular blocky structure; extremely hard, extremely firm, very sticky and very plastic; few very fine and fine roots; few fine tubular pores; many prominent clay films on faces of peds; common slickensides and pressure faces; strongly effervescent; few fine masses of calcium carbonate and coating soft weathered basalt gravel; slightly alkaline (pH 7.8); clear wavy boundary.
2BCg-58 to 70 inches; light yellowish brown (2.5Y $6 / 3$) clay, light olive brown (2.5Y 5/3) moist; common fine and medium prominent brown (7.5YR $5 / 4$) and brown (7.5YR 4/4) moist redox concentrations; massive; extremely hard, extremely firm, very sticky and very plastic; very few very fine roots; very few very fine irregular pores; few fine soft white noneffervescent masses; slightly alkaline (pH 7.4).

Range in Characteristics

Particle-size control section: 60 to 80 percent clay Mollic epipedon: 15 to 30 inches thick
Depth to secondary calcium carbonate (when present): 20 to 50 inches.

Vertic features: depth to cracks, slickensides, and pressure faces: 8 to 22 inches
Redoximorphic features:
Depth: 20 to 50 inches
Size: fine or medium
Contrast: distinct or prominent
Hue: 7.5YR or 10YR
Value: 4 or 5 dry, 3 or 4 moist
Chroma: 2 to 4 dry or moist
A horizon:
Hue: 7.5YR or 10YR
Value: 4 or 5 dry
Chroma: 2 or 3 dry
Reaction: slightly acid or neutral
Bt horizon:
Hue: 5YR, 7.5YR, or 10YR
Value: 4 or 5 dry, 2 or 3 moist
Chroma: 2 to 4 dry, 0 to 4 moist
Texture: clay or silty clay
Reaction: neutral to moderately alkaline
Btss horizon:
Hue: 5YR, 7.5YR, or 10YR
Value: 4 or 5 dry, 2 or 3 moist
Chroma: 2 to 4 dry, 0 to 4 moist
Texture: clay or silty clay
Salinity: EC of 0 to 2 mmhos/cm
Reaction: neutral to moderately alkaline
Btk horizon (may be absent):
Hue: 7.5YR or 10YR
Value: 4 or 5 dry, 3 or 4 moist
Calcium carbonate equivalent: 1 to 5 percent
Salinity: EC of 0 to $2 \mathrm{mmhos} / \mathrm{cm}$
Reaction: slightly or moderately alkaline
2BC horizon (may be absent):
Value: 4 to 6 dry, 4 or 5 moist
Chroma: 2 or 3 moist
Salinity: EC of 0 to 2 mmhos/cm
Reaction: slightly alkaline

Shadilto Series

Taxonomic class: Loamy, carbonatic, mesic Lithic Calciustepts
Depth class: Very shallow and shallow
Drainage class: Somewhat excessively drained
Permeability: Moderately rapid
Geomorphic position: Cuestas
Parent material: Eolian material and slope alluvium derived from sandstone and limestone
Slope range: 2 to 8 percent
Elevation: 7,000 to 7,700 feet
Mean annual air temperature: 49 to 53 degrees F

Mean annual precipitation: 13 to 16 inches

Frost-free period: 115 to 135 days

Typical Pedon

Shadilto very gravelly sandy loam, in an area of mapping unit 375, Todest-Shadilto complex, 2 to 8 percent slopes; McKinley County, New Mexico; Thoreau Quadrangle; 600 feet west and 1,200 feet south of the northeast corner of sec. 23, T. 14 N., R. 13 W.; latitude 35 degrees, 26 minutes, 01 seconds and longitude 108 degrees, 10 minutes, 38 seconds.

The surface is covered by about 50 percent gravel and 5 percent cobbles.

A-0 to 1 inch; brown (7.5YR 5/4) very gravelly sandy loam, brown (7.5YR 4/4) moist; weak thin platy structure; soft, very friable, nonsticky and nonplastic; many fine and common medium roots; many fine vesicular pores; 50 percent gravel and 5 percent cobbles; strongly effervescent; few fine masses of calcium carbonate; 25 percent calcium carbonate equivalent; moderately alkaline (pH 8.0); clear smooth boundary.
Bk1—1 to 9 inches; brown (7.5YR 5/4) sandy loam, brown (7.5YR 4/4) moist; weak fine subangular blocky structure; soft, very friable, nonsticky and nonplastic; many fine and few medium roots; common fine irregular pores; 10 percent gravel; violently effervescent; many very fine masses and common fine and medium concretions of calcium carbonate and coating rock fragments; 70 percent calcium carbonate equivalent; moderately alkaline (pH 8.2); clear smooth boundary.
Bk2—9 to 13 inches; pinkish gray (7.5YR 6/2) sandy loam, brown (7.5YR 5/3) moist; weak fine and medium subangular blocky structure; slightly hard, very friable, nonsticky and nonplastic; common fine and few medium and coarse roots; common fine irregular pores; 5 percent gravel and 5 percent cobbles; violently effervescent; many fine masses and concretions of calcium carbonate and coating rock fragments; 75 percent calcium carbonate equivalent; moderately alkaline (pH 8.2); clear smooth boundary.
Bk3-13 to 15 inches; pinkish white (7.5YR 8/2) sandy loam, pink (7.5YR 7/3) moist; massive; slightly hard, very friable, nonsticky and nonplastic; few fine and medium roots; few fine irregular pores; 5 percent gravel and 2 percent cobbles; violently effervescent; many fine masses and concretions of calcium carbonate and coating rock fragments; 80 percent calcium carbonate equivalent; moderately alkaline (pH 8.2); abrupt smooth boundary.

R-15 inches; limestone.

Range in Characteristics

Particle-size control section: 8 to 18 percent clay and more than 55 percent sand
Depth to calcic horizon: 1 to 3 inches
Depth to lithic contact: 6 to 20 inches to limestone
A horizon:
Hue: 5YR, 7.5YR, or 10YR
Value: 3 or 4 moist
Chroma: 3 or 4 moist
Rock fragments: 35 to 60 percent total; 35 to 60 percent gravel; 0 to 10 percent cobbles. Most fragments are limestone with some sandstone.
Calcium carbonate equivalent: 10 to 40 percent
Bk horizon:
Hue: 7.5YR or 10YR
Value: 5 to 8 dry, 3 to 7 moist
Chroma: 2 to 4 dry, 3 or 4 moist
Rock fragments: 5 to 35 percent total; 5 to 20 percent gravel; 0 to 30 percent cobbles. All fragments are limestone.
Calcium carbonate equivalent: 40 to 80 percent

Shiprock Series

Taxonomic class: Coarse-loamy, mixed, superactive, mesic Typic Haplargids
Depth class: Very deep
Drainage class: Somewhat excessively drained
Permeability: Moderately rapid
Geomorphic position: Mesas, cuestas, and valley sides
Parent material: Eolian material and slope alluvium derived from sandstone
Slope range: 2 to 8 percent
Elevation: 5,800 to 6,800 feet
Mean annual air temperature: 50 to 55 degrees F Mean annual precipitation: 7 to 9 inches
Frost-free period: 130 to 150 days

Typical Pedon

Shiprock fine sandy loam, in an area of mapping unit 115, Razito-Shiprock complex, 3 to 8 percent slopes; McKinley County, New Mexico; Seven Lakes NW Quadrangle; 1,600 feet east and 1,400 feet north of the southwest corner of sec. 8, T. 20 N., R. 10 W.; latitude 35 degrees, 58 minutes, 36 seconds and longitude 107 degrees, 55 minutes, 54 seconds.

A—0 to 3 inches; light yellowish brown (10YR 6/4) fine sandy loam, yellowish brown (10YR 5/4) moist; moderate fine granular structure; soft, very friable,
nonsticky and nonplastic; few very fine roots; many very fine irregular pores; neutral (pH 6.8); abrupt smooth boundary.
Bt-3 to 15 inches; strong brown (7.5YR 5/6) fine sandy loam, dark yellowish brown (7.5YR 4/6) moist; moderate medium subangular blocky structure; slightly hard, very friable, nonsticky and nonplastic; common fine and very fine roots; common very fine tubular pores; common distinct clay films on faces of peds and lining pores; slightly alkaline (pH 7.4); abrupt smooth boundary.
Bk1-15 to 37 inches; light brown (7.5YR 6/4) fine sandy loam, brown (7.5YR 5/4) moist; massive; slightly hard, very friable, nonsticky and nonplastic; few fine and common very fine roots; few very fine tubular pores; strongly effervescent; slightly alkaline (pH 7.6); clear smooth boundary.
Bk2-37 to 60 inches; very pale brown (10YR 7/4) fine sandy loam, light yellowish brown (10YR 6/4) moist; massive; soft very friable, nonsticky and nonplastic; few very fine roots; common very fine irregular pores; violently effervescent; moderately alkaline (pH 8.4).

Range in Characteristics

Particle-size control section: 10 to 18 percent clay
A horizon:
Hue:7.5YR or 10YR
Value: 5 or 6 dry; 4 to 6 moist
Chroma: 4 to 6 moist
Texture: fine sandy loam or loamy fine sand
Reaction: neutral or slightly alkaline
Bt horizon:
Hue: 7.5YR or 10YR
Value: 3 to 5 moist
Chroma: 4 to 6 moist
Reaction: neutral to moderately alkaline
Bk horizon:
Hue: 7.5YR or 10YR
Value: 6 or 7 dry; 4 to 6 moist
Chroma: 4 to 6 moist
Texture: fine sandy loam
Calcium carbonate equivalent: 1 to 10 percent
Reaction: moderately alkaline

Shoemaker Series

Taxonomic class: Fine-loamy, mixed, superactive, frigid Typic Haplustalfs
Depth class: Moderately deep
Drainage class: Moderately well drained
Permeability: Moderate

Geomorphic position: Mesas and cuestas
Parent material: Eolian and slope alluvium derived from sandstone and shale
Slope range: 2 to 8 percent
Elevation: 7,000 to 7,600 feet
Mean annual air temperature: 40 to 45 degrees F
Mean annual precipitation: 16 to 20 inches
Frost-free period: 90 to 110 days

Typical Pedon

Shoemaker loamy fine sand, in an area of mapping unit 400, Shoemaker-Stozuni complex, 2 to 8 percent slopes; McKinley County, New Mexico; Shoemaker Canyon Quadrangle; 1,200 feet south and 2,600 feet west of the northeast corner of sec. 36, T. 9 N., R. 17 W.; latitude 34 degrees, 58 minutes, 13 seconds and longitude 108 degrees, 34 minutes, 58 seconds.
A-0 to 2 inches; brown (7.5YR 5/4) loamy fine sand, brown (7.5YR 4/4) moist; weak medium granular structure; soft, very friable, nonsticky and nonplastic; many very fine and fine, and few medium roots; many very fine irregular pores; neutral (pH 6.6); abrupt smooth boundary.
Bt1-2 to 7 inches; brown (7.5YR 4/4) fine sandy loam, dark brown (7.5YR 3/4) moist; weak medium subangular blocky structure; soft, very friable, nonsticky and nonplastic; many very fine and fine, and few medium roots; common fine tubular pores; few faint clay films bridging sand grains; neutral (pH 6.6); abrupt smooth boundary.
Bt2-7 to 20 inches; strong brown (7.5YR 4/6) sandy clay loam, brown (7.5YR 4/4) moist; few fine faint mottles; moderate medium subangular blocky structure; hard, firm, slightly sticky and slightly plastic; common very fine and fine, and few medium roots; few fine irregular pores; common prominent clay films bridging sand grains; slightly acid (pH 6.4); clear smooth boundary.
Bt3-20 to 28 inches; strong brown (7.5YR 5/6) sandy clay loam, strong brown (7.5YR 4/6) moist; common medium, distinct, reddish yellow (7.5YR 6/8) mottles; moderate medium subangular blocky structure; hard, firm, slightly sticky and slightly plastic; few very fine and medium roots; few fine irregular pores; common prominent clay films bridging sand grains; slightly acid (pH 6.4); abrupt smooth boundary.
2R-28 inches; sandstone.

Range in Characteristics

Particle-size control section: 20 to 35 percent clay Depth to bedrock: 20 to 40 inches to sandstone
Redoximorphic concentrations: few to common, fine or
common, faint or distinct, 5YR or 7.5YR redox concentrations at a depth of 7 to 26 inches
Reaction: neutral in the surface and slightly alkaline in the subsoil

A horizon:
Hue: 7.5YR or 10YR
Value: 4 to 6 dry, 3 or 4 moist
Chroma: 2 to 4 moist
Rock fragments: 0 to 10 percent gravel; 0 to 5 percent cobbles. All fragments are sandstone.

Bt horizon:
Hue: 5YR or 7.5YR
Value: 4 to 6 dry, 3 to 5 moist
Texture: sandy clay loam or fine sandy loam
Rock fragments: 0 to 10 percent gravel; 0 to 5 percent cobbles. All fragments are sandstone.

Silcat Series

Taxonomic class: Fine, mixed, superactive, mesic Aridic Haplusterts
Depth class: Very deep
Drainage class: Well drained
Permeability: Very slow
Geomorphic position: Valley floors, valley sides, and hills
Parent material: Slope alluvium derived from shale Slope range: 1 to 10 percent
Elevation: 6,800 to 7,500 feet
Mean annual air temperature: 46 to 49 degrees F
Mean annual precipitation: 13 to 16 inches
Frost-free period: 100 to 135 days

Typical Pedon

Silcat clay loam, in an area of mapping unit 525, Silcat clay loam, 1 to 10 percent slopes; McKinley County, New Mexico; Upper Galestina Canyon Quadrangle; 800 feet south and 750 feet west of the northeast corner of sec. 19, T. 9 N., R. 17 W.; latitude 35 degrees, 00 minutes, 02 seconds and longitude 108 degrees, 39 minutes, 54 seconds.

A-0 to 2 inches; light olive brown (2.5Y5/6) clay loam, brown (10YR 4/3) moist; strong medium granular structure; slightly hard, friable, slightly sticky and slightly plastic; common very fine and fine roots; common fine irregular pores; slightly alkaline (pH 7.5); abrupt smooth boundary.
$2 B C-2$ to 7 inches; light olive brown (2.5Y 5/4) clay, olive brown (2.5Y 4/4) moist; moderate medium subangular blocky structure; hard, firm, sticky and plastic; many very fine and fine roots; few fine
irregular pores; common pressure faces; vertical cracks 0.75 inches wide extend from 2 inches to 38 inches depth, upper part of some cracks are filled with surface material; strongly effervescent; moderately alkaline (pH 8.0); clear smooth boundary.
2BCss1-7 to 18 inches; light olive brown (2.5Y 5/4) clay, olive brown ($2.5 \mathrm{Y} 4 / 4$) moist; strong medium prismatic structure; extremely hard, extremely firm, very sticky and very plastic; common very fine and fine roots; few fine tubular pores; many pressure faces and few slickensides; vertical cracks 0.75 inches wide; strongly effervescent; moderately alkaline (pH 8.1); clear smooth boundary.
2BCss2—18 to 38 inches; light olive brown (2.5Y 5/4)
clay, olive brown (2.5Y 4/4) moist; massive; extremely hard, extremely firm, very sticky and very plastic; common very fine and fine roots; few fine tubular pores; many slickensides up to 3 inches in diameter are tilted 40 degrees from the horizontal; vertical cracks 0.75 inches wide; strongly effervescent; moderately alkaline (pH 8.2); gradual smooth boundary.
2Bk-38 to 65 inches; light olive brown (2.5Y 5/4) clay, olive brown (2.5Y 4/4) moist; massive; extremely hard, extremely firm, very sticky and very plastic; few very fine and fine roots; few fine tubular pores; strongly effervescent; few very fine irregular filaments and masses of calcium carbonate; moderately alkaline (pH 7.9).

Range in Characteristics

Particle-size control section: 45 to 55 percent clay
Vertic features: Vertical cracks extend from the surface but most extend from 2 to 40 inches. Slickensides and pressure faces occur from 5 to 40 inches.
Reaction: Slightly alkaline in the surface and moderately alkaline in the subsoil

A horizon:
Hue: 2.5Y or 10YR
Chroma: 4 or 6 dry, 2 or 3 moist
Rock fragments: 0 to 5 percent sandstone gravel or channers

2BCss horizons:
Value: 4 or 5 dry, 2 or 4 moist
Chroma: 2 to 4 moist

2Bk horizon:
Value: 4 or 5 dry
Chroma: 2 to 4 dry or moist

Simitarq Series

Taxonomic class: Loamy, mixed, superactive, mesic Lithic Haplustalfs
Depth class: Very shallow and shallow
Drainage class: Well drained
Permeability: Moderately slow
Geomorphic position: Mesas and cuestas
Parent material: Eolian material and slope alluvium over residuum derived from sandstone
Slope range: 2 to 8 percent
Elevation: 7,200 to 8,100 feet
Mean annual air temperature: 49 to 53 degrees F Mean annual precipitation: 13 to 16 inches
Frost-free period: 115 to 135 days

Typical Pedon

Simitarq sandy loam, in an area of mapping unit 368, Simitarq-Celavar sandy loams, 2 to 8 percent slopes; McKinley County, New Mexico; Continental Divide Quadrangle; 500 feet south and 800 feet west of the northeast corner of sec. 29, T. 14 N., R. 14 W.; latitude 35 degrees, 25 minutes, 16 seconds and longitude 108 degrees, 20 minutes, 13 seconds.

A-0 to 1 inch; brown (10YR 5/3) sandy loam, dark brown (10YR 3/3) moist; strong thick platy structure; soft, very friable, slightly sticky and nonplastic; many very fine and fine roots; many fine vesicular pores; 10 percent channers and gravel; neutral (pH 7.2); abrupt smooth boundary.
Bt1-1 to 6 inches; reddish brown (5YR 4/4) sandy clay loam, dark reddish brown (5YR 3/4) moist; moderate medium subangular blocky structure; slightly hard, firm, sticky and plastic; common very fine and fine and few medium roots; common fine irregular pores; many distinct clay films coating faces of peds and bridging sand grains; 5 percent channers and 1 percent cobbles; neutral (pH 7.2); clear wavy boundary.
Bt2-6 to 14 inches; reddish brown (5YR 5/4) sandy clay, dark reddish brown (5YR 3/4) moist; strong medium subangular blocky structure; very hard, very firm, very sticky and very plastic; common very fine and fine and few medium roots; common fine tubular pores; many prominent clay films on faces of peds and bridging sand grains; 2 percent channers; slightly alkaline (pH 7.4); clear wavy boundary.
R-14 inches; sandstone; the top 1 inch is weathered with Bt2 material in the cracks.

Range in Characteristics

Depth to lithic contact: 5 to 20 inches to sandstone Particle-size control section: 20 to 35 percent clay and
greater than 35 percent sand. The lower argillic horizons contain more than 35 percent clay but are not thick enough or have a high enough clay content to make the pscs clayey.
Reaction: neutral or slightly alkaline throughout
A horizon:
Hue: 5YR, 7.5YR, or 10YR
Value: 4 to 6 dry, 3 or 4 moist
Chroma: 3 or 4 dry, 2 to 4 moist
Rock fragments: 5 to 30 percent total; 5 to 25 percent gravel; 0 to 5 percent cobbles. All fragments are siliceous and sandstone.

Bt1 horizon:
Hue: 2.5YR, 5YR, or 7.5YR
Value: 4 or 5 dry, 3 or 4 moist
Chroma: 3 or 4
Texture: sandy clay loam or clay loam with less than 35 percent clay
Rock fragments: 5 to 15 percent total; 5 to 15 percent gravel; 0 to 5 percent cobbles
Bt2 horizon:
Hue: 2.5YR or 5YR
Value: 3 to 5 dry, 2.5 to 4 moist
Chroma: 3 or 4
Texture: sandy clay, clay, or clay loam with greater than 35 percent clay
Rock fragments: 0 to 35 percent total; 0 to 30 percent gravel; 0 to 20 percent cobbles. All fragments are sandstone.
Some pedons have a Btk horizon with less than 5 percent calcium carbonate equivalent.

Skyvillage Series

Taxonomic class: Loamy, mixed, superactive, calcareous, mesic Lithic Ustic Torriorthents
Depth class: Very shallow and shallow
Drainage class: Well drained
Permeability: Moderate to moderately rapid
Geomorphic position: Mesas, cuestas, breaks, hills, and ridges
Parent material: Eolian material and slope alluvium derived from sandstone
Slope range: 2 to 20 percent
Elevation: 6,400 to 7,800 feet
Mean annual air temperature: 49 to 54 degrees F
Mean annual precipitation: 10 to 13 inches
Frost-free period: 120 to 140 days

Typical Pedon

Skyvillage very channery sandy loam, in an area of mapping unit 250 Hospah-Skyvillage-Rock outcrop
complex, 2 to 35 percent slopes; McKinley County, New Mexico; Kin Nahzin Ruins Quadrangle; 800 feet west and 200 feet south of the northeast corner of sec. 26, T. 18N, R. 9W. latitude 35 degrees, 46 minutes, 03 seconds and longitude 107 degrees, 45 minutes, 18 seconds.

The surface is covered by about 10 percent cobbles, 30 percent channers, and 5 percent stones.

A—0 to 1 inch; yellowish brown (10YR 5/4) very channery sandy loam, dark yellowish brown (10YR 4/4) moist; weak medium and coarse platy structure; soft, very friable, nonsticky and nonplastic; few very fine roots; many very fine irregular and few fine vesicular pores; 10 percent cobbles, 30 percent channers, and 5 percent stones; strongly effervescent; moderately alkaline (pH 8.4); abrupt smooth boundary.
Bw-1 to 5 inches; brown (7.5YR 5/4) sandy loam, dark brown (7.5YR 3/4) moist; weak very fine and fine subangular blocky structure; slightly hard, friable, slightly sticky and nonplastic; common very fine and fine roots; common fine irregular pores; 5 percent channers; strongly effervescent; moderately alkaline (pH 8.4); clear wavy boundary.
Ck—5 to 8 inches; light brown (7.5YR 6/4) channery sandy clay loam, dark brown (7.5YR 4/4) moist; weak very fine subangular blocky structure; soft, friable, slightly sticky and nonplastic; few very fine and fine and few medium roots; common fine irregular pores; 20 percent channers and gravel; common fine masses of calcium carbonate and coating coarse fragments; violently effervescent; moderately alkaline (pH 8.4); abrupt smooth boundary.
2R-8 inches; calcareous sandstone.

Range in Characteristics

Particle-size control section: 10 to 25 percent clay with more than 45 percent sand and 0 to 20 percent rock fragments
Depth to lithic contact: 6 to 20 inches to sandstone Calcium carbonate equivalent: 0 to 15 percent
Reaction: slightly alkaline in the surface and moderately alkaline in the subsoil
A horizon:
Hue: 7.5YR, 10YR, or 2.5Y
Value: 5 or 6 dry; 4 or 5 moist
Chroma: 4 to 6 moist
Texture: sandy loam or fine sandy loam
Rock fragments: 5 to 45 percent total; 5 to 45 percent channers and gravel; 0 to 10 percent cobbles; 0 to 5 percent stones. All fragments are sandstone.

Bw (when present):
Hue: 7.5YR, 10YR, or 2.5Y
Value: 5 or 6 dry, 3 to 5 moist
Texture: sandy loam, fine sandy loam, or sandy clay loam
Rock fragments: 0 to 20 percent sandstone channers or gravel
C horizon (when present):
Hue: 7.5YR, 10YR, or 2.5Y
Value: 5 or 6 dry, 4 or 5 moist
Chroma: 4 or 6 moist
Textures: sandy loam
Rock fragments: 0 to 20 percent total; 0 to 20 percent channers or gravel; 0 to 5 percent cobbles. All fragments are sandstone.

Sparank Series

Taxonomic class: Fine, mixed, superactive, calcareous, mesic Ustic Torrifluvents
Depth class: Very deep
Drainage class: Well drained
Permeability: Very slow
Geomorphic position: Valley sides and valley floors
Parent material: Fan and stream alluvium derived from sandstone and shale
Slope range: 0 to 3 percent
Elevation: 6,300 to 6,900 feet
Mean annual air temperature: 49 to 54 degrees F
Mean annual precipitation: 10 to 13 inches
Frost-free period: 120 to 140 days

Typical Pedon

Sparank silty clay loam, in an area of mapping unit 230, Sparank-San Mateo-Zia complex, 0 to 3 percent slopes; McKinley County, New Mexico; Ambrosia Lake Quadrangle; 5,000 feet north and 400 feet west of the northeast corner of sec. 35, T. 14 N., R. 10 W.; latitude 35 degrees, 25 minutes, 10 seconds and longitude 107 degrees, 51 minutes, 25 seconds.

A-0 to 2 inches; grayish brown (10YR 5/2) silty clay loam, dark grayish brown (10YR 4/2) moist; strong fine granular structure; soft, friable, sticky and plastic; few fine and very fine roots; many very fine irregular pores; slightly effervescent; slightly alkaline (pH 7.8); abrupt smooth boundary.
C1—2 to 25 inches; grayish brown (10YR 5/2) clay, brown (10YR 4/3) moist; massive; slightly hard, firm, sticky and plastic; few fine and very fine roots; few very fine irregular pores; strongly effervescent; moderately alkaline (pH 8.0); clear smooth boundary.
C2—25 to 65 inches; brown (10YR 4/3) clay, dark
brown (10YR 3/3) moist; massive; hard, very firm, very sticky and very plastic; few very fine irregular pores; slightly effervescent; slightly alkaline (pH 7.6).

Range in Characteristics

Particle-size control section: 35 to 55 percent clay
Reaction: slightly to moderately alkaline Calcium carbonate equivalent: 1 to 5 percent
Salinity: EC of 0 to 2 in the surface and 0 to 4 in the substratum
Sodicity: SAR of 0 to 2
A horizon:
Hue: 10YR or 2.5 Y
Value: 5 or 6 dry; 3 or 4 moist
Chroma: 2 or 3 dry; 2 to 4 moist
Chorizon:
Hue: 10YR or 2.5 Y
Value: 4 or 5 dry; 3 or 4 moist
Chroma: 2 or 3 dry; 2 to 4 moist
Texture: clay, silty clay, or clay loam

Sparham Series

Taxonomic class: Fine, mixed, superactive, calcareous, mesic Aridic Ustifluvents
Depth class: Very deep
Drainage class: Well drained
Permeability: Very slow
Geomorphic position: Valley floors
Parent material: Stream alluvium derived from sandstone and shale
Slope range: 0 to 2 percent
Elevation: 6,600 to 6,800 feet
Mean annual air temperature: 46 to 49 degrees F
Mean annual precipitation: 14 to 16 inches
Frost-free period: 100 to 135 days

Typical Pedon

Sparham clay loam, in an area of mapping unit 55, Sparham clay loam, 0 to 2 percent slopes; McKinley County, New Mexico; Upper Nutria Quadrangle; 400 feet north and 2,400 feet west of the southeast corner of sec. 13, T. 12 N., R. 17 W.; latitude 35 degrees, 16 minutes, 17 seconds and longitude 108 degrees, 34 minutes, 57 seconds.

A-0 to 2 inches; brown (10YR 5/3) clay loam, dark brown (10YR 4/3) moist; strong coarse platy structure parting to strong fine granular; slightly hard, firm, sticky and plastic; common very fine and fine roots; many very fine tubular pores; slightly effervescent; slightly alkaline (pH 7.6); abrupt smooth boundary.

C1-2 to 14 inches; brown (10YR 5/3) clay, dark brown (10YR 4/3) moist; massive, very hard, firm, very sticky and very plastic; common very fine and fine roots; common fine irregular pores; slightly effervescent; slightly alkaline (pH 7.6); clear smooth boundary.
C2-14 to 18 inches; yellowish brown (10YR 5/4) sandy clay loam, dark yellowish brown (10YR 4/6) moist; massive; slightly hard, friable, slightly sticky and slightly plastic; common very fine and few fine roots; few fine irregular pores; slightly effervescent; slightly alkaline (pH 7.6); abrupt smooth boundary.
C3-18 to 27 inches; grayish brown (2.5Y 5/2) clay, dark yellowish brown (10YR 4/4) moist; massive; hard, firm, sticky and plastic; few very fine roots; few fine irregular pores; slightly effervescent; slightly alkaline (pH 7.6); clear smooth boundary.
C4-27 to 31 inches; yellowish brown (10YR 5/4) sandy clay loam, dark yellowish brown (10YR 4/6) moist; massive; slightly hard, friable, slightly sticky and slightly plastic; few very fine roots; few fine irregular pores; slightly effervescent; slightly alkaline (pH 7.6); abrupt smooth boundary.
Cz-31 to 65 inches; brown (10YR 5/3) clay, dark yellowish brown (10YR 4/4) moist; massive; hard, firm, sticky and plastic; few very fine roots; few fine irregular pores; many medium irregular clusters of salt crystals; strongly effervescent; moderately alkaline (pH 8.0).

Range in Characteristics

Particle-size control section: 40 to 55 percent clay
Depth to salt crystals (when present): 20 to 35 inches
Calcium carbonate equivalent: 1 to 5 percent
Salinity: EC of 0 to 2 in the surface and 2 to 4 mmhos/ cm in the substratum
Sodicity: SAR of 1 to 5
Reaction: slightly to moderately alkaline
A horizon:
Hue: 10YR
Value: 3 or 4 moist
Chroma: 3 dry and moist
C horizon:
Hue: 10YR
Chroma: 2 to 4 dry; 3 to 6 moist
Texture: sandy clay loam, clay loam, clay, or silty clay

Starlake Series

Taxonomic class: Fine, mixed, superactive, mesic Ustic Natrargids
Depth class: Very deep

Drainage class: Well drained
Permeability: Very slow
Geomorphic position: Valley floors and valley sides
Parent material: Fan and stream alluvium derived from sandstone and shale
Slope range: 1 to 3 percent
Elevation: 6,300 to 6,700 feet
Mean annual air temperature: 46 to 49 degrees F
Mean annual precipitation: 9 to 10 inches
Frost-free period: 100 to 135 days

Typical Pedon

Starlake clay, in an area of mapping unit 16, Starlake clay, 1 to 3 percent slopes; McKinley County, New Mexico; Starlake Quadrangle; 500 feet east and 2,250 feet north of the southwest corner of sec. 4, T. 19 N., R. 5 W.; latitude 35 degrees, 54 minutes, 20 seconds and longitude 107 degrees, 22 minutes, 37 seconds.
Btn1-0 to 3 inches; grayish brown (2.5Y 5/2) clay, dark grayish brown (2.5Y 4/2) moist; strong medium prismatic structure; very hard, very firm, sticky and plastic; common fine and very fine roots; common very fine tubular pores; many prominent clay films on faces of peds; 5 percent siderite gravel on the surface; strongly effervescent; very strongly alkaline; abrupt smooth boundary.
Btn2-3 to 9 inches; dark grayish brown (2.5Y 5/2) clay, grayish brown (2.5Y 4/2) moist; moderate coarse prismatic structure parting to fine and medium subangular blocky structure; extremely hard, extremely firm, sticky and plastic; many fine and very fine roots; few very fine tubular pores; many distinct clay films on faces of peds; strongly effervescent; very strongly alkaline; clear smooth boundary.
Btn3-9 to 12 inches; light brownish gray (2.5Y 6/2) clay, grayish brown (2.5Y 5/2) moist; moderate coarse prismatic structure parting to moderate fine and medium subangular blocky structure; extremely hard, extremely firm, sticky and plastic; common fine, very fine and few medium roots; few very fine tubular pores; many distinct clay films on faces of peds; strongly effervescent; strongly alkaline; clear smooth boundary.
Btknz1-12 to 20 inches; light yellowish brown (2.5Y $6 / 4$) clay loam, olive brown (2.5Y 4/4) moist; moderate fine and medium subangular blocky structure; very hard, very firm, sticky and plastic; common very fine, fine and few medium roots; common very fine tubular pores; common distinct
clay films on faces of peds; common filaments and masses of sodium sulfate; few very fine masses of calcium carbonate; strongly effervescent; moderately alkaline; clear smooth boundary.
Btknz2—20 to 40 inches; grayish brown (2.5Y 5/2) clay, dark grayish brown (2.5Y 4/2) moist; moderate fine and medium subangular blocky structure; very hard, very firm, sticky and plastic; few very fine and fine roots; common very fine tubular pores; common distinct clay films on faces of peds; few fine filaments and masses of sodium sulfate with few gypsum crystals; few very fine masses of calcium carbonate; strongly effervescent; moderately alkaline; clear smooth boundary
Btknz3—40 to 54 inches; grayish brown (2.5Y 5/2) clay, dark grayish brown (2.5Y 4/2) moist; moderate fine and medium subangular blocky structure; very hard, very firm, sticky and plastic; few very fine and fine roots; common very fine tubular pores; common distinct clay films on faces of peds; common medium filaments and masses of sodium sulfate with few gypsum crystals; few very fine masses of calcium carbonate; strongly effervescent; very strongly alkaline; clear smooth boundary
Btknz4—54 to 65 inches; light olive brown (2.5Y 5/4) clay loam, olive brown (2.5Y 4/4) moist; moderate fine and medium subangular blocky structure; very hard, very firm, sticky and plastic; few very fine and fine roots; common very fine tubular pores; common distinct clay films on faces of peds; few medium filaments and masses of sodium sulfate with few gypsum crystals; very few very fine masses of calcium carbonate; strongly effervescent; very strongly alkaline.

Range in Characteristics

Particle-size control section: 35 to 50 percent clay Depth to sodium sulfate and calcium sulfate accumulation: 5 to 18 inches
Percent gypsum: 0 to 1 percent
Depth to secondary calcium carbonate: 5 to 15 inches.
Calcium carbonate equivalent: 5 to 15 percent
Sodicity: SAR of 13 to 30
Salinity: EC of 2 to $8 \mathrm{mmhos} / \mathrm{cm}$
Reaction: strongly or very strongly alkaline
E horizon (when present):
Hue: 10YR
Value: 6 dry; 4 or 5 moist

Chroma: 2 or 4 dry; 3 or 4 moist
Texture:loam
Rock fragments: 0 to 10 percent siderite and sandstone gravel
Note: This horizon occurs in the less severely eroded areas.

Bt horizons:
Hue: 10YR or 2.5 Y
Value: 4 to 6 dry; 3 to 5 moist
Chroma: 2 to 4
Texture: clay or clay loam
Rock fragments: 0 to 5 percent siderite and sandstone gravel

Some pedons have a By and C horizon occurring below 40 inches.

Stozuni Series

Taxonomic class: Loamy, mixed, superactive, nonacid, frigid Lithic Ustorthents
Depth class: Very shallow and shallow
Drainage class: Somewhat excessively drained
Permeability: Moderately rapid
Geomorphic position: Mesas, cuestas, hills, and ridges
Parent material: Eolian material and slope alluvium derived from sandstone
Slope range: 2 to 20 percent
Elevation: 7,000 to 8,000 feet
Mean annual air temperature: 40 to 45 degrees F
Mean annual precipitation: 16 to 20 inches
Frost-free period: 90 to 110 days

Typical Pedon

Stozuni sandy loam, in an area of mapping unit 400, Shoemaker-Stozuni complex, 2 to 8 percent slopes; McKinley County, New Mexico; Horsehead Canyon NW Quadrangle; 2,400 feet east and 2,000 feet south of the northwest corner of sec. 36, T. 9 N., R. 17 W.; latitude 34 degrees, 58 minutes, 01 second and longitude 108 degrees, 35 minutes, 01 seconds.
A-0 to 2 inches; brown (7.5YR 5/4) sandy loam, dark brown (7.5YR 3/4) moist; weak fine granular structure; soft, very friable, nonsticky and nonplastic; common fine and many very fine roots; many very fine irregular pores; neutral (pH 7.0); abrupt smooth boundary.
C1-2 to 10 inches; brown (7.5YR 5/4) fine sandy loam, dark brown (7.5YR 3/4) moist; massive; soft, very friable, nonsticky and nonplastic; few medium and many fine and very fine roots; many very fine irregular pores; neutral (pH 7.2); clear smooth boundary.

C2—10 to 15 inches; strong brown (7.5YR 4/6) fine sandy loam, brown (7.5YR 4/4) moist; soft, very friable, nonsticky and nonplastic; common fine and many very fine roots; many very fine irregular pores; neutral (pH 7.2); abrupt smooth boundary. 2R-15 inches; sandstone.

Range in Characteristics

Particle-size control section: 6 to 18 percent clay Depth to lithic contact: 5 to 20 inches to sandstone Reaction: neutral throughout

A horizon:

Hue: 7.5YR or 10YR
Value: 3 or 4 moist
Chroma: 2 to 4 moist
Rock fragments: 0 to 25 percent gravel; 0 to 10 percent cobbles. All fragments are sandstone.
C horizons:
Hue: 7.5YR or 10YR
Value: 4 or 5 dry; 3 or 4 moist
Chroma: 4 to 6 dry; 2 to 4 moist
Texture: sandy loam
Rock fragments: 0 to 20 percent gravel; 0 to 5 percent cobbles. All fragments are sandstone.

Suwanee Series

Taxonomic class: Fine-loamy, mixed, superactive, calcareous, mesic Ustic Torrifluvents
Depth class: Very deep
Drainage class: Well drained
Permeability: Moderately slow and slow Geomorphic position: Valley floors
Parent material: Stream alluvium derived from sandstone, siltstone, and shale
Slope range: 0 to 2 percent
Elevation: 6,100 to 6,500 feet
Mean annual air temperature: 49 to 54 degrees F
Mean annual precipitation: 10 to 13 inches
Frost-free period: 120 to 140 days

Typical Pedon

Suwanee clay loam, in an area of mapping unit 42, Suwanee clay loam, 0 to 2 percent slopes; McKinley County, New Mexico; Zuni Quadrangle; 1,200 feet south and 1,000 feet east of the northwest corner of sec. 21, T. 10 N., R. 19 W.; latitude 35 degrees, 05 minutes, 12 seconds and longitude 108 degrees, 51 minutes, 08 seconds.
Ap-0 to 4 inches; reddish brown (2.5YR 5/4) clay loam, reddish brown (2.5YR 4/4) moist; moderate fine granular structure; soft, very friable, nonsticky and slightly plastic; common very fine and few fine
roots, common fine irregular pores; violently effervescent; slightly alkaline (pH 7.6); abrupt smooth boundary.
C1-4 to 14 inches; reddish brown (2.5YR 5/4) clay loam, reddish brown (2.5YR 4/4) moist; massive; slightly hard, friable, nonsticky and slightly plastic; common very fine and few fine roots; few fine irregular pores; violently effervescent; slightly alkaline (pH 7.6); clear smooth boundary.
C2—14 to 22 inches; reddish brown (2.5YR 5/4) clay loam, reddish brown (2.5YR 4/4) moist; massive; slightly hard, friable, sticky and plastic; common very fine and few fine roots; few fine irregular pores; violently effervescent; slightly alkaline (pH 7.6); clear smooth boundary.

C3-22 to 34 inches; reddish brown (2.5YR 5/4) clay loam, reddish brown (2.5YR 4/4) moist; massive; slightly hard, friable, nonsticky and slightly plastic; few very fine roots; few fine irregular pores; violently effervescent; slightly alkaline (pH 7.6); clear smooth boundary.
C4-34 to 48 inches; reddish brown (2.5YR 5/4) silt loam, reddish brown (2.5YR 4/4) moist; massive; soft, very friable, nonsticky and nonplastic; few very fine roots; few fine irregular pores; violently effervescent; slightly alkaline (pH 7.8); clear smooth boundary.
C5-48 to 65 inches; reddish brown (2.5YR 5/4) clay loam, reddish brown (2.5YR 4/4) moist; massive; slightly hard, friable, sticky and plastic; few very fine roots; few fine irregular pores; violently effervescent; slightly alkaline (pH 7.8).

Range in Characteristics

Particle-size control section: 20 to 35 percent clay Percent calcium carbonate equivalent: 5 to 10 percent Reaction: slightly or moderately alkaline throughout

A horizon:

Hue: 2.5YR or 5YR
Value: 4 or 5 dry, 3 or 4 moist
Chroma: 4 or 6
Texture: clay loam or clay
C horizon:
Hue: 2.5YR or 5YR
Value: 4 or 5 dry, 3 or 4 moist
Chroma: 4 or 6
Texture: highly stratified layers of sandy clay loam, clay loam, silty clay loam, clay, or silt loam

Techado Series

Taxonomic class: Clayey, mixed, superactive, nonacid, frigid, shallow Typic Ustorthents
Depth class: Shallow
Drainage class: Well drained
Permeability: Slow
Geomorphic position: Mesas, cuestas, hills, and ridges
Parent material: Slope alluvium and colluvium over residuum derived from shale
Slope range: 5 to 40 percent
Elevation: 6,600 to 8,000 feet
Mean annual air temperature: 40 to 45 degrees F
Mean annual precipitation: 16 to 20 inches
Frost-free period: 90 to 110 days

Typical Pedon

Techado gravelly clay, in an area of mapping unit 403, Valnor-Techado complex, 2 to 25 percent slopes; McKinley County, New Mexico; Shoemaker Canyon Quadrangle; 1,000 feet south and 1,600 feet west of the northeast corner of sec. 25, T. 9 N., R. 17 W.; latitude 34 degrees, 58 minutes, 43 seconds and longitude 108 degrees, 34 minutes, 45 seconds.

The surface is covered by about 20 percent gravel and 5 percent cobbles.

A-0 to 3 inches; light olive brown (2.5Y 5/4) gravelly clay, olive brown (2.5Y 4/4) moist; moderate fine granular structure; slightly hard, firm, sticky and plastic; few medium and many fine and very fine roots; few very fine irregular pores; 20 percent gravel and 5 percent cobbles; neutral (pH 6.8); clear wavy boundary.
2C-3 to 13 inches; light olive brown (2.5Y 5/6) clay, light olive brown (2.5Y 5/4) moist; massive; very hard, very firm very sticky and very plastic; common medium and few fine roots; few very fine irregular pores; neutral (pH 6.8); abrupt wavy boundary.
$2 \mathrm{Cr}-13$ inches; variegated shale.

Range in Characteristics

Particle-size control section: 40 to 55 percent clay Depth to a paralithic contact: 10 to 20 inches to shale Reaction: neutral to slightly alkaline
A horizon:
Hue: 10YR or 2.5 Y
Value: 4 or 5 dry; 3 to 5 moist

Chroma: 2 to 4 dry and moist
Texture: clay or clay loam
Rock fragments: 15 to 25 percent gravel or channers; 0 to 5 percent cobbles. All fragments are sandstone.

C horizon:

Hue: 10YR or 2.5Y
Value: 3 to 5 dry; 2 to 5 moist
Chroma: 3 to 6 dry; 3 to 4 moist

Teczuni Series

Taxonomic class: Fine, mixed, superactive, mesic Calcidic Haplustalfs
Depth class: Very deep
Drainage class: Well drained

Permeability: Slow

Geomorphic position: Cuestas, valley sides, hills, and ridges
Parent material: Eolian material and slope alluvium derived from sandstone and shale
Slope range: 1 to 5 percent
Elevation: 6,800 to 7,200 feet
Mean annual air temperature: 49 to 53 degrees F
Mean annual precipitation: 13 to 14 inches
Frost-free period: 115 to 135 days

Typical Pedon

Teczuni loam, in an area of mapping unit 560, FlugleTeczuni complex, 1 to 5 percent slopes; McKinley County, New Mexico; Shoemaker Canyon Quadrangle; 2,600 feet north and 2,200 feet east of the southwest corner of sec. 34, T. 9 N., R. 16 W.; latitude 34 degrees, 57 minutes, 58 seconds and longitude 108 degrees, 30 minutes, 52 seconds.

A—0 to 2 inches; brown (7.5YR 5/4) loam, brown (7.5YR 4/4) moist; moderate medium platy structure; soft; very friable, nonsticky and nonplastic; many very fine and fine roots; many medium and fine vesicular pores; neutral (pH 7.2); abrupt smooth boundary.
Bt1-2 to 6 inches; brown (7.5YR 5/4) clay loam, brown (7.5YR 4/4) moist; weak medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; many very fine and fine roots; common very fine irregular pores; common distinct clay films on faces of peds; neutral (pH 7.2); clear smooth boundary.

Bt2—6 to 16 inches; brown (7.5YR 5/4) clay loam, brown (7.5YR 4/4) moist; strong medium prismatic structure; hard, firm, sticky and plastic; few medium and common very fine and fine roots; few very fine tubular pores; many prominent clay films
on faces of peds; neutral (pH 7.2); abrupt smooth boundary.
Btk-16 to 33 inches; strong brown (7.5YR 5/6) clay loam, brown (7.5YR 4/4) moist; strong medium prismatic structure; hard, firm, sticky and plastic; common very fine and fine roots; few very fine tubular pores; many prominent clay films on faces of peds; strongly effervescent; common fine and medium seams, filaments, and masses of calcium carbonate; slightly alkaline (pH 7.6); clear smooth boundary.
Bk1-33 to 47 inches; brown (7.5YR 5/4) clay, brown (7.5YR 4/4) moist; massive; very hard, very firm, very sticky and very plastic; few fine roots; few very fine irregular pores; violently effervescent; common coarse seams and masses of calcium carbonate; slightly alkaline (pH 7.6); clear smooth boundary.
Bk2—47 to 65 inches; light brown (7.5YR 6/4) clay, yellowish brown (10YR 5/4) moist; massive; very hard, very firm, very sticky and very plastic; few fine roots; few very fine irregular pores; violently effervescent; many medium masses, seams, and filaments of calcium carbonate; slightly alkaline (pH 7.8).

Range in Characteristics

Particle-size control section: 40 to 50 percent clay Depth to calcic horizon: 20 to 45 inches
A horizon:
Value: 4 or 5 dry, 3 or 4 moist
Rock fragments: 0 to 5 percent sandstone gravel
Reaction: neutral or slightly alkaline
Bt horizon:
Hue: 5YR or 7.5YR
Chroma: 4 or 6
Texture: clay loam or clay
Reaction: neutral or slightly alkaline
Bk horizon:
Hue: 7.5YR or 10YR
Value: 5 or 6 dry, 4 or 5 moist
Texture: clay, clay loam, or sandy clay loam
Calcium carbonate equivalent: 15 to 30 percent
Reaction: slightly or moderately alkaline

Tekapo Series

Taxonomic class: Clayey, mixed, superactive, calcareous, mesic, shallow Ustic Torriorthents
Depth class: Very shallow and shallow
Drainage class: Well drained
Permeability: Slow

Geomorphic position: Mesas, cuestas, and ridges Parent material: Slope alluvium and colluvium over residuum derived from shale and siltstone
Slope range: 10 to 45 percent
Elevation: 6,200 to 6,700 feet
Mean annual air temperature: 49 to 54 degrees F
Mean annual precipitation: 10 to 13 inches
Frost-free period: 120 to 140 days

Typical Pedon

Tekapo channery silty clay loam, in an area of mapping unit 355, Rizno-Tekapo-Rock outcrop complex, 2 to 45 percent slopes; McKinley County, New Mexico; Ojo Caliente Reservoir Quadrangle; 800 feet north and 400 feet west of the southeast corner of sec. 32, T. 9 N., R. 20 W.; latitude 34 degrees, 57 minutes, 42 seconds and longitude 108 degrees, 57 minutes, 44 seconds.
The surface is covered by about 20 percent channers.
A- 0 to 2 inches; reddish brown (2.5YR 4/4) channery silty clay loam, reddish brown (2.5YR 4/4) moist; strong fine granular structure; soft, friable, slightly sticky and slightly plastic; common fine and many very fine roots; many very fine irregular pores; 20 percent channers; slightly effervescent; slightly alkaline (7.6); abrupt smooth boundary.
C—2 to 10 inches; reddish brown (2.5YR 4/4) silty clay, dark red (2.5YR 3/6) moist; massive; hard, firm, sticky and plastic; few medium and coarse, many fine and common very fine roots; common very fine irregular pores; slightly effervescent; slightly alkaline (pH 7.8); abrupt smooth boundary. 2 Cr -10 inches; red shale and siltstone.

Range in Characteristics

Particle-size control section: 35 to 50 percent clay, less than 35 percent sand
Depth to a paralithic contact: 6 to 20 inches to shale and siltstone
Calcium carbonate equivalent: 1 to 5 percent
A horizon:
Value: 4 or 5 dry; 3 or 4 moist
Chroma: 4 to 6
Rock fragments: 15 to 20 percent gravel and gravelsized channers. All fragments are sandstone.

C horizon:

Value: 4 or 5 dry; 3 or 4 moist
Chroma: 4 or 6
Texture: silty clay loam or silty clay
Rock fragments: 0 to 15 percent gravel or gravel-sized channers. All fragments are sandstone.

Tinian Series

Taxonomic class: Fine, mixed, superactive, mesic
Aridic Haplustalfs
Depth class: Moderately deep
Drainage class: Well drained
Permeability: Moderately slow
Geomorphic position: Mesas and cuestas
Parent material: Slope alluvium derived from sandstone and shale
Slope range: 1 to 6 percent
Elevation: 6,800 to 7,500 feet
Mean annual air temperature: 46 to 49 inches F
Mean annual precipitation: 13 to 14 inches
Frost-free period: 100 to 135 days

Typical Pedon

Tinian very fine sandy loam, in an area of mapping unit 30, Orlie-Tinian complex, 1 to 6 percent slopes; McKinley County, New Mexico; Rincon Marquez Quadrangle; 2,000 feet west and 2,600 feet north of the southeast corner of sec. 2, T. 8 N., R. 6 W.; latitude 35 degrees, 49 minutes, 11 seconds and longitude 107 degrees, 26 minutes, 25 seconds (fig. 20).
A—0 to 3 inches; brown (10YR 5/3) very fine sandy loam, brown (10YR 4/3) moist; moderate thin and medium platy structure; soft, very friable, slightly sticky and nonplastic; common fine and many very fine roots; many very fine irregular and common fine vesicular pores; slightly alkaline (pH 7.6); clear smooth boundary.
Bt1-3 to 8 inches; brown (10YR 4/4) clay loam, dark brown (10YR 4/3) moist; moderate medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; common fine and very fine and few medium roots; common fine irregular pores; common distinct clay films on faces of peds and lining pores; slightly alkaline (pH 7.6); clear smooth boundary.

Bt2-8 to 19 inches; dark yellowish brown (10YR 3/4) clay, dark brown (10YR $3 / 3$) moist; moderate medium prismatic structure parting to strong fine and medium angular blocky; hard, firm, sticky and plastic; common fine and very fine and few medium roots; few medium and common fine irregular pores; many prominent clay films on faces of peds and lining pores; slightly alkaline; abrupt smooth boundary.
Btk-19 to 24 inches; dark yellowish brown (10YR 4/4) clay loam, dark yellowish brown (10YR 4/4) moist; strong fine and medium angular blocky structure; hard, firm, sticky and plastic; few fine and very
fine roots; common fine irregular pores; common prominent clay films on faces of peds and lining pores; strongly effervescent; common fine irregular seams and filaments of calcium carbonate; moderately alkaline (pH 7.8); abrupt smooth boundary.
2R-24 inches; hard sandstone.

Range in Characteristics

Particle-size control section: 35 to 45 percent clay Depth to lithic contact: 20 to 40 inches to hard sandstone

A horizon:
Hue: 10YR
Value: 5 or 6 dry, 4 or 5 moist
Chroma: 3 or 4 dry or moist
Reaction: neutral or slightly alkaline
Bt horizons:
Hue: 10YR
Value: 3 to 5 dry or moist
Chroma: 3 or 4 dry or moist
Texture: silty clay loam, clay loam, or clay
Calcium carbonate equivalent: 0 to 1 percent
Reaction: slightly alkaline
Btk or Bk horizons:
Hue: 10YR
Value: 3 to 5 dry or moist
Chroma: 3 or 4 dry or moist
Texture: silty clay loam, clay loam, or clay
Calcium carbonate equivalent: 1 to 5 percent
Reaction: slightly to moderately alkaline

Tintero Series

Taxonomic class: Coarse-loamy, mixed, superactive, mesic Ustic Haplargids
Depth class: Very deep
Drainage class: Somewhat excessively drained
Permeability: Moderately rapid
Geomorphic position: Mesas, cuestas, and valley sides
Parent material: Eolian material and fan and slope alluvium derived from sandstone
Slope range: 1 to 10 percent
Elevation: 6,200 to 7,100 feet
Mean annual air temperature: 49 to 53 degrees F
Mean annual precipitation: 10 to 13 inches
Frost-free period: 120 to 140 days

Typical Pedon

Tintero fine sandy loam, in an area of mapping unit 205, Penistaja-Tintero complex, 1 to 10 percent
slopes; McKinley County, New Mexico; Bluewater Quadrangle; 1,200 feet north and 1,000 feet west of the southeast corner of sec. 33, T. 13 N., R. 10 W.; latitude 35 degrees, 18 minutes, 33 seconds and longitude 107 degrees, 53 minutes, 49 seconds.
A-0 to 4 inches; strong brown (7.5YR 4/6) fine sandy loam, strong brown (7.5YR 4/6) moist; moderate fine granular structure; soft, very friable, nonsticky and nonplastic; few medium, common fine, and many very fine roots; common very fine irregular pores; neutral (pH 7.2); abrupt smooth boundary.
Bt-4 to 16 inches; yellowish red (5YR 4/6) fine sandy loam, yellowish red (5YR 4/6) moist; moderate medium subangular blocky structure; soft, very friable, nonsticky and nonplastic; few medium, fine, and very fine roots; common very fine irregular pores; common distinct clay films bridging sand grains; slightly alkaline (pH 7.4); abrupt smooth boundary.
Bk1-16 to 48 inches; light reddish brown (5YR 6/4) fine sandy loam, reddish brown (5YR 5/4) moist; massive; soft, very friable, nonsticky and nonplastic; few fine and very fine roots; common very fine irregular pores; violently effervescent; calcium carbonate occurs as few fine irregular seams; slightly alkaline (pH 7.8); clear smooth boundary.
Bk2—48 to 65 inches; reddish yellow (5YR 6/6) loamy fine sand, yellowish red (5YR 5/6) moist; massive; soft, very friable, nonsticky and nonplastic; few very fine roots; common very fine irregular pores; slightly effervescent; calcium carbonate is disseminated; slightly alkaline (pH 7.6).

Range in Characteristics

Particle-size control section: 10 to 18 percent clay and greater than 50 percent sand

A horizon:
Hue: 7.5YR or 10YR
Value: 4 or 5 moist
Chroma: 2 to 6 moist
Bt horizon:
Hue: 5YR to 10YR
Chroma: 4 or 6 moist
Textures: fine sandy loam or sandy loam
Calcium carbonate equivalent: 1 to 5 percent
Bk horizons:
Hue: 5YR to 10YR
Value: 4 to 6 dry, 4 or 5 moist
Chroma: 4 or 6 moist
Textures: fine sandy loam, sandy loam, or loamy fine sand

Reaction: slightly or moderately alkaline
Calcium carbonate equivalent: 5 to 10 percent

Todest Series

Taxonomic class: Fine-loamy, mixed, superactive, mesic Calcidic Haplustalfs
Depth class: Moderately deep
Drainage class: Well drained
Permeability:Moderate
Geomorphic position: Cuestas
Parent material: Eolian material and slope alluvium derived from limestone and sandstone
Slope range: 2 to 8 percent
Elevation: 7,000 to 7,700 feet
Average annual air temperature: 49 to 53 degrees F Average annual precipitation: 13 to 16 inches
Frost-free period: 115 to 135 days

Typical Pedon

Todest fine sandy loam, in an area of mapping unit 375, Todest-Shadilto complex, 2 to 8 percent slopes; McKinley County, New Mexico; Thoreau Quadrangle; 300 feet south and 300 feet east of the northwest corner of sec. 24, T. 14 N., R. 13 W.; latitude 35 degrees, 26 minutes, 09 seconds and longitude 108 degrees, 10 minutes, 27 seconds.

A—0 to 1 inch; brown (7.5YR 5/4) fine sandy loam, dark brown (7.5YR 3/3) moist; weak fine granular structure; soft, very friable, nonsticky and nonplastic; many very fine and fine roots; few fine irregular pores; very slightly effervescent, 6 percent calcium carbonate equivalent; slightly alkaline (pH 7.6); abrupt smooth boundary.
Bt-1 to 3 inches; brown (7.5YR 4/4) fine sandy loam, dark brown (7.5YR 3/4) moist; weak fine subangular blocky structure; soft, very friable, nonsticky and nonplastic; many very fine and fine roots; few fine irregular pores; few faint clay films bridging sand grains; slightly alkaline (pH 7.6); abrupt smooth boundary.
Btk $1-3$ to 10 inches; brown (7.5YR 4/4) sandy clay loam, dark brown (7.5YR 3/4) moist; moderate fine and medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; many very fine and fine and few medium roots; common fine irregular pores; many distinct clay films on ped faces and bridging sand grains; strongly effervescent; few very fine and fine masses of calcium carbonate, 5 percent calcium carbonate equivalent; slightly alkaline (pH 7.8); clear smooth boundary.
Btk2-10 to 18 inches; pinkish gray (7.5YR 7/2) sandy
clay loam, brown (7.5YR 5/3) moist; moderate fine and medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; common very fine and fine and few medium and coarse roots; common fine irregular pores; many distinct clay films on ped faces; violently effervescent; many fine masses and common fine concretions of calcium carbonate; 23 percent calcium carbonate equivalent; moderately alkaline (pH 8.0); clear smooth boundary.
Bk-18 to 25 inches; pinkish white (7.5YR 8/2) loam, light brown (7.5YR 6/3) moist; weak fine and medium subangular blocky structure; common very fine and fine and few medium and coarse roots; common fine irregular pores; 5 percent gravel; violently effervescent; many fine masses and common fine concretions of calcium carbonate and coating rock fragments; 48 percent calcium carbonate equivalent; moderately alkaline (pH 8.2); abrupt smooth boundary.
2R-25 inches; limestone.

Range in Characteristics

Depth to lithic contact: 20 to 40 inches to limestone
Depth to calcic horizon: 8 to 30 inches
Particle-size control section: 18 to 35 percent clay and greater than 30 percent sand
Reaction: slightly alkaline in the surface and moderately alkaline in the subsoil

A horizon:

Hue:5YR or 7.5YR
Value: 4 or 5 dry, 3 or 4 moist
Chroma: 3 or 4
Rock fragments: 0 to 10 percent gravel. Most fragments are limestone with some sandstone.
Percent calcium carbonate equivalent: 5 to 15 percent
Bt horizons:
Hue:5YR or 7.5YR
Value: 4 to 7 dry, 3 to 6 moist
Chroma: 2 to 4 dry, 3 or 4 moist
Texture: fine sandy loam or sandy clay loam
Rock fragments: 0 to 30 percent limestone gravel
Calcium carbonate equivalent: 0 to 15 percent
Btk and Bk horizons:
Hue:7.5YR or 10YR
Value: 5 to 8 dry, 4 to 6 moist
Chroma: 2 to 4 dry, 3 or 4 moist
Texture: loam or sandy clay loam
Rock fragments: 5 to 15 percent total; 0 to 15 percent gravel and 0 to 10 percent cobbles. All fragments are limestone.
Calcium carbonate equivalent: 5 to 40 percent but
ranging up to 50 percent in the lower parts of the Bk horizon.

Toldohn Series

Taxonomic class: Clayey, mixed, superactive, nonacid, mesic, shallow Aridic Ustorthents
Depth class: Very shallow and shallow
Drainage class: Well drained
Permeability: Slow
Geomorphic position: Hills, ridges, and breaks
Parent material: Slope alluvium over residuum derived from shale
Slope range: 8 to 35 percent
Elevation: 6,800 to 8,000 feet
Mean annual air temperature: 46 to 49 degrees F Mean annual precipitation: 13 to 16 inches
Frost-free period: 100 to 135 days

Typical Pedon

Toldohn gravelly clay loam, in an area of mapping unit 350, Toldohn-Vessilla-Rock outcrop complex, 8 to 35 percent slopes; McKinley County, New Mexico; Pescado Quadrangle; 400 feet west and 600 feet south of the northeast corner of sec. 14, T. 10 N., R. 17 W.; latitude 35 degrees, 06 minutes, 11 seconds and longitude 108 degrees, 35 minutes, 36 seconds.

A-0 to 1 inches; light olive brown (2.5Y 5/4) gravelly clay loam, olive brown ($2.5 \mathrm{Y} 4 / 4$) moist; weak fine granular structure; slightly hard, friable, sticky and plastic; many very fine and fine roots; about 25 percent by volume sandstone gravel and shale fragments; slightly effervescent; slightly alkaline (pH 7.4); clear smooth boundary.
2BC-4 to 11 inches; light yellowish brown (10YR 6/4) clay, yellowish brown (10YR 5/4) moist; weak fine subangular blocky structure; hard, firm, very sticky and very plastic; many very fine and fine and few medium roots; common fine shale fragments; slightly effervescent; slightly alkaline (pH 7.4); abrupt smooth boundary.
2 Cr -11 inches; weakly consolidated shale.

Range in Characteristics

Particle-size control section: 40 to 60 percent clay Depth to paralithic contact: 6 to 20 inches to shale Reaction: neutral or slightly alkaline

A horizon:
Hue: 10YR or 2.5 Y
Value: 3 or 4 moist
Chroma: 3 or 4 moist

Rock fragments: 0 to 35 percent total; 0 to 25 percent gravel; 0 to 5 percent cobbles; 0 to 5 percent stones. All fragments are sandstone.
C horizon:
Hue: 10YR or 2.5 Y
Value: 3 to 5 moist
Rock fragments: 0 to 10 percent gravel. All fragments are sandstone.

Tsoodzil Series

Taxonomic class: Fine, smectitic, frigid Vertic Argiustolls
Depth class: Very deep
Drainage class: Well drained
Permeability: Slow
Geomorphic position: Lava plateaus and cinder cones
Parent material: Eolian material and slope alluvium over residuum derived from basalt
Slope range: 5 to 55 percent
Elevation: 7,600 to 9,200 feet
Mean annual air temperature: 40 to 45 degrees F
Mean annual precipitation: 16 to 20 inches
Frost-free period: 90 to 110 days

Typical Pedon

Tsoodzil very gravelly silt loam in an area of mapping unit 410, Montillo-Tsoodzil complex, 5 to 35 percent slopes; McKinley County, New Mexico; Marquez Quadrangle; latitude 35 degrees, 20 minutes, 13 seconds and longitude 107 degrees, 20 minutes, 12 seconds.
The surface is covered by about 35 percent gravel, 10 percent cobbles, and 1 percent stones.

A-0 to 3 inches; brown (7.5YR 4/2) very gravelly silt loam, dark brown (7.5YR 3/2) moist; moderate fine granular structure; soft, very friable, nonsticky and slightly plastic; many very fine and fine roots; common fine irregular pores; 35 percent gravel, 10 percent cobbles, and 1 percent stones; neutral (pH 6.6); clear smooth boundary.
$\mathrm{Bt}-3$ to 10 inches; dark reddish brown (5YR 3/2) silty clay loam, dark reddish brown (5YR 2.5/2) moist; hard, firm, sticky and plastic; many very fine and fine and few medium and coarse roots; common fine tubular pores; few vertical cracks 5 mm or more wide occur from 7 to 20 inches; common distinct clay films on faces of peds; 2 percent gravel and 3 percent cobbles; neutral (pH 6.6); clear wavy boundary.

Btss1-10 to 21 inches; dark reddish brown (5YR 3/3) clay, dark reddish brown (5YR 3/2) moist; moderate fine and medium prismatic structure parting to strong fine angular blocky; very hard, very firm, very sticky and very plastic; common very fine and fine and few medium roots; few fine tubular pores; many slickensides and pressure faces; few vertical cracks 5 mm or more wide occur from 7 to 20 inches; many prominent clay films on faces of peds and rock fragments; 2 percent gravel; neutral (pH 7.2); gradual irregular boundary.
Btss2-21 to 46 inches; reddish brown (5YR 4/4) clay, dark reddish brown (5YR 3/4) moist; moderate fine and medium angular blocky structure; very hard, very firm, very sticky and very plastic; common very fine and fine and few medium roots; few fine tubular pores; many slickensides and pressure faces; many prominent clay films on faces of peds and rock fragments; 3 percent gravel and 2 percent cobbles; slightly alkaline (pH 7.4); gradual wavy boundary.
Btss3-46 to 70 inches; reddish brown (5YR 4/3) gravelly clay, dark reddish brown (5YR 3/3) moist; moderate fine and medium angular blocky structure; very hard, very firm, very sticky and very plastic; few very fine and fine and few medium roots; common fine tubular pores; few slickensides and pressure faces; many prominent clay films on faces of peds and rock fragments; 10 percent gravel and 5 percent cobbles; slightly alkaline (pH 7.4).

Range in Characteristics

Particle-size control section: 40 to 60 percent clay with 0 to 30 percent rock fragments
Mollic epipedon thickness: 21 to 40 inches
Depth to visible secondary carbonates (when present):
25 to 45 inches with 0 to 10 percent calcium carbonate equivalent
Vertic features: Depth to slickensides and pressure faces is 7 to 21 inches; subsurface vertical cracks occur from 5 to 25 inches.

A horizon:
Hue: 7.5YR or 10YR
Value: 3 to 5 dry, 2 or 3 moist
Chroma: 2 or 3 dry
Texture: silt loam or loam
Rock fragments: 35 to 50 percent total; 15 to 40 percent gravel; 5 to 35 percent cobbles; and 0 to 1 percent stones. All fragments are basalt.
Reaction: slightly acid or neutral

Bt and Btss horizons:
Hue: 5YR, 7.5YR, or 10YR
Value: 3 to 5 dry, 2.5 or 3 moist
Chroma: 2 to 4 dry or moist
Texture: clay, clay loam, or silty clay loam with greater than 35 percent clay
Rock fragments: 0 to 25 percent total; 0 to 15 percent gravel; 0 to 5 percent cobbles; and 0 to 1 percent stones. All fragments are basalt.
Reaction: neutral or slightly alkaline
Btk horizon (when present):
Hue: 5YR or 7.5YR
Value: 4 or 5 dry, 3 or 4 moist
Chroma: 4 or 6 dry or moist
Texture: clay or clay loam
Rock fragments: 5 to 70 percent total; 5 to 50 percent gravel; 5 to 10 percent cobbles; and 0 to 5 percent stones. All fragments are basalt.
(Note: When a Btk horizon has greater than 35 percent rock fragments, it is either too thin or is below the particle size control section to affect the particle size class.)

Tsosie Series

Taxonomic class: Fine-loamy, mixed, superactive, calcareous, mesic Ustic Torriorthents
Depth class: Very deep
Drainage class: Well drained
Permeability: Moderately slow
Geomorphic position: Valley sides and valley floors
Parent material: Fan and stream alluvium derived from sandstone and shale
Slope range: 1 to 3 percent
Elevation: 6,400 to 6,800 feet
Mean annual air temperature: 46 to 49 degrees F
Mean annual precipitation: 9 to 10 inches
Frost-free period: 100 to 135 days

Typical Pedon

Tsosie fine sandy loam, in an area of mapping unit 10, Tsosie-Councelor-Blancot fine sandy loams, 1 to 3 percent slopes; McKinley County, New Mexico; Ojo Encino Mesa Quadrangle; 2,000 feet east and 1,500 feet south of the northeast corner of sec. $9, \mathrm{~T} .20 \mathrm{~N}$., R. 5 W.; latitude 35 degrees, 58 minutes, 58 seconds and longitude 107 degrees, 22 minutes, 18 seconds.

A—0 to 2 inches; brown (10YR 5/3) fine sandy loam, dark brown (10YR 4/3) moist; moderate fine granular structure; soft, very friable, nonsticky and nonplastic; common fine and very fine roots;
common fine vesicular pores; neutral (pH 7.2); abrupt smooth boundary.
C1-2 to 7 inches; yellowish brown (10YR 5/4) fine sandy loam, dark brown (10YR 4/3) moist; massive; soft, very friable, nonsticky and nonplastic; common medium, fine, and very fine roots; few very fine irregular pores; neutral (pH 7.2); abrupt smooth boundary.

C2—7 to 13 inches; brown (10YR 5/3) silt loam, dark brown (10YR 4/3) moist; massive; slightly hard, friable, slightly sticky and nonplastic; few medium and common fine and very fine roots; few fine irregular pores; strongly effervescent; slightly alkaline (pH 7.8); clear smooth boundary.
C3-13 to 35 inches; brown (10YR 5/3) sandy clay loam, dark brown (10YR 4/3) moist; massive; slightly hard, friable, slightly sticky and nonplastic; few medium and fine and common very fine roots; few very fine irregular pores; slightly alkaline (pH 7.8); clear smooth boundary.

C4-35 to 47 inches; yellowish brown (10YR 5/4) clay loam, dark brown (10YR 4/3) moist; massive; slightly hard, friable, slightly sticky and slightly plastic; few very fine roots; few fine irregular pores; slightly alkaline (pH 7.6); abrupt smooth boundary.
Ck—47 to 65 inches; brown (10YR 5/3) loam, dark brown (10YR 4/3) moist; massive; slightly hard, friable, slightly sticky and slightly plastic; few very fine roots; common fine irregular pores; very few very fine masses of calcium carbonate; slightly effervescent; slightly alkaline (pH 7.8).

Range in Characteristics

Particle-size control section: 18 to 35 percent clay Calcium carbonate equivalent: 1 to 5 percent

A horizon:
Value: 4 or 5 moist
Sodicity: SAR of 0 to 5
Reaction: neutral or slightly alkaline

Chorizon:

Value: 3 to 5 moist
Chroma: 3 or 4
Texture: fine sandy loam, silt loam, sandy clay loam, clay loam, silty clay loam, or loam
Sodicity: SAR of 10 to 20
Reaction: slightly to strongly alkaline

Tuces Series

Taxonomic class: Fine, mixed, superactive, mesic Aridic Haplustepts
Depth class: Moderately deep
Drainage class: Well drained

Permeability: Slow

Geomorphic position: Cuestas
Parent material: Slope alluvium and colluvium over residuum derived from shale and sandstone
Slope range: 20 to 40 percent
Elevation: 7,400 to 8,000 feet
Mean annual air temperature: 46 to 49 degrees F
Mean annual precipitation: 13 to 16 inches
Frost-free period: 100 to 135 days

Typical Pedon

Tuces extremely gravelly clay loam in an area of mapping unit 345 Rock outcrop-Tuces complex, 20 to 70 percent slopes; McKinley County, New Mexico; Cottonwood Canyon Quadrangle; 2,600 feet east and 220 feet north of the southwest corner of sec. 19, T. 13 N., R. 13 W.; latitude 35 degrees, 20 minutes, 30 seconds and longitude 108 degrees, 15 minutes, 19 seconds.

The surface is covered by about 40 percent gravel, 20 percent cobbles, 5 percent stones, and 10 percent boulders.

A—0 to 1 inch; reddish brown (2.5YR 4/4) extremely gravelly clay loam, dark reddish brown (2.5YR 3/4) moist; moderate medium platy structure; slightly hard, firm, sticky and plastic; common fine and few medium roots; few fine vesicular pores; 40 percent gravel, 20 percent cobbles, 5 percent stones, and 10 percent boulders; strongly effervescent; 5 percent calcium carbonate equivalent; slightly alkaline (pH 7.8); abrupt wavy boundary.
Bk1—1 to 4 inches; reddish brown (2.5YR 4/4) clay, dark reddish brown (2.5YR 3/4) moist; moderate fine subangular blocky structure; very hard, very firm, very sticky and very plastic; common very fine and fine roots; few fine irregular pores; strongly effervescent; few very fine masses of calcium carbonate; 3 percent calcium carbonate equivalent; slightly alkaline (pH 7.8); clear wavy boundary.
Bk2—4 to 24 inches; about 95 percent of the matrix is weak red (10R 4/4) clay, dusky red (10R 3/4) moist with the other 5 percent light olive gray ($5 \mathrm{Y} 6 / 2$), olive gray ($5 \mathrm{Y} 5 / 2$) moist; weak medium and coarse subangular blocky structure; very hard, very firm, very sticky and very plastic; few very fine roots; common fine irregular pores; many angular soft shale fragments; strongly effervescent; few very fine masses of calcium carbonate; 5 percent calcium carbonate equivalent; moderately alkaline (pH 8.2); gradual wavy boundary.

Cr-24 inches; (95 percent) dark yellowish brown (10YR 3/6) and (5 percent) olive gray (5Y 5/2) shale; very slightly effervescent.

Range in Characteristics

Particle-size control section: 40 to 60 percent clay
Depth to paralithic contact: 20 to 40 inches to shale
Calcium carbonate equivalent: 2 to 10 percent
Reaction: slightly alkaline in the surface and moderately alkaline in the subsoil

A horizon:
Hue: 10R to 7.5YR
Value: 4 or 5 dry, 3 or 4 moist
Chroma: 3 or 4
Rock fragments: 40 to 80 percent total; 20 to 60 percent gravel or channers; 5 to 25 percent cobbles; 2 to 10 percent stones; 0 to 10 percent boulders. All fragments are sandstone.
Bk or Bw horizons:
Hue: 10R, 2.5YR, or 5YR
Value: 4 or 5 dry, 2 to 4 moist
Chroma: 2 to 4
Rock fragments: 0 to 5 percent gravel; 0 to 5 percent cobbles. All fragments are sandstone.

Valnor Series

Taxonomic class: Fine, mixed, superactive, frigid Typic Haplustalfs
Depth class: Moderately deep
Drainage class: Well drained
Permeability: Slow
Geomorphic position: Hills and ridges
Parent material: Slope alluvium derived from shale Slope range: 2 to 15 percent
Elevation: 7,100 to 7,800 feet
Mean annual air temperature: 40 to 45 degrees F
Mean annual precipitation: 16 to 20 inches
Frost-free period: 90 to 110 days

Typical Pedon

Valnor clay loam, in an area of mapping unit 403, Valnor-Techado complex, 2 to 25 percent slopes; McKinley County, New Mexico; Shoemaker Canyon Quadrangle; 500 feet south and 800 feet west of the northeast corner of sec. 25, T. 9 N., R. 17 W.; latitude 34 degrees, 59 minutes, 14 seconds and longitude 108 degrees, 34 minutes, 38 seconds.

A—0 to 2 inches; dark yellowish brown (10YR 4/4) clay loam, dark brown (10YR 4/3) moist; weak fine granular structure; soft, friable, slightly sticky and
slightly plastic; few very fine and fine roots; few very fine irregular pores; 10 percent gravel; neutral (pH 6.8); abrupt smooth boundary.
Bw-2 to 4 inches; dark yellowish brown (10YR 4/4) clay loam, dark brown (10YR 4/3) moist; weak fine subangular blocky structure; slightly hard, friable, sticky and plastic; few very fine and fine roots; few very fine irregular pores; neutral (pH 7.2); abrupt smooth boundary.
Bt-4 to 20 inches; brown (7.5YR 5/4) clay, dark brown (7.5YR 4/4) moist; strong medium angular blocky structure; extremely hard, extremely firm, very sticky and very plastic; common very fine, fine, and medium, and few coarse roots; few very fine tubular and irregular pores; many prominent clay films on faces of peds; neutral (pH 7.2); abrupt smooth boundary.
2Ck—20 to 34 inches; light yellowish brown (10YR 6/4) clay, yellowish brown (10YR 5/4) moist; massive; extremely hard, extremely firm, very sticky and very plastic; few very fine and fine roots; few very fine irregular pores; strongly effervescent; few fine concretions and common medium masses and seams of calcium carbonate; slightly alkaline (pH 7.6); abrupt smooth boundary.
$2 \mathrm{Cr}-34$ inches; shale.

Range in Characteristics

Particle-size control section: 35 to 45 percent clay Depth to a paralithic contact: 20 to 40 inches to shale Reaction: Neutral or slightly alkaline
A horizon:
Hue: 10YR
Value: 4 or 5 dry, 3 to 5 moist
Chroma: 2 to 4 dry and moist
Rock fragments: 0 to 10 percent sandstone gravel
B horizons:
Hue: 7.5YR or 10YR
Value: 4 or 5 dry; 3 or 4 moist
Chroma: 3 or 4 moist
C horizon (when present):
Hue: 10YR or 2.5 Y
Value: 4 to 6 moist
Chroma: 4 through 6 moist
Calcium carbonate equivalent: 1 to 5 percent
Most pedons do not have visible carbonates.

Venadito Series

Taxonomic class: Very-fine, smectitic, mesic Chromic Haplotorrerts

Depth class: Very deep
Drainage class: Well or moderately well drained
Permeability: Very slow
Geomorphic position: Valley sides and valley floors
Parent material: Fan and stream alluvium derived from shale
Slope range: 0 to 3 percent
Elevation: 6,100 to 7,100 feet
Mean annual air temperature: 49 to 53 degrees F Mean annual precipitation: 10 to 13 inches Frost-free period: 120 to 140 days

Typical Pedon

Venadito clay, in an area of mapping unit 335, Venadito clay, 1 to 3 percent slopes; McKinley County, New Mexico; Thoreau NE Quadrangle; 1,400 feet west and 300 feet north of the southeast corner of sec. 6, T. 13 N., R. 11 W.; latitude 35 degrees, 22 minutes, 04 seconds and longitude 108 degrees, 02 minutes, 21 seconds.

A—0 to 3 inches; dark reddish brown (2.5YR 3/4) clay, dark reddish brown (2.5YR 3/4) moist; strong fine granular structure; slightly hard, very firm, very sticky and very plastic; few fine and very fine roots; common fine irregular pores; many 3-cm wide vertical cracks; strongly effervescent; moderately alkaline (pH 8.0), abrupt smooth boundary.
BCss1—3 to 30 inches; reddish brown (2.5YR 4/4) clay, dark reddish brown (2.5YR 3/4) moist; massive; very hard, very firm, very sticky and very plastic; few very fine and fine roots; few very fine irregular pores; common slickensides tilted 30 degrees from the horizontal and common pressure faces; many 2 cm-wide vertical cracks; strongly effervescent; moderately alkaline (pH 8.4), gradual smooth boundary.
BCss2—30 to 65 inches; reddish brown (2.5YR 4/4) clay, dark reddish brown (2.5YR 3/4) moist; massive; very hard, very firm, very sticky and very plastic; few very fine roots; few very fine irregular pores; few slickensides tilted 30 degrees from the horizontal and common pressure faces; strongly effervescent; moderately alkaline (pH 8.2).

Range in Characteristics

Particle-size control section: 60 to 80 percent clay Vertic features: Gilgai microrelief ranges from less than 1 inch up to 6 inches and vertical cracks up to 1 inch wide extend from the surface to a depth of 40 inches or more.
Salinity: EC of 2 to 16 mmhos/cm

Sodicity: SAR of 0 to 10

Reaction: slightly or moderately alkaline
A horizon:
Hue: 2.5YR or 5YR
Value: 3 to 5 dry or 3 or 4 moist
BC horizons:
Hue: 2.5YR or 5YR
Value: 4 to 6 dry, 3 or 4 moist
Chroma: 3 or 4 moist
Texture: Mostly clay and silty clay with few pedons having sandy clay textures below 30 inches.

Calcium carbonate equivalent: 5 to 10 percent

Some pedons may have an intermittent water table below a depth of 40 inches during March through November.

Venzuni Series

Taxonomic class: Very-fine, smectitic, mesic Aridic Haplusterts
Depth class: Very deep
Drainage class: Well drained
Permeability: Very slow
Geomorphic position: Valley floors and valley sides
Parent material: Fan and stream alluvium derived from shale
Slope range: 1 to 6 percent
Elevation: 6,700 to 7,600 feet
Mean annual air temperature: 46 to 54 degrees F
Mean annual precipitation: 13 to 16 inches
Frost-free period: 100 to 135 days

Typical Pedon

Venzuni silty clay, in an area of mapping unit 325, Venzuni silty clay, 1 to 3 percent slopes; McKinley County, New Mexico; Burned Timber Quadrangle; 700 feet north and 1,200 feet east of the southwest corner of sec. 20, T12N, R.16W; latitude 35 degrees, 14 minutes, 58 seconds and longitude 108 degrees, 33 minutes, 06 seconds.

A—0 to 2 inches; reddish brown (2.5YR 4/4) silty clay, dark reddish brown (2.5YR 3/4) moist; moderate thin platy structure parting to moderate fine granular; soft, very friable, sticky and plastic; many very fine and fine roots; few fine irregular pores; strongly effervescent; slightly alkaline (pH 7.8); abrupt smooth boundary.

BC—2 to 12 inches; reddish brown (2.5YR 4/4) silty clay, dark reddish brown (2.5YR 3/4) moist; massive; very hard, very firm, very sticky and very
plastic; common very fine and fine roots; common fine irregular pores; common pressure faces; strongly effervescent; moderately alkaline (pH 8.0); clear smooth boundary.
Bss1-12 to 19 inches; dark reddish brown (2.5YR 3/4) clay, dark reddish brown (5YR 3/3) moist; massive; very hard, very firm, very sticky and very plastic; few very fine and fine roots; common fine irregular pores; many pressure faces and few slickensides; strongly effervescent; moderately alkaline (pH 8.0); clear smooth boundary.
Bss2—19 to 46 inches; reddish brown (2.5YR 4/4) clay, dark reddish brown (2.5YR 3/4) moist; massive; very hard, very firm, very sticky and very plastic; few very fine and fine roots; few fine irregular pores; many pressure faces and common slickensides; strongly effervescent; moderately alkaline (pH 8.0); gradual smooth boundary.
2Bss3—46 to 65 inches; dark yellowish brown (10YR 4/4) clay, dark yellowish brown (10YR 3/4) moist; massive; extremely hard, extremely firm; very sticky and very plastic; few very fine roots; few very fine irregular pores; common pressure faces and few slickensides; strongly effervescent; slightly alkaline (pH 7.8).

Range in Characteristics

Particle-size control section: 60 to 80 percent clay
Vertic features: slight gilgai microrelief on the surface, self-mulching surface, 0.5 inch-wide vertical cracks extend from the surface to 20 inches or more, pressure faces and slickensides are present below 2 inches.
Salinity: EC of 0 to 2 mmhos/cm
Sodicity: SAR of 0 to 5
Calcium carbonate equivalent: 5 to 10 percent
Rock fragments: 0 to 5 percent sandstone and siliceous gravel
Reaction: slightly or moderately alkaline
A horizon:
Hue: 2.5YR or 5YR
Value: 3 or 4 dry
Calcium carbonate equivalent: 5 to 10 percent
Salinity: EC of 2 to $4 \mathrm{mmhos} / \mathrm{cm}$
Sodicity: SAR of 0 to 5
$B C$ and Bss horizons:
Hue: 2.5YR or 5YR
Value: 3 or 4 dry
Chroma: 3 or 4 moist
Texture: clay or silty clay
Calcium carbonate equivalent: 5 to 10 percent

Salinity: EC of 2 to 4 mmhos/cm
Sodicity: SAR of 0 to 5
2Bss horizon:
Hue: 7.5YR or 10YR
Value: 3 or 4 dry
Chroma: 3 or 4 moist
Calcium carbonate equivalent: 5 to 10 percent
Salinity: EC of 2 to 4 mmhos/cm
Sodicity: SAR of 0 to 5

Vessilla Series

Taxonomic class: Loamy, mixed, active, calcareous, mesic Aridic Lithic Ustorthents
Depth class: Very shallow and shallow
Drainage class: Well drained
Permeability: Moderately rapid
Geomorphic position: Mesas, cuestas, hills, ridges, and breaks
Parent material: Eolian material and slope alluvium derived from sandstone
Slope range: 2 to 15 percent
Elevation: 6,500 to 8,000 feet
Mean annual air temperature: 46 to 49 degrees F
Mean annual precipitation: 13 to 16 inches
Frost-free period: 100 to 135 days

Typical Pedon

Vessilla fine sandy loam, in an area of mapping unit 350, Toldohn-Vessilla-Rock outcrop complex, 8 to 35 percent slopes; McKinley County, New Mexico; Pescado Quadrangle; 1,200 feet south and 200 feet west of the northeast corner of sec. 14, T. 10 N., R. 17 W.; latitude 35 degrees, 06 minutes, 04 seconds and longitude 108 degrees, 35 minutes, 33 seconds.

A—0 to 2 inches; very pale brown (10YR 7/3) fine sandy loam, dark yellowish brown (10YR 4/4) moist; weak fine and medium subangular blocky structure; soft, very friable, nonsticky and nonplastic; common very fine and fine roots; common fine vesicular and irregular pores; 10 percent gravel; slightly effervescent; neutral (pH 7.2); clear smooth boundary.

C-2 to 11 inches; brown (10YR 5/3) fine sandy loam, dark yellowish brown (10YR 4/4) moist; weak fine and medium subangular blocky structure; slightly hard, very friable, nonsticky and nonplastic; many very fine and fine roots; common fine irregular pores; 3 percent gravel; slightly effervescent; neutral (pH 7.2); abrupt smooth boundary.
2R-11 inches; sandstone bedrock.

Range in Characteristics

Particle-size control section: 12 to 20 percent clay
Rock fragments: 0 to 15 percent gravel; 0 to 10 percent cobbles
Depth to a lithic contact: 5 to 20 inches to sandstone
Calcium carbonate equivalent: 1 to 5 percent
Reaction: neutral in the surface and slightly to moderately alkaline in the substratum
A horizon:
Hue: 7.5YR or 10YR
Value: 5 to 7 dry, 4 or 5 moist
Chroma: 3 to 6 dry or moist
C horizon:
Hue: 7.5YR or 10YR
Value: 3 to 5 moist, 5 or 6 dry
Chroma: 4 to 6 moist, 3 or 4 dry

Viuda Series

Taxonomic class: Clayey, mixed, superactive, mesic Lithic Ustic Haplargids
Depth class: Shallow
Drainage class: Well drained
Permeability: Slow
Geomorphic position: Lava flows
Parent material: Eolian and alluvial material derived from basalt and sandstone
Slope range: 1 to 5 percent
Elevation: 6,700 to 7,000 feet
Mean annual air temperature: 49 to 54 degrees F
Mean annual precipitation: 10 to 13 inches
Frost-free period: 120 to 140 days

Typical Pedon

Viuda very cobbly fine sandy loam, in an area of mapping unit 215, Viuda-Penistaja-Rock outcrop complex, 1 to 5 percent slopes; McKinley County, New Mexico; Bluewater Quadrangle; 1,000 feet west and 1,700 feet north of the southeast corner of sec. 35, T. 13 N., R. 11 W.; latitude 35 degrees, 18 minutes, 35 seconds and longitude 107 degrees, 58 minutes, 01 second.
The surface is covered by about 20 percent gravel, 20 percent cobbles, and 5 percent stones.
A-0 to 3 inches; brown (7.5YR 5/4) very cobbly fine sandy loam, dark brown (7.5YR 3/4) moist; moderate fine granular structure; soft, friable, nonsticky and nonplastic; many fine and very fine roots; common fine and very fine irregular pores;

20 percent gravel, 20 percent cobbles, and 5 percent stones; neutral (pH 7.2); abrupt smooth boundary.
$\mathrm{Bt}-3$ to 15 inches dark brown (7.5YR 4/4) clay, strong brown (7.5YR 4/6) moist; strong fine angular blocky structure; hard, firm, sticky and plastic; common fine and many very fine roots; few very fine tubular pores; many distinct clay films on faces of peds and lining pores; 10 percent cobbles; slightly alkaline (pH 7.6); abrupt smooth boundary.
Bk—15 to 17 inches; reddish yellow (7.5YR 6/6) cobbly clay loam, brown (7.5YR 5/4) moist; massive; hard, firm, sticky and plastic; few fine and very fine roots; few very fine irregular pores; 5 percent gravel and 10 percent cobbles; violently effervescent; many medium irregular masses of calcium carbonate; moderately alkaline (pH 8.2); abrupt wavy boundary.
2R-17 inches; basalt.

Range in Characteristics

Particle-size control section: 35 to 50 percent clay
Depth to a lithic contact: 10 to 20 inches to basalt
Reaction: neutral in the surface and slightly to moderately alkaline in the subsoil
A horizon:
Value: 4 or 5 dry, 3 or 4 moist
Chroma: 4 or 5
Rock fragments: 35 to 60 percent gravel and cobbles.
All fragments are sandstone.
Bt horizon:
Value: 4 or 5 dry, 3 or 4 moist
Chroma: 4 or 6
Rock fragments: 5 to 15 percent gravel and cobbles. All fragments are sandstone.
Bk horizon:
Value: 4 to 6
Chroma: 4 or 6
Rock fragments: 15 to 25 percent gravel and cobbles.
All fragments are sandstone.
Calcium carbonate equivalent: 1 to 15 percent

Westmion Series

Taxonomic class: Clayey, mixed, superactive, calcareous, mesic, shallow Ustic Torriorthents
Depth class: Very shallow and shallow
Drainage class: Well drained
Permeability: Slow
Geomorphic position: Mesas and cuestas

Parent material: Slope alluvium and colluvium over residuum derived from shale
Slope range: 30 to 50 percent
Elevation: 6,400 to 8,100 feet
Mean annual air temperature: 49 to 54 degrees F
Mean annual precipitation: 10 to 13 inches
Frost-free period: 120 to 140 days

Typical Pedon

Westmion gravelly clay loam, in an area of mapping unit 290, Rock outcrop-Westmion-Skyvillage complex, 30 to 80 percent slopes; McKinley County, New Mexico; Goat Mountain Quadrangle; 100 feet south and 100 feet west of the northeast corner of sec. $24, \mathrm{~T}$. 14 N., R. 11 W.; latitude 35 degrees, 26 minutes, 08 seconds and longitude 107 degrees, 56 minutes, 39 seconds.
The surface is covered by about 20 percent gravel and 10 percent channers.
A—0 to 2 inches; light olive brown ($2.5 \mathrm{Y} 5 / 4$) gravelly clay loam, olive brown (2.5Y 4/4) moist; weak fine granular structure; soft, firm, sticky and plastic; few very fine and fine roots; few very fine irregular pores; 20 percent gravel and 10 percent channers; slightly effervescent; neutral (pH 7.2); abrupt smooth boundary.
C-2 to 14 inches; light olive brown (2.5Y 5/4) clay, olive brown (2.5Y 4/4) moist; massive; hard, firm, sticky and plastic; few very fine and fine roots; few very fine irregular pores; slightly effervescent; neutral (pH 7.2); gradual smooth boundary.
Cr-14 inches; shale.

Range in Characteristics

Particle-size control section: 35 to 60 percent clay Depth to paralithic contact: 6 to 20 inches to shale Calcium carbonate equivalent: 1 to 5 percent
Reaction: neutral to moderately alkaline

A horizon:
Hue: 10YR or 2.5Y
Value: 4 or 5 dry, 3 or 4 moist
Chroma: 3 or 4 dry or moist
Rock fragments: 30 to 90 percent total; 20 to 80 percent gravel or channers; 0 to 10 percent cobbles; 0 to 5 percent stones. All fragments are sandstone.

Chorizon:

Hue: 10YR or 2.5Y
Value: 4 or 5 dry, 3 or 4 moist
Chroma: 3 or 4 dry or moist

Texture: clay or clay loam
Rock fragments: 0 to 10 percent total; 0 to 10 percent gravel; 0 to 5 percent cobbles

Yelives Series

Taxonomic class: Coarse-loamy, mixed, superactive, calcareous, mesic Typic Torrifluvents
Depth class: Very deep
Drainage class: Somewhat excessively drained
Permeability: Moderate to moderately rapid
Geomorphic position: Valley sides and valley floors
Parent material: Fan and stream alluvium derived from sandstone and shale
Slope range: 1 to 3 percent
Elevation: 5,400 to 6,100 feet
Mean annual air temperature: 50 to 55 degrees F
Mean annual precipitation: 7 to 9 inches
Frost-free period: 130 to 150 days

Typical Pedon

Yelives fine sandy loam in an area of mapping unit 111, Yelives fine sandy loam, 1 to 3 percent slopes; Navajo Reservation; San Juan County, New Mexico; The Pillar 3 NE Quadrangle; latitude 36 degrees, 08 minutes, 32 seconds and longitude 108 degrees 21 minutes, 15 seconds.

A—0 to 2 inches; light olive brown (2.5Y 5/4) fine sandy loam, olive brown (2.5Y 4/4) moist; weak very fine granular structure; loose, soft, nonsticky and nonplastic; few very fine roots; 2 percent gravel; very slightly effervescent; moderately alkaline (pH 8.0); abrupt smooth boundary.
Ck1-2 to 12 inches; light olive brown (2.5Y 5/4) fine sandy loam, olive brown (2.5Y 4/4) moist; massive; slightly hard, very friable, slightly sticky and slightly plastic; common very fine and fine roots; few very fine irregular pores; pockets of very finely stratified silt; 2 percent gravel; very slightly effervescent; few very fine masses of calcium carbonate; moderately alkaline (pH 8.0); abrupt smooth boundary.
Ck2-12 to 30 inches; light olive brown (2.5Y 5/4) loam, olive brown (2.5Y 4/4) moist; massive; slightly hard, very friable, nonsticky and nonplastic; common very fine and fine roots; few very fine irregular pores; 5 percent gravel; very slightly effervescent; few very fine masses of calcium carbonate; moderately alkaline (pH 8.0); abrupt smooth boundary.
C1-30 to 41 inches; light yellowish brown (2.5Y 6/4) loam, light olive brown (2.5Y 5/4) moist; massive;
loose, very friable, nonsticky and nonplastic; few very fine and fine roots; 1 percent gravel; very slightly effervescent; moderately alkaline (pH 8.0); abrupt smooth boundary.
C2-41 to 56 inches; light yellowish brown (2.5Y 6/4) loamy fine sand, light olive brown (2.5Y 6/4) moist; single grain; loose, soft, nonsticky and nonplastic; few very fine roots; 10 percent gravel; very slightly effervescent; moderately alkaline (pH 8.0); abrupt smooth boundary.
C3-56 to 80 inches; light yellowish brown (2.5Y 6/4) loamy fine sand, light olive brown (2.5Y 5/4) moist; single grain; loose, very friable, nonsticky and nonplastic; few very fine roots; fine stratification of silt and very fine sand; 1 percent gravel; very slightly effervescent; moderately alkaline (8.0).

Range in Characteristics

Particle-size control section: 8 to 20 percent clay
Rock fragment content: 0 to 10 percent sandstone and porcelanite gravel
Calcium carbonate equivalent: 0 to 5 percent
Salinity: EC of 0 to 2 mmhos/cm
Sodicity: SAR of 0 to 4
Reaction: Slightly to moderately alkaline
A horizon:
Hue: 2.5Y or 10YR
Value: 4 or 5, dry and moist
Chroma: 4 dry or moist
Textures: fine sandy loam or loamy fine sand
Ck and C horizons:
Hue: 2.5 Y or 10 YR
Value: 5 or 6, dry and moist
Chroma: 4 or 5 , dry or moist
Texture: loam, fine sandy loam, or loamy fine sand

Zaster Series

Taxonomic class: Loamy-skeletal, mixed, superactive, mesic Typic Calciustolls
Depth class: Moderately deep
Drainage class: Well drained
Permeability: Moderately rapid
Geomorphic position: Cuestas
Parent material: Slope alluvium and colluvium derived from sandstone and limestone
Slope range: 15 to 40 percent
Elevation: 7,000 to 7,600 feet
Mean annual air temperature: 45 to 47 degrees F
Mean annual precipitation: 16 to 20 inches
Frost-free period: 90 to 110 days

Typical Pedon

Zaster extremely gravelly loam, in an area of mapping unit 412, Rock outcrop-Rionutria-Zaster association, 15 to 80 percent slopes McKinley County, New Mexico; Upper Nutria Quadrangle; about 1,250 feet north and 1,000 feet east of the southwest corner of sec. 4, T. 12 N., R. 16 W.; latitude 35 degrees, 17 minutes, 44 seconds and longitude 108 degrees, 32 minutes, 06 seconds.

The surface is covered by about 50 percent gravel, 15 percent cobbles, and 10 percent stones.

A—0 to 3 inches; brown (7.5YR 4/3) extremely gravelly loam, dark brown (7.5YR 3/2) moist; weak fine granular structure; soft, very friable, slightly sticky and slightly plastic; many very fine roots; 50 percent gravel, 15 percent cobbles, 10 percent stones; strongly effervescent; 4 percent calcium carbonate equivalent; moderately alkaline (pH 8.0); clear wavy boundary.
Bk1—3 to 11 inches; brown (7.5YR 4/3) gravelly loam, dark brown (7.5YR 3/3) moist; weak fine and medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; many very fine, fine, and common medium roots; 15 percent gravel, 5 percent cobbles; strongly effervescent; many fine and medium masses and many fine concretions of calcium carbonate; 13 percent calcium carbonate equivalent; moderately alkaline; clear wavy boundary.
Bk2-11 to 27 inches; reddish brown (5YR 5/3) extremely gravelly loam, reddish brown (5YR 4/3)
moist; weak fine subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; many fine, medium, and few coarse roots; 40 percent gravel, 20 percent cobbles, 10 percent stones; violently effervescent; many fine, medium, and many fine concretions of calcium carbonate; 23 percent calcium carbonate equivalent; moderately alkaline; abrupt wavy boundary.
$2 \mathrm{Cr}-27$ to 37 inches; weathered sandstone and dolomitic limestone.
R-37 inches; San Andreas limestone.

Range in Characteristics

Particle-size control section: 10 to 20 percent clay and 35 to 70 percent rock fragment
Depth to lithic contact: 20 to 40 inches to dolomitic limestone
Depth to calcic horizon: 5 to 18 inches
Reaction: moderately alkaline

A horizon:

Chroma: 2 or 3

Rock fragments: 35 to 70 percent total; 20 to 50 percent gravel, 0 to 15 percent cobbles, 0 to 10 percent stones. All fragments are limestone.

Bk horizon:

Hue: 5YR or 7.5YR
Value: 4 or 5 dry, 3 or 4 moist
Rock fragments: 35 to 60 percent total: 15 to 25 percent gravel, 10 to 25 percent cobbles, 0 to 20 percent stones. All fragments are limestone.
Calcium carbonate equivalent: 10 to 25 percent

Zia Series

Taxonomic class: Coarse-loamy, mixed, superactive, calcareous, mesic Ustic Torriorthents
Depth class: Very deep
Drainage class: Somewhat excessively drained
Permeability: Moderately rapid
Geomorphic position: Valley sides and valley floors
Parent material: Eolian material and fan and stream alluvium derived from sandstone
Slope range: 1 to 5 percent
Elevation: 6,000 to 6,900 feet
Mean annual air temperature: 49 to 54 degrees F
Mean annual precipitation: 10 to 13 inches
Frost-free period: 120 to 140 days

Typical Pedon

Zia fine sandy loam, in an area of mapping unit 230, Sparank-San Mateo-Zia complex, 0 to 3 percent slopes; McKinley County, New Mexico; Goat Mountain Quadrangle; 1,000 feet west and 400 feet south of the northeast corner of sec. 14, T. 14 N., R. 11 W.; latitude 35 degrees, 26 minutes, 55 seconds and longitude 107 degrees, 58 minutes, 12 seconds.

A-0 to 3 inches; yellowish brown (10YR 5/4) fine sandy loam, dark yellowish brown (10YR 4/4) moist; weak fine and medium subangular blocky structure; soft, very friable, nonsticky and nonplastic; common very fine and fine, and few medium roots; common fine vesicular and irregular pores; very slightly effervescent; slightly alkaline (pH 7.6); clear smooth boundary.
Bw-3 to 12 inches; yellowish brown (10YR 5/4) fine sandy loam, dark brown (10YR 4/3) moist; weak medium subangular blocky structure; soft, very friable, slightly sticky and nonplastic; common very fine and fine roots; common fine irregular pores; calcium carbonate is disseminated; strongly
effervescent; slightly alkaline (pH 7.6); clear wavy boundary.
2C1-12 to 20 inches; yellowish brown (10YR 5/4) fine sandy loam, dark yellowish brown (10YR 4/4) moist; massive; soft, very friable, slightly sticky and nonplastic; few very fine and fine roots; common fine irregular pores; calcium carbonate is disseminated; slightly to strongly effervescent; slightly alkaline (pH 7.8); clear smooth boundary.
2C2—20 to 28 inches; yellowish brown (10YR 5/4) sandy loam, dark yellowish brown (10YR 4/4) moist, massive; soft, very friable, slightly sticky and nonplastic; few very fine and fine roots; common fine irregular pores; calcium carbonate is disseminated; slightly effervescent; slightly alkaline (pH 7.8); clear smooth boundary.
2C3-28 to 70 inches; yellowish brown (10YR 5/4) fine sandy loam, dark yellowish brown (10YR 4/4) moist; massive; soft, very friable, slightly sticky and nonplastic; few very fine and fine roots; common fine irregular pores; calcium carbonate is disseminated; slightly to strongly effervescent; slightly alkaline (pH 7.8).

Range in Characteristics

Particle-size control section: 8 to 18 percent clay Calcium carbonate equivalent: 1 to 5 percent

A horizon:
Hue: 5YR to 10YR
Value: 4 or 5 dry; 3 or 4 moist
Chroma: 2 to 6 dry; 2 to 4 moist
Bw horizon (when present):
Hue: 5YR to 10YR
Value: 3 or 4 moist
Chroma: 3 to 6 moist
Texture: fine sandy loam or very fine sandy loam

C horizons:

Hue: 5YR to 10YR
Value: 3 to 5 moist
Chroma: 2 to 6 moist
Texture: fine sandy loam, sandy loam, or loamy sand Rock fragments: 0 to 5 percent sandstone gravel
Reaction: slightly or moderately alkaline

Zunalei Series

Taxonomic class: Fine-loamy, mixed, superactive, mesic Typic Haplustalfs
Depth class: Very deep
Drainage class: Well drained

Permeability: Moderate
Geomorphic position: Cuestas and valley sides
Parent material: Eolian material and fan alluvium derived from sandstone
Slope range: 2 to 10 percent
Elevation: 7,000 to 7,500 feet
Mean annual air temperature: 45 to 48 degrees F
Mean annual precipitation: 16 to 20 inches
Frost-free period: 90 to 110 days

Typical Pedon

Zunalei loamy fine sand, in an area of mapping unit 414, Zunalei-Corzuni loamy fine sands, 2 to 10 percent slopes; McKinley County, New Mexico; Ramah Quadrangle; about 1,800 feet south and 100 feet east of the northwest corner of sec. 13, T. 11 N., R. 16 W.; latitude 35 degrees, 11 minutes, 12 seconds and longitude 108 degrees, 29 minutes, 09 seconds.
A-0 to 1 inch; brown (7.5YR 5/4) loamy fine sand, brown (7.5YR 4/3) moist; single grain; soft, loose, nonsticky and nonplastic; few very fine roots; neutral (pH 7.0); abrupt smooth boundary.
AB-1 to 6 inches; brown (7.5YR $5 / 3$) fine sandy loam, dark brown (7.5YR 3/3) moist; weak fine and medium subangular blocky structure; soft, very friable, nonsticky and nonplastic; many very fine and fine roots; few very fine irregular pores; neutral (pH 7.0); abrupt smooth boundary.
Bt1-6 to 20 inches; brown (7.5YR 5/4) sandy clay loam, brown (7.5YR 4/4) moist; strong fine and medium subangular blocky structure; hard, friable, slightly sticky and slightly plastic; many very fine and fine roots; common very fine and fine irregular pores; many distinct clay films on faces of peds; neutral (pH 7.0); clear smooth boundary.
$\mathrm{Bt} 2-20$ to 26 inches thick; strong brown (7.5YR 5/6) fine sandy loam, strong brown (7.5YR 4/6) moist; weak fine subangular blocky structure; slightly hard, very friable, slightly sticky and nonplastic; common very fine and fine roots; few very fine irregular pores; common distinct clay films on faces of peds; slightly alkaline (pH 7.4); clear smooth boundary.
BCt-26 to 50 inches; strong brown (7.5YR 5/6) fine sandy loam, strong brown (7.5YR 4/6) moist; weak very fine and fine subangular blocky structure; slightly hard, very friable, nonsticky and nonplastic; few very fine and fine roots; few very fine irregular pores; few faint clay films bridging sand grains; slightly alkaline (pH 7.4); clear smooth boundary.
BCk-50 to 70 inches; strong brown (7.5YR 5/6) fine sandy loam, strong brown (7.5YR 4/6) moist; weak
fine subangular blocky structure: slightly hard, very friable, nonsticky and nonplastic; few very fine roots; 1 percent gravel size sandstone fragments; very slightly effervescent; few very fine masses of calcium carbonate; slightly alkaline (pH 7.8).

Range in Characteristics

Particle-size control section: 18 to 35 percent clay
Depth to secondary calcium carbonates (when present): 28 to 54 inches and 0 to 5 percent calcium carbonate equivalent.
A and $A B$ horizons:
Hue:7.5YR or 10YR
Value: 5 dry, 3 or 4 moist
Chroma: 2 to 4
Reaction: neutral
Bt horizon:
Hue:7.5YR or 10YR
Value: 5 or 6 dry, 4 moist
Chroma: 4 or 6
Textures: sandy clay loam or clay loam
Reaction: neutral to slightly alkaline
BC horizons:
Hue:2.5YR to 7.5YR
Value: 5 dry, 3 or 4 moist
Chroma: 4
Textures: fine sandy loam, sandy clay loam, or clay loam
Reaction: slightly to moderately alkaline
Some pedons have a Btk horizon.

Zuni Series

Taxonomic class: Fine, mixed, superactive, frigid Typic Haplustalfs
Depth class: Moderately deep
Drainage class: Well drained
Permeability: Slow
Geomorphic position: Igneous domes in mountains
Parent material: Residuum derived from gneissicgranite
Slope range: 1 to 15 percent
Elevation: 7,800 to 8,200 feet
Mean annual air temperature: 40 to 45 degrees F
Mean annual precipitation: 16 to 20 inches
Frost-free period: 90 to 110 days

Typical Pedon

Zuni gravelly sandy loam, in an area of mapping unit 408, Mirabal-Zuni complex, 1 to 40 percent slopes; McKinley County, New Mexico; Upper Nutria

Quadrangle; 900 feet east and 300 feet south of the northwest corner of sec. 14, T. 13 N., R. 16 W.; latitude 35 degrees, 21 minutes, 49 seconds and longitude 108 degrees, 30 minutes, 28 seconds.
The surface is covered by 30 percent gravel and 1 percent cobbles.
Oi-0 to 1 inches: slightly decomposed pine needles.
A-1 to 3 inches; brown (7.5YR 5/2) gravelly sandy loam, dark brown (7.5YR 4/2) moist; weak very fine granular structure; soft, very friable, nonsticky and nonplastic; common very fine and fine roots; few very fine irregular pores; 30 percent gravel and 1 percent cobbles; neutral (pH 6.8); abrupt wavy boundary.
Bt1-3 to 18 inches; red (2.5YR 5/6) gravelly sandy clay, red (2.5YR 4/6) moist; strong fine subangular blocky structure; very hard, very firm, sticky and plastic; common fine and few moderate and coarse roots; few very fine irregular pores; 30 percent gravel and 1 percent cobbles; neutral (pH 6.8); clear wavy boundary.
Bt2—18 to 27 inches; red (2.5YR 5/6) gravelly sandy clay, red (2.5YR 4/6) moist; strong very fine and fine subangular blocky structure; very hard, very firm, sticky and plastic; common very fine, fine, and few medium roots; few very fine irregular pores; common distinct clay films on faces of peds; 28 percent gravel; neutral (pH 7.2); abrupt wavy boundary.
R-27 inches; gneissic-granite.

Range in Characteristics

Particle-size control section: 35 to 50 percent clay and 25 to 35 percent rock fragments
Depth to a lithic contact: 20 to 40 inches
Reaction: slightly acid to neutral
A horizon:
Hue: 5YR to 10YR
Value: 5 or 6 dry, 3 or 4 moist
Chroma: 2
Textures: sandy loam or sandy clay loam
Rock fragments: 5 to 35 percent gravel and cobble size gneissic-granite fragments

Bt horizons:
Hue: 2.5YR to 7.5YR
Value: 4 to 6 dry, 4 moist
Chroma: 4 or 6
Textures: sandy clay or sandy clay loam
Rock fragments: 25 to 35 percent gravel size gneissicgranite fragments

Some pedons have an E horizon that ranges in thickness from 5 to 12 inches.

Zuniven Series

Taxonomic class: Fine-silty, mixed, superactive, calcareous, mesic Aridic Ustifluvents
Depth class: Very deep
Drainage class: Moderately well drained
Permeability: Moderately slow
Geomorphic position: Valley floors
Parent material: Stream alluvium derived from sandstone and shale
Slope range: 0 to 2 percent
Elevation: 6,200 to 6,500 feet
Mean annual air temperature: 49 to 54 degrees F Mean annual precipitation: 10 to 13 inches
Frost-free period: 120 to 140 days

Typical Pedon

Zuniven loamy fine sand, in an area of mapping unit 52, Zuniven loamy fine sand, 0 to 2 percent slopes; McKinley County, New Mexico; Zuni Quadrangle; 2,900 feet south and 600 feet west of the northeast corner of sec. 18, T. 10 N., R. 18 W.; latitude 35 degrees, 05 minutes, 48 seconds and longitude 108 degrees, 46 minutes, 11 seconds.

A-0 to 6 inches; reddish yellow (7.5YR 6/6) loamy fine sand, strong brown (7.5YR 4/6) moist; single grain; loose, very friable, nonsticky and nonplastic; many very fine and common fine roots; common very fine irregular pores; slightly effervescent; slightly alkaline (pH 7.4); abrupt wavy boundary.
C1-6 to 12 inches; reddish yellow (7.5YR 6/6) loamy fine sand, strong brown (7.5YR 4/6) moist; single grain; loose, very friable, nonsticky and nonplastic; many very fine and common fine roots; common very fine irregular pores; slightly effervescent; slightly alkaline (pH 7.4); abrupt wavy boundary.
C2—12 to 17 inches; dark yellowish brown (10YR 4/4) silty clay loam, dark yellowish brown (10YR 3/4) moist; massive; soft, very friable, slightly sticky and slightly plastic; common very fine and fine and few coarse roots; common fine irregular and few fine tubular pores; strongly effervescent; slightly alkaline (pH 7.6); abrupt wavy boundary.
C3-17 to 22 inches; brown (7.5YR 5/4) silt loam, brown (7.5YR 4/4) moist; massive; soft, very friable, nonsticky and slightly plastic; common very fine and fine roots; common fine irregular and few fine tubular pores; slightly effervescent; slightly alkaline (pH 7.6); abrupt wavy boundary.
C4-22 to 33 inches; brown (10YR 5/3) silt loam, brown (10YR 4/3) moist; massive; soft, very friable, nonsticky and slightly plastic; common very fine and fine and few medium roots; common fine irregular and few fine tubular pores; slightly
effervescent; slightly alkaline (pH 7.6); abrupt wavy boundary.
C5-33 to 42 inches; brown (10YR5/3) silty clay loam, brown (10YR 4/3) moist; massive; soft, friable, slightly sticky and slightly plastic; few very fine and fine roots; common irregular and few fine tubular pores; slightly effervescent; slightly alkaline (pH 7.6); abrupt wavy boundary.
C6-42 to 65 inches; yellowish brown (10YR 5/4) loamy fine sand, dark yellowish brown (10YR 4/4) moist; single grain; loose, very friable, nonsticky and nonplastic; few very fine and fine roots; few fine irregular pores; slightly effervescent; slightly alkaline (pH 7.6).

Range in Characteristics

Particle-size control section: 20 to 35 percent clay, less that 15 percent coarser than very fine sand Calcium carbonate equivalent: 0 to 5 percent
Reaction: slightly to moderately alkaline
A horizon:
Hue:7.5YR or 10YR
Value: 3 to 6 dry, 3 to 5 moist
Chroma: 4 to 8
Chorizon:
Hue: 7.5YR or 10YR
Value: 4 to 6 dry, 3 to 6 moist
Chroma: 3 to 6
Texture: Highly stratified loamy fine sand, silt loam, silty clay loam, or clay loam
An organic surface horizon may be present in some pedons.

Zyme Series

Taxonomic class: Clayey, smectitic, calcareous, mesic shallow Ustic Torriorthents
Depth class: Very shallow and shallow
Drainage class: Well drained
Permeability: Slow
Geomorphic position: Hills and ridges
Parent material: Residuum derived from shale
Slope range: 5 to 35 percent
Elevation: 6,500 to 7,200 feet
Mean annual air temperature: 46 to 49 degrees F
Mean annual precipitation: 10 to 13 inches
Frost-free period: 100 to 135 days

Typical Pedon

Zyme channery silty clay loam, in an area of mapping unit 338, Zyme-Lockerby association, 5 to 35 percent slopes; McKinley County, New Mexico; Pinedale Quadrangle; 2,400 feet west and 225 feet north of the southeast corner of sec. 22, T. 16 N., R. 15 W.; latitude 35 degrees, 35 minutes, 47 seconds and longitude 108 degrees, 24 minutes, 20 seconds.
A—0 to 3 inches; light olive brown (2.5Y5/4) channery silty clay loam, olive brown (2.5Y 4/4) moist; moderate thin platy parting to moderate very fine granular structure; soft, very friable, sticky and plastic; common very fine and fine roots; 16 percent channers; very slightly effervescent; moderately alkaline (pH 8.0); abrupt smooth boundary.
Cky1-3 to 8 inches; light olive brown ($2.5 \mathrm{Y} 5 / 4$) silty clay, olive brown ($2.5 \mathrm{Y} 4 / 4$) and (10YR 4/6) moist; massive; very hard, very firm, very sticky and very plastic; many very fine and fine roots; few very fine irregular pores; 5 percent channers and 20 to 30 percent soft shale fragments; slightly effervescent; few very fine masses of calcium carbonate and gypsum; moderately alkaline (pH 8.0); gradual wavy boundary.

Cky2-8 to 15 inches; light olive brown (2.5Y 5/4) and ($2.5 \mathrm{Y} 2 / 0$) channery clay, olive brown ($2.5 \mathrm{Y} 4 / 4$) and (2.5Y 4/0) moist; massive; very hard, very firm, very sticky and very plastic; common very fine and fine roots; few very fine irregular pores; 30 percent sandstone channers and up to 80 percent soft shale fragments; strongly effervescent; common medium masses of calcium carbonate and gypsum; moderately alkaline (pH 8.0); clear wavy boundary.
Cr -15 inches; gray fractured gypsiferous shale.

Range in Characteristics

Particle-size control section: 35 to 45 percent clay Depth to paralithic contact: 6 to 20 inches to shale Calcium carbonate equivalent: 0 than 5 percent Percent gypsum: 1 to 5 percent
A horizon:
Hue: 10YR or 2.5 Y
Value: 4 or 5 dry and moist
Chroma: 3 to 6 dry and moist
Rock fragments: 0 to 30 percent channers; all fragments are sandstone.

Salinity: EC of 0 to 4 mmhos/cm
Sodicity: SAR 0 to 2
Reaction: slightly or moderately alkaline
Cky horizon:
Hue: 2.5Y
Value: 4 or 5 dry, 3 or 4 moist
Chroma: 3 or 4 dry and moist
Texture: silty clay, clay, or clay loam
Rock fragments: 0 to 10 percent sandstone gravel
Salinity: EC of 0 to 4 mmhos/cm
Sodicity: SAR 0 to 4
Reaction: moderately alkaline
Other features: 30 to 80 percent soft shale fragments

Figure 14.-Profile of Aquima silt loam in an area of AquimaHawaikuh silt loams, 1 to 5 percent slopes.

Figure 15.—Profile of Berryhill clay in an area of BerryhillCasamero clays, 2 to 10 percent slopes.

Figure 16.-Profile of Casamero clay in an area of BerryhillCasamero clays, 2 to 10 percent slopes.

Figure 17.-Profile of Doakum fine sandy loan in an area of Doakum-Betonnie complex, 1 to 8 percent slopes.

Figure 18.-Profile of Eldado gravelly fine sandy loam in an area of Eldado gravelly fine sandy loam, 1 to 5 percent slopes.

Figure 19.-Profile of Sanfeco fine sandy loam, 0 to 2 percent slopes.

Figure 20.—Profile of Tinian very fine sandy loam in an area of Orlie-Tinian complex, 1 to 6 percent slopes.

Formation of the Soils

Soil is a natural, three-dimensional body on the surface of the earth that supports plants. Although the soil mantle on the earth's surface varies widely in many places, all soils have some things in common. They all consist of minerals, organic matter, living organisms, water, and air that occur in varying amounts in different soils.

Soil results from the action of soil-forming processes on materials deposited or accumulated by geological processes. The characteristics of the soil at any given point are determined by five factors: (1) the physical and mineralogical composition of the parent material, (2) the climate under which the soil material accumulated and has existed since accumulation, (3) the plant and animal life on and in the soil, (4) the topography, or lay of the land, and (5) the length of time that the forces of soil formation have acted on the parent material (Jenny, 1980). These factors of soil formation are independent, and few generalizations can be made regarding any one factor unless the effects of the others are known (Gile, 1965).

Factors of Soil Formation

Parent Material

Parent material is the unconsolidated material in which the soil forms. It may have weathered in place from rock, or it may have been transported by water, wind, or ice. The parent material of the soils in the survey area was derived from several sources and types of bedrock. Parent material can be put into six general groups: residuum, colluvium, slope alluvium, fan alluvium, stream alluvium, and eolian sand. Soils can form from a single parent material or a combination of parent materials.

Residuum is unconsolidated, weathered, or partly weathered mineral material that accumulated by the disintegration of bedrock in place. An example of a soil with this type of parent material is the Rauster series.

Colluvium is unconsolidated earth materials deposited on and at the base of moderately steep and steep slopes by mass wasting (direct gravitational
action) and local runoff. An example of a soil that has this type of parent material is the Alesna series.

Alluvium is unconsolidated material deposited by running water, including gravel, sand, silt, clay, and various mixtures of these. Slope alluvium is moved from steep slopes to more gentle slopes. An example of a soil with this type of parent material is the Toldohn series. Fan alluvium is moved along alluvial fans. Examples of soils that have this type of parent material are the Aquima and Gish series. Stream alluvium is deposited by streams. Examples of soils having this type of parent material are the San Mateo and Escawetter series. Alluvial parent material can come from more than one source.

Eolian parent material pertains to material transported and deposited by the wind. It results in dune formations. The Razito series is an example of eolian sand parent material.

Climate

Climate is a major factor of soil formation. Temperature, precipitation, humidity, and wind affect vegetation (biological activity), parent material, and soil drainage. These factors affect the accumulation of organic matter, leaching of salts, the type and rate of weathering of the soil mineral constituents, and the development of diagnostic soil features.

The climate in the survey area is highly varied because of the wide range in elevation and the uneven topography. Elevation ranges from 5,800 feet near the Chaco river to over 8,000 feet in the Zuni Mountains. The average annual temperature ranges from about 40 to 55 degrees F, and the average annual precipitation ranges from about 8 to 20 inches. About 50 percent of the precipitation falls during brief, generally heavy thunderstorms in the period July through September. The survey area encompasses five temperature and moisture regimes.

Some soils formed under a climate that is quite different from the present-day climate. For example, the Eldado and Sanfeco soils have properties that indicate they formed under a climate that was much moister and cooler than the present day climate.

Plant and Animal Life

The effects of plants, animals, and humans are important in soil formation. Where the temperature is suitable to growth, plants begin to grow as soon as they receive appropriate amounts of water and nutrients. Plants, including fungi, influence soil formation by returning residues to the soil and aiding in decomposition. Plants influence the temperature of the soil by providing shade during warm periods and by helping to reduce evaporation from the soil surface. Vegetation also affects the transfer of minerals within the soil, the soil pH, and, in conjunction with climate and topography, the movement of material by leaching.

Bacteria, nematodes, and other forms of animal life aid in the weathering of minerals and the decomposition of organic matter. The larger animals, such as ants, earthworms, gophers, skunks, and reptiles, turn and mix the soil during burrowing activities, altering the soil.

Humans can have a strong influence on soil formation. Tillage and overgrazing may accelerate erosion. Changes in drainage conditions or topography induced by land shaping also influence the soil. Modifications in natural fertility by fertilizers, incorporation of organic residues, or cropping practices can also alter the soil-forming process.

As a rule, humans, plants, animals, insects, bacteria, and fungi affect the formation of soils by increasing the content of organic matter, producing gains or losses in plant nutrients, mixing soil layers, and changing structure and porosity.

Topography

Topography and runoff influence the formation of soils by affecting drainage, erosion, soil temperature, and plant cover. The thickness and the kind of soil horizons depend on the amount of water that percolates through the parent material. Normally, more water enters a soil that is nearly level or gently sloping than one that is strongly sloping or steep. The topography of the survey area is very diverse, ranging from very steep slopes (50 percent or more) to nearly flat concave basin floors and valleys.

The amount of runoff depends on the slope. Steeper slopes have a higher amount of runoff than do gentle slopes. Coarse-textured soils take in water more rapidly than do fine-textured soils, so less water is lost through runoff on slopes that have coarse-textured soils than on those having fine-textured soils.

Aspect affects soil formation in the moderate to high elevations. Soils are slightly deeper on the northand east-facing slopes because rainfall is more
effective, temperatures are cooler, and plants are more numerous.

Time

The soils of the area range from very old to very young. The kind of horizons and the degree of soil formation depend in part on how long the soil has remained stable.

In this survey area, the youngest soils that show the least development are on flood plains and stream terraces. The parent material of these soils have been in place only a short period. Examples of these soils are the San Mateo, Notal, and Escawetter series.

Soils on alluvial fans and fan remnants show greater development. Deposition of parent material still occurs on alluvial fans. Fan remnants are relict alluvial fans that have been dissected and no longer have active deposition of parent material. Argillic horizons have developed and calcium carbonate is accumulating. The younger soils in this group include the Aquima and Zia series. The older soils in this group are generally higher in clay and of a redder color. These would include the Penistaja and Parkelei series.

The survey also has some very old soils found on rolling hills and high fan remnants. These soils exhibit very well-developed argillic horzons and thick calcic horizons. Examples of these soils are the Teczuni and Bryway series.

Landforms of the Survey Area

The survey area is part of the Colorado Plateau physiographic province, generally characterized by rough, broken terrain, including small, steep mountainous areas, plateaus, cuestas, and mesas intermingled with steep canyon walls, escarpments, and valleys (figs. 21, 22, 23, 24).

The following are landforms recognized in the survey area and some of the soils associated with them. Landforms are not static; they are continually being created and eroded.

Alluvial Fans

An alluvial fan is formed by Holocene-age and present-day alluvium originating from mountains, hills, and other upslope landscapes. Sediment loads are deposited when slope gradients change from upland positions to less sloping landforms. An inherent feature of fan development is the continuously changing pattern of channels and loci of deposition (Cooke, 1973). Over a long period of time, these changes ensure the maintenance of fans formed by distributing

Figure 21.-Generalized relationships of some soils in the survey area.
material widely over the surface. The soils on this landscape position are generally very deep, and their soil textures are highly variable, depending on the local geology from which they formed. Soil series found on alluvial fan positions are the Gish and Zia series.

Drainageways

A drainageway is a course or channel along which water moves as it drains an area formed by Holoceneage and present-day alluvium that originated from upslope positions in a watershed. Periodically, drainageways can move concentrated water and might or might not exhibit a defined low-order channel. These relatively narrow areas that have slopes greater than 2 percent drain into larger valley systems. The soils on this landscape position generally are very deep, with soil textures that are highly variable, depending on the local geology. Soil series found in drainageways are the Concho and Parkelei series.

Dunes

This landform has developed from Holocene-age and present-day eolian sands. These relatively small transverse dunes formed perpendicular to the prevailing winds. Most dunes in this area are stable
because established vegetation restricts their activity. Dunes can be found as a component on most of the other landforms portrayed in this section. These soils can be very deep and located in large dune fields or as a shallow mantle over bedrock-controlled surfaces. The Razito series is found on dunes.

Escarpments

Escarpments are a familiar feature in the survey area. They are relatively steep slopes or cliffs produced by erosion and faulting. Because of the steep slopes, the soils formed on this landform are generally shallow. Examples of soil series on escarpments are the Skyvillage and Vessilla series.

Fan Remnants

This landform developed from the Pleistocene to early Holocene eras. On this position, soils exhibit different degrees of pedogenic (soil) development. The degree of development depends upon the amounts of translocated calcium carbonate and/or silicified clays, which are related to the age of the soil.

Fan remnants have been dissected or downcut to the point at which flooding rarely occurs. This landform has two important components. One is the summit,

Figure 22.-Idealized cross-section illustrating soil-geomorphic-geologic relationships of soils on the Zuni Indian Reservation.
where erosional activity is relatively low. This area will show the different degrees of soil development and age. Second is the sideslope, where erosional activity is cutting uphill into the more stable summit. In most areas in the survey, the surface has a thick eolian mantle that is being eroded.

Soils on fan remnants vary greatly in their makeup. The Mentmore series can be found on the younger fan remnants. The Gapmesa and Barboncito series are soils that can be found on summits of older fan remnants.

Flood Plains

This landform is formed by early Holocene-age to present-day stream alluvium. In this survey area, floodwaters flow at low to very low gradients along valley floors and tend to be elongated in nature. The soils on these flood plains receive periodic depositions of fresh alluvium, causing an irregular decrease in organic carbon and weak to no soil development. Soils on this landform are predominantly very deep with soil textures that are highly variable, depending on the local
geology from which they formed. The Escawetter and San Mateo soils are formed in flood plains.

Hills and Mountains

The mountain slopes have no particular age connotation and, therefore, are not considered a geomorphic surface (Balster and Parsons, 1968). Soil development on these landforms is highly dependent on the characteristics of the bedrock, such as its chemical composition, grain size, and hardness. The most influential soil-forming factors in determining how soil developed on hills and mountains are time and the slope gradient of the bedrock.

Soils on this landform vary greatly in horizon development, from soils with no development to soils that have well-developed argillic horizons. Soils that have little or no horizon development are usually found on the steeper slopes where erosional activity is greatest. Soils that have well-developed horizons are generally on gently sloping to moderately steep slopes, where erosion is slight to moderate. The Fortwingate series formed in shale and sandstone on somewhat
more stable surfaces that allow argillic horizons to form. The Westmion series is usually on the steeper slopes and more active erosional surfaces. The constant erosion of the soil does not allow time for an argillic horizon to develop, as clays do not have time to translocate and accumulate.

Hogbacks

Hogbacks are highly tilted (greater than 45 percent) rock layers that form a sharp, crested ridge. A good example is on the east end of Gallup where Interstate 40 bisects it. Because of the steep slopes and resistant rocks, the soils are generally shallow. The Vessilla and Toldohn soils are found on this landform.

Lava Plateaus

Mesa Chivato in southeastern McKinley County is an example of a Lava Plateau. It is a broad, elevated tableland underlain by a thick succession of basaltic lava flows. The survey area contains about 60 square miles of a total of approximately 400 square miles of Mesa Chivato. Some soils series found on this landform are the Amcec and the Montillo series.

Mesas and Cuestas

These landforms have two important components. The first is the mesa summit and the cuesta dipslope. They are both nearly level to gently sloping, bedrockcontrolled surfaces that are generally stable. The Arabrab and Evpark series are found on these surfaces. The soils are characterized by welldeveloped argillic horizons.

The second component is the escarpment, where erosional activity is cutting back into the more stable summit. Soils on this component have little or no horizon development because of their steep slopes, where erosional activity is greatest. Typical soils representing this escarpment component are the Toldohn and Vessilla series.

Mesas differ from cuestas in that an escarpment on all sides terminates the mesa summit, whereas a cuesta generally has one or more sides that grade into the surrounding terrain, following gentle slopes.

Plateaus

These landforms are comparatively flat areas of great extent and elevation that are commonly bordered

Figure 23.-Generalized cross-section of soils in the northern part of the Zuni Mountains, near McGaffey.
on at least one side by an escarpment or abrupt descent. The landscape of a plateau summit can be complex, comprised of many subsidiary geomorphic features. Because of this, soils formed on plateaus are highly variable. In the survey area, Mesa Chivato and the highlands south of Gallup qualify as plateaus. The Parkelei and Fraguni are common soils found on the plateau south of Gallup.

Ridges

Ridges are long, narrow elevations of the land surface, usually sharp-crested with steep sides, that form extended uplands between valleys. Soils found on the summits, if wide enough, are mostly shallow, whereas soils on the sides are generally shallow but sometimes deeper. The Plumasano series can be found on the sideslopes of ridges, while the Atchee soils are on the summits.

Stream Terraces

This position is the erosional remnant of the active flood plains that existed during the late Pleistocene to Holocene ages. The slopes are in the same general direction as the current flood plain. The soils in this position are underlain by stratified sand, gravel, loamy, silty, or clayey sediments and, in some cases, buried paleosols.

The soils on stream terraces have been stable for a sufficient time period to form cambic horizons. Formation of soil structure and accumulations of calcium carbonate and sometimes gypsum characterize a cambic horizon. This position is still subject to some flooding during major events. These rare flooding occurrences and the thin alluvial deposits from the floodwaters do not inhibit soil development. Typical soils that represent stream terraces are the Breadsprings and Nahodish series.

Figure 24.—Idealized cross-section illustrating soil-geomorphic-geologic relationships of soils on the Chaco slope of the San Juan Basin.

Valley floors

A general term for the nearly level to gently sloping, lowest surface of a valley system. Landforms include stream channels, stream terraces, and flood plains. In the survey area, this landscape position along with the valley side positions, is generally the most productive and manipulated by humans. The Concho and Redpen series have formed on these positions.

Valley sides

These are sloping surfaces between the valley floor and the summits of adjacent uplands. Fan remnants
and alluvial fans are landforms found on this broad landscape position. Soil series found on these surfaces are the Mentmore and the Zia soils.

Volcanic Cones

A volcanic cone is a conical hill of lava or cinders that is built up around a volcanic vent. Volcanic cones are observable on Mesa Chivato. These soils range from very deep to shallow and are generally clayey textured if weathered from basalt. Soils that have formed on this landscape feature are the Alesna and Montillo series.

References

American Association of State Highway and Transportation Officials (AASHTO). 1998. Standard specifications for transportation materials and methods of sampling and testing. 19th edition, 2 vols.

American Society for Testing and Materials (ASTM). 1998. Standard classification of soils for engineering purposes. ASTM Standard D 2487.

Balster, C.A., and R.B. Parsons. 1968. Geomorphology and soils, Willamette Valley, Oregon. Oregon Ag. Exper. Sta. Special Report 265.

Cooke, Ronald U., and Andrew Warren. 1973. Geomorphology in deserts. Part 1:The desert context. Univ. of Calif. Pr.

Fenneman, N.M., 1931, Physiography of Western United States, McGraw-Hill, 534 p.
Gile, Leland H., Frederick F. Peterson, and Robert B. Grossman. 1965. Morphological and genetic sequences of carbonate accumulations. Soil Science 101, pp. 347-360. Jenny, Hans. 1941. Factors of soil formation.

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. (Available in the State Office of the Natural Resources Conservation Service at 6200 Jefferson N.E., Albuquerque, New Mexico.)

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. (Available in the State Office of the Natural Resources Conservation Service at 6200 Jefferson N.E., Albuquerque, New Mexico.)

United States Department of Agriculture, Soil Conservation Service. 1967. Soil survey of the Zuni Mountain Area, New Mexico.

United States Department of Agriculture, Natural Resources Conservation Service. 1998. Keys to soil taxonomy. 8th ed. Soil Survey Staff.

United States Department of Agriculture, Natural Resources Conservation Service. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Soil Survey Staff. U.S. Dept. Agric. Handb. 436.

United States Department of Agriculture, Soil Conservation Service. 1993. Soil survey manual. Soil Survey Staff, U.S. Dept. of Agric. Handb. 18.

Glossary

Aeration, soil. The exchange of air in soil with air from the atmosphere. The air in a well aerated soil is similar to that in the atmosphere; the air in a poorly aerated soil is considerably higher in carbon dioxide and lower in oxygen.
Aggregate, soil. Many fine particles held in a single mass or cluster. Natural soil aggregates, such as granules, blocks, or prisms, are called peds. Clods are aggregates produced by tillage or logging.
Alkali (sodic) soil. A soil having so high a degree of alkalinity (pH 8.5 or higher) or so high a percentage of exchangeable sodium (15 percent or more of the total exchangeable bases), or both, that plant growth is restricted.
Alluvial fan. The fanlike deposit of a stream where it issues from a gorge upon a plain or of a tributary stream near or at its junction with its main stream.
Alluvium. Material, such as sand, silt, or clay, deposited on land by streams.
Alpha,alpha-dipyridyl. A dye that when dissolved in 1 N ammonium acetate is used to detect the presence of reduced iron (Fe II) in the soil. A positive reaction indicates a type of redoximorphic feature.
Animal unit month (AUM). The amount of forage required by one mature cow of approximately 1,000 pounds weight, with or without a calf, for 1 month.
Aquic conditions. Current soil wetness characterized by saturation, reduction, and redoximorphic features.
Argillic horizon. A subsoil horizon characterized by an accumulation of illuvial clay.
Arroyo. The flat-floored channel of an ephemeral stream, commonly with very steep to vertical banks cut in alluvium.
Aspect. The direction in which a slope faces.
Association, soil. A group of soils or miscellaneous areas geographically associated in a characteristic repeating pattern and defined and delineated as a single map unit.
Available water capacity (available moisture capacity). The capacity of soils to hold water available for use by most plants. It is commonly defined as the difference between the amount of soil water at field moisture capacity and the
amount at wilting point. It is commonly expressed as inches of water per inch of soil. The capacity, in inches, in a 60-inch profile or to a limiting layer is expressed as:

Backslope. The position that forms the steepest and generally linear, middle portion of a hillslope. In profile, backslopes are commonly bounded by a convex shoulder above and a concave footslope below.
Badland. Steep or very steep, commonly nonstony, barren land dissected by many intermittent drainage channels. Badland is most common in semiarid and arid regions where streams are entrenched in soft geologic material. Local relief generally ranges from 25 to 500 feet. Runoff potential is very high, and geologic erosion is active.
Base saturation. The degree to which material having cation-exchange properties is saturated with exchangeable bases (sum of $\mathrm{Ca}, \mathrm{Mg}, \mathrm{Na}$, and K), expressed as a percentage of the total cationexchange capacity.
Bedrock. The solid rock that underlies the soil and other unconsolidated material or that is exposed at the surface.
Bedrock-controlled topography. A landscape where the configuration and relief of the landforms are determined or strongly influenced by the underlying bedrock.
Bottom land. The normal flood plain of a stream, subject to flooding.
Breaks. The steep and very steep broken land at the border of an upland summit that is dissected by ravines.
Brush management. Use of mechanical, chemical, or biological methods to make conditions favorable for reseeding or to reduce or eliminate competition from woody vegetation and thus allow understory grasses and forbs to recover. Brush management
increases forage production and thus reduces the hazard of erosion. It can improve the habitat for some species of wildlife.
Calcareous soil. A soil containing enough calcium carbonate (commonly combined with magnesium carbonate) to effervesce visibly when treated with cold, dilute hydrochloric acid.
Canopy. The leafy crown of trees or shrubs. (See Crown.)
Canyon. A long, deep, narrow, very steep sided valley with high, precipitous walls in an area of high local relief.
Capillary water. Water held as a film around soil particles and in tiny spaces between particles. Surface tension is the adhesive force that holds capillary water in the soil.
Cation. An ion carrying a positive charge of electricity. The common soil cations are calcium, potassium, magnesium, sodium, and hydrogen.
Cation-exchange capacity. The total amount of exchangeable cations that can be held by the soil, expressed in terms of milliequivalents per 100 grams of soil at neutrality (pH 7.0) or at some other stated pH value. The term, as applied to soils, is synonymous with base-exchange capacity but is more precise in meaning.
Channery soil material. Soil material that has, by volume, 15 to 35 percent thin, flat fragments of sandstone, shale, slate, limestone, or schist as much as 6 inches (15 centimeters) along the longest axis. A single piece is called a channer.
Chemical treatment. Control of unwanted vegetation through the use of chemicals.
Clay. As a soil separate, the mineral soil particles less than 0.002 millimeter in diameter. As a soil textural class, soil material that is 40 percent or more clay, less than 45 percent sand, and less than 40 percent silt.
Clay film. A thin coating of oriented clay on the surface of a soil aggregate or lining pores or root channels. Synonyms: clay coating, clay skin.
Climax plant community. The stabilized plant community on a particular site. The plant cover reproduces itself and does not change so long as the environment remains the same.
Coarse textured soil. Sand or loamy sand.
Cobble (or cobblestone). A rounded or partly rounded fragment of rock 3 to 10 inches (7.6 to 25 centimeters) in diameter.
Colluvium. Soil material or rock fragments, or both, moved by creep, slide, or local wash and deposited at the base of steep slopes.
Complex slope. Irregular or variable slope. Planning or
establishing terraces, diversions, and other watercontrol structures on a complex slope is difficult.
Complex, soil. A map unit of two or more kinds of soil or miscellaneous areas in such an intricate pattern or so small in area that it is not practical to map them separately at the selected scale of mapping. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas.
Concretions. Cemented bodies with crude internal symmetry organized around a point, a line, or a plane. They typically take the form of concentric layers visible to the naked eye. Calcium carbonate, iron oxide, and manganese oxide are common compounds making up concretions. If formed in place, concretions of iron oxide or manganese oxide are generally considered a type of redoximorphic concentration.
Conservation cropping system. Growing crops in combination with needed cultural and management practices. In a good conservation cropping system, the soil-improving crops and practices more than offset the effects of the soil-depleting crops and practices. Cropping systems are needed on all tilled soils. Soil-improving practices in a conservation cropping system include the use of rotations that contain grasses and legumes and the return of crop residue to the soil. Other practices include the use of green manure crops of grasses and legumes, proper tillage, adequate fertilization, and weed and pest control.
Conservation tillage. A tillage system that does not invert the soil and that leaves a protective amount of crop residue on the surface throughout the year.
Consistence, soil. Refers to the degree of cohesion and adhesion of soil material and its resistance to deformation when ruptured. Consistence includes resistance of soil material to rupture and to penetration; plasticity, toughness, and stickiness of puddled soil material; and the manner in which the soil material behaves when subject to compression. Terms describing consistence are defined in the "Soil Survey Manual."
Control section. The part of the soil on which classification is based. The thickness varies among different kinds of soil, but for many it is that part of the soil profile between depths of 10 inches and 40 or 80 inches.
Corrosion. Soil-induced electrochemical or chemical action that dissolves or weakens concrete or uncoated steel.
Cover crop. A close-growing crop grown primarily to improve and protect the soil between periods of
regular crop production, or a crop grown between trees and vines in orchards and vineyards.
Cropping system. Growing crops according to a planned system of rotation and management practices.
Crop residue management. Returning crop residue to the soil, which helps to maintain soil structure, organic matter content, and fertility and helps to control erosion.
Cuesta. A hill or ridge that has a gentle slope on one side and a steep slope on the other; specifically, an asymmetric, homoclinal ridge capped by resistant rock layers of slight or moderate dip.
Deferred grazing. Postponing grazing or resting grazing land for a prescribed period.
Depth, soil. Generally, the thickness of the soil over bedrock. Very deep soils are more than 60 inches deep over bedrock; deep soils, 40 to 60 inches; moderately deep, 20 to 40 inches; shallow, 10 to 20 inches; and very shallow, less than 10 inches.
Dip slope. A slope of the land surface, roughly determined by and approximately conforming to the dip of the underlying bedrock.
Drainage class (natural). Refers to the frequency and duration of wet periods under conditions similar to those under which the soil formed. Alterations of the water regime by human activities, either through drainage or irrigation, are not a consideration unless they have significantly changed the morphology of the soil. Seven classes of natural soil drainage are recognizedexcessively drained, somewhat excessively drained, well drained, moderately well drained, somewhat poorly drained, poorly drained, and very poorly drained. These classes are defined in the "Soil Survey Manual."
Duff. A generally firm organic layer on the surface of mineral soils. It consists of fallen plant material that is in the process of decomposition and includes everything from the litter on the surface to underlying pure humus.
Ecological site. An area where climate, soil, and relief are sufficiently uniform to produce a distinct natural plant community. An ecological site is the product of all the environmental factors responsible for its development. It is typified by an association of species that differ from those on other ecological sites in kind and/or proportion of species or in total production.
Eolian soil material. Earthy parent material accumulated through wind action; commonly refers to sandy material in dunes or to loess in blankets on the surface.
Ephemeral stream. A stream, or reach of a stream,
that flows only in direct response to precipitation. It receives no long-continued supply from melting snow or other source, and its channel is above the water table at all times.
Erosion. The wearing away of the land surface by water, wind, ice, or other geologic agents and by such processes as gravitational creep. Erosion (geologic). Erosion caused by geologic processes acting over long geologic periods and resulting in the wearing away of mountains and the building up of such landscape features as flood plains and coastal plains. Synonym: natural erosion.
Erosion (accelerated). Erosion much more rapid than geologic erosion, mainly as a result of human or animal activities or of a catastrophe in nature, such as a fire, that exposes the surface.
Escarpment. A relatively continuous and steep slope or cliff breaking the general continuity of more gently sloping land surfaces and resulting from erosion or faulting. Synonym: scarp.
Fertility, soil. The quality that enables a soil to provide plant nutrients, in adequate amounts and in proper balance, for the growth of specified plants when light, moisture, temperature, tilth, and other growth factors are favorable.
Field moisture capacity. The moisture content of a soil, expressed as a percentage of the ovendry weight, after the gravitational, or free, water has drained away; the field moisture content 2 or 3 days after a soaking rain; also called normal field capacity, normal moisture capacity, or capillary capacity.
Fine textured soil. Sandy clay, silty clay, or clay.
Flood plain. A nearly level alluvial plain that borders a stream and is subject to flooding unless protected artificially.
Footslope. The position that forms the inner, gently inclined surface at the base of a hillslope. In profile, footslopes are commonly concave. A footslope is a transition zone between upslope sites of erosion and transport (shoulders and backslopes) and downslope sites of deposition (toeslopes).
Forb. Any herbaceous plant not a grass or a sedge.
Forest type. A stand of trees similar in composition and development because of given physical and biological factors by which it may be differentiated from other stands.
Genesis, soil. The mode of origin of the soil. Refers especially to the processes or soil-forming factors responsible for the formation of the solum, or true soil, from the unconsolidated parent material.
Gilgai. Commonly, a succession of microbasins and
microknolls in nearly level areas or of microvalleys and microridges parallel with the slope. Typically, the microrelief of clayey soils that shrink and swell considerably with changes in moisture content.
Gravel. Rounded or angular fragments of rock as much as 3 inches (2 millimeters to 7.6 centimeters) in diameter. An individual piece is a pebble.
Ground water. Water filling all the unblocked pores of the material below the water table.
Hard bedrock. Bedrock that cannot be excavated except by blasting or by the use of special equipment that is not commonly used in construction.
Hardpan. A hardened or cemented soil horizon, or layer. The soil material is sandy, loamy, or clayey and is cemented by iron oxide, silica, calcium carbonate, or other substance.
Hill. A natural elevation of the land surface, rising as much as 1,000 feet above surrounding lowlands, commonly of limited summit area and having a well defined outline; hillsides generally have slopes of more than 15 percent. The distinction between a hill and a mountain is arbitrary and is dependent on local usage.
Horizon, soil. A layer of soil, approximately parallel to the surface, having distinct characteristics produced by soil-forming processes. In the identification of soil horizons, an uppercase letter represents the major horizons. Numbers or lowercase letters that follow represent subdivisions of the major horizons. An explanation of the subdivisions is given in the "Soil Survey Manual." The major horizons of mineral soil are as follows: O horizon.-An organic layer of fresh and decaying plant residue.
A horizon.-The mineral horizon at or near the surface in which an accumulation of humified organic matter is mixed with the mineral material. Also, a plowed surface horizon, most of which was originally part of a B horizon.
E horizon.-The mineral horizon in which the main feature is loss of silicate clay, iron, aluminum, or some combination of these.
B horizon.-The mineral horizon below an A horizon. The B horizon is in part a layer of transition from the overlying A to the underlying C horizon. The B horizon also has distinctive characteristics, such as (1) accumulation of clay, sesquioxides, humus, or a combination of these; (2) prismatic or blocky structure; (3) redder or browner colors than those in the A horizon; or (4) a combination of these.

Chorizon.-The mineral horizon or layer, excluding indurated bedrock, that is little affected by soilforming processes and does not have the properties typical of the overlying soil material. The material of a C horizon may be either like or unlike that in which the solum formed. If the material is known to differ from that in the solum, an Arabic numeral, commonly a 2 , precedes the letter C . Cr horizon.-Soft, consolidated bedrock beneath the soil.
R layer.-Consolidated bedrock beneath the soil. The bedrock commonly underlies a C horizon, but it can be directly below an A or a B horizon.
Hydrologic soil groups. Refers to soils grouped according to their runoff potential. The soil properties that influence this potential are those that affect the minimum rate of water infiltration on a bare soil during periods after prolonged wetting when the soil is not frozen. These properties are depth to a seasonal high water table, the infiltration rate and permeability after prolonged wetting, and depth to a very slowly permeable layer. The slope and the kind of plant cover are not considered but are separate factors in predicting runoff.
Igneous rock. Rock formed by solidification from a molten or partially molten state. Major varieties include plutonic and volcanic rock. Examples are andesite, basalt, and granite.
Illuviation. The movement of soil material from one horizon to another in the soil profile. Generally, material is removed from an upper horizon and deposited in a lower horizon.
Impervious soil. A soil through which water, air, or roots penetrate slowly or not at all. No soil is absolutely impervious to air and water all the time.
Infiltration. The downward entry of water into the immediate surface of soil or other material, as contrasted with percolation, which is movement of water through soil layers or material.
Infiltration capacity. The maximum rate at which water can infiltrate into a soil under a given set of conditions.
Infiltration rate. The rate at which water penetrates the surface of the soil at any given instant, usually expressed in inches per hour. The rate can be limited by the infiltration capacity of the soil or the rate at which water is applied at the surface.
Intake rate. The average rate of water entering the soil under irrigation. Most soils have a fast initial rate; the rate decreases with application time. Therefore, intake rate for design purposes is not a constant but is a variable depending on the net
irrigation application. The rate of water intake, in inches per hour, is expressed as follows:

Less than 0.2 ... very low	
0.2 to 0.4	w
0.4 to 0.75 moderately low	
0.75 to 1.25 ...moderate	
1.25 to 1.75 moderately high	
1.75 to 2.5 ... high	
More th	,

Intermittent stream. A stream, or reach of a stream, that flows for prolonged periods only when it receives ground-water discharge or long, continued contributions from melting snow or other surface and shallow subsurface sources.
Irrigation. Application of water to soils to assist in production of crops. Methods of irrigation are: Border.-Water is applied at the upper end of a strip in which the lateral flow of water is controlled by small earth ridges called border dikes, or borders.
Controlled flooding.-Water is released at intervals from closely spaced field ditches and distributed uniformly over the field.
Corrugation.-Water is applied to small, closely spaced furrows or ditches in fields of close-growing crops or in orchards so that it flows in only one direction.
Drip (or trickle).-Water is applied slowly and under low pressure to the surface of the soil or into the soil through such applicators as emitters, porous tubing, or perforated pipe.
Furrow.-Water is applied in small ditches made by cultivation implements. Furrows are used for tree and row crops.
Sprinkler.-Water is sprayed over the soil surface through pipes or nozzles from a pressure system. Subirrigation.-Water is applied in open ditches or tile lines until the water table is raised enough to wet the soil.
Wild flooding.-Water, released at high points, is allowed to flow onto an area without controlled distribution.
$\mathbf{K}_{\text {sat }}$. Saturated hydraulic conductivity. (See Permeability.)
Lacustrine deposit. Material deposited in lake water and exposed when the water level is lowered or the elevation of the land is raised.
Leaching. The removal of soluble material from soil or other material by percolating water.
Liquid limit. The moisture content at which the soil passes from a plastic to a liquid state.
Loam. Soil material that is 7 to 27 percent clay
particles, 28 to 50 percent silt particles, and less than 52 percent sand particles.
Low strength. The soil is not strong enough to support loads.
Major Land Resource Area. These are geographically associated land resource units. Identification of these large areas is important in statewide agricultural planning and has value in interstate, regional, and national planning.
Masses. Concentrations of substances in the soil matrix that do not have a clearly defined boundary with the surrounding soil material and cannot be removed as a discrete unit. Common compounds making up masses are calcium carbonate, gypsum or other soluble salts, iron oxide, and manganese oxide. Masses consisting of iron oxide or manganese oxide generally are considered a type of redoximorphic concentration.
Mechanical treatment. Use of mechanical equipment for seeding, brush management, and other management practices.
Medium textured soil. Very fine sandy loam, loam, silt loam, or silt.
Mesa. A broad, nearly flat topped and commonly isolated upland mass characterized by summit widths that are more than the heights of bounding erosional scarps.
Mineral soil. Soil that is mainly mineral material and low in organic material. Its bulk density is more than that of organic soil.
Minimum tillage. Only the tillage essential to crop production and prevention of soil damage.
Miscellaneous area. An area that has little or no natural soil and supports little or no vegetation.
Moderately coarse textured soil. Coarse sandy loam, sandy loam, or fine sandy loam.
Moderately fine textured soil. Clay loam, sandy clay loam, or silty clay loam.
Mollic epipedon. A thick, dark, humus-rich surface horizon (or horizons) that has high base saturation and pedogenic soil structure. It may include the upper part of the subsoil.
Morphology, soil. The physical makeup of the soil, including the texture, structure, porosity, consistence, color, and other physical, mineral, and biological properties of the various horizons, and the thickness and arrangement of those horizons in the soil profile.
Mottling, soil. Irregular spots of different colors that vary in number and size. Descriptive terms are as follows: abundance-few, common, and many; size-fine, medium, and coarse; and contrastfaint, distinct, and prominent. The size
measurements are of the diameter along the greatest dimension. Fine indicates less than 5 millimeters (about 0.2 inch); medium, from 5 to 15 millimeters (about 0.2 to 0.6 inch); and coarse, more than 15 millimeters (about 0.6 inch).
Mountain. A natural elevation of the land surface, rising more than 1,000 feet above surrounding lowlands, commonly of restricted summit area (relative to a plateau) and generally having steep sides. A mountain can occur as a single, isolated mass or in a group forming a chain or range.
Munsell notation. A designation of color by degrees of three simple variables-hue, value, and chroma. For example, a notation of $10 \mathrm{YR} 6 / 4$ is a color with hue of 10 YR , value of 6 , and chroma of 4 .
Natric horizon. A special kind of argillic horizon that contains enough exchangeable sodium to have an adverse effect on the physical condition of the subsoil.
Neutral soil. A soil having a pH value of 6.6 to 7.3. (See Reaction, soil.)
Nutrient, plant. Any element taken in by a plant essential to its growth. Plant nutrients are mainly nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, iron, manganese, copper, boron, and zinc obtained from the soil and carbon, hydrogen, and oxygen obtained from the air and water.
Organic matter. Plant and animal residue in the soil in various stages of decomposition. The content of organic matter in the surface layer is described as follows:

Paleosols. A soil that formed on a landscape in the past with distinctive morphological features resulting from a soil-forming environment that no longer exists at the site.
Parent material. The unconsolidated organic and mineral material in which soil forms.
Ped. An individual natural soil aggregate, such as a granule, a prism, or a block.
Pedon. The smallest volume that can be called "a soil." A pedon is three dimensional and large enough to permit study of all horizons. Its area ranges from about 10 to 100 square feet (1 square meter to 10 square meters), depending on the variability of the soil.
Permeability. The quality of the soil that enables water or air to move downward through the profile.

The rate at which a saturated soil transmits water is accepted as a measure of this quality. In soil physics, the rate is referred to as "saturated hydraulic conductivity," which is defined in the "Soil Survey Manual." In line with conventional usage in the engineering profession and with traditional usage in published soil surveys, this rate of flow continues to be expressed as "permeability." Terms describing permeability, measured in inches per hour, are as follows:

xtremely slow 0.0 to 0.01 inch	
Very slow 0.01 to 0.06 inch	
Slow ... 0.06 to 0.2 inch	
Moderately slow 0.2 to 0.6 inch	
Moderate 0.6 inch to 2.0 inches	
Moderately rapid 2.0 to 6.0 inches	
Rapid .. 6.0 to 20 inches	
ry rapid	more than 20 inche

Phase, soil. A subdivision of a soil series based on features that affect its use and management, such as slope, stoniness, and flooding.
pH value. A numerical designation of acidity and alkalinity in soil. (See Reaction, soil.)
Plasticity index. The numerical difference between the liquid limit and the plastic limit; the range of moisture content within which the soil remains plastic.
Plastic limit. The moisture content at which a soil changes from semisolid to plastic.
Plateau. An extensive upland mass with relatively flat summit area that is considerably elevated (more than 100 meters) above adjacent lowlands and separated from them on one or more sides by escarpments.
Playa. The generally dry and nearly level lake plain that occupies the lowest parts of closed depressional areas, such as those on intermontane basin floors. Temporary flooding occurs primarily in response to precipitation and runoff.
Ponding. Standing water on soils in closed depressions. Unless the soils are artificially drained, the water can be removed only by percolation or evapotranspiration.
Poorly graded. Refers to a coarse grained soil or soil material consisting mainly of particles of nearly the same size. Because there is little difference in size of the particles, density can be increased only slightly by compaction.
Porcelanite. Fused shales and clay that occur in roof and floor of burned coal seams.
Potential native plant community. See Climax plant community.
Potential rooting depth (effective rooting depth). Depth to which roots could penetrate if the content
of moisture in the soil were adequate. The soil has no properties restricting the penetration of roots to this depth.
Prescribed burning. Deliberately burning an area for specific management purposes, under the appropriate conditions of weather and soil moisture and at the proper time of day.
Productivity, soil. The capability of a soil for producing a specified plant or sequence of plants under specific management.
Profile, soil. A vertical section of the soil extending through all its horizons and into the parent material.
Proper grazing use. Grazing at an intensity that maintains enough cover to protect the soil and maintain or improve the quantity and quality of the desirable vegetation. This practice increases the vigor and reproduction capacity of the key plants and promotes the accumulation of litter and mulch necessary to conserve soil and water.
Rangeland. Land on which the potential natural vegetation is predominantly grasses, grasslike plants, forbs, or shrubs suitable for grazing or browsing. It includes natural grasslands, savannas, many wetlands, some deserts, tundras, and areas that support certain forb and shrub communities.
Reaction, soil. A measure of acidity or alkalinity of a soil, expressed in pH values. A soil that tests to pH 7.0 is described as precisely neutral in reaction because it is neither acid nor alkaline. The degrees of acidity or alkalinity, expressed as pH values, are:

Redoximorphic concentrations. Nodules, concretions, soft masses, pore linings, and other features resulting from the accumulation of iron or manganese oxide. An indication of chemical reduction and oxidation resulting from saturation.
Redoximorphic depletions. Low-chroma zones from which iron and manganese oxide or a combination of iron and manganese oxide and clay has been removed. These zones are indications of the chemical reduction of iron resulting from saturation.

Redoximorphic features. Redoximorphic concentrations, redoximorphic depletions, reduced matrices, a positive reaction to alpha,alphadipyridyl, and other features indicating the chemical reduction and oxidation of iron and manganese compounds resulting from saturation.
Relief. The elevations or inequalities of a land surface, considered collectively.
Residuum (residual soil material). Unconsolidated, weathered or partly weathered mineral material that accumulated as consolidated rock disintegrated in place.
Rill. A steep-sided channel resulting from accelerated erosion. A rill generally is a few inches deep and not wide enough to be an obstacle to farm machinery.
Risers. The vertical element of a steplike natural landform.
Road cut. A sloping surface produced by mechanical means during road construction. It is commonly on the uphill side of the road.
Rock fragments. Rock or mineral fragments having a diameter of 2 millimeters or more; for example, pebbles, cobbles, stones, and boulders.
Root zone. The part of the soil that can be penetrated by plant roots.
Runoff. The precipitation discharged into stream channels from an area. The water that flows off the surface of the land without sinking into the soil is called surface runoff. Water that enters the soil before reaching surface streams is called groundwater runoff or seepage flow from ground water.
Saline soil. A soil containing soluble salts in an amount that impairs growth of plants. A saline soil does not contain excess exchangeable sodium.
Salinity. The degree to which a soil is affected by soluble salts. Salinity is expressed as a electrical conductivity (EC) of a saturation extract. The solution resistance is measured in $\mathrm{mmhos} / \mathrm{cm}$. The degrees of salinity and their respective ratios are:

Non-saline	0-2
Very slightly saline	
Slightly saline	
Moderately saline	
Strongly saline	>16

Sand. As a soil separate, individual rock or mineral fragments from 0.05 millimeter to 2.0 millimeters in diameter. Most sand grains consist of quartz. As a soil textural class, a soil that is 85 percent or more sand and not more than 10 percent clay.
Sandstone. Sedimentary rock containing dominantly sand-sized particles.

Saturation. Wetness characterized by zero or positive pressure of the soil water. Under conditions of saturation, the water will flow from the soil matrix into an unlined auger hole.
Sedimentary rock. Rock made up of particles deposited from suspension in water. The chief kinds of sedimentary rock are conglomerate, formed from gravel; sandstone, formed from sand; shale, formed from clay; and limestone, formed from soft masses of calcium carbonate. There are many intermediate types. Some wind-deposited sand is consolidated into sandstone.
Sequum. A sequence consisting of an illuvial horizon and the overlying eluvial horizon. (See Eluviation.)
Series, soil. A group of soils that have profiles that are almost alike, except for differences in texture of the surface layer. All the soils of a series have horizons that are similar in composition, thickness, and arrangement.
Shale. Sedimentary rock formed by the hardening of a clay deposit.
Sheet erosion. The removal of a fairly uniform layer of soil material from the land surface by the action of rainfall and surface runoff.
Shrink-Swell. Soil volume changes due to increases or decreases in moisture content. Linear extensibility is used to determine the shrink-swell potential of soils. It is an expression of the volume change between the water content of the clod at $1 /$ 3- or $1 / 10$-bar tension (33 kPa or 10 kPa tension) and oven dryness. Volume change is influenced by the amount and type of clay minerals in the soil. The volume change is the percent change for the whole soil. If it is expressed as a fraction, the resulting value is COLE, coefficient of linear extensibility. The shrink-swell classes are defined as follows:

Class	LEP
Low	<3
Moderate .	3-6
High	6-9
Very High	... >9

Silt. As a soil separate, individual mineral particles that range in diameter from the upper limit of clay (0.002 millimeter) to the lower limit of very fine sand (0.05 millimeter). As a soil textural class, soil that is 80 percent or more silt and less than 12 percent clay.
Similar soils. Soils that share limits of diagnostic criteria, behave and perform in a similar manner, and have similar conservation needs or
management requirements for the major land uses in the survey area.
Site index. A designation of the quality of a forest site based on the height of the dominant stand at an arbitrarily chosen age. For example, if the average height attained by dominant and codominant trees in a fully stocked stand at the age of 50 years is 75 feet, the site index is 75 .
Slickensides. Polished and grooved surfaces produced by one mass sliding past another. In soils, slickensides may occur at the bases of slip surfaces on the steeper slopes; on faces of blocks, prisms, and columns; and in swelling clayey soils, where there is marked change in moisture content.
Slick spot. A small area of soil having a puddled, crusted, or smooth surface and an excess of exchangeable sodium. The soil generally is silty or clayey, is slippery when wet, and is low in productivity.
Slope. The inclination of the land surface from the horizontal. Percentage of slope is the vertical distance divided by horizontal distance, then multiplied by 100 . Thus, a slope of 20 percent is a drop of 20 feet in 100 feet of horizontal distance.
Sodic (alkali) soil. A soil having so high a degree of alkalinity (pH 8.5 or higher) or so high a percentage of exchangeable sodium (15 percent or more of the total exchangeable bases), or both, that plant growth is restricted.
Sodicity. The degree to which a soil is affected by exchangeable sodium. Sodicity is expressed as a sodium adsorption ratio (SAR) of a saturation extract, or the ratio of Na^{+}to $\mathrm{Ca}^{++}+\mathrm{Mg}^{++}$. The degrees of sodicity and their respective ratios are:
Slight ... less than 13:1
Moderate ..13-30:1
Strong .. more than 30:1

Soft bedrock. Bedrock that can be excavated with trenching machines, backhoes, small rippers, and other equipment commonly used in construction.
Soil. A natural, three-dimensional body at the earth's surface. It is capable of supporting plants and has properties resulting from the integrated effect of climate and living matter acting on earthy parent material, as conditioned by relief over periods of time.
Soil separates. Mineral particles less than 2 millimeters in equivalent diameter and ranging between specified size limits. The names and
sizes, in millimeters, of separates recognized in the United States are as follows:

Very coarse sand.	2.0 to 1.0
Coarse sand 1.0 to 0.5
Medium sand	0.5 to 0.25
Fine sand 0.25 to 0.10
Very fine sand	.. 0.10 to 0.05
Silt	0.05 to 0.002
Clay	less than 0.002

Solum. The upper part of a soil profile, above the C horizon, in which the processes of soil formation are active. The solum in soil consists of the A, E, and B horizons. Generally, the characteristics of the material in these horizons are unlike those of the material below the solum. The living roots and plant and animal activities are largely confined to the solum.
Stone line. A concentration of coarse fragments in a soil. Generally, it is indicative of an old weathered surface. In a cross section, the line may be one fragment or more thick. It generally overlies material that weathered in place and is overlain by recent sediment of variable thickness.
Stones. Rock fragments 10 to 24 inches (25 to 60 centimeters) in diameter if rounded or 15 to 24 inches (38 to 60 centimeters) in length if flat.
Structure, soil. The arrangement of primary soil particles into compound particles or aggregates. The principal forms of soil structure are—platy (laminated), prismatic (vertical axis of aggregates longer than horizontal), columnar (prisms with rounded tops), blocky (angular or subangular), and granular. Structureless soils are either single grained (each grain by itself, as in dune sand) or massive (the particles adhering without any regular cleavage, as in many hardpans).
Subsoil. Technically, the B horizon; roughly, the part of the solum below plow depth.
Substratum. The part of the soil below the solum.
Subsurface layer. Any surface soil horizon (A, E, AB, or EB) below the surface layer.
Surface layer. The soil ordinarily moved in tillage, or its equivalent in uncultivated soil, ranging in depth from 4 to 10 inches (10 to 25 centimeters). Frequently designated as the "plow layer," or the "Ap horizon."
Surface soil. The A, E, AB, and EB horizons, considered collectively. It includes all subdivisions of these horizons.
Taxadjuncts. Soils that cannot be classified in a series recognized in the classification system. Such soils are named for a series they strongly resemble and are designated as taxadjuncts to
that series because they differ in ways too small to be of consequence in interpreting their use and behavior. Soils are recognized as taxadjuncts only when one or more of their characteristics are slightly outside the range defined for the family of the series for which the soils are named.
Texture, soil. The relative proportions of sand, silt, and clay particles in a mass of soil. The basic textural classes, in order of increasing proportion of fine particles, are sand, loamy sand, sandy loam, loam, silt loam, silt, sandy clay loam, clay loam, silty clay loam, sandy clay, silty clay, and clay. The sand, loamy sand, and sandy loam classes may be further divided by specifying "coarse," "fine," or "very fine."
Tilth, soil. The physical condition of the soil as related to tillage, seedbed preparation, seedling emergence, and root penetration.
Topsoil. The upper part of the soil, which is the most favorable material for plant growth. It is ordinarily rich in organic matter and is used to topdress roadbanks, lawns, and land affected by mining.
Trace elements. Chemical elements, for example, zinc, cobalt, manganese, copper, and iron, in soils in extremely small amounts. They are essential to plant growth.
Tread. The flat part of a step-like natural land form.
Upland. Land at a higher elevation, in general, than the alluvial plain or stream terrace; land above the lowlands along streams.
Valley fill. In glaciated regions, material deposited in stream valleys by glacial meltwater. In nonglaciated regions, alluvium deposited by heavily loaded streams.
Weathering. All physical and chemical changes produced in rocks or other deposits at or near the earth's surface by atmospheric agents. These changes result in disintegration and decomposition of the material.
Well graded. Refers to soil material consisting of coarse grained particles that are well distributed over a wide range in size or diameter. Such soil normally can be easily increased in density and bearing properties by compaction. Contrasts with poorly graded soil.
Wilting point (or permanent wilting point). The moisture content of soil, on an ovendry basis, at which a plant (specifically a sunflower) wilts so much that it does not recover when placed in a humid, dark chamber.
Windthrow. The uprooting and tipping over of trees by the wind.

Tables

Table 1.--Temperature and Precipitation
(Recorded in the period 1971-2000 at McGaffey 5 SE, NM560)

| |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Table 1.--Temperature and Precipitation--Continued

Recorded in the period 1971-2000 at Thoreau 5 ENE, NM830

| |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Table 1.--Temperature and Precipitation--Continued

Recorded in the period 1971-2000 at Zuni, NM897

| |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Table 2.--Freeze Dates in Spring and Fall
(Recorded in the period 1971-2000 at McGaffey 5 SE, NM5560)

Table 2.--Freeze Dates in Spring and Fall--Continued
(Recorded in the period 1971-2000 at Thoreau 5 ENE, NM8830)

Table 2.--Freeze Dates in Spring and Fall--Continued Recorded in the period 1971-2000 at Zuni, 9897)

Table 3.--Growing Season
(Recorded in the period 1971-2000 at MCGaffey 5 SE, NM5560)

Probability	Daily minimum temperature during growing season		
	Higher than $24{ }^{\circ} \mathrm{F}$	Higher than $28{ }^{\circ} \mathrm{F}$	Higher than $32{ }^{\circ} \mathrm{F}$
	Days	Days	Days
9 years in 10	113	92	76
8 years in 10	122	100	83
5 years in 10	139	115	96
2 years in 10	155	130	109
1 year in 10	164	138	115

(Recorded in the period 1971-2000 at Thoreau 5 ENE, NM8830)

Probability	Daily minimum temperature during growing season		
	Higher than $24 \mathrm{O}_{\mathrm{F}}$	Higher than $28{ }^{\circ} \mathrm{F}$	Higher than $32{ }^{\circ} \mathrm{F}$
	Days	Days	Days
9 years in 10	174	148	123
8 years in 10	183	156	131
5 years in 10	198	172	148
2 years in 10	214	188	165
1 year in 10	222	197	173

| Table 3.--Growing Season--Continued |
| :--- | :---: | :---: | :---: |
| (Recorded in the period 1971-2000 at |
| Zuni, NM9897) |

Table 4.--Acreage and Proportionate Extent of the Soils

$\begin{gathered} \text { Map } \\ \text { symbol } \end{gathered}$	Soil name	Cibola County	McKinley County	San Juan County	Total			
					Area	Extent		
	\|	Acres	Acres	Acres	Acres	Pct		
	\|							
8	\|Water	52	1,474	---	1,526	*		
10	\|Tsosie-Councelor-Blancot fine sandy loams, 1		to 3 percent slopes----------------------	---	18,890	---	18,890	0.7
11	\|Doakum-Betonnie complex, 1 to 8 percent							
	\| slopes-------------------------------------		---	40,109	---	40,109	1.4	
12	\|Calladito-Elias association, 1 to 6 percent							
	\| slopes--------------------------------------		---	18,569	---	18,569	0.7	
13	\|Councelor-Calladito complex, 1 to 8 percent		---	7,954	---	7,954	0.3	
14	\|Councelor-Eslendo-Calladito complex, 2 to 25		percent slopes-----------------------------	---	7,064	---	7,064	0.2
16	\|Starlake clay, 1 to 3 percent slopes--------		---	12,367	---	12,367	0.4	
22	\|Querencia-Lavodnas association, 2 to 15							
	\| percent slopes-----------------------------		---	26,047	---	26,047	0.9	
30	\|Orlie-Tinian complex, 1 to 6 percent slopes--		---	28,445	---	28,445	1.0	
40	\|Nuffel silt loam, 0 to 2 percent slopes------		---	633	---	633	*	
42	\|Suwanee clay loam, 0 to 2 percent slopes-----		---	2,435	---	2,435	*	
44	\|Suwanee clay, 0 to 1 percent slopes----------		---	540	---	540	*	
45	\mid Nutreeah clay loam, 0 to 2 percent slopes----\|	---	998	---	998	*		
47	\|Conchovar clay loam, 0 to 1 percent slopes---		---	195	---	195	*	
49	\|Concho clay loam, 0 to 2 percent slopes------		---	871	---	871	*	
51	\|Kwakina loamy fine sand, 0 to 2 percent							
	\| slopes---------------------------------------1	291	2,057	---	2,348	*		
52	\|Zuniven loamy fine sand, 0 to 2 percent							
	\| slopes--1	---	549	---	549	*		
53	\|Hawaikuh clay loam, 0 to 2 percent slopes----		314	2,067	---	2,381	*	
54	\|Venadito clay, saline, 0 to 2 percent slopes-		243	---	---	243	*	
55	\|Sparham clay loam, 0 to 2 percent slopes-----		---	512	---	512	*	
60	\|Redpen sandy clay loam, 0 to 2 percent slopes		61	2,164	---	2,225	*	
100	\|Norkiki-Kimnoli complex, 1 to 8 percent							
	\| slopes---	---	116,746	4,197	120,943	4.3		
110	\|Benally-Fruitland association, 1 to 5 percent							
	\| slopes-------------------------------------1	---	20,089	5,295	25,384	0.9		
111	\|Yelives fine sandy loam, 1 to 3 percent							
	\| slopes----	---	132	3,725	3,857	0.1		
115	\|Razito-Shiprock complex, 3 to 8 percent							
	\| slopes--1	---	77,896	1,434	79,330	2.8		
116	\|Fajada-Huerfano-Benally complex, 1 to 5		---	97,452	16,766	114,218	4.0	
118	\|Farb-Chipeta-Rock outcrop complex, 2 to 30		18			2.		
120	\|Doak-Shiprock complex, 1 to 8 percent slopes-		---	91,417	387	91,804	3.2	
121	\|Badland--------------------------------------1		---	4,378	535	4,913	0.2	
122	\|Rock outcrop-Farb complex, 2 to 8 percent							
	\| slopes--1	---	2,751	90	2,841	0.1		
125	\|Sanfeco fine sandy loam, 0 to 2 percent							
	\| slopes--------------------------------------1	---	6,598	98	6,696	0.2		
130	\|Chipeta-Badland-Moncisco complex, 2 to $45 \mid$ \mid percent slopes--------------------------	---	---	11,749	11,749	0.4		
150		---	1,857	---	1,857	*		
160	\|Escawetter-Riverwash-Razito association, 0 to							
	\| 5 percent slopes----------------------------		---	---	1,064	1,064	*	
205	\| Penistaja-Tintero complex, 1 to 10 percent							
	\| slopes--1	3,396	126,944	---	130,340	4.6		

See footnote at end of table.

Table 4.--Acreage and Proportionate Extent of the Soils--Continued

$\begin{gathered} \text { Map } \\ \text { symbol } \end{gathered}$	Soil name	Cibola County	McKinley County	San Juan County	Total		
					Area	Extent	
208	,	Acres	Acres	Acres	Acres	Pct	
	\|Marianolake fine sandy loam, 1 to 8 percent						
	\| slopes-	---	5,565	---	5,565	0.2	
210	\|Marianolake-Skyvillage complex, 1 to 8						
	\| percent slopes-------------------------------		---	72,901	---	72,901	2.6
212	\mid Rehobeth silty clay loam, 0 to 1 percent						
	\| slopes--------------------------------1	---	5,671	---	5,671	0.2	
215	\|Viuda-Penistaja-Rock outcrop complex, 1 to 5		---	6,983	---	6,983	0.2
220	\|Hagerwest-Bond fine sandy loams, 1 to 8						
	\| percent slopes-------	---	67,706	---	67,706	2.4	
225	\|Aquima-Hawaikuh silt loams, 1 to 5 percent						
	\| slopes-------------------------------------1		4,306	24,136	---	28,442	1.0
230	\|Sparank-San Mateo-Zia complex, 0 to 3 percent						
	\| slopes-------------------------------------		439	90,299	---	90,738	3.2
235	\|Notal-Hamburn complex, 0 to 2 percent slopes-		---	96,387	6,131	102,518	3.6
240	\|Breadsprings and Nahodish soils, 0 to 2 \mid percent slopes---------------------------	---	41,845	---	41,845	1.5	
241	\|Mentmore loam, 1 to 8 percent slopes---------		---	44,725	---	44,725	1.6
242	\|Gish-Mentmore complex, 1 to 8 percent slopes-		---	14,309	---	14,309	0.5
244	\|Buckle fine sandy loam, 1 to 8 percent slopes		---	17,938	---	17,938	0.6
245	\|Buckle-Gapmesa-Barboncito complex, 1 to 6						
	\| percent slopes--------------------------------		---	37,477	---	37,477	1.3
250	\|Hospah-Skyvillage-Rock outcrop complex, 2 to						
	\| 35 percent slopes--------------------------		---	94,605	---	94,605	3.3
255	\|Farview-Rock outcrop complex, 2 to 15 percent						
	\| slopes-------------------------------------1		---	2,406	---	2,406	*
258	\|Eagleye-Atchee-Rock outcrop complex, 2 to 35						
	\| percent slopes---------------------------------		---	84,414	---	84,414	3.0
260	\|Quarries and pits-----------------------------		---	1,298	---	1,298	*
261	\|Coal mine lands-------------------------------		---	13,243	---	13,243	0.5
265	\|Uranium mined lands--------------------------1	---	3,934	---	3,934	0.1	
270	\|Alesna-Rock outcrop complex, 15 to 55 percent						
	\| slopes-------------------------------------1		---	22,717	---	22,717	0.8
275	\|Eldado gravelly fine sandy loam, 1 to 5						
	\| percent slopes-------------------------------		---	2,137	---	2,137	*
280	\|Azabache extremely gravelly clay loam, 2 to 8	percent slopes \qquad		2,236		2,236	*
290	\|Rock outcrop-Westmion-Skyvillage complex, 30						
	\| to 80 percent slopes-----------------------		---	79,242	---	79,242	2.8
291	\|Rock outcrop-Eagleye-Atchee complex, 35 to 70						
	\| percent slopes-------------------------------		---	35,334	---	35,334	1.2
300	\|Regracic gravelly sandy clay loam, 2 to 6		---	3,631	---	3,631	0.1
305	\|Celavar-Atarque complex, 1 to 8 percent						
	\| slopes-------------------------------------1		536	45,307	---	45,843	1.6
308	\|Fikel-Venzuni complex, 1 to 6 percent slopes-		---	14,508	---	14,508	0.5
310	\|Parkelei sandy loam, 1 to 8 percent slopes---		---	24,830	---	24,830	0.9
312	\|Bluewater loam, 0 to 1 percent slopes--------		---	1,061	---	1,061	*
315	\|Flugle-Fragua complex, 1 to 10 percent slopes		10,292	66,861	---	77,153	2.7
316	\|Royosa loamy fine sand, 1 to 15 percent						
	\| slopes-------------------------------------1		106	22,943	---	23,049	0.8
317	\|Highdye-Evpark-Bryway complex, 2 to 20						
	\| percent slopes------------------------------		647	12,725	---	13,372	0.5
320	\| Parkelei-Fraguni complex, 1 to 8 percent						
	\| slopes------------------------------------1		---	70,263	---	70,263	2.5
325	\|Venzuni silty clay, 1 to 3 percent slopes----		---	1,729	---	1,729	*
332	\|Evpark-Arabrab complex, 2 to 6 percent slopes		---	55,963	---	55,963	2.0

See footnote at end of table.

Table 4.--Acreage and Proportionate Extent of the Soils--Continued

Map symbol	Soil name	Cibola County	McKinley County	San Juan County	Total		
					Area	Extent	
	\|	Acres	Acres	Acres	Acres	Pct	
$\begin{aligned} & 335 \\ & 336 \end{aligned}$	\|Venadito clay, 1 to 3 percent slopes---------		---	4,668	---	4,668	0.2
	\|Nuffel-Venadito complex, 1 to 3 percent						
	\| slopes--------------------------------1-1	4,308	5,888	---	10,196	0.4	
338	\|Zyme-Lockerby association, 5 to 35 percent						
	\| slopes--1	---	13,892	---	13,892	0.5	
345	\|Rock outcrop-Tuces complex, 20 to 70 percent						
	\| slopes--------------------------------------1	---	28,437	---	28,437	1.0	
350	\|Toldohn-Vessilla-Rock outcrop complex, 8 to						
	\| 35 percent slopes----------------------------		4,588	151,620	---	156,208	5.5
351	\|Rock outcrop-Vessilla complex, 35 to 70						
	\| percent slopes------------------------1	885	37,707	---	38,592	1.4	
352	\| Zia sandy loam, 1 to 5 percent slopes--------		1,239	33,885	---	35,124	1.2
353	\|Mido loamy fine sand, 1 to 6 percent slopes--		493	11,644	---	12,137	0.4
354	\mid Knifehill loam, 1 to 5 percent slopes--------\|	560	3,761	---	4,321	0.2	
355	\|Rizno-Tekapo-Rock outcrop complex, 2 to 45						
	\| percent slopes---------------------------------		4,525	29,993	---	34,518	1.2
357	\|Heshotauthla clay, 0 to 1 percent slopes-----		---	1,327	---	1,327	*
360	\|Hosta-Concho association, 0 to 5 percent						
	\| slopes---------------------------------------		617	35,231	---	35,848	1.3
361	\|Monpark silty clay, 2 to 8 percent slopes----		1,618	1,734	---	3,352	0.1
365	\mid Vessilla-Rock outcrop complex, 2 to 15						
	\| percent slopes----------------------------------1	---	60,187	---	60,187	2.1	
366	\|Bosonoak loam, 1 to 5 percent slopes---------		333	2,654	---	2,987	0.1
367	\|Chunkmonk very gravelly fine sandy loam, 2 to						
	\| 10 percent slopes--------------------------1	---	2,270	---	2,270	*	
368	\|Simitarq-Celavar sandy loams, 2 to 8 percent						
	\| slopes--------------------------------------1	---	25,686	---	25,686	0.9	
375	\|Todest-Shadilto complex, 2 to 8 percent						
	\| slopes--1	---	7,001	---	7,001	0.2	
376	\|Todest fine sandy loam, 2 to 8 percent slopes		---	3,688	---	3,688	0.1
380	\|Berryhill-Casamero clays, 2 to 10 percent						
	\| slopes--		---	5,364	---	5,364	0.2
385	\|Mcorreon-Rock outcrop complex, 10 to 40						
	\| percent slopes---------------------------------1	---	7,936	---	7,936	0.3	
390	\|Banquito very fine sandy loam, 1 to 3 percent						
	\| slopes---------------------------------------1	---	1,933	---	1,933	*	
395	\|Cabezon-Mcorreon complex, 2 to 8 percent						
	\| slopes-----------------------------1	---	2,445	---	2,445	*	
400	\|Shoemaker-Stozuni complex, 2 to 8 percent						
	\| slopes---------------------------------------		3,178	8,442	---	11,620	0.4
403	\|Valnor-Techado complex, 2 to 25 percent						
	\| slopes--1	1,285	4,329	---	5,614	0.2	
404	\|Rock outcrop-Techado-Stozuni complex, 5 to 60						
	\| percent slopes---------------------------------1	2,453	20,154	---	22,607	0.8	
405	\|Fortwingate-Owlrock complex, 2 to 8 percent						
	\| slopes---------------------------------------1	---	11,209	---	11,209	0.4	
406	\| Polich silt loam, 0 to 3 percent slopes------		---	392	---	392	*
407	\|Cinnadale-Heckly association, 5 to 40 percent						
	slopes--	---	2,112	---	2,112	*	
408	\|Mirabal-Zuni complex, 1 to 40 percent slopes-		---	3,419	---	3,419	0.1
409	\|Rauster-Rock outcrop complex, 5 to 35 percent						
	\| slopes--1	---	1,497	---	1,497	*	
410	\|Montillo-Tsoodzil complex, 5 to 35 percent						
	\| slopes--------------------------------------		116	4,823	---	4,939	0.2
411	\|Ligocki-Robolata complex, 1 to 5 percent						
	\| slopes--		---	2,911	---	2,911	0.1

See footnote at end of table.

Table 4.--Acreage and Proportionate Extent of the Soils--Continued

$\begin{gathered} \text { Map } \\ \text { symbol } \end{gathered}$	Soil name	Cibola County	McKinley County	San Juan County	Total			
					Area	Extent		
	\|	Acres	Acres	Acres	Acres	Pct		
412	\|Rock outcrop-Rionutria-Zaster association, 15		to 80 percent slopes-------------------------	---	1,310	---	1,310	*
413	\|Morclay silty clay, 1 to 5 percent slopes----		---	685	---	685	*	
414	\mid Zunalei-Corzuni loamy fine sands, 2 to $10 \mid$ \mid percent slopes--------------------------	1,250	5,369	---	6,619	0.2		
415		---	4,673	---	4,673	0.2		
416	\|Rock outcrop-Bluesky complex, 5 to 80 percent	 \| slopes-------------------------------		1,155	---	1,155	*	
418			3,795	---	3,795	0.1		
419	\|Fortwingate-Cinnadale-Rock outcrop complex, 5		to 45 percent slopes---------------------	---	1,768	---	1,768	*
420	\|Seco clay loam, 1 to 5 percent slopes--------		---	1,132	---	1,132	*	
425	\|Montillo-Canoneros complex, 2 to 6 percent		198	13,430	---	13,628	0.5	
430	\|Montillo gravelly loam, 2 to 6 percent slopes		330	15,067	---	15,397	0.5	
435	\|Tsoodzil-Amcec association, 5 to 50 percent		slopes--------------------------------	126	10,975		11,101	0.4
440	\|Chivato clay, 0 to 1 percent slopes----------		---	1,131	---	1,131	*	
525	\|Silcat clay loam, 1 to 10 percent slopes-----		3,065	5,100	---	8,165	0.3	
550	\|Bryway-Galzuni loams, 1 to 8 percent slopes--		7,803	32,118	---	39,921	1.4	
555	\mid Parkelei-Evpark fine sandy loams, 2 to 8 \mid percent slopes--------------------------	4,593	58,325	---	62,918	2.2		
560	\|Flugle-Teczuni complex, 1 to 5 percent slopes		1,787	4,329	---	6,116	0.2	
561	\|Flugle-Plumasano association, 2 to 8 percent		9,000	11,459	---	20,459	0.7	
565	\| Plumasano-Rock outcrop complex, 15 to $40 \mid$ \mid percent slopes------------------------	4,635	21,047	---	25,682	0.9		
566	\| Bamac extremely gravelly sandy loam, 5 to 50		---	4,524	---	4,524	0.2	
575	\|Ramah-Pescado association, 1 to 8 percent		slopes------------------------------	-	1,528	---	1,528	*
		79,668	2,699,606	58,265	2,837,539	100.0		

[^0]Table 5.--Land Capability for Irrigated Land and Yields Per Acre of Crops and Pasture
(Yields are those that can be expected under a high level of management. They are for irrigated areas. Absence of a yield indicates that the soil is not suited to the crop or the crop generally is not grown on the soil.)

| Table 5.--Land Capability for Irrigated Land and Yields per Acre of Crops and |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Pasture--Continued |

Table 6.--Rangeland Productivity and Characteristic Plant Communities
(Only the soils that support rangeland vegetation suitable for grazing are rated.)

Map symbol and soil name	Ecological site	Total dry-weight production			Characteristic vegetation	Composition	
		Favorable year	Normal year	\|Unfavorable \| year			
10:		Lb/acre	Lb/acre	Lb/acre			
Tsosie	\|Salt Flats	700	500	300	\|alkali sacaton-----------------		25
				\|	\| galleta-------------------------		15
	\|			\|	\| fourwing saltbush--------------		10
	\|			\|	\|big sagebrush-------------------		5
				\|	\|blue grama---------------------	5	
	\|			\|	\| greasewood---------------------	5	
	,			\|	\|mound saltbush------------------	5	
	,			\|	\|other annual forbs-------------		5
	\|			\|	\|miscellaneous perennial forbs--	5	
	,			\|	\|western wheatgrass-------------		5
	\|			1			
Councelor	\| Sandy	900	600	300	\| Indian ricegrass---------------		20
				\|	\|blue grama---------------------	10	
				\|	\|big sagebrush------------------		5
	,			\|	\|bottlebrush squirreltail-------		5
	\|			\|	\|needle and thread--------------		5
				\|	\|sand dropseed------------------		5
				\|	\|spike dropseed------------------		5
	\|			\|	\|winterfat----------------------		5
	\|			\|	\|mesa dropseed------------------		3
				\|	\|Mormon tea----------------------		3
	\|			\|	\|other annual forbs-------------	3	
	\|			\|	\|miscellaneous perennial forbs--		3
	\|			\|	\|giant dropseed-----------------		2
				\|			
Blancot------------	\|Loamy	800	500	300	\|big sagebrush------------------		15
				\|	\|blue grama---------------------		15
	\|			\|	\| Indian ricegrass---------------		10
				\|	\| galleta------------------------	10	
				\|	\|alkali sacaton-----------------		5
	\|			\|	\|bottlebrush squirreltail-------		5
	\|			\|	\| fourwing saltbush--------------		5
				\|	\|needle and thread--------------		5
	\|			\|	\|other annual forbs-------------		5
	,			\|	\|miscellaneous perennial forbs--		5
	\|			\|	\|perennial forbs----------------		5
	\|			\|	\|sand dropseed-------------------		5
	\|			\|	\|western wheatgrass-------------	5	
	\|			\|	\|rabbitbrush---------------------	3	
	\|				\|winterfat----------------------	3	
	\|			,	\|Mormon tea----------------------		2

Table 6.--Productivity and Characteristic Plant Communities--Continued

Table 6.--Productivity and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site	Total dry-weight production			\| Characteristic vegetation	Composition		
		Favorable year	Normal year	\|Unfavorable \| year				
30:		Lb/acre	Lb/acre	Lb/acre		Pct		
Orlie	Loamy	1,100	850	600	\|western wheatgrass-------------		20	
				\|		\| Indian ricegrass---------------		10
	\|			\|		\|big sagebrush-------------------		10
	\|			\mid	\|blue grama----------------------		10	
				\mid	\|bottlebrush squirreltail-------		5	
				\mid	\| galleta-------------------------	5		
	,			\mid \|	\|winterfat-----------------------		5	
				1	\|broom snakeweed----------------		3	
				\|	\|muttongrass---------------------		3	
					\|other annual forbs-------------		3	
				\|	\|miscellaneous perennial forbs--		3	
				\|	\|rabbitbrush--------------------		3	
					\|spineless horsebrush-----------		3	
					\| oneseed juniper-----------------		2	
					\|twoneedle pinyon---------------		2	
Tinian	Loamy	1,100	850	600	\|western wheatgrass-------------		20	
					\| Indian ricegrass---------------		10	
				\|	\|big sagebrush------------------		10	
				\|	\|blue grama----------------------		10	
					\|bottlebrush squirreltail-------		5	
					\| galleta-------------------------		5	
					\|other annual forbs-------------		5	
					\|spineless horsebrush-----------		5	
					\|winterfat------------------------	5		
				\|	\|muttongrass---------------------		3	
					\| oneseed juniper-----------------		2	
					\|twoneedle pinyon---------------		2	
40:				\|				
Nuffel	\|Bottomland	4,500	3,000	1,250	\|alkali sacaton	30		
					\|western wheatgrass	20		
					\|fourwing saltbush--------------		10	
					\|blue grama----------------------		5	
				\|	\| galleta-------------------------		5	
					\|miscellaneous perennial forbs--		5	
					\|spike muhly---------------------		5	
					\|mat muhly-----------------------		3	
				\|	\|other annual forbs--------------		3	
					\| sand dropseed-------------------		3	
					\|spineless horsebrush-----------		1	
42:								
Suwanee-	\|Bottomland	4,500	3,000	1,250	\|alkali sacaton-----------------		30	
	Bottonla				\|western wheatgrass-------------		20	
				\|	\|fourwing saltbush--------------		10	
	\|			\|	\|blue grama-----------------------		5	
	\|			\|	\| galleta--------------------------		5	
	\|			\|	\|miscellaneous perennial forbs--		5	
	,			\|	\|spike muhly---------------------		5	
				\|	\|mat muhly-----------------------	3		
	\|			\|	\|other annual forbs--------------		3	
	\|			\|	\|sand dropseed-------------------		3	
				\|	\|spineless horsebrush-----------		1	
	,							

Table 6.--Productivity and Characteristic Plant Communities--Continued

Map symbol and soil name	\| Ecological site	Total dry-weight production			Characteristic vegetation	Composition		
		Favorable year	Normal year	\|Unfavorable year				
44:	\|	Lb/acre	Lb/acre	Lb/acre		Pct		
	\|							
				1 \|				
Suwanee-	\|Clayey Bottomland	4,000	3,000	1,250	\|western wheatgrass-------------		25	
				\|		\|alkali sacaton-----------------		20
	,			\mid \|	\|fourwing saltbush--------------		10	
	\|			\|	\|galleta-------------------------1	10		
	\|			\|	\|blue grama----------------------		5	
	,			1	\|spike muhly--------------------		5	
	\|			\|	\|mat muhly------------------------	3		
	\|			\|	\|other annual forbs-------------		3	
	,			\mid \|	\|miscellaneous perennial forbs--		2	
	\|			\mid \|	\|broom snakeweed----------------		1	
	\|			\|	\|rabbitbrush--------------------		1	
	,			\|				
45:	\|			\|				
Nutreeah-	\| Clayey	1,200	1,000	800	\|western wheatgrass--------------		25	
	\|			,	\|alkali sacaton-----------------		15	
	\|			\|	\|big sagebrush------------------		5	
	,			,	\|blue grama----------------------	5		
	\|			\|	\|bottlebrush squirreltail-------		5	
	\|			\mid \|	\|fourwing saltbush--------------		5	
	\|			\mid	\|galleta-------------------------		5	
	\|			I	\|other annual forbs-------------		5	
	\|			\mid	\|miscellaneous perennial forbs--		5	
	\|				\| Indian ricegrass---------------		3	
	\|			\mid \|	\|rabbitbrush---------------------	3		
	\|				\|winterfat------------------------	3		
				\|				
47:	\|			\|				
Conchovar-	\|Salty Bottomland	2,500	1,500	800		30		
					\|western wheatgrass	20		
	\|			\mid	\|bottlebrush squirreltail-------		10	
	\|			I	\|fourwing saltbush--------------		10	
	\|			\|	\| galleta--------------------------		10	
	\|			,	\|big sagebrush-------------------		5	
	\|			\mid \|	\|blue grama----------------------		5	
	\|			\mid	\| greasewood-----------------------		5	
	\|			\mid	\|inland saltgrass----------------		5	
	\|				\|other annual forbs--------------		5	
	\|				\|miscellaneous perennial forbs--		5	
	\|				\|mat muhly------------------------	3		
	\|			1				
49 :	\|			1				
Concho-	\| Clayey	1,200	1,000	800	\|western wheatgrass-------------		25	
	\|				\|alkali sacaton-----------------		15	
	\|				\|big sagebrush-------------------		5	
	\|			\|	\|blue grama----------------------		5	
	\|			\|	\|bottlebrush squirreltail-------		5	
	\|			\|	\|fourwing saltbush--------------		5	
	,			\|	\| galleta-------------------------		5	
	\|			\|	\|other annual forbs-------------		5	
	\|				\|miscellaneous perennial forbs--		5	
	\|			\|	\| Indian ricegrass---------------		3	
	\|			\|	\|rabbitbrush---------------------		3	
	\|			-	\|winterfat-----------------------		3	
	\|			1				

Table 6.--Productivity and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site	Total dry-weight production			Characteristic vegetation	Composition		
		Favorable year	Normal year	\|Unfavorable \| year				
51:		Lb/acre	Lb/acre	Lb/acre		Pct		
Kwakina	\| Bottomland	4,500	3,000	1,250	\|alkali sacaton-----------------		30	
				\|		\|western wheatgrass-------------		20
				\|		\|fourwing saltbush--------------		10
				\mid	\|blue grama----------------------	5		
				\|		\| galleta-------------------------		5
				\mid	$\|m i s c e l l a n e o u s ~ p e r e n n i a l ~ f o r b s--\| ~$	5		
	,			\mid	\|spike muhly---------------------		5	
				\|	\|mat muhly-----------------------	3		
	,			\|	\|other annual forbs-------------		3	
					\|sand dropseed-------------------		3	
				\|	\|spineless horsebrush-----------		1	
Zuniven								
	\|Riparian	---	---	---	\| cottonwood-----------------------		---	
					\| rush-----------------------------		---	
				\|	\|willow---------------------------		---	
53:								
Hawaikuh	\|Clayey	1,200	1,000	800	\|alkali sacaton-----------------		20	
					\|western wheatgrass--------------		20	
				\|	\| galleta-------------------------		10	
					\| Indian ricegrass---------------		5	
				\|	$\mid \mathrm{blue}$ grama----------------------	5		
				\|	\|bottlebrush squirreltail-------		5	
				\|	\|broom snakeweed-----------------		5	
					\|fourwing saltbush--------------		5	
				\|	\| threeawn-------------------------		5	
					\|winterfat------------------------		5	
				\|	\|mat muhly-----------------------	3		
					\|spike muhly---------------------		2	
					\|oneseed juniper----------------		1	
54:								
Venadito-	Clayey Bottomland	2,500	1,600	800		30		
					\|western wheatgrass	15		
				\|	\| fourwing salt tbush--------------		10	
				\|	\|blue grama----------------------		5	
				\|	\| greasewood----------------------		5	
				\|	\| inland saltgrass----------------		5	
					\|other annual forbs-------------		5	
					$\|m i s c e l l a n e o u s ~ p e r e n n i a l ~ f o r b s--\| ~$	5		
				\|	\|mat muhly-----------------------		3	
				\|				
55:				\|				
Sparham	\| Swale	1,700	1,200	800		30		
				\|	\|blue grama	10		
				\|	\|big sagebrush------------------		5	
				\|	\|muttongrass----------------------	5		
				\|	\|rabbitbrush---------------------		5	
				\|	\|broom snakeweed-----------------		3	
	\|			\|	\|other annual forbs--------------		3	
	\|			\|	\|miscellaneous perennial forbs--		2	
	\|			1	\|sedge----------------------------	2		
	\|			1				

Table 6.--Productivity and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site	Total dry-weight production			Characteristic vegetation	Composition	
		Favorable year	Normal year	$\begin{aligned} & \mid \text { Unfavorable } \mid \\ & \mid \text { year } \end{aligned}$			
60.	\|	Lb/acre	Lb/acre	Lb/acre		Pct	
	\|						
	,	1,500	1,000	500			
Redpen	Loamy				\|blue grama----------------------		20
					\|western wheatgrass-------------		20
					\|miscellaneous perennial forbs--		8
					\|spike muhly---------------------		8
					\|alkali sacaton-----------------		5
					\|bottlebrush squirreltail-------		5
					\|fourwing saltbush--------------		5
					\| galleta--------------------------1	5	
					\|other annual forbs--------------		5
					\|winterfat-----------------------	5	
					\|oneseed juniper-----------------		2
					\|broom snakeweed----------------		1
					\| rabbitbrush---------------------		1
					\|spineless horsebrush-----------		1
```100: Norkiki-```		250	200	100			
	\|Sandy Loam Upland 5-8 Pz				\| Indian ricegrass	20	
					\|galleta	15	
					\|Bigelow sagebrush--------------		10
					\|New Mexico Feathergrass--------		10
					\|Ephedra-------------------------		5
					\|alkali sacaton------------------		5
					\|blue grama----------------------		5
					\|other annual forbs--------------		3
					\| rabbitbrush----------------------	3	
					\|black grama--------------------		2
					\|fourwing saltbush--------------		2
					\|miscellaneous perennial forbs--		2
					\|shadscale saltbush-------------		2
					\|narrowleaf yucca---------------		1
					\|sand dropseed------------------		1
		250					
Kimnoli	\|Sandstone Upland 5-8"		200	100	\|Indian ricegrass---------------		20
	\| P.z.				\|Bigelow sagebrush--------------		10
					\| galleta--------------------------		10
	\|				\|New Mexico Feathergrass--------		5
					\|black grama---------------------		5
	\|				\|blue grama---------------------		5
	\|				\|fourwing saltbush---------------		5
	\|				\|Mormon tea-----------------------		5
	\|				\| sand dropseed------------------		5
	\|				\|shadscale saltbush-------------		5
	\|				\|sideoats grama------------------		5
	\|				\|other annual forbs-------------		3
	\|				\|miscellaneous perennial forbs--		2
	\|				\|narrowleaf yucca---------------		1
					-		

Table 6.--Productivity and Characteristic Plant Communities--Continued


Table 6.--Productivity and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site	Total dry-weight production			Characteristic vegetation	Composition			
		Favorable year	Normal year	$\begin{aligned} & \mid \text { Unfavorable } \\ & \mid \text { year } \end{aligned}$					
115:	\|	Lb/acre	Lb/acre	Lb/acre		Pct			
	,								
Shiprock	\|Sandy Loam Upland 5-8 Pz	550	400	300	\| Indian ricegrass---------------		30		
					\|blue grama----------------------	10			
	\|				\| galleta-------------------------		10		
	\|				\|fourwing saltbush--------------		5		
	\|				\|winterfat-----------------------		5		
	\|				\|bottlebrush squirreltail-------		3		
	\|				\|miscellaneous perennial forbs--		3		
	\|				\|other annual forbs-------------		2		
	\|				\|sand dropseed-------------------		2		
	\|				\|broom snakeweed----------------		1		
	\|					\|rabbitbrush---------------------		1	
	\|				\|sandhill muhly-----------------		1		
	\|			\|					
116:									
Fajada-	\|Loamy Upland (sodic) 5-8"		500	400	300	\|alkali sacaton-----------------		25	
	\| P.z.				\|mound saltbush------------------	15			
					\| saltbush------------------------	15			
	\|			\|	\| galleta--------------------------		10		
	\|					\| Indian ricegrass---------------		5	
	\|				\|blue grama----------------------		3		
	\|			\|		\|other annual forbs-------------		3	
	\|				\|miscellaneous perennial forbs--		2		
	\|					\|sand dropseed-------------------		1	
	\|				\|		\|shadscale saltbush-------------		1
Huerfano-	\|Loamy Upland (sodic) 5-8"		500	400	300	\|alkali sacaton-----------------		25	
	\| P.z.				\|mound saltbush------------------		15		
				\|	\| galleta-------------------------		10		
	\|					\| Indian ricegrass----------------		5	
	\|					\|blue grama----------------------	3		
	\|					\|other annual forbs-------------		3	
	\|					\|miscellaneous perennial forbs--		2	
	\|					\| sand dropseed------------------		1	
	\|					\|shadscale saltbush-------------		1	
Benally----------	\|Loamy Upland (sodic) 5-8"		500	400	300	\|alkali sacaton------------------		25	
	\| P.z.					\|mound saltbush------------------		15	
					\| galleta------------------------		10		
	\|					\| Indian ricegrass----------------		5	
	\|					$\mid \mathrm{blue}$ grama---------------------	3		
	\|					\|other annual forbs-------------		3	
	\|					$\|m i s c e l l a n e o u s ~ p e r e n n i a l ~ f o r b s--\| ~$	2		
	,				\| sand dropseed-------------------		1		
	\|				\|shadscale saltbush-------------		1		
				,					

Table 6.--Productivity and Characteristic Plant Communities--Continued


Table 6.--Productivity and Characteristic Plant Communities--Continued


Table 6.--Productivity and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site	Total dry-weight production			\| Characteristic vegetation	Composition		
		Favorable year	Normal   year	\|Unfavorable year				
	\|	Lb/acre	Lb/acre	Lb/acre		Pct		
	I				\|			
150:								
Riverwash--------	---	---	---	---	---	---		
Escawetter-	\|Sandy Bottomland	3,000	2,000	1,200	\|alkali sacaton-----------------		20	
	\| (subirrigated)				\|inland saltgrass---------------		20	
					\|Indian ricegrass---------------		10	
	\|				\|miscellaneous perennial grasses		5	
	\|			\|		\|saltcedar-----------------------		5
	\|					\|sand dropseed------------------		5
	\|			\|		\|western wheatgrass-------------		5
	\|				\|Russian-olive------------------		3	
	,				\|miscellaneous perennial forbs--		3	
	\|				\|bottlebrush squirreltail-------		2	
	\|			\|				
160:								
Escawetter-	\|Sandy Bottom	1,000	800	600	\|alkali sacaton-----------------		20	
	\| (subirrigated) 5-8" P.z.					\|inland saltgrass---------------		20
				\|		\| Indian ricegrass---------------		10
	\|				\|	\|miscellaneous perennial grasses		5
	\|				\|saltcedar----------------------		5	
	\|			1 \|	\| sand dropseed-------------------		5	
					\|western wheatgrass-------------		5	
				\|		\|Russian-olive-------------------		3
	\|			\|		\|miscellaneous perennial forbs--		3
	\|			\|		\|bottlebrush squirreltail-------		2
				\|				
Riverwash--------	\| ---	---	---	---	---	---		
Razito-	\|Sandy Upland 5-8" P.z.	500	400	250		20		
					\|Mormon tea	10		
				,	\|blue grama-----------------------	5		
	\|			,	\| galleta--------------------------		5	
	,			\|	\|sand dropseed-------------------		5	
	\|				\|sandhill muhly------------------		5	
	\|			$\mid$ \|	\|spike dropseed-----------------		3	
	\|				\|broom snakeweed-----------------		2	
				\|	\|fourwing saltbush--------------		2	
	,				\|giant dropseed-----------------		2	
	\|			\|	\|needle and thread--------------		2	
	,			\|	\|other annual forbs--------------		2	
				,	\|miscellaneous perennial forbs--		2	
				1 \|	\|rabbitbrush--------------------		2	
	,				\|winterfat-----------------------		1	
				\|				
205:								
Penistaja-----------	\|Loamy	1,500	1,000	500	\|blue grama----------------------		20	
					\|western wheatgrass	20		
	\|				\|	\|miscellaneous perennial forbs--		8
	\|			\|	\|spike muhly--------------------		8	
	\|			\|	\|alkali sacaton------------------		5	
	\|			\|	\|bottlebrush squirreltail-------		5	
	\|			\|	\|fourwing saltbush-------------		5	
	\|				\| galleta-------------------------		5	
	\|			\|	\|other annual forbs-------------		5	
	\|			\|	\|winterfat-----------------------		5	
	\|			\|	\|oneseed juniper-----------------		2	
	\|			\|	\|broom snakeweed----------------		1	
	\|			\|	\|rabbitbrush---------------------		1	
	\|				\|	\|spineless horsebrush-----------		1
	I			,				

Table 6.--Productivity and Characteristic Plant Communities--Continued


Table 6.--Productivity and Characteristic Plant Communities--Continued

Map symbol and soil name	\| Ecological site	Total dry-weight production			Characteristic vegetation	Composition		
		Favorable year	Normal year	\|Unfavorable   \| year				
		Lb/acre	Lb/acre	Lb/acre		Pct		
	\|							
240:				1				
Breadsprings-------	\|Salty Bottomland	2,500	1,600	800	\|alkali sacaton-----------------		30	
				\|		\|western wheatgrass-------------		20
	\|			\|		\|bottlebrush squirreltail-------		10
	\|			\|		\|fourwing saltbush--------------		10
	\|			\|		\| galleta-------------------------		10
	,			\|		\|big sagebrush-------------------		5
	\|			\|		\|blue grama----------------------		5
	\|			1	\| greasewood-----------------------1	5		
	\|			\|		\|inland saltgrass---------------		5
	,			\|		\|other annual forbs-------------		5
	\|			\|		\|miscellaneous perennial forbs--		5
	,			\|		\|mat muhly----------------------		3
				\|				
Nahodish-	\|Salty Bottomland	2,500	1,600	800	\|alkali sacaton------------------		30	
					\|western wheatgrass-------------		15	
	\|			\|		\|fourwing saltbush--------------		10
	\|			\|		\|blue grama----------------------		5
	\|			\|		\|bottlebrush squirreltail-------		5
	\|			1	\| greasewood----------------------		5	
	\|			1 \|	\|inland saltgrass----------------		5	
	,			\|		\|mound saltbush------------------	5	
	\|			1	\|other annual forbs--------------		5	
	\|			\|		\|miscellaneous perennial forbs--		5
	\|			\|		\|mat muhly-----------------------		3
	\|				\| rabbitbrush----------------------	3		
	\|			\|				
241:	,			\|				
Mentmore-	\|Loamy	1,500	1,000	500		20		
					\| Indian ricegrass----------------		10	
	\|			$\mid$	\|big sagebrush-------------------		10	
	\|			$\mid$	\|blue grama-----------------------	10		
	\|			\|		\|bottlebrush squirreltail-------		5
	\|			\|		\| galleta-------------------------		5
	\|			1	\|oneseed juniper-----------------		5	
	\|			$\mid$	\|winterfat-----------------------		5	
	\|			1	\|broom snakeweed-----------------		3	
	\|			\|		\|muttongrass---------------------		3
	\|			1	\|other annual forbs--------------		3	
	\|			$\mid$	\|miscellaneous perennial forbs--		3	
	\|			\|		\| rabbitbrush--------------------		3
	\|				\|spineless horsebrush----------		2	
	\|			$\mid$	\| twoneedle pinyon---------------		2	
				1				
242:				1				
Gish-	\| Clayey	1,200	1,000	800	\|western wheatgrass-------------		25	
	,				\|alkali sacaton------------------		15	
	\|			$\mid$	\|big sagebrush-------------------		5	
	\|			$\mid$	\|blue grama-----------------------		5	
	\|			$\mid$	\|bottlebrush squirreltail-------		5	
	\|			$\mid$	\|fourwing saltbush---------------		5	
	\|			$\mid$	\| galleta------------------------		5	
	\|			$\mid$	\|other annual forbs--------------		5	
	\|			$\mid$	\|miscellaneous perennial forbs--		5	
	\|			1 \|	\| Indian ricegrass---------------		3	
	\|			$\mid$ \|	\| rabbitbrush----------------------	3		
	\|			$\mid$	\|winterfat------------------------		3	

Table 6.--Productivity and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site	Total dry-weight production			\| Characteristic vegetation	Composition		
		Favorable year	Normal   year	\|Unfavorable year				
242:		Lb/acre	Lb/acre	Lb/acre		Pct		
Mentmore	Loamy	1,500	1,000	500	\|western wheatgrass-------------		20	
					\| Indian ricegrass---------------		10	
					\|big sagebrush-------------------		10	
	,			$\mid$ \|	\|blue grama----------------------		10	
				\|		\|bottlebrush squirreltail-------		5
					\| galleta--------------------------1	5		
				\|		\| oneseed juniper-----------------		5
				$\mid$ \|	\|winterfat------------------------1	5		
				$\mid$	\|broom snakeweed-----------------		3	
					\|muttongrass---------------------	3		
					\|other annual forbs--------------		3	
						3		
					\| rabbitbrush--------------------		3	
					\|spineless horsebrush-----------		2	
					\|twoneedle pinyon----------------		2	
244:								
Buckle-	Loamy	1,500	1,000	500	\|western wheatgrass--------------		20	
					\| Indian ricegrass---------------		10	
				$\mid$	\|big sagebrush-------------------		10	
					\|blue grama----------------------	10		
					\|bottlebrush squirreltail-------		5	
					\| galleta-------------------------		5	
					\| oneseed juniper-----------------		5	
					\|winterfat------------------------	5		
					\|broom snakeweed-----------------		3	
				\|		\|muttongrass----------------------	3	
					\|other annual forbs-------------		3	
					\|miscellaneous perennial forbs--		3	
					\| rabbitbrush---------------------		3	
					\|spineless horsebrush-----------		2	
					\|twoneedle pinyon----------------		2	
245:	\|							
Buckle--------------	Loamy	1,500	1,000	500		20		
					\| Indian ricegrass---------------		10	
					\|big sagebrush-------------------		10	
				\|	\|blue grama----------------------		10	
				\|	\|bottlebrush squirreltail-------		5	
					\|galleta--------------------------		5	
	\|				\| oneseed juniper-----------------		5	
	\|			\|	\|winterfat------------------------	5		
	,			\|	$\mid$ broom snakeweed------------------	3		
	\|			\|	\|muttongrass---------------------	3		
	\|			\|	\|other annual forbs-------------		3	
	\|			\|	\|miscellaneous perennial forbs--		3	
	\|			1	\| rabbitbrush---------------------		3	
	\|			1	\|spineless horsebrush-----------		2	
	\|			1	\|twoneedle pinyon----------------		2	

Table 6.--Productivity and Characteristic Plant Communities--Continued


Table 6.--Productivity and Characteristic Plant Communities--Continued


Table 6.--Productivity and Characteristic Plant Communities--Continued


Table 6.--Productivity and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site	Total dry-weight production			Characteristic vegetation	Composition		
		Favorable year	Normal year	$\begin{aligned} & \mid \text { Unfavorable } \mid \\ & \mid \text { year } \end{aligned}$				
		Lb/acre	Lb/acre	Lb/acre		Pct		
291:								
Rock outcrop-------	---	---	---	---	---	---		
Eagleye-	\|clayey	800	650	500	\|western wheatgrass-------------		25	
	\|				\|alkali sacaton------------------		15	
	\|				\|big sagebrush------------------		5	
	\|				\|blue grama----------------------		5	
	\|				\|bottlebrush squirreltail-------		5	
	\|				\|fourwing saltbush--------------		5	
	\|				\| galleta-------------------------		5	
	\|	\|			\|other annual forbs-------------		5	
	\|				\|miscellaneous perennial forbs--		5	
	\|				\| Indian ricegrass---------------		3	
	\|				\|rabbitbrush---------------------		3	
	\|				\|winterfat-----------------------		3	
Atchee-	\|Clayey	800	650	500	\|alkali sacaton-----------------		20	
	\|				\|western wheatgrass-------------		20	
	\|	\|		\|		\| galleta--------------------------	10	
	\|			\|		\|Indian ricegrass---------------		5
	\|	\|			\|blue grama----------------------		5	
	\|	\|			\|bottlebrush squirreltail-------		5	
	\|	\|			\|broom snakeweed-----------------		5	
	\|	\|			\| oneseed juniper-----------------	5		
	\|	\|			\| threeawn-----------------------		5	
	\|				\|twoneedle pinyon---------------		5	
	\|				\|winterfat-----------------------	5		
	\|				\|mat muhly------------------------	3		
	\|				\|spike muhly---------------------	2		
305:								
Celavar-------------	\|Savannah	875	500	300	\|blue grama---------------------		20	
					\|western wheatgrass-------------		15	
	\|				\| Indian ricegrass---------------		5	
	\|				\|needle and thread--------------		5	
	\|	\|			\| oneseed juniper-----------------		5	
	\|	\|			\|other annual forbs-------------		5	
	\|				\|miscellaneous perennial forbs--		5	
	\|	\|			\|sand dropseed-------------------		5	
	\|				\|twoneedle pinyon----------------		5	
	\|				\|muttongrass----------------------	3		
	\|				\|rabbitbrush---------------------		3	
	\|	\|			\|winterfat-----------------------	3		
	\|	\|			\|Bigelow sagebrush---------------		2	
	\|				\|bottlebrush squirreltail-------		2	
	I				\|spineless horsebrush-----------		2	
Atarque-	\|Shallow Sandstone	700	500	275	\| Indian ricegrass---------------		10	
					\|New Mexico Feathergrass--------		10	
	\|	\|		1	\|blue grama----------------------		10	
	I	\|			\|little bluestem-----------------		10	
	\|	\|			\|sideoats grama-----------------		10	
	\|	\|			\|Bigelow sagebrush--------------		5	
	\|	\|		\|		\|fourwing saltbush--------------		5
	I	\|			\| galleta-------------------------		5	
	\|	\|		$\mid$	\|other annual forbs-------------		5	
	\|	\|		$\mid$ \|	\|miscellaneous perennial forbs--		5	
	\|	\|		$\mid$	\|rabbitbrush---------------------	3		
	\|	\|			\|twoneedle pinyon---------------		3	
	\|	\|		$\mid$		2		
	\|	\|		$\mid$	\| oneseed juniper-----------------		2	

Table 6.--Productivity and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site	Total dry-weight production			Characteristic vegetation	Composition		
		Favorable year	Normal year	\|Unfavorable   \| year				
308:	\|	Lb/acre	Lb/acre	Lb/acre		Pct		
				\|				
Fikel	\|Clayey	1,200	800	600	\|alkali sacaton-----------------		20	
					\|western wheatgrass-------------		20	
	\|			\|		\| galleta--------------------------1	10	
	\|			\|		\| Indian ricegrass---------------		5
				$\mid$ \|	\|blue grama----------------------		5	
	\|			\|		\|bottlebrush squirreltail-------		5
	\|			\|		\|broom snakeweed----------------		5
	\|			\|		\| fourwing saltbush--------------		5
	,			\|		\| threeawn------------------------		5
	\|			\|		\|winterfat-----------------------		5
	\|			\|		\|mat muhly-----------------------	3	
	\|			\|		\|spike muhly--------------------		2
				\|				
Venzuni-	\|Clayey	1,200	800	600	\|alkali sacaton------------------		20	
	\|				\|western wheatgrass-------------		20	
	\|			\|		\| galleta--------------------------		10
	\|			\|		\| Indian ricegrass---------------		5
				\|		\|blue grama----------------------	5	
	,			\|		\|bottlebrush squirreltail-------		5
	\|			\|		\|broom snakeweed----------------		5
				\|		\|fourwing saltbush---------------		5
				\|		\| threeawn------------------------		5
	\|			\|		\|turpentine bush----------------		5
	\|			\|		\|winterfat-----------------------		5
	\|			$\mid$	\|mat muhly-----------------------		3	
	\|			1	\|spike muhly---------------------		2	
				\|				
310:				1				
Parkelei	\|Loamy	1,100	800	600	\|western wheatgrass-------------		20	
					\| Indian ricegrass---------------		10	
	\|			$\mid$	\|big sagebrush-------------------		10	
	\|			$\mid$	\|blue grama----------------------		10	
	\|			\|		\|bottlebrush squirreltail-------		5
	\|			\|		\| galleta-------------------------		5
	\|			1	\| oneseed juniper-----------------		5	
	\|			\|		\|winterfat-----------------------	5	
	\|			1	\|broom snakeweed-----------------		3	
	\|			1	\|muttongrass----------------------	3		
	\|			1	\|other annual forbs-------------		3	
	\|			\|		\|miscellaneous perennial forbs--		3
	\|			1	\| rabbitbrush--------------------		3	
					\|spineless horsebrush-----------		2	
	\|				\|twoneedle pinyon----------------		2	
	\|			1				
312:	\|							
Bluewater	\|Meadow	3,000	2,000	1,500	\|western wheatgrass-------------		20	
	,				\| rush---------------------------	10		
	\|			1	\| sedge---------------------------		10	
	\|			$\mid$	\|California brome----------------		5	
	\|			\|		\|bottlebrush squirreltail-------		5
	\|			$\mid$	\|slender wheatgrass-------------		5	
	\|			$\mid$ \|	\|willow--------------------------		5	
	\|			\|		\| clover---------------------------		3
	\|			$\mid$	\|other annual forbs--------------		3	
	\|			$\mid$	\|miscellaneous perennial forbs--		3	

Table 6.--Productivity and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site	Total dry-weight production			Characteristic vegetation	Composition	
		Favorable year	Normal   year	\|Unfavorable   \| year			
	\|	Lb/acre	Lb/acre	Lb/acre		Pct	
	\|						
315:							
Fragua	\| Sandy Slopes	1,800	1,200	600	\| Indian ricegrass--------------	15	
	\|			\|	\|blue grama----------------------1	10	
	\|			\|	\|western wheatgrass-------------		10
	,			\|	\| galleta-------------------------1	5	
	\|			$\mid$	\|needle and thread---------------	5	
	\|			\|	\|other annual forbs-------------		5
	,			1	$\mid$ miscellaneous perennial forbs--\|	5	
	\|			$\mid$	\| rabbitbrush--------------------		5
	\|			\|	\| sand dropseed-------------------		5
	\|			$\mid$	\|spineless horsebrush-----------		5
	,			1	\| threeawn-------------------------		5
	\|			\|	\|oneseed juniper----------------		3
	,			1	\|ring muhly----------------------		3
				1	\|twoneedle pinyon----------------		1
				\|			
316:				\|			
Royosa	\|Sandy Plains	1,100	800	500	\|blue grama---------------------		20
				\|	\| Indian ricegrass	10	
	\|			1	\|big sagebrush-------------------		10
	\|			\|	\|oneseed juniper-----------------		10
	,			$\mid$	\| sand sagebrush------------------		10
	\|			\|	\|little bluestem-----------------		5
	\|			\|	\|other annual forbs-------------		5
	\|			\|	$\mid$ miscellaneous perennial forbs--\|	5	
				\|	\|rabbitbrush---------------------		5
				\|	\|twoneedle pinyon----------------		5
	,			$\mid$	\|antelope bitterbrush------------		2
	-			\|	\|cliffrose-----------------------	2	
				\|	\|spineless horsebrush-----------		---
				1			
325:	,			\|			
Venzuni-	\|Clayey	3,000	2,000	1,500	\|western wheatgrass--------------		25
				\|	\|alkali sacaton-----------------		15
				\|	\|big sagebrush-------------------		5
	\|			\|	\|blue grama----------------------		5
	\|			\|	\|bottlebrush squirreltail-------		5
				\|	\| fourwing saltbush--------------		5
	\|			\|	\| galleta-------------------------	5	
				\|	\|other annual forbs--------------		5
				$\mid$	$\mid$ miscellaneous perennial forbs--\|	5	
				\|	\| Indian ricegrass---------------		3
				\|	\| rabbitbrush--------------------		3
				1	\|winterfat------------------------	3	
				1			
335:				1			
Venadito-	\|Clayey Bottomland	4,000	2,500	1,250	\|western wheatgrass-------------		25
	\|			\|	\|alkali sacaton-----------------		20
	\|			\|	\|fourwing saltbush---------------		10
	\|			,	\| galleta--------------------------		10
	\|			\|	\|blue grama-----------------------	5	
	\|				\|spike muhly---------------------		5
	\|			\|	\|mat muhly-----------------------		3
	\|			\|	\|other annual forbs-------------		3
	\|				$\mid$ miscellaneous perennial forbs--\|	2	
	\|				\|broom snakeweed-----------------		1
	\|			\|	\|rabbitbrush----------------------		1
	\|			$\mid$			

Table 6.--Productivity and Characteristic Plant Communities--Continued


Table 6.--Productivity and Characteristic Plant Communities--Continued


Table 6.--Productivity and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site	Total dry-weight production			Characteristic vegetation	Composition
		Favorable year	Normal year	\|Unfavorable year		
	\|	Lb/acre	Lb/acre	Lb/acre		Pct
355:Rizno	\|					
	\|Shallow Sandstone	700	500	275	\| Indian ricegrass------------	10
					\|New Mexico Feathergrass--------	10
	\|				\|blue grama---------------------1	10
	\|				\|little bluestem---------------	10
	\|				\|sideoats grama-----------------	10
	\|				\| $\mathrm{Bigel}{ }^{\text {a }}$ ( sagebrush--------------	5
	\|				\| fourwing saltbush--------------	5
	\|				\| galleta-------------------------	5
	\|				\|miscellaneous perennial forbs--	5
	\|				\|sand dropseed------------------	5
	\|				\|antelope bitterbrush-----------	3
	\|				\|cliffrose----------------------	2
	,				\|Mormon tea----------------------	2
	,				\|oneseed juniper-----------------	---
Tekapo-	\|Shale Hills	660	400	250	\|alkali sacaton-----------------	15
					\| galleta-------------------------	15
					\| Indian ricegrass---------------	5
	\|				\|blue grama----------------------	5
	\|				\|bottlebrush squirreltail-------	5
	\|				\| fourwing saltbush--------------	5
	\|				\|little bluestem----------------	5
	\|				\|needle and thread--------------	5
	\|				\|sideoats grama------------------	5
	\|				\|western wheatgrass-------------	5
	\|				\|mound saltbush-----------------	2
	\|				\|shadscale saltbush-------------	2
					\| Bigel ow sagebrush------------	1
	\|				\|oneseed juniper----------------	1
	\|				\|winterfat-----------------------1	1
Rock outcrop-------------	\| ---	---	---	---	---	---
357:						
Heshotauthla	\|Salty Bottomland	2,500	1,500	800	\|alkali sacaton----------------	30
					\|western wheatgrass-------------	20
					\|bottlebrush squirreltail-------	10
	\|				\| fourwing saltbush--------------	10
	\|				\| galleta-------------------------	10
	\|				\|big sagebrush------------------	5
	\|				\|blue grama----------------------	5
	\|				\| greasewood---------------------1	5
	\|				\|inland saltgrass---------------	5
	\|				\|other annual forbs-------------	5
	\|				\|miscellaneous perennial forbs--	5
	\|				\|mat muhly----------------------	3

Table 6.--Productivity and Characteristic Plant Communities--Continued


Table 6.--Productivity and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site	Total dry-weight production			Characteristic vegetation	Composition	
		Favorable year	Normal   year	\|Unfavorable   year			
	\|	Lb/acre	Lb/acre	Lb/acre		Pct	
	\|						
365:							
Vessilla	\|Shallow Savannah	700	450	275	\|Bigelow sagebrush--------------		10
					\|blue grama---------------------	10	
	\|				\|fourwing saltbush--------------		10
	\|				\| Indian ricegrass---------------		5
	\|				\|New Mexico Feathergrass--------		5
	\|				\| galleta-------------------------	5	
	\|				\|little bluestem-----------------		5
	\|				\|other annual forbs-------------		5
	\|				\|miscellaneous perennial forbs--		5
	\|				\|sideoats grama-----------------		5
	\|				\|winterfat------------------------	5	
	\|				\|cliffrose----------------------		3
	\|				\|Mormon tea----------------------		3
	\|				\| oneseed juniper-----------------		3
	\|				$\mid$ twoneedle pinyon--------------- \|	2	
	\|						
Rock outcrop------	---	--- \|	---	---	---	---	
366:							
Bosonoak-	\|Loamy	1,100	850	600	\|western wheatgrass-------------		20
					\| Indian ricegrass---------------		10
					\|big sagebrush-------------------		10
	\|				\|blue grama----------------------	10	
	\|				\| galleta--------------------------		5
	\|				\|winterfat------------------------	5	
	\|				\|rubber rabbitbrush-------------		3
	\|				\| oneseed juniper-----------------		2
	\|				\|twoneedle pinyon----------------		2
	\|			\|			
375:							
Todest-	\|Savannah	875	500	300	\|blue grama	20	
	\|				\|western wheatgrass	15	
					\| Indian ricegrass---------------		5
	\|				\|needle and thread---------------		5
	\|				\| oneseed juniper-----------------	5	
	\|				\|other annual forbs--------------		5
	\|				\|miscellaneous perennial forbs--		5
	\|				\| sand dropseed-------------------		5
	\|				\| twoneedle pinyon----------------		5
					\|muttongrass---------------------	3	
	\|				\|rabbitbrush---------------------		3
	\|				\|winterfat-----------------------	3	
	\|				\| Bigelow sagebrush---------------		2
	\|			\|	\|bottlebrush squirreltail-------		2
	\|				\|spineless horsebrush-----------		2
Shadilto-	\|Shallow	850	500	300	\|New Mexico Feathergrass--------		25
					\|blue grama----------------------	20	
				\|	\|sideoats grama------------------		15
	\|			\|	\| Indian ricegrass----------------		10
	\|	\|		\|	\|bottlebrush squirreltail-------		10
	\|	\|		\|	\|little bluestem----------------		10
	\|				\|western wheatgrass-------------		10
	\|			\|	\| galleta-------------------------		5
	\|	\|			\|sand dropseed--------------------		5
	\|	-		$\mid$ \|	\| threeawn-------------------------		5
	\|			\|	\| oneseed juniper-----------------		3
	\|			\|	\| twoneedle pinyon----------------		3
	\|						

Table 6.--Productivity and Characteristic Plant Communities--Continued


Table 6.--Productivity and Characteristic Plant Communities--Continued


Table 6.--Productivity and Characteristic Plant Communities--Continued

Map symbol and soil name	\| Ecological site	Total dry-weight production			Characteristic vegetation	Composition	
		Favorable year	Normal year	\|Unfavorable   \| year			
	\|	Lb/acre	Lb/acre	Lb/acre		Pct	
	\|				\|		
425:							
Montillo	\|Shallow	1,000	700	400	\|Arizona fescue-	20	
	\|				\|mountain muhly-------------	20	
	,				\|blue grama------------------	5	
	\|			\|		\| buckwheat-------------------	5
	\|			\|		\|prairie junegrass------------	5
	\|			\|		\|bottlebrush squirreltail-----	3
	\|				\|spineless horsebrush---------	3	
	\|				\|broom snakeweed--------------1	2	
				\|			
Canoneros-	\|Shallow	1,000	700	400	\|Arizona fescue--------------	20	
					\|mountain muhly	20	
	\|			\|		\|blue grama------------------	5
	I			\|		\|buckwheat-------------------	5
	\|			\|		\|prairie junegrass-----------	5
	\|				\|bottlebrush squirreltail-----	3	
	\|				\|spineless horsebrush---------	3	
	,			\|		\|broom snakeweed--------------	2
	\|						
430:	\|			1 \|			
Montillo	\|Shallow	1,000	700	400	\| Arizona fescue------------	20	
	\|				\|Gambel oak-----------------	15	
	\|				\|mountain muhly--------------	15	
	\|			\|		\|blue grama------------------	5
	\|			$\mid$ \|	\|bottlebrush squirreltail-----	5	
	\|				\|prairie junegrass-------------	5	
	\|				\|broom snakeweed-	3	
	\|				\|muttongrass-----------------	3	
	\|				\| buckwheat-------------------	2	
	\|				\|whorled plantain-------------	2	
	\|						
435:	\|						
Tsoodzil-	\| Cinder Hills	1,400	1,000	600	\|Gambel oak------------------	30	
	\|				\|Arizona fescue-------------	20	
	\|				\|mountain muhly-------------	15	
	\|				\|blue grama-----------------	5	
	\|				\|bottlebrush squirreltail-----	5	
	\|				\|muttongrass-----------------	5	
	\|				\|prairie junegrass-----------	5	
	\|			\|		\|buckwheat--------------------	3
	\|						
Amcec---------------	\| Cinder Hills	1,400	1,000	600	\|Arizona fescue------------	25	
	\|				\|mountain muhly------------1	20	
	\|				\| Gambel oak------------------1-1	15	
	\|				\|blue grama--------------------	5	
	\|				\|bottlebrush squirreltail-----	5	
	\|				\|muttongrass-----	5	
	\|			1 \|	\|prairie junegrass------------	5	
	\|			1 \|	\|buckwheat----------------------	3	
	\|			1			
440:Chivato	\|						
	\| Playa	500	350	200	\|western wheatgrass-----------	80	
	\|			\|		2	
	\|			,	\|pingue hymenoxys-------------1	1	
	\|			\|			

Table 6.--Productivity and Characteristic Plant Communities--Continued


Table 6.--Productivity and Characteristic Plant Communities--Continued

Map symbol and soil name		Total dry-weight production			Characteristic vegetation	Composition		
	\|	Favorable year	Normal year	\|Unfavorable   year				
		Lb/acre	Lb/acre	Lb/acre		Pct		
565:								
Plumasano----------	\|Sandy Slopes	900	600	300	\|blue grama----------------------		15	
					\| galleta-------------------------		10	
	\|			\|		\| sand dropseed------------------		10
	,				\| Indian ricegrass---------------		3	
	\|			$\mid$ \|	\|antelope bitterbrush------------	3		
				$\mid$ \|	\|cliffrose-----------------------	3		
	\|			\|		\|muttongrass---------------------	3	
	\|				\| oneseed juniper-----------------		3	
					\|other annual forbs-------------		3	
	\|				\|miscellaneous perennial forbs--		3	
	\|				\| rabbitbrush--------------------		3	
					\|ring muhly-----------------------	3		
					\|sideoats grama------------------	3		
	\|				\|twoneedle pinyon---------------		3	
					\|yucca----------------------------		1	
Rock outcrop-------	\| ---	---	-	---	---	--		
566:								
Bamac---------------	\|Gravelly	800	500	300	\|sideoats grama-----------------		15	
					\|black grama--------------------		10	
				\|		\| galleta--------------------------		10
				$\mid$ \|	\| Indian ricegrass---------------		5	
					\|New Mexico Feathergrass--------		5	
					\|antelope bitterbrush-----------		5	
					\|blue grama----------------------		5	
					\|muttongrass---------------------		5	
					\|other annual forbs--------------		5	
					\|miscellaneous perennial forbs--		5	
					\|Bigelow sagebrush--------------		3	
					\|Mormon tea----------------------		2	
					\| oneseed juniper-----------------		2	
					\|twoneedle pinyon----------------	1		
575:								
Ramah--------------	Loamy	1,100	850	600	\|western wheatgrass--------------		20	
					\| Indian ricegrass---------------		10	
	\|				\|big sagebrush-------------------		10	
	,			$\mid$	\|blue grama-----------------------		10	
					\|bottlebrush squirreltail-------		5	
					\|galleta--------------------------		5	
	\|			$\mid$	\| oneseed juniper-----------------		5	
	\|			$\mid$	\|winterfat------------------------	5		
	\|				\|broom snakeweed-----------------		3	
				$\mid$	\|muttongrass----------------------	3		
				$\mid$	\|other annual forbs--------------		3	
	\|			$\mid$ \|	\|miscellaneous perennial forbs--		3	
				$\mid$	\| rabbitbrush---------------------		3	
	\|			1	\|spineless horsebrush-----------		2	
				1	\|twoneedle pinyon----------------		2	
	\|							

Table 6.--Productivity and Characteristic Plant Communities--Continued

Map symbol and soil name	\| Ecological site	Total dry-weight production			Characteristic vegetation	Composition		
		Favorable year	Normal year	\|Unfavorable   \| year				
	\|	Lb/acre	Lb/acre	Lb/acre		Pct		
575:								
Pescado------------	\|Malpais	500	300	200	\|big sagebrush------------------		15	
					\|blue grama---------------------		10	
	,			\|		\| galleta-------------------------		10
	I				\|western wheatgrass-------------		10	
	\|			\|	\| Indian ricegrass---------------		5	
	\|			1	\|bottlebrush squirreltail-------		5	
	\|			$\mid$	\|little bluestem----------------		5	
	\|			$\mid$ \|	\|muttongrass----------------------	5		
	\|				\|needle and thread---------------		5	
	\|			\|	\|sideoats grama-----------------		5	
	\|			1	\|winterfat-----------------------		5	
	\|			\|	\| oneseed juniper-----------------		3	
	\|			\|	\|other annual forbs-------------		3	
	\|			\|	\|miscellaneous perennial forbs--		3	
	\|			\|	\|twoneedle pinyon---------------		3	
	\|			,				

Table 7.--Forest Productivity


Table 7.--Forest Productivity--Continued


Table 8a.--Forestland Management
(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00. The larger the value, the greater the limitation. See text for further explanation of ratings in this table.)


Table 8a.--Forestland Management--continued


Table 8a.--Forestland Management--continued

Map symbol and soil name	$\begin{aligned} & \mid \text { Pct } \\ & \mid \text { of } \\ & \text { \|map } \\ & \text { \|unit } \end{aligned}$	Hazard of off-road or off-trail erosion	Hazard of erosion on roads and trails	Suitability for roads (natural surface)			
		\| Rating class and	Value   \| limiting features	Rating class and \|Value limiting features		Rating class and   \| limiting features	\|Value
405:							
Owlrock----------407.	\| 35	\|Slight	\|Slight	\|Well suited			
		Slope/erodibility\|0.10	Slope/erodibility\|0.19				
	407:						
Cinnadale--------	50	\|Slight	\|Moderate	\|Moderately suited			
		Slope/erodibility\|0.20	Slope/erodibility\|0.62	Slope	0.50		
Heckly-	35	\|Moderate	\|Severe	\| Poorly suited			
		Slope/erodibility\|0.49	Slope/erodibility\|1.00	Slope	11.00		
		\|			Sandiness	10.50	
		\|					
408:							
Mirabal----------	\| 50	\|Moderate	\|Severe	\| Poorly suited			
		Slope/erodibility\|0.39	Slope/erodibility\|1.00	Slope	\|1.00		
Zuni-------------	\| 40	\|Slight	\|Moderate	\|Moderately suited			
		Slope/erodibility\|0.16	Slope/erodibility\|0.50	Slope	10.50		
		\|			Stickiness	10.50	
409:							
Rauster----------	\| 60	$\begin{array}{\|l\|} \mid \text { Moderate } \\ \mid \\ \text { Slope/erodibility } \mid 0.39 \end{array}$	\|Severe		\| Poorly suited		
				Slope	\|1.00		
		\|		Stickiness	10.50		
				Strength	10.50		
		\|					
410:							
Montillo---------	50		\|Moderate	\|Moderately suited			
		Slope/erodibility\|0.20	Slope/erodibility\|0.62	Slope	10.50		
				Strength	10.50		
		,					
Tsoodzil---------	\| 40	\|Moderate	\|Severe	\| Poorly suited			
		Slope/erodibility\|0.39	Slope/erodibility\|1.00	Slope	11.00		
		,		Sandiness	10.50		
411:							
Ligocki----------	45	\|Slight	\|Moderate	\|Well suited			
		Slope/erodibility\|0.06	Slope/erodibility\|0.33				
412:							
Rionutria--------	25	\|Slight	\|Moderate	\|Moderately suited			
		Slope/erodibility\|0.20	Slope/erodibility\|0.38	Slope	10.50		
				Strength	10.50		
		\|					
Zaster-----------	25	\|Moderate	\|Severe	\| Poorly suited			
		Slope/erodibility\|0.49	Slope/erodibility\|1.00	Slope	\|1.00		
		\|		Sandiness	10.50		
		\|	\|				
413:							
Morclay----------	85	\|Slight ${ }_{\text {S }}$ Slope/erodibility\|0.06	\| Slight Slope/erodibility	0.19	\|Moderately suited		
				Stickiness	10.50		
				Strength	10.50		

Table 8a.--Forestland Management--continued

Map symbol and soil name	$\begin{aligned} & \text { \| } \\ & \text { \| Pct } \\ & \text { \| of } \\ & \text { \|map } \\ & \text { \|unit } \end{aligned}$	Hazard of off-road or off-trail erosion	Hazard of erosion on roads and trails	Suitability for roads (natural surface)					
	\|	Rating class and \|Value	Rating class and \|Value limiting features	Rating class and limiting features	\|Value				
414:									
Zunalei----------	50	\|Slight $\mid$ Slope/erodibility $\mid 0.10$	$\begin{aligned} & \mid \text { Moderate \| } \\ & \mid \text { Slope/erodibility\|0.56 } \end{aligned}$	\|Well suited					
Corzuni-	40	\|Slight	\|Moderate	\|Well suited					
		Slope/erodibility\|0.10	Slope/erodibility\|0.31		\|				
415:									
Tsoodzil--------	\| 60	\|Moderate	\|Severe	\| Poorly suited					
		Slope/erodibility\|0.59	Slope/erodibility\|1.00	Slope	11.00				
418:									
Asaayi-----------	\| 40	\|Slight	\|Moderate	\|Moderately suited					
		Slope/erodibility\|0.16	Slope/erodibility\|0.50		10.50				
Osoridge-	35	\|Slight		\|Moderate		\|Moderately suited			
		Slope/erodibility\|0.16	Slope/erodibility\|0.50	Slope	10.50				
			\|		Stickiness	10.50			
			1 \|	Strength	10.50				
			\|						
419:			\|						
Fortwingate------	\| 35	\|Moderate		\|Severe	\|Poorly suited				
		Slope/erodibility\|0.49	Slope/erodibility\|1.00		11.00				
		\|		,					
Cinnadale--------550 :	30	\|Slight	\|Moderate	\|Moderately suited	\|				
Bryway-----------	\| 50	\|Slight	\|Slight	\|Moderately suited					
		Slope/erodibility\|0.08	Slope/erodibility\|0.25		10.50				
		\|							
Galzuni----------	35	\|Slight	\|Moderate	\|Well suited	\|				
		\| Slope/erodibility	0.10	Slope/erodibility\|0.44					
		Slope/erodibility\|0.08	Slope/erodibility\|0.25						
			\|						
555 :									
Parkelei---------	\| 45	\|Slight	\|Moderate	\|Well suited	\|				
		Slope/erodibility\|0.10	Slope/erodibility\|0.56						
		,	\|						
Evpark-	35	\|Slight		\|Moderate		\|Well suited	\|		
		Slope/erodibility\|0.10	Slope/erodibility\|0.56						
			\|						
560 :									
Flugle------------	\| 45	\|Slight ${ }^{\text {\| Slope/erodibility }}$ \|0.06		\|Well suited					
			Slope/erodibility\|0.33		\|				
					\|				
Teczuni-----------	\| 35	\|Slight	\|Moderate		\|Moderately suited   \| Strength				
		Slope/erodibility\|0.06	Slope/erodibility\|0.33		0.50				
			\|						
561:		\|			\|				
Flugle-----------	\| 50	\|Slight		\|Moderate		\|Well suited	\|		
		Slope/erodibility\|0.10	Slope/erodibility\|0.56						
Plumasano	40	\|Slight	\|Moderate		\|Well suited	\|			
		Slope/erodibility\|0.10	Slope/erodibility\|0.56		\|				
		\|		\|			\|		

Table 8b.--Forestland Management
(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00. The larger the value, the greater the limitation. See text for further explanation of ratings in this table.)


Table 8b.--Forestland Management--Continued


Table 8b.--Forestland Management--Continued

| Map symbol and soil name | \|Pct | of |map |unit | Suitability for hand planting | Suitability for mechanical planting |  | Suitability for use of harvesting equipment |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | Rating class and \|Value limiting features | Rating class and limiting features | \|Value| | Rating class and limiting features | Value |
| 404 : |  |  |  |  |  |  |
| Techado---------- | 35 | Poorly suited | \|Poorly suited |  | \|Moderately suited |  |
|  |  | Stickiness \|0.75 | Slope | 0.75 | Slope | 10.50 |
|  |  | \| | Stickiness | \| 0.75 | Strength | 10.50 |
|  |  | \| | Stoniness | \| 0.50 |  |  |
|  |  | 1 \| |  |  |  |  |
| Stozuni- | 25 | Unsuited \| | \|Moderately suited |  | \|Well suited |  |
|  |  | Restrictive layer\|1.00 | Slope | 10.50 |  |  |
|  |  | , | Stoniness | 0.50 |  |  |
|  |  | , |  |  |  |  |
| 405: |  |  |  |  |  |  |
| Fortwingate------ | 50 | Poorly suited | \|Poorly suited |  | \|Moderately suited |  |
|  |  | Stickiness \|0.75 | Stickiness | 10.75 | Strength | 10.50 |
|  |  | \| | | Slope | \| 0.50 |  |  |
|  |  | , |  |  |  |  |
| Owlrock---------- | 35 | Poorly suited \| | \|Unsuited |  | \|Well suited |  |
|  |  | Stoniness \|0.75 | Stoniness | 11.00 |  |  |
|  |  | \| | | Slope | 10.50 |  |  |
| 407: |  |  |  |  |  |  |
| Cinnadale-------- | 50 | Moderately suited | \| Poorly suited |  | \|Well suited |  |
|  |  | Stoniness \|0.50 | Stoniness | 10.75 |  |  |
|  |  | , | Slope | \| 0.50 |  |  |
|  |  | , |  |  |  |  |
| Heckly- | 35 | Moderately suited \| | \| Poorly suited |  | \|Moderately suited | |  |
|  |  | Stickiness \|0.50 | \| Slope | 0.75 | Slope | 10.50 |
|  |  | Sandiness \|0.50 | Stoniness | 10.75 | Sandiness | 10.50 |
|  |  | Stoniness \|0.50 | Stickiness | \| 0.50 |  |  |
|  |  | \| | Sandiness | 10.50 |  |  |
|  |  | , |  |  |  |  |
| 408: |  |  |  |  |  |  |
| Mirabal----------- | 50 | Moderately suited | \| Unsuited |  | \|Moderately suited |  |
|  |  | Stoniness \|0.50 | Stoniness | \|1.00 | Slope | 10.50 |
|  |  | Sandiness \|0.50 | Slope | 10.75 |  |  |
|  |  | \| | | | Sandiness | 10.50 |  |  |
|  |  | \| | | |  |  |  |  |
| Zuni------------- | 40 | Poorly suited | \|Poorly suited | \| | \|Moderately suited |  |
|  |  | Stickiness \|0.75 | Stickiness | 10.75 | Stickiness | 10.50 |
|  |  |  | Stoniness | 10.50 |  |  |
|  |  | , | Slope | 10.50 |  |  |
|  |  | \| | |  |  |  |  |
| 409: |  |  |  |  |  |  |
| Rauster | 60 | Poorly suited \| | \|Poorly suited | \| | \|Moderately suited |  |
|  |  | Stickiness \|0.75 | Slope | 10.75 | Strength | 10.50 |
|  |  | \| | | | Stickiness | \| 0.75 | Stickiness | 10.50 |
|  |  | , |  |  | Slope | 10.50 |
|  |  | \| | | |  |  |  |  |
| 410 : |  |  |  |  |  |  |
| Montillo | 50 | Poorly suited | \|Poorly suited |  | \|Moderately suited | |  |
|  |  | Stickiness \|0.75 | \| Stickiness | 10.75 | Strength | 10.50 |
|  |  |  | \| Slope | 10.50 |  |  |
|  |  | \| | Stoniness | 10.50 |  |  |
|  |  | \| | |  |  |  |  |

Table 8b.--Forestland Management--Continued

Map symbol and soil name	$\begin{aligned} & \mid \\ & \mid \text { Pct } \\ & \mid \text { Pct } \\ & \mid \text { of } \\ & \mid \text { map } \\ & \mid \text { unit } \mid \end{aligned}$	Suitability forhand planting		Suitability for mechanical planting		Suitability for use of harvesting equipment			
	1	Rating class and limiting features	\|Value		\| Rating class and	\|Value	Rating class and   \| limiting features	\|Value	
410:									
Tsoodzil---------	\| 40	Poorly suited		\| Poorly suited		\|Moderately suited			
		Stickiness	10.75	Stoniness	10.75	Sandiness	0.50		
		Sandiness	10.50	Slope	10.75	Slope	10.50		
		Stoniness	10.50	Stickiness	10.75				
				Sandiness	10.50				
			\|						
411:									
Ligocki----------	45	\|Moderately suited		\|Moderately suited		\|Well suited			
				Stickiness	10.50				
412 :									
Rionutria-------	25	\| Poorly suited		\|Unsuited		\|Moderately suited			
		Stoniness	10.75	Stoniness	11.00	Strength	10.50		
		Stickiness	10.50	Slope	10.50				
				Stickiness	10.50				
			1 \|						
Zaster----------	25	\|Moderately suited		\|Unsuited		\|Moderately suited			
		Stoniness	10.50	Stoniness	11.00	Slope	10.50		
		Sandiness	10.50	Slope	10.75	Sandiness	10.50		
				Sandiness	10.50				
			\|						
413 :									
Morclay----------	85	\| Poorly suited		\| Poorly suited		\|Moderately suited			
		Stickiness	10.75	Stickiness	10.75	\| Strength	10.50		
						\| Stickiness	10.50		
414:									
Zunalei	\| 50		\|Well suited	1	\|Moderately suited		\|Well suited		
				\| Slope	\|0.50				
			\|						
414:									
Corzuni----------	40	\|Well suited	1		\|Moderately suited		\|Well suited		
				Slope	10.50				
			\|						
415 :									
Tsoodzil---------	60	\|Moderately suited		\|Unsuited		\|Moderately suited			
		Stickiness	10.50	Stoniness	11.00	Slope	10.50		
		Stoniness	10.50	Slope	11.00				
				Stickiness	0.50				
			\|						
418:									
Asaayi----------	40 \|	\|Moderately suited			\|Moderately suited		\|Well suited		
		Stickiness	10.50	Stickiness   Slope	$\begin{aligned} & 10.50 \\ & 10.50 \end{aligned}$				
							\|		
Osoridge---------	35	\| Poorly suited   \| Stickiness	1 \|	\| Poorly suited		\|Moderately suited			
			10.75	\| Stickiness	10.75	Strength	10.50		
			\|	Stoniness	10.50	\| Stickiness	10.50		
			\|	Slope	10.50				

Table 8b.--Forestland Management--Continued


Table 8b.--Forestland Management--Continued

(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00 . The larger the value, the greater the limitation. See text for further explanation of ratings in this table.)


Table 9a.--Recreation--Continued


Table 9a.--Recreation--Continued


Table 9a.--Recreation--Continued


Table 9a.--Recreation--Continued


Table 9a.--Recreation--Continued

Map symbol and soil name	$\begin{array}{\|l\|} \left\lvert\, \begin{array}{l} \mid \\ \mid \text { Pct. } \\ \mid \text { Pct } \\ \text { of } \\ \text { \|map } \end{array}\right. \\ \mid \text { unit } \end{array}$	Camp areas		Picnic areas		Playgrounds			
		Rating class and limiting features	\|Value		Rating class and limiting features	\|Value		Rating class and limiting features	\|Value
130:									
Chipeta--------------	40	\|Very limited		\|Very limited		$\mid$ Very limited			
		Depth to bedrock	11.00	Depth to bedrock	1.00	Depth to bedrock	1.00		
		Slope	11.00	Slope	11.00	Slope	11.00		
		Dusty	10.50	Dusty	10.50	Gravel content	11.00		
		Restricted permeability	10.45	Restricted permeability	10.45	Dusty	10.50		
		Gravel content	10.08	Gravel content	10.08	Restricted	10.45		
						permeability			
Badlands	30	\| Not rated		\| Not rated		\| Not rated			
Moncisco------------ \|	15	\|Very limited		\|Very limited		\|Very limited			
		Gravel content	11.00	Gravel content	11.00	Gravel content	11.00		
		Slope	11.00	Slope	11.00	Slope	11.00		
						Content of large	10.01		
						stones			
						\|			
150:	65								
Riverwash-----------\|		\| Not rated		\| Not rated		\| Not rated			
Escawetter----------\|	25	\|Very limited		\|Somewhat limited		\|Very limited			
		Flooding	11.00	Too sandy	10.44	\| Flooding	11.00		
		Too sandy	10.44	Flooding	10.40	Too sandy	10.44		
160:									
Escawetter---------- \|	40	\|Very limited		$\mid$ Very limited		\|Very limited			
		\| Flooding	11.00	Too sandy	11.00	Too sandy	11.00		
		Too sandy	11.00	Flooding	10.40	Flooding	11.00		
Riverwash-----------\|	35	\| Not rated		\| Not rated		\| Not rated			
Razito--------------- \|	15								
		\| Too sandy	11.00	\| Too sandy	11.00	\| Too sandy	11.00		
						\| Slope	10.13		
			\|						
205:	45		1						
Penistaja-----------		\| Not limited		\| Not limited		\|Somewhat limited			
			1			Slope	10.13		
			1						
Tintero-------------\|	40	\|Not limited	1	\| Not limited		\| Somewhat limited			
			1			\| Slope	0.87		
			1 \|		\|		\|		
208:	185		1 \|	\|	\|				
Marianolake		\| Not limited	1 \|	\| Not limited	\|		\|Somewhat limited		
			$\|\quad\|$		\|	\| Slope	10.50		

Table 9a.--Recreation--Continued


Table 9a.--Recreation--Continued

Map symbol and soil name	$\begin{aligned} & \mid \\ & \left\lvert\, \begin{array}{l} \text { Pct. } \\ \text { \|Pct } \\ \text { \| of } \\ \text { \|map } \\ \text { \|unit } \end{array}\right. \\ & \hline \end{aligned}$	Camp areas		Picnic areas		Playgrounds			
		Rating class and limiting features	\|Value		Rating class and limiting features	\|Value		Rating class and limiting features	\|Value
412 :									
Rionutria--------	25	\|Somewhat limited		\|Somewhat limited		\|Very limited			
		Content of large stones	10.20	Content of large stones	10.20	Content of large stones	1.00		
		Slope	10.16	Slope	10.16	Slope	1.00		
		Gravel content	10.06	Gravel content	10.06	Gravel content	11.00		
						Depth to bedrock	0.90		
Zaster----------	\| 25	\|Very limited		\|Very limited		\|Very limited			
		Slope	11.00	Slope	11.00	Gravel content	11.00		
		Gravel content	10.99	Gravel content	10.99	Slope	11.00		
		Content of large stones	10.18	Content of large stones	10.18	Content of large stones	\|1.00		
						Depth to bedrock	0.71		
413 :									
Morclay---------	85	\|Somewhat limited		\|Somewhat limited		\|Somewhat limited			
		Too clayey	10.50	Too clayey	10.50	\| Too clayey	10.50		
		Restricted permeability	10.45	Restricted permeability	10.45	Restricted permeability	10.45		
						Slope	10.13		
414:									
Zunalei----------	50					\|Somewhat limited			
		\| Too sandy	10.92	\| Too sandy	10.92	\| Too sandy	10.92		
						Slope	10.87		
Corzuni---------	40	\| Not limited		\|Not limited		\|Somewhat limited			
						\| Slope	10.87		
415:									
Tsoodzil---------	60	\|Very limited		\|Very limited		\|Very limited			
		Slope	11.00	Slope	11.00	Slope	11.00		
		Restricted permeability	10.41	Restricted permeability	10.41	Content of large stones	\| 1.00		
		Content of large stones	10.26	Content of large stones	10.26	Gravel content	10.96		
						Restricted	10.41		
						permeability			
Rubble Land------416:	20	\| Not rated		\| Not rated	$\mid 1$	\| Not rated	\|		
							\|		
	416:								
Rock outcrop	\| 70		\| Not rated	$\|\quad\|$	\| Not rated	$\mid 1$	\| Not rated	\|	

Table 9a.--Recreation--Continued


Table 9a.--Recreation--Continued


Table 9a.--Recreation--Continued


Table 9a.--Recreation--Continued

Map symbol and soil name	$\begin{aligned} & \mid \\ & \mid \text { \|Pct.\| } \\ & \mid \text { Pof } \\ & \mid \text { ofap } \\ & \text { \|unit\| } \end{aligned}$	Camp areas		Picnic areas		Playgrounds		
	I	Rating class and   l	\|Value		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
565:								
Rock outcrop----566 :	\| 20		\| Not rated		\|Not rated		\| Not rated	
	566:							
Bamac------------	90	\|Very limited		\|Very limited		\|Very limited		
		Gravel content	11.00	Gravel content	11.00	Gravel content	11.00	
		Slope	11.00	Slope	11.00	Slope	11.00	
						Content of large	0.01	
						stones		
575:								
Ramah	45	\|Not limited		\|Not limited		\|Somewhat limited		
						Slope	0.01	
Pescado-	35	\|Very limited   \| Depth to bedrock		\|Very limited		\|Very limited		
			11.00	Depth to bedrock	11.00	Depth to bedrock	\|1.00	
						Slope	10.50	

Table 9b.--Recreation
(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00. The larger the value, the greater the limitation. See text for further explanation of ratings in this table.)


Table 9b.--Recreation--Continued


Table 9b.--Recreation--Continued

Map symbol and soil name	$\begin{aligned} & \mid \\ & \mid \text { Pct. } \\ & \mid \text { of } \\ & \mid \text { of } \\ & \mid \text { unit } \end{aligned}$	Paths and trails		Off-road motorcycle trails		Golf fairways	
		Rating class and limiting features	\|Value   \|	Rating class and limiting features	\|Value   \|	Rating class and limiting features	\|Value
317:							
Highdye	35	\|Not limited		\|Not limited		\|Very limited   Depth to bedrock   Droughty   Slope   Content of large stones	$\begin{aligned} & \mid 1.00 \\ & \mid 1.00 \\ & \mid 0.37 \\ & \mid 0.01 \end{aligned}$
Evpark	30	\|Somewhat limited Dusty	$10.50$	Somewhat limited Dusty	$10.50$	\|Somewhat limited Depth to bedrock Droughty	$\begin{aligned} & 10.90 \\ & 10.01 \end{aligned}$
Bryway-	20	\| Not limited		\|Not limited		\|Somewhat limited Depth to bedrock Droughty	$\begin{aligned} & 10.95 \\ & 10.22 \end{aligned}$
320:							
Parkelei-	45	\|Not limited		\|Not limited		\| Not limited	
Fraguni	40	\|Somewhat limited   \| Too sandy	$\mid 0.92$	\|Somewhat limited Too sandy	$10.92$	\| Not limited	
325:							
Venzuni	90	\|Somewhat limited   \| Too clayey	10.50	Somewhat limited Too clayey	10.50	\|Very limited Too clayey	11.00
332:							
Evpark-	50	\|Not limited	\|	\|Not limited		\|Somewhat limited Depth to bedrock	0.06
Arabrab	40	\| Not limited		\|Not limited		\|Very limited   Depth to bedrock   Droughty   Content of large stones	$\begin{array}{\|l} 1.00 \\ 0.73 \\ 0.01 \end{array}$
335:							
Venadito-	85	\|Somewhat limited   Too clayey   Flooding	$\begin{aligned} & \mid \\ & 10.50 \\ & 10.40 \end{aligned}$	\|Somewhat limited   Too clayey   Flooding	$\begin{aligned} & \mid \\ & 10.50 \\ & 10.40 \end{aligned}$	$\begin{aligned} & \mid \text { Very limited } \\ & \text { Flooding } \\ & \text { Too clayey } \end{aligned}$	$\begin{aligned} & \mid \\ & \mid 1.00 \\ & \mid 1.00 \end{aligned}$
336:							
Nuffel-	45	\|Somewhat limited   \| Dusty   \| Flooding	$\begin{aligned} & \mid \\ & 10.50 \\ & 10.40 \end{aligned}$	\|Somewhat limited Dusty Flooding	$\begin{aligned} & \mid \\ & 10.50 \\ & 10.40 \end{aligned}$	\|Very limited   Flooding	\|1.00
Venadito--	35	$\begin{aligned} & \text { \|Somewhat limited } \\ & \text { Too clayey } \\ & \text { Flooding } \end{aligned}$	$\begin{aligned} & \mid 0.50 \\ & 10.40 \end{aligned}$	\|Somewhat limited Too clayey Flooding	$\begin{aligned} & \mid \\ & \mid 0.50 \\ & 10.40 \end{aligned}$	$\begin{aligned} & \mid \text { Very limited } \\ & \text { Too clayey } \\ & \text { Flooding } \end{aligned}$	$\begin{aligned} & \mid \\ & \mid 1.00 \\ & \mid 1.00 \end{aligned}$

Table 9b.--Recreation--Continued

Map symbol and soil name	\|Pct.   \| of   \|map   \|unit	Paths and trails		Off-road motorcycle trai		Golf fairways		
		Rating class and limiting features	\|Value	Rating class and   \| limiting features	\|Value	Rating class and   \| limiting features	\|Value	
338:								
Zyme-	50	\| Somewhat limited Slope	$10.50$	\|Not limited		\|Very limited   Depth to bedrock   Slope   Droughty	$\begin{aligned} & \mid 1.00 \\ & \mid 1.00 \\ & \mid 0.92 \end{aligned}$	
Lockerby--	40	\|Not limited		Not limited	1	\|Somewhat limited   Depth to bedrock   Slope   Droughty	10.80 10.16 10.01	
345:					\|			
Rock outcrop-	40	\| Not rated		\| Not rated		\| Not rated		
Tuces------------	40	Very limited		\|Somewhat limited		\|Very limited		
			11.00	Slope	10.22	Slope	11.00	
		Content of large stones	10.05	Content of large stones	10.05	Content of large stones	\|1.00	
					\|	Gravel content	0.97	
					\|	Depth to bedrock	10.90	
					\|	Droughty	0.11	
					\|			
350:								
Toldohn----------	35	\|Somewhat limited$\mid \quad$ Slope		\| Not limited		\|Very limited		
			10.50		\|		\| Depth to bedrock	1.00
					\|	Droughty	\|1.00	
					\|	Slope	1.00	
					\|	Content of large	0.08	
					\|		stones	
					\|			
Vessilla---------	30	\| Not limited		Not limited		\|Very limited		
					\|		\| Depth to bedrock	\|1.00
					\|	Droughty	11.00	
					\|		Content of large	0.03
					\|	stones		
					\|	Slope	0.01	
					$\mid$ \|			
Rock outcrop------	20	\| Not rated		\| Not rated	$\mid$	\|Not rated		
					\|			
351:					\|			
Rock outcrop-	60	\|Not rated		\| Not rated	$\mid$ \|	\| Not rated		
					$\mid$ \|			
Vessilla-	30	\| Not limited		Not limited		\|Very limited		
						Depth to bedrock	\|1.00	
					I	Droughty	11.00	
					\|	Content of large	10.03	
					\|	stones		
					\|	Slope	10.01	
					,			
352:					\|			
Zia-	80	\| Not limited		\| Not limited	\|	\| Not limited		

Table 9b.--Recreation--Continued


Table 9b.--Recreation--Continued


Table 9b.--Recreation--Continued


Table 9b.--Recreation--Continued

Map symbol and soil name	Pct.   \| of   \|map   \|unit	Paths and trail		Off-road motorcycle tra		Golf fairways	
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and   \| limiting features	\|Value
405:							
Fortwingate-----	50	\| Not limited		Not limited		\|Somewhat limited Depth to bedrock Droughty	10.80 10.08
Owlrock-	35	Somewhat limited		Somewhat limited	1	\|Very limited	\|1.00
		Content of large stones	0.02	Content of large stones	10.02	Depth to bedrock	
					\|	Droughty	\|1.00
					\|	Content of large	\|1.00
					\|	stones	
					\|	Gravel content	10.93
			\|		\|		
406:			\|		\|		
Polich	90	\|Somewhat limited		Somewhat limited			
		Flooding	10.40	\| Flooding	10.40	\| Flooding	11.00
407:	,		\|	\|	\|		
Cinnadale--------	50	Not limited	\|	\|Not limited	\|	\|Very limited	
						Depth to bedrock	\|1.00
			\|		\|	Droughty	\|1.00
			\|		\|	Gravel content	11.00
			\|		\|	Slope	\| 0.16
			\|		\|	Content of large	\| 0.01
			\|		\|	stones	
					\|		
Heckly-----------	35	\|Very limited		\|Somewhat limited	\|	\|Very limited	
		Slope	11.00	Slope	10.01	Gravel content	11.00
						\| Slope	11.00
			\|			Content of large	0.84
			\|			stones	
						Depth to bedrock	0.01
			\|				
408:			\|		\|		
Mirabal----------	50	\|Somewhat limited   \| Slope	\|	\| Not limited	\|	\|Very limited	
			10.50	-	\|	Droughty	1.00
		\| Slope			\|	Slope	\|1.00
					\|	Depth to bedrock	10.46
			\|		\|		
Zuni-------------	40	\| Not limited	\|	\| Not limited	\|	\| Somewhat limited	
					\|	\| Depth to bedrock	10.71
			\|		\|	Droughty	10.25
					\|	Slope	10.01
			\|		\|		
409:			\|		\|		
Rauster-	60	\|Somewhat limited		\| Not limited	\|	\|Very limited	
		Slope	10.50		\|	Slope	11.00
					\|		
Rock outcrop---	30	\| Not rated	\|	\|Not rated	\|	\| Not rated	
			\|		1		

Table 9b.--Recreation--Continued


Table 9b.--Recreation--Continued


Table 9b.--Recreation--Continued


Table 9b.--Recreation--Continued


Table 10a.--Building Site Development
(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00. The larger the value, the greater the limitation. See text for further explanation of ratings in this table.)


Table 10a.--Building Site Development--Continued


Table 10a.--Building Site Development--Continued

Map symbol and soil name	$\begin{aligned} & \mid \text { Pct.\| } \\ & \mid \text { Pof } \\ & \mid \text { omap } \\ & \text { \|unit\| } \end{aligned}$	Dwellings without basements		Dwellings with basements		Small commercial buildings			
	-	Rating class and limiting features	\|Value		Rating class and limiting features	\|Value		Rating class and limiting features	\|Value
376:									
Todest-----------	\| 80	\|Somewhat limited		\|Very limited		\| Somewhat limited			
		Depth to hard	10.90	Depth to hard	11.00	Depth to hard	0.90		
						Slope	0.12		
			\|						
380:									
Berryhill--------	50	\|Very limited		\|Very limited		\|Very limited			
		Shrink-swell	11.00	Shrink-swell	11.00	Shrink-swell	11.00		
						Slope	0.12		
			\|						
Casamero-	45	\|Very limited		\|Very limited		\|Very limited			
	1	\| Depth to soft bedrock	11.00	Shrink-swell	11.00	Depth to soft bedrock	11.00		
		\| Shrink-swell	11.00	Depth to soft bedrock	11.00	Shrink-swell	11.00		
			\|				Slope	0.48	
			\|						
385:									
Mcorreon---------	65	\|Very limited	\|	Very limited		\|Very limited			
		Shrink-swell	11.00	Shrink-swell	11.00	Slope	11.00		
		Slope	11.00	Slope	11.00	Shrink-swell	11.00		
Rock outcrop------	20	\| Not rated		\| Not rated		\| Not rated			
			\|				\|		
390:									
Banquito----------	90	\|Somewhat limited	1	\|Very limited		\|Somewhat limited			
		Depth to hard bedrock	10.06	Depth to hard bedrock	11.00	Depth to hardbedrock	0.06		
			\|						
395:									
Cabezon----------	60	\|Very limited		\|Very limited		\|Very limited			
		D Depth to hard	11.00	Shrink-swell	11.00	\| Depth to hard	1.00		
		bedrock				bedrock			
		Shrink-swell	11.00	Depth to hard	11.00	Shrink-swell	11.00		
			,	bedrock					
						Slope	0.12		
			\|						
Mcorreon---------	30	\|Somewhat limited		\|Somewhat limited		\|Somewhat limited			
		Shrink-swell	10.50	Shrink-swell	10.50	Shrink-swell	10.50		
						Slope	10.12		
			\|						
400:			\|				\|		
Shoemaker--------	45	Somewhat limited Depth to hard bedrock		\|Very limited		\|Somewhat limited			
			10.64	Depth to hard	11.00	Depth to hard	0.64		
				bedrock		bedrock			
						Slope	10.12		
			\|						
Stozuni----------	35	\|Very limited	\|	Very limited		\|Very limited	1		
		Depth to hard	11.00	Depth to hard bedrock	11.00	Depth to hard	11.00		
		bedrock	,			bedrock			
			I			Slope	0.12		

Table 10a.--Building Site Development--Continued


Table 10a.--Building Site Development--Continued


Table 10a.--Building Site Development--Continued


Table 10a.--Building Site Development--Continued

Map symbol and soil name	$\begin{aligned} & \text { \|Pct. } \\ & \mid \text { of } \\ & \text { \|map } \\ & \text { \|unit\| } \end{aligned}$	Dwellings without basements		Dwellings with basements		Small commercial buildings		
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value		Rating class and limiting features	\|Value
416:								
Bluesky----------	20	\|Very limited		\|Very limited		Very limited		
		Depth to hard bedrock	11.00	Depth to hard bedrock	11.00	Depth to hard bedrock	11.00	
		Slope	10.16	Slope	10.16	Slope	11.00	
418:								
Asaayi	40	\|Very limited		\|Very limited		\|Very limited		
		Depth to hard bedrock	11.00	Depth to hard bedrock	11.00	Depth to hard bedrock	11.00	
		Shrink-swell	10.50	Shrink-swell	10.50	Slope	11.00	
		Slope	10.01	Slope	10.01	Shrink-swell	10.50	
Osoridge	35	\|Very limited		\|Very limited		\|Very limited		
		Depth to hard bedrock	11.00	Shrink-swell	11.00	Depth to hard bedrock	11.00	
		Shrink-swell	11.00	Depth to hard	11.00	Shrink-swell	11.00	
				bedrock				
		Slope	10.01	Slope	10.01	Slope	11.00	
419:			$\|\quad\|$					
Fortwingate------	35	\|Very limited		\|Very limited		\|Very limited		
		Shrink-swell	11.00	Shrink-swell	11.00	Shrink-swell	11.00	
		Slope	11.00	Depth to hard	11.00	Slope	11.00	
				bedrock				
		Depth to hard	10.79	Slope	11.00	Depth to hard	10.79	
		bedrock				bedrock		
Cinnadale-------	30	\|Very limited		\|Very limited		\|Very limited		
		Depth to hard bedrock	11.00	\| Depth to hard bedrock	11.00	Depth to hard bedrock	11.00	
		Content of large stones	10.95	Content of large stones	0.95	Slope	11.00	
		Slope	10.16	Slope	10.16	Content of large	10.95	
						stones		
Rock outcrop-----420 :	20	\| Not rated		\| Not rated		\| Not rated		
			\|					
Seco	85	\|Very limited		\|Very limited		\|Very limited		
		Flooding	11.00	Flooding	11.00	Flooding	11.00	
		Shrink-swell	11.00	Shrink-swell	11.00	Shrink-swell	11.00	
425:						\|		
Montillo---------	50	\|Very limited		\|Very limited		\|Very limited		
		Shrink-swell	11.00	Shrink-swell	11.00	Shrink-swell	11.00	
		Depth to hard bedrock	10.10	Depth to hard bedrock	11.00	Depth to hard bedrock	10.10	
		Content of large stones	10.01	Content of large stones	0.01	Content of large stones	10.01	
						Slope	10.01	

Table 10a.--Building Site Development--Continued


Table 10a.--Building Site Development--Continued


Table 10b.--Building Site Development
(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00 . The larger the value, the greater the limitation. See text for further explanation of ratings in this table.)


Table 10b.--Building Site Development--Continued


Table 10b.--Building Site Development--Continued

Map symbol and soil name	$\begin{aligned} & \text { \| } \\ & \mid \text { Pct. } \\ & \mid \text { of } \\ & \mid \text { map } \\ & \mid \text { unit } \end{aligned}$	Local roads and streets		Shallow excavations		Lawns and landscaping	
	\|	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
245:							
Gapmesa----------	30	\|Very limited		\|Very limited		Somewhat limited	
		L Low strength	11.00	Depth to hard bedrock	\|1.00	Depth to bedrock	10.35
		Depth to hard	10.35	Cutbanks cave	10.10		
		bedrock					
		Shrink-swell	10.22				
					\|		
Barboncito-------	25	\|Very limited		\|Very limited		\|Very limited	
		Depth to hard bedrock	11.00	Depth to hard bedrock	11.00	Depth to bedrock	1.00
		Low strength	11.00	Cutbanks cave	10.10	Droughty	11.00
		Shrink-swell	10.22				
					\|		
250:							
Hospah	35	\|Very limited		\|Very limited		\|Very limited	
		Depth to soft bedrock	11.00	Depth to soft bedrock	11.00	Depth to bedrock	1.00
		Low strength	11.00	Slope	11.00	Droughty	\|1.00
		Shrink-swell	11.00	Too clayey	10.50	Content of large stones	$\mid 1.00$
		Slope	11.00	Cutbanks cave	10.10	Slope	11.00
						Gravel content	10.11
Skyvillage-------	30	\|Very limited		\|Very limited		\|Very limited	
		Depth to hard bedrock	11.00	Depth to hard bedrock	11.00	\| Depth to bedrock	1.00
		Shrink-swell	10.50	Cutbanks cave	10.10	Droughty	11.00
						Gravel content	10.68
			\|			Content of large	0.11
						stones	
			1		\|		
Rock outcrop-------- \|	25	\| Not rated		\|Not rated	\|	\| Not rated	
			\|		\|		
255:							
Farview----------	50			\|Very limited		\|Very limited	
		\| Depth to hard	11.00	Depth to hard bedrock	11.00	\| Depth to bedrock	11.00
		bedrock					
		Slope	10.01	Cutbanks cave	10.10	Droughty	10.94
				Slope	10.01	Slope	10.01
			\|		\|		
Rock outcrop-----258:	35	\| Not rated	\|	\|Not rated		\| Not rated	
			\|		\|		
	258:						
Eagleye----------	40	\|Very limited	\|	\|Very limited	\|	\|Very limited	
		Depth to soft bedrock	11.00	Depth to soft bedrock	11.00	Depth to bedrock	11.00
		Shrink-swell	11.00	Slope	11.00	Droughty	11.00
		Slope	11.00	Too clayey	10.12	Slope	11.00
		Low strength	11.00	\| Cutbanks cave	10.10		

Table 10b.--Building Site Development--Continued


Table 10b.--Building Site Development--Continued


Table 10b.--Building Site Development--Continued

| Map symbol and soil name | \|Pct. | of |map |unit| | Local roads and streets |  | Shallow excavations |  | Lawns and landscaping |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Rating class and limiting features | \|Value| | Rating class and limiting features | \|Value | Rating class and limiting features | \|Value |
| 308: |  |  |  |  |  |  |  |
| Venzuni---------- | 40 | \|Very limited |  | \|Very limited |  | Very limited |  |
|  |  | Low strength | 11.00 | Too clayey | \|1.00 | Too clayey | 1.00 |
|  |  | Shrink-swell | \|1.00 | Cutbanks cave | \|1.00 |  |  |
|  |  | Flooding | 10.40 | Depth to dense | 10.50 |  |  |
|  |  |  |  | layer |  |  |  |
|  |  |  |  |  |  |  |  |
| 310: |  |  |  |  |  |  |  |
| Parkelei--------- | 80 | \|Somewhat limited |  | \|Somewhat limited |  | Not limited |  |
|  |  | Shrink-swell | 10.50 | Cutbanks cave | 10.10 |  |  |
|  |  | Frost action | 10.50 |  |  |  |  |
|  |  |  |  |  |  |  |  |
| 312: |  |  |  |  |  |  |  |
| Bluewater-------- | 90 | \|Very limited |  | \|Somewhat limited |  | Not limited |  |
|  |  | Low strength | 11.00 | Depth to | 10.95 |  |  |
|  |  |  |  | saturated zone |  |  |  |
|  |  | \| Shrink-swell | 10.50 | Too clayey | 10.12 |  |  |
|  |  | Frost action | 10.50 | Cutbanks cave | 10.10 |  |  |
|  |  | Flooding | 10.40 |  |  |  |  |
|  |  |  |  |  |  |  |  |
| 315: |  |  |  |  |  |  |  |
| Flugle----------- | 50 | \|Very limited | \| | \|Somewhat limited |  | Not limited |  |
|  |  | Low strength | 11.00 | Cutbanks cave | 10.10 |  |  |
|  |  | Shrink-swell | 10.78 |  |  |  | \| |
|  |  | Frost action | 10.50 |  |  |  |  |
|  |  |  |  |  |  |  |  |
| Fragua- | 40 | \|Somewhat limited | 1 | \|Somewhat limited |  | Not limited |  |
|  |  | Frost action | 10.50 | Cutbanks cave | 10.10 |  | \| |
|  |  |  |  |  |  |  |  |
| 316: |  |  |  |  |  |  |  |
| Royosa | 80 | \|Somewhat limited | \| | \|Very limited |  | Somewhat limited |  |
|  |  | Slope | 10.01 | Cutbanks cave | 11.00 | Droughty | \| 0.01 |
|  |  |  |  | Slope | 10.01 | Slope | \| 0.01 |
|  |  |  | \| |  |  |  |  |
| 317: |  |  |  |  |  |  |  |
| Highdye | 35 | \|Very limited | 1 | \|Very limited |  | Very limited |  |
|  |  | \| Depth to hard bedrock | 11.00 | Depth to hard bedrock | 11.00 | Depth to bedrock | 1.00 |
|  |  | Low strength | 11.00 | Slope | 10.37 | Droughty | 11.00 |
|  |  | Shrink-swell | \|1.00 | Too clayey | 10.28 | Slope | \| 0.37 |
|  |  | Slope | \| 0.37 | Cutbanks cave | 10.10 | Content of large | 0.01 |
|  |  |  |  |  |  | stones |  |
|  |  |  | 1 \| |  |  |  |  |
| Evpark- | 30 | \|Somewhat limited | 10. | \|Very limited |  | Somewhat limited |  |
|  |  | Depth to hard | 10.90 | Depth to hard | 11.00 | Depth to bedrock | 0.90 |
|  |  | bedrock |  | bedrock |  |  |  |
|  |  | \| Shrink-swell | 10.50 | Cutbanks cave | 10.10 | Droughty | \| 0.01 |
|  |  | Frost action | 10.50 |  |  |  |  |
|  |  |  |  |  |  |  |  |
| Bryway- | 20 | \|Very limited | 1.1 | \|Somewhat limited |  | Somewhat limited |  |
|  |  | Low strength | 11.00 | Depth to soft | 10.95 | Depth to bedrock | 0.95 |
|  |  |  |  | bedrock |  |  |  |
|  |  | Shrink-swell | 11.00 | Too clayey | 10.28 | Droughty | 0.22 |
|  |  | \| Frost action | 10.50 | Cutbanks cave | \| 0.10 |  |  |
|  |  |  |  |  |  |  |  |

Table 10b.--Building Site Development--Continued


Table 10b.--Building Site Development--Continued


Table 10b.--Building Site Development--Continued


Table 10b.--Building Site Development--Continued


Table 10b.--Building Site Development--Continued

Map symbol and soil name	$\begin{aligned} & \mid \\ & \mid \text { Pct. } \\ & \mid \text { Pof } \\ & \mid \text { ofap } \\ & \mid \text { unit } \end{aligned}$	Local roads andstreets		Shallow excavations		Lawns and landscaping			
	1	limiting features		\| Rating class and	Rating class and \|Value		Rating class and	\|Value	
375:									
Todest	60	\|Somewhat limited		Very limited		Very limited			
		Depth to hard bedrock	$10.84$	Depth to hard bedrock	\|1.00	Carbonate content	1.00		
			10.50	Cutbanks cave	10.10	Depth to bedrock	0.84		
						Droughty	10.01		
Shadilto---------	\| 25	Very limited Depth to hard		\|Very limited			Very limited		
			1.00	Depth to hard	$\mid$	Depth to bedrock	\|1.00		
		bedrock		bedrock					
		Frost action	\| 0.50	Cutbanks cave	10.10	Droughty	11.001.00		
						Gravel content \|			
			\|				\|1.00		
						Content of large stones	10.03		
376:									
Todest	80	Somewhat limited Depth to hard bedrock	1	Very limited	$1$	$\mid$ Very limited	$1.00$		
			\|0.90		bedrock	11.00	\| Carbonate content		
		Frost action	\| 0.50		Cutbanks cave	10.10	Depth to bedrockDroughty	10.9010.15	
						Droughty	\| 0.15		
380:									
Berryhill--------	\| 50	Very limited \|		\|Very limited		\|Very limited			
				Cutbanks cave	11.00	\| Too clayey	11.00		
		Shrink-swell	11.00	Too clayey	10.72				
Casamero-	45	\|Very limited		\|Very limited		$\mid$ Very limited			
		Depth to soft bedrock	11.00	Depth to soft bedrock	11.00	Too clayey	11.00		
		Low strength	11.00	Cutbanks cave	\|1.00	Depth to bedrock	\|1.00		
		Shrink-swell	11.00	Too clayey	11.00	Droughty	10.84		
385:			1 \|		\|				
Mcorreon-	65	\|Very limited	\|		\|Very limited		$\mid$ Very limited		
		Low strength	11.00	Slope	11.00	Content of large	1.00		
						stones			
		Shrink-swell	11.00	Too clayey	10.50	Slope	\|1.00		
		Slope	11.00	Cutbanks cave	10.10	Gravel content	10.75		
Rock outcrop-	20	\| Not rated	$\|\quad\|$	\| Not rated	\|		\| Not rated		
390:			\|			\|			
Banquito	90	\|Somewhat limited	1 \|	\|Very limited	1 \|	\|Somewhat limited			
		Frost action	10.50	Depth to hard bedrock	11.00	Depth to bedrock	10.06		
		Depth to hard	10.06	Cutbanks cave	10.10				
		bedrock							

Table 10b.--Building Site Development--Continued


Table 10b.--Building Site Development--Continued

Map symbol and soil name	$\begin{aligned} & \mid \\ & \mid \text { Pct.\| } \\ & \text { \| of } \\ & \mid \text { map } \\ & \text { \|unit\| } \end{aligned}$	Local roads and streets		Shallow excavations		Lawns and landscaping			
		Rating class and limiting features	\|Value		\| Rating class and   \| limiting features	\|Value   \|	\| Rating class and   \| limiting features	\|Value   \|	
555:									
Parkelei	45	\|Somewhat limited   \| Frost action	10.50	\|Somewhat limited	Cutbanks cave		$10.10$	\| Not limited	
Evpark-----------	\| 35	\|Somewhat limited		\|Very limited		\| Somewhat limited			
		Shrink-swell	10.50	Depth to hard bedrock	$11.00$	Depth to bedrock	0.10		
		Frost action	10.50	Cutbanks cave	10.10				
		Depth to hard	10.10						
		bedrock							
560 :									
Flugle----------	\| 45	\|Somewhat limited		\|Somewhat limited		\| Not limited			
		Frost action	10.50	Cutbanks cave	10.10				
Teczuni----------	\| 35	\|Very limited		\|Somewhat limited		\| Not limited			
		\| Low strength	11.00	Too clayey	10.12				
		Shrink-swell	10.50	Cutbanks cave	10.10				
		Frost action	10.50						
561:									
Flugle-----------	\| 50	\|Somewhat limited		\|Somewhat limited		\|Not limited			
		Frost action	10.50	Cutbanks cave	10.10				
Plumasano--------	\| 40	\|Somewhat limited		\|Somewhat limited		\| Not limited			
		Frost action	10.50	Cutbanks cave	10.10				
565:									
Plumasano--------	\| 65	\|Very limited		$\mid$ Very limited		\|Very limited			
		Slope	11.00	Cutbanks cave	11.00	Slope	11.00		
		Frost action	10.50	Slope	11.00				
Rock outcrop-----566 :	20	\| Not rated		\| Not rated		\| Not rated			
					$\mid 1$				
	566:								
Bamac-	90	\|Very limited		\|Very limited		\|Very limited			
		Slope	11.00	Cutbanks cave	11.00	Gravel content	11.00		
				Slope	11.00	Droughty	11.00		
						Slope	11.00		
						Content of large	0.01		
						stones			
575:									
Ramah-	\| 45	\|Very limited		\|Somewhat limited	\|		\| Not limited		
		\| Low strength	11.00	Cutbanks cave	10.10				
		Shrink-swell	10.50						
		Frost action	10.50		\|				
					\|				
Pescado-	135	\|Very limited		\|Very limited	\|				
		Depth to hard bedrock	11.00	Depth to hard bedrock	11.00	Depth to bedrock	11.00		
		Low strength	11.00	Cutbanks cave	10.10	Droughty	10.73		
		Shrink-swell	10.50						
		Frost action	10.50		1	\|	\|		
					1				

Table 11a.--Sanitary Facilities
(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00 . The larger the value, the greater the limitation. See text for further explanation of ratings in this table.)


| Map symbol and soil name | $\mid$ \| Pct. | of |map |unit | Septic tank absorption fields |  | Sewage lagoons |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | \| | Rating class and limiting features | \|Value | Rating class and limiting features | \|Value |
| 13: |  |  |  |  |  |
| Councelor-------- | \| 60 | \|Very limited |  | \|Very limited |  |
|  |  | Filtering capacity | 11.00 | Seepage | 11.00 |
|  |  | Restricted | 10.46 | Flooding | 10.40 |
|  |  | permeability |  |  |  |
|  |  | Flooding | 10.40 | Slope | 10.33 |
|  |  |  |  |  |  |
| Calladito | 30 | \|Very limited |  | \|Very limited |  |
|  |  | Filtering capacity | 11.00 | Seepage | 11.00 |
|  |  |  |  | Slope | 10.33 |
|  |  |  | \| |  |  |
| 14: |  |  |  |  |  |
| Councelor------- | 30 | \|Somewhat limited\| Flooding |  | \|Very limited |  |
|  |  |  | 10.40 | Seepage | 11.00 |
|  |  |  |  | Slope | 10.91 |
|  |  |  |  | Flooding | 10.40 |
|  |  |  |  |  |  |
| Eslendo---------- | 30 | \|Very limited |  | \|Very limited |  |
|  |  | Depth to bedrock | 1.00 | Depth to soft | 11.00 |
|  |  |  |  | bedrock |  |
|  |  | Slope | 10.96 | Slope | 11.00 |
|  |  |  |  |  |  |
| Calladito-------- | 25 | \|Very limited ${ }^{\text {\| }}$ Filtering ${ }^{\text {c }}$ capacity |  | \|Very limited |  |
|  |  |  | 11.00 | Seepage | 11.00 |
|  |  |  |  | Slope | 10.33 |
|  |  |  | \| |  |  |
| 16: |  |  |  |  |  |
| Starlake- | 85 | $\mid$ Very limited <br> $\mid$ <br> Restricted <br> permeability <br> Flooding |  | \|Somewhat limited |  |
|  |  |  | 11.00 | Flooding | 10.40 |
|  |  |  | 10.40 | Slope | 10.01 |
|  |  |  |  |  |  |
| 22: |  |  |  |  |  |
| Querencia-------- | 50 |  |  | \|Somewhat limited |  |
|  |  | Restricted permeability | 11.00 | \| Slope | 10.91 |
|  |  |  |  |  |  |
| Lavodnas- | 35 | \|Very limited |  | \|Very limited |  |
|  |  | Depth to bedrock | \|1.00 | Depth to soft bedrock | 11.00 |
|  |  | Slope | 10.01 | Slope | 11.00 |
|  |  |  |  |  |  |
| $30:$ |  |  |  |  |  |
| Orlie | 45 | \|Very limited | 1 \| | \|Somewhat limited |  |
|  |  | Restricted permeability | \|1.00 | Seepage | 10.53 |
|  |  |  | 1 | Slope | 10.09 |
|  |  |  |  |  |  |

Table 11a.--Sanitary Facilities--Continued


Map symbol and soil name	$\begin{aligned} & \text { \| Pct. } \\ & \mid \text { of } \\ & \text { \|map } \\ & \text { \|unit } \end{aligned}$	Septic tank absorption fie		Sewage lagoons		
		Rating class and limiting features	\|Value		\| Rating class and   \| limiting features	\|Value
52 :						
Zuniven----------	\| 90	\|Very limited		\|Very limited		
		Flooding	11.00	Flooding	11.00	
		Filtering	11.00	Seepage	11.00	
		capacity				
		Restricted	11.00			
		permeability				
			1 \|			
53:						
Hawaikuh---------	80	\|Very limited		\|Not limited		
		Restricted permeability	11.00			
54:						
Venadito----------	90	\|Very limited		\|Very limited		
		Flooding	\|1.00	Flooding	\|1.00	
		Restricted	11.00	Depth to	10.71	
		permeability		saturated zone		
		Depth to	11.00		\|	
		saturated zone			\|	
55:						
Sparham-	95			\|Very limited		
		Flooding	\|1.00	Flooding	11.00	
		Restricted	11.00	Seepage	10.53	
		permeability			\|	
					\|	
60 :						
Redpen------------	90	\|Very limited   \| Restricted   \|   permeability	1 \|	\| Somewhat limited	\|	
			11.00	Seepage	10.53	
100:						
Norkiki----------	45	\|Very limited		\|Very limited		
		\| Depth to bedrock	1.00	Depth to hard bedrock	11.00	
		Restricted	10.46	Seepage	11.00	
		permeability				
				Slope	10.33	
			1 \|		,	
Kimnoli----------	40	\|Very limited	1 \|	\|Very limited		
		\| Depth to bedrock	11.00	\| Depth to hard bedrock	11.00	
				Seepage	10.54	
				Slope	10.09	
			$\|\quad\|$		\|	
110:			\|			\|
Benally----------	60	\|Very limited	\|		\|Somewhat limited	
		\| Restricted permeability	11.00	\| Seepage	10.53	
				Slope	10.09	
					\|	

Table 11a.--Sanitary Facilities--Continued


Table 11a.--Sanitary Facilities--Continued


Table 11a.--Sanitary Facilities--Continued



Table 11a.--Sanitary Facilities--Continued

| Map symbol and soil name | Pct. <br> \| of map |unit | Septic tank absorption fiel |  | Sewage lagoons |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Rating class and limiting features | \|Value | Rating class and limiting features | \|Value |
| 230: |  |  |  |  |  |
| Sparank- | 40 | \|Very limited <br> \| Flooding <br> \| Restricted permeability | $\begin{aligned} & \mid 1.00 \\ & \mid 1.00 \end{aligned}$ | Flooding | 11.00 |
|  |  |  |  | \|Very limited |  |
| San Mateo- | 35 | \|Very limited |  |  |  |
|  |  | Flooding | 11.00 | Flooding | 11.00 |
|  |  | Restricted permeability | 11.00 | Seepage | \|1.00 |
|  |  |  |  |  |  |
| Zia------------- | 20 | \|Very limited |  | \|Very limited | 1 |
|  |  | Filtering capacity | 11.00 | Seepage | 11.00 |
|  |  | Flooding | 10.40 | Flooding | 10.40 |
|  |  |  |  | Slope | 10.01 |
|  |  |  |  |  |  |
| 235: |  |  |  |  |  |
| Notal----------- | \| 45 | \|Very limited |  | \| Somewhat limited |  |
|  |  | Restricted permeability | 11.00 |  | 10.40 |
|  |  | Flooding | 10.40 |  |  |
|  |  |  |  |  |  |
| Hamburn- | 40 | \|Very limited |  | \|Very limited |  |
|  |  | Flooding | 11.00 | Flooding | 11.00 |
|  |  | Restricted permeability | 11.00 |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| 240: |  |  |  |  |  |
| Breadsprings----- | 35 |  |  | \|Very limited |  |
|  |  |  | 11.00 | Ponding | 11.00 |
|  |  |  | 10.50 | Seepage | 11.00 |
|  |  |  | 10.40 | Flooding | 10.40 |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| Nahodish- | 35 | \|Very limited |  | \|Very limited | \|1.00 |
|  |  | Restricted permeability | 11.00 | Ponding |  |
|  |  | Ponding | 11.00 | SeepageFlooding | 10.5010.40 |
|  |  | Flooding | 10.40 |  |  |
|  |  |  |  |  |  |
| 241: |  |  |  |  |  |
| Mentmore-------- | 85 | \|Very limited |  | Somewhat limited | $10.33$ |
|  |  | Restricted | 11.00 | Slope |  |
|  |  | permeability |  |  |  |
|  |  |  |  | \| |  |
| 242: |  |  |  |  |  |
| Gish | 45 | \|Very limited ${ }^{\text {Restricted }}$ ( permeability ${ }^{\text {/ }}$ ( Flooding |  | Somewhat limited | 1 |
|  |  |  | 11.00 | Flooding | 10.40 |
|  |  |  | 10.40 | Slope | 10.33 |
|  |  |  |  |  |  |


| Map symbol and soil name | Pct. <br> of \|map |unit | Septic tank absorption fie | lds | Sewage lagoons |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | - | Rating class and limiting features | \|Value | Rating class and <br> \| limiting features | \|Value |
| 242: |  |  |  |  |  |
| Mentmore--------- | 35 | \|Very limited Restricted permeability | $1.00$ | \|Somewhat limited <br> \| Slope | $10.33$ |
| 244: |  |  |  |  |  |
| Buckle | 85 | Very limited |  | \| Somewhat limited |  |
|  |  | Restricted permeability | $1.00$ | Seepage | 0.50 |
|  |  |  |  | Slope | 0.33 |
|  |  |  | \| |  |  |
| 245: |  |  |  |  |  |
| Buckle | 35 | Very limited | \| | \|Very limited |  |
|  |  | Restricted permeability | 11.00 | Seepage | 11.00 |
|  |  |  |  | Slope | 0.33 |
|  |  |  |  |  |  |
| Gapmesa- | 30 | \|Very limited |  | \|Very limited |  |
|  |  | Depth to bedrock | $\mid 1.00$ | \| Depth to hard <br> \| bedrock | 11.00 |
|  |  | Restricted | \|1.00 | Seepage | 0.50 |
|  |  | permeability |  |  |  |
|  |  |  |  | Slope | 0.01 |
|  |  |  |  |  |  |
| Barboncito------- | 25 | \|Very limited |  | \|Very limited |  |
|  |  | Depth to bedrock | \|1.00 | \| Depth to hard bedrock | 1.00 |
|  |  |  |  | Slope | 0.01 |
|  |  |  | \| |  |  |
| 250: |  | Very limited | \| | |  |  |
| Hospah | 35 |  |  | \|Very limited |  |
|  |  | \| Depth to bedrock | \|1.00 | \| Depth to soft <br> \| bedrock | 11.00 |
|  |  | Slope | 11.00 | Slope | \|1.00 |
|  |  |  |  |  |  |
| Skyvillage | 30 | \|Very limited |  | \|Very limited |  |
|  |  | Depth to bedrock | 11.00 | Depth to hard | 1.00 |
|  |  |  |  | bedrock |  |
|  |  |  |  | Slope | 10.67 |
|  |  |  |  | Seepage | 10.28 |
|  |  |  | \| | \| |  |
|  |  |  |  |  |  |
| Rock outcrop-----255 : | 25 | \| Not rated | \| | \| Not rated |  |
|  |  |  | \| |  |  |
|  |  |  | $\mid$ \| | \| |  |
| Farview- | 50 | \|Very limited <br> \| Depth to bedrock |  | \|Very limited |  |
|  |  | \| Depth to bedrock | 11.00 | \| Depth to hard <br> \| bedrock | 11.00 |
|  |  | Slope | 10.01 | \| Seepage | 11.00 |
|  |  |  | \| | Slope | 11.00 |
|  |  |  | \| |  |  |
| Rock outcrop----- | 351 | \| Not rated | \| | \| Not rated | \| |
|  |  |  | \| | | , | \| |
|  |  |  | 1 |  |  |

Table 11a.--Sanitary Facilities--Continued



Table 11a.--Sanitary Facilities--Continued


Map symbol and soil name	\|Pct.   \| of   \|map   \|unit	Septic tank absorption fie		Sewage lagoons		
		Rating class and limiting features	\|Value	\| Rating class and   \| limiting features	\|Value	
317:						
Bryway-----------	20	\|Very limited Depth to bedrock		\|Very limited		
			11.00	$\left\{\begin{array}{c}\text { Depth to soft } \\ \text { bedrock }\end{array}\right.$	$1.00$	
					10.67	
320:						
Parkelei	45	\|Somewhat limited		\|Very limited		
		Restricted	10.46	Seepage	11.00	
		permeability				
				Slope	10.33	
Fraguni----------	40	\|Very limited		\|Very limited		
		Filtering capacity	11.00	Seepage	11.00	
		Restricted	10.46	Slope	10.33	
		permeability				
					\|	
325:						
Venzuni----------	90	\|Very limited		\|Somewhat limited		
		Restricted	11.00	Flooding	10.40	
		permeability				
		Flooding	10.40	Slope	10.01	
332:						
Evpark-----------	50	\|Very limited Depth to bedrock		\|Very limited	\|	
			11.00	Depth to hard bedrock	11.00	
		Restricted permeability	11.00	Slope	10.33	
				Seepage	10.28	
Arabrab----------	40	\|Very limited Depth to bedrock		\|Very limited		
			11.00	Depth to hard bedrock	11.00	
				Slope	10.33	
			$\|\quad\|$		\|	
335:						
Venadito--------	85	\|Very limited		\|Very limited		
		Flooding	11.00	Flooding	11.00	
		Restricted	11.00	Slope	\| 0.01	
		permeability				
					\|	
336:						
Nuffel-----------	45	\|Very limited	\|		\|Very limited	
		Flooding	11.00	Flooding	11.00	
		Restricted	11.00	Seepage	10.53	
		permeability				
				Slope	10.01	
			$\|\quad\|$		\|	
Venadito---------	35	\|Very limited	\|		\|Very limited	,
		Flooding	11.00	Flooding	11.00	
		Restricted	11.00	Slope	10.01	
		\| permeability			\|	
					,	

Table 11a.--Sanitary Facilities--Continued



(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00. The larger the value, the greater the limitation. See text for further explanation of ratings in this table.)


Table 11b.--Sanitary Facilities--Continued



Table 11b.--Sanitary Facilities--Continued


Table 11b.--Sanitary Facilities--Continued


Table 11b.--Sanitary Facilities--Continued

Map symbol and soil name	$\begin{aligned} & \text { \| Pct. } \\ & \mid \text { of } \\ & \text { \|map } \\ & \text { \|unit } \end{aligned}$	Trench sanitarylandfill		Area sanitary landfill		Daily cover for landfill			
		Rating class and limiting features	\|Value	Rating class and   \| limiting features	\|Value	Rating class and   \| limiting features	Value		
215:									
Viuda	35	\|Very limited   \| Depth to bedrock	\|1.00	\| Not limited		\|Very limited   \| Depth to bedrock	1.00		
Penistaja	30	Not limited		Not limited		\| Somewhat limited			
							0.22		
Rock outcrop-----220 :	25	\|Not rated		\|Not rated		\| Not rated			
Hagerwest--------	50	\|Very limited ${ }^{\text {\| }}$ Depth to bedrock		\| Not limited		\|Very limited			
			11.00			Depth to bedrock	1.00		
						Seepage	0.52		
Bond-	35	\|Very limited	\|1.00	\| Not limited		\|Very limited			
		Depth to bedrock				Depth to bedrock	1.00		
225:									
Aquima---------------		40	\| Not limited		\| Not limited		\|Not limited		
Hawaikuh--------230 :	40	\| Not limited		\|Not limited		\| Not limited			
Sparank----------	40	\|Very limited		\|Very limited		\|Not limited			
		Flooding	11.00	Flooding	11.00				
San Mateo--------	35	\|Very limited   \| Flooding		\|Very limited		\| Not limited			
			11.00		11.00				
Zia--------------	20	\|Somewhat limited   \| Flooding		\|Somewhat limited   \| Flooding		\| Somewhat limited			
			10.40		10.40		10.52		
235: \|			\|						
Notal------------	45	Somewhat limitedFlooding		\|Somewhat limited\| Flooding		\| Not limited			
			10.40		10.40				
Hamburn----------	40	\|Very limited   \| Flooding		\|Very limited		\|Very limited	$11.00$		
			11.00	Flooding	11.00	Carbonate content			
240:	35								
Breadsprings-----				\|Very limited		\|Very limited	.		
		Very limited   Ponding   Flooding	11.00	\| Ponding	11.00	Ponding	\|1.00		
			10.40	Flooding	10.40				
Nahodish---------	35	\|Very limited		\|Very limited		\|Very limited	$\text { \| } 1.00$		
		Ponding	11.00	\| Ponding	11.00	Ponding			
		Flooding	10.40	Flooding	10.40				
241:									
Mentmore---------	85	\|Not limited		\| Not limited		\| Not limited			
	\|								
242:	45	\|Somewhat limited   \| Flooding		\|Somewhat limited   \| Flooding		\|Very limited			
			10.40		10.40		11.00		

Table 11b.--Sanitary Facilities--Continued


Table 11b.--Sanitary Facilities--Continued

Map symbol and soil name	$\begin{aligned} & \text { \| } \\ & \mid \text { Pct. } \\ & \mid \text { of } \\ & \mid \text { map } \\ & \mid \text { unit } \end{aligned}$	Trench sanitary landfill		Area sanitary landfill		Daily cover for landfill		
		Rating class and limiting features	\|Value	Rating class and   \| limiting features	\|Value		Rating class and limiting features	\|Value
261:								
Coal Mine Lands-----\|	\|100	\| Not rated		\| Not rated		\| Not rated		
Uranium Mined Lands-\|	\| 95	\| Not rated		\| Not rated		\| Not rated		
270:								
Alesna--------------- \|	\| 70	\|Very limited		\|Very limited		\|Very limited		
		Depth to bedrock	\|1.00	Slope	11.00	Slope	1.00	
		Slope	11.00			Depth to bedrock	0.26	
Rock outcrop-------- \|	\| 20	\|Not rated		\|Not rated		\|Not rated		
275 :								
Eldado---------------	\| 85	\|Very limited		\| Not limited		\|Very limited		
		Too sandy	11.00			Too sandy	11.00	
						Seepage	11.00	
						Gravel content	10.16	
280:								
Azabache------------\|	\| 85	\|Not limited		\| Not limited		\|Very limited		
						Gravel content	11.00	
290:								
Rock outcrop---------	\| 45	\| Not rated		\| Not rated		\| Not rated		
Westmion-------------	\| 30	\|Very limited		\|Very limited		\|Very limited		
		Slope	11.00	Slope	11.00	\| Depth to bedrock	1.00	
		Depth to bedrock	\|1.00			Slope	11.00	
Skyvillage---------- \|	\| 15	\|Very limited		\| Not limited		\|Very limited		
		Depth to bedrock	11.00			Depth to bedrock	1.00	
						Seepage	10.52	
		Slope				Slope		
291:								
Rock outcrop--------\|	\| 50	\| Not rated		\| Not rated				
Eagleye------------- \|	\| 25	\|Very limited		\|Very limited		\|Very limited		
		Slope	11.00	Slope	11.00	Depth to bedrock	11.00	
		Depth to bedrock	11.00			Slope	11.00	
						Gravel content	10.02	
Atchee--------------\|	\| 15	\|Very limited		\|Somewhat limited		\|Very limited		
		Depth to bedrock	11.00	Slope	10.63	Depth to bedrock	1.00	
		Slope	10.63			Slope	10.63	
		Content of large	10.44			Content of large	10.44	
		stones				stones		
						Gravel content	0.14	
300:		\|						\|
Regracic-------------	\| 80	\| Not limited		\| Not limited		\|Somewhat limited		
						\| Gravel content	10.02	
							\|	

Table 11b.--Sanitary Facilities--Continued


Table 12a.--Construction Materials
(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The ratings given for the thickest layer are for the thickest layer above and excluding the bottom layer. The numbers in the value columns range from 0.00 to 0.99 . The greater the value, the greater the likelihood that the bottom layer or thickest layer of the soil is a source of sand or gravel. See text for further explanation of ratings in this table.)


Table 12a.--Construction Materials--Continued


Table 12a.--Construction Materials--Continued

| Map symbol and soil name | \|Pct. | of |map |unit | Potential source of gravel |  | Potential source of sand |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | \| | Rating class | \|Value | Rating class | \|Value |
|  |  |  |  |  |  |
|  | \| |  |  |  |  |
| 305: |  |  |  |  |  |
| Celavar---------- | 50 | Poor |  | Fair |  |
|  |  | Bottom layer | 10.00 | Bottom layer | 0.00 |
|  |  | Thickest layer | 10.00 | Thickest layer | 0.04 |
|  |  |  |  |  |  |
| Atarque---------- | 35 | Poor |  | Poor |  |
|  |  | Bottom layer | 10.00 | Bottom layer | 0.00 |
|  |  | Thickest layer | 0.00 | Thickest layer | 10.00 |
|  |  |  |  |  |  |
| 308: |  |  |  |  |  |
| Fikel------------ | 50 | Poor |  | Fair |  |
|  |  | Bottom layer | 0.00 | Bottom layer | 0.03 |
|  |  | Thickest layer | 10.00 | Thickest layer | 10.03 |
|  |  |  |  |  |  |
| Venzuni----------- | 40 | Poor |  | Fair |  |
|  |  | Bottom layer | 10.00 | Thickest layer | 10.00 |
|  |  | Thickest layer | 10.00 | Bottom layer | 10.03 |
|  |  |  |  |  |  |
| 310: |  |  |  |  |  |
| Parkelei---------- | 80 | Poor |  | Fair |  |
|  |  | Bottom layer | 10.00 | Bottom layer | 10.00 |
|  |  | Thickest layer | 10.00 | Thickest layer | 10.03 |
|  |  |  |  |  |  |
| 312 : |  |  |  |  |  |
| Bluewater-------- | 90 | Poor |  | Poor |  |
|  |  | Bottom layer | 10.00 | Bottom layer | 10.00 |
|  |  | Thickest layer | 10.00 | Thickest layer | 10.00 |
|  |  |  |  |  |  |
| 315: |  |  |  |  |  |
| Flugle | 50 | Poor |  | Fair |  |
|  |  | Bottom layer | 10.00 | Thickest layer | 0.00 |
|  |  | Thickest layer | 10.00 | Bottom layer | 10.09 |
|  |  |  |  |  |  |
| Fragua- | 40 | Poor |  | Fair |  |
|  |  | Bottom layer | 10.00 | Thickest layer | 10.09 |
|  |  | Thickest layer | 10.00 | Bottom layer | \| 0.09 |
|  |  |  |  |  |  |
| 316: |  |  |  |  |  |
| Royosa------------ | 80 | Poor |  | Fair |  |
|  |  | Bottom layer | 10.00 | Thickest layer | 0.65 |
|  |  | Thickest layer | 10.00 | Bottom layer | \| 0.98 |
| 317: |  |  |  |  |  |
| Highdye | 35 | Poor |  | \| Poor |  |
|  |  | Bottom layer | 10.00 | Bottom layer | 10.00 |
|  |  | Thickest layer | 10.00 | Thickest layer | 10.00 |
|  |  |  |  |  |  |
| Evpark- | 30 | Poor |  | Fair |  |
|  |  | Bottom layer | 10.00 | Bottom layer | 0.00 |
|  |  | Thickest layer | 10.00 | Thickest layer | \| 0.03 |
|  |  |  |  |  |  |
| Bryway- | 20 | Poor |  | Poor |  |
|  |  | Bottom layer | 10.00 | Bottom layer | 0.00 |
|  |  | Thickest layer | 10.00 | Thickest layer | 10.00 |
|  |  |  |  |  |  |

Table 12a.--Construction Materials--Continued


Table 12a.--Construction Materials--Continued

| Map symbol and soil name | \|Pct. <br> \| of |map |unit | Potential source of gravel |  | Potential source of sand |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Rating class | \|Value | Rating class | \|Value |
|  |  |  |  |  |  |
|  |  |  | \| |  | \| |
| 350: |  |  |  |  |  |
| Toldohn | 35 | Poor |  | Poor |  |
|  |  | Bottom layer | 10.00 | Bottom layer | 10.00 |
|  |  | Thickest layer | 10.00 | Thickest layer | 10.00 |
|  |  |  |  |  |  |
| Vessilla--------- | 30 | \| Poor |  | Poor |  |
|  |  | Bottom layer | 10.00 | Bottom layer | 10.00 |
|  |  | Thickest layer | 10.00 | Thickest layer | 10.00 |
|  |  |  |  |  |  |
| Rock outcrop----- | 20 | \|Not rated |  | Not rated |  |
|  |  |  | \| |  |  |
| 351: |  |  |  |  |  |
| Rock outcrop----- | 60 | \| Not rated |  | Not rated |  |
|  |  |  | \| |  |  |
| 351: |  |  |  |  |  |
| Vessilla--------- | 30 | \| Poor |  | Poor |  |
|  |  | Bottom layer | 10.00 | Bottom layer | 10.00 |
|  |  | Thickest layer | 10.00 | Thickest layer | 10.00 |
|  |  |  |  |  |  |
| 352 : |  |  |  |  |  |
| Zia | 80 | \| Poor |  | Fair |  |
|  |  | Bottom layer | 10.00 | Bottom layer | 0.09 |
|  |  | Thickest layer | 10.00 | Thickest layer | \| 0.10 |
|  |  |  |  |  |  |
| 353: |  |  |  |  |  |
| Mido- | 90 | \| Poor |  | Fair \| |  |
|  |  | Bottom layer | 10.00 | Thickest layer | 10.20 |
|  |  | Thickest layer | 10.00 | Bottom layer | 10.70 |
|  |  |  |  |  |  |
| 354: |  |  |  |  |  |
| Knifehill-------- | 80 | \| Poor |  | Poor |  |
|  |  | Bottom layer | 10.00 | Bottom layer | 10.00 |
|  |  | Thickest layer | 10.00 | Thickest layer | 10.00 |
|  |  |  |  |  |  |
| 355: |  |  |  |  |  |
| Rizno------------ | 35 | \| Poor |  | Poor |  |
|  |  | Bottom layer | 10.00 | Bottom layer | 10.00 |
|  |  | Thickest layer | 10.00 | Thickest layer | 10.00 |
|  |  |  | \| |  |  |
| Tekapo----------- | 30 | \| Poor |  | Poor |  |
|  |  | Bottom layer | 10.00 | Bottom layer | 10.00 |
|  |  | Thickest layer | 10.00 | Thickest layer | 10.00 |
|  |  |  |  |  |  |
| Rock outcrop----- | 20 | \| Not rated |  | \| Not rated |  |
|  |  |  |  |  |  |
| 357: |  |  |  |  |  |
| Heshotauthla----- | 85 | \| Poor |  | Poor |  |
|  |  | Bottom layer | 10.00 | Bottom layer | 10.00 |
|  |  | Thickest layer | 10.00 | Thickest layer | 10.00 |
|  |  |  |  |  |  |

Table 12a.--Construction Materials--Continued


Table 12a.--Construction Materials--Continued

| Map symbol and soil name | \| Pct. | of |map |unit | Potential source of gravel |  | Potential source of sand |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | Rating class | \|Value| | Rating class | \|Value |
|  |  |  |  |  |  |
|  |  |  | \| |  | \| |
| 380: |  |  |  |  |  |
| Berryhill-------- | \| 50 | \| Poor |  | Poor |  |
|  |  | Bottom layer | 10.00 | Bottom layer | 10.00 |
|  |  | Thickest layer | 10.00 | Thickest layer | 10.00 |
|  |  |  |  |  |  |
| Casamero--------- | \| 45 | \| Poor |  | Poor |  |
|  |  | \| Bottom layer | 10.00 | Bottom layer | 10.00 |
|  |  | Thickest layer | 10.00 | Thickest layer | 0.00 |
|  |  |  | \| |  |  |
| 385: |  |  |  |  |  |
| Mcorreon--------- | 65 | \| Poor |  | Poor |  |
|  |  | Bottom layer | 10.00 | Bottom layer | 0.00 |
|  |  | Thickest layer | 10.00 | Thickest layer | 10.00 |
|  |  |  |  |  |  |
| 385: |  |  |  |  |  |
| Rock outcro | 20 | \| Not rated |  | Not rated |  |
|  |  |  | 1 \| |  |  |
|  |  |  | \| |  |  |
| 390: |  |  |  |  |  |
| Banquito---------- | 90 | \| Poor |  | Fair |  |
|  |  | Bottom layer | 10.00 | Bottom layer | 0.00 |
|  |  | Thickest layer | 10.00 | Thickest layer | 10.07 |
|  |  |  |  |  |  |
| 395: |  |  |  |  |  |
| Cabezon---------- | 60 | \| Poor |  | Poor |  |
|  |  | Bottom layer | 10.00 | Bottom layer | 10.00 |
|  |  | Thickest layer | 10.00 | Thickest layer | 10.00 |
|  |  |  |  |  |  |
| Mcorreon | 30 | \| Poor |  | Poor |  |
|  |  | Bottom layer | 10.00 | Bottom layer | 10.00 |
|  |  | Thickest layer | 10.00 | Thickest layer | 10.00 |
|  |  |  | 1 \| |  |  |
| 400: |  |  |  |  |  |
| Shoemaker-------- | 45 | \| Poor |  | Fair |  |
|  |  | Bottom layer | 10.00 | Bottom layer | 10.00 |
|  |  | Thickest layer | 10.00 | Thickest layer | 10.04 |
|  |  |  | \| |  |  |
| Stozuni---------- | \| 35 | \| Poor | 1 | Poor |  |
|  |  | Bottom layer | 10.00 | Bottom layer | 10.00 |
|  | \| | Thickest layer | 10.00 | Thickest layer | 10.00 |
|  | I |  | , |  |  |
| 403 : |  |  |  |  |  |
| Valnor | 50 | \| Poor | , | Poor |  |
|  |  | Bottom layer | 10.00 | Bottom layer | 10.00 |
|  |  | Thickest layer | 10.00 | Thickest layer | 10.00 |
|  |  |  |  |  |  |
| Techado | 30 | \| Poor | 1 | Poor |  |
|  |  | Bottom layer | 10.00 | Bottom layer | 10.00 |
|  |  | Thickest layer | 10.00 | Thickest layer | 10.00 |
|  |  |  | 1 |  |  |
| 404: |  |  | I |  |  |
| Rock outcrop- | 35 | \| Not rated | 1 | Not rated | \| |
|  |  |  | 1 |  | 1 |
|  |  |  | 11 |  |  |

Table 12a.--Construction Materials--Continued


Table 12a.--Construction Materials--Continued


Table 12a.--Construction Materials--Continued


Table 12a.--Construction Materials--Continued

Map symbol and soil name	$\begin{aligned} & \mid \\ & \mid \text { Pct. } \\ & \mid \text { Pof } \\ & \mid \text { of } \\ & \mid \text { unit } \end{aligned}$	Potential source of gravel		Potential source of sand		
	$\begin{aligned} & \mid \text { map } \\ & \mid \text { unit } \end{aligned}$	Rating class	\|Value		Rating class	\|Value
525:						
Silcat-----------	\| 85	\| Poor		\| Poor		
			10.00	Bottom layer	$\begin{aligned} & 10.00 \\ & 10.00 \end{aligned}$	
		Thickest layer	10.00	Thickest layer		
550:						
Bryway-----------	\| 50	\| Poor		\| Poor		
		Bottom layer	10.00	Bottom layer	10.00	
		Thickest layer	10.00	Thickest layer	10.00	
Galzuni----------	35	\| Poor		\|Fair		
		Bottom layer	10.00	Thickest layer	10.01	
		Thickest layer	10.00	Bottom layer	10.03	
555:						
Parkelei---------	45	\| Poor		\|Fair		
		Bottom layer	10.00	Thickest layer Bottom layer	10.03	
		Thickest layer	10.00	Bottom layer	10.09	
Evpark-	35	Poor		\| Poor		
		Bottom layer	10.00	\| Bottom layer	10.00	
		Thickest layer	10.00	Thickest layer	10.00	
560:						
Flugle	45	\|Poor		\|Fair		
		Bottom layer	10.00	\| Thickest layer	10.03	
		Thickest layer	10.00	Bottom layer	10.08	
Teczuni----------	35	Poor		\| Poor		
		Bottom layer	10.00	Bottom layer	10.00	
		Thickest layer	10.00	Thickest layer	10.00	
561:						
Flugle	\| 50	Poor		\|Fair		
		Bottom layer	10.00	Thickest layer	10.03	
		Thickest layer	10.00	Bottom layer	10.08	
Plumasano-	40	\| Poor	1 \|	\|Fair		
		Bottom layer	10.00	\| Bottom layer	10.04	
		Thickest layer	10.00	Thickest layer	10.09	
565:			\|		\|	
Plumasano-	65	\| Poor	,	\|Fair		
		Bottom layer	10.00	Bottom layer	10.08	
		Thickest layer	10.00	Thickest layer	10.09	
			\|			
Rock outcrop---	20	\| Not rated	\|	\| Not rated	\|	
			\|		\|	
566:			\|		\|	
Bamac-	90	\|Fair	\|	\|Fair		
		Bottom layer	10.38	Bottom layer	10.43	
		Thickest layer	10.38	Thickest layer	10.43	



Table 12b.--Construction Materials
(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.00 to 0.99. The smaller the value, the greater the limitation. See text for further explanation of ratings in this table.)


Table 12b.--Construction Materials--Continued


Table 12b.--Construction Materials--Continued


Table 12b.--Construction Materials--Continued


Table 12b.--Construction Materials--Continued

Map symbol and soil name		Potential source of reclamation material		Potential source of roadfill		Potential source of topsoil		
	1	Rating class and \| limiting features	\|Value		\| Rating class and	\|Value	Rating class and limiting features	\|Value
100:								
Norkiki----------	45	Poor		Poor		\|Fair	10.35	
		Wind erosion	10.00	Depth to bedrock Shrink-swell	0.00	Depth to bedrock		
		Droughty	10.15		0.99			
		Low content of	10.24					
		organic matter						
		Depth to bedrock	10.35					
Kimnoli----------	40	Poor		\| Poor		\| Poor		
		Droughty	10.00	Depth to bedrock	0.00	Depth to bedrock		
		Depth to bedrock	10.00				$10.00$	
		Low content of	10.12					
		organic matter						
110:								
Benally----------	60	Poor		\|Fair		\| Poor		
		Sodium content	10.00	Shrink-swell	0.87	Sodium content	10.00	
		Too alkaline	10.00					
		Low content of organic matter	10.02					
Fruitland--------	25	\| Poor		\|Good		\|Fair		
		Wind erosion	10.00			Too sandy	10.78	
		Too alkaline	10.00		\|			
		Low content of	10.12					
		organic matter						
		Too sandy	10.78		I			
111:								
Yelives----------	85	Fair		\|Good		\| Good		
		Low content of organic matter	$10.18$		1			
		No water erosion limitation	10.99					
					1			
					,			
115:			$\|\quad\|$					
Razito------------	45	Poor		\|Good	,	\|Fair	\|	
		Wind erosion	10.00			Too sandy	10.02	
		Too sandy	10.02		I			
		Low content of	10.18		\|			
		organic matter			\|			
		Droughty	10.58		\|			
Shiprock--------	40	Poor		\|Good	$\mid$	\|Good	\|	
		Too alkaline	10.00		\|		\|	
		Low content of	10.05		\|		\|	
		organic matter			1		\|	

Table 12b.--Construction Materials--Continued

| Map symbol and soil name | \| |Pct. | of $\mid$ \|map |unit $\mid$ | Potential source of reclamation material |  | Potential source of roadfill |  | Potential source of topsoil |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | \| | Rating class and limiting features | \|Value| | Rating class and limiting features | \|Value | Rating class and limiting features | \|Value <br> \| |
| 116: |  |  |  |  |  |  |  |
| Fajada----------- | \| 30 | \| Poor |  | Poor |  | \| Poor |  |
|  |  | Droughty | 10.00 | Depth to bedrock | 10.00 | Hard to reclaim | 0.00 |
|  |  | Sodium content | 10.00 | Low strength | 10.00 | Sodium content | 10.00 |
|  |  | Too alkaline | 10.00 | Shrink-swell | 10.87 | Salinity | 10.00 |
|  |  | Low content of | 10.18 |  |  | Depth to bedrock | 0.35 |
|  |  | organic matter |  |  |  |  |  |
|  |  | Depth to bedrock | 10.35 |  |  | Too clayey | 0.58 |
|  |  | Salinity | 10.88 |  |  |  |  |
|  |  | Too clayey | 10.98 |  |  |  |  |
|  |  |  |  |  |  |  |  |
| Huerfano--------- | 30 | \| Poor |  | Poor |  | \| Poor |  |
|  |  | Droughty | 10.00 | Depth to bedrock | 10.00 | Sodium content | 10.00 |
|  |  | Depth to bedrock | 10.00 | Low strength | 10.00 | Depth to bedrock | 10.00 |
|  |  | Sodium content | 10.00 | Shrink-swell | 10.87 | Salinity | 10.00 |
|  |  | Too alkaline | 10.00 |  |  | Too clayey | 10.61 |
|  |  | Low content of | 10.32 |  |  |  |  |
|  |  | organic matter |  |  |  |  |  |
|  |  | Salinity | 10.88 |  |  |  |  |
|  |  | Too clayey | 10.98 |  |  |  |  |
|  |  |  |  |  |  |  |  |
| Benally- | 25 | Poor |  | \|Fair |  | \| Poor |  |
|  |  | Sodium content | 10.00 | Depth to bedrock | 10.16 | Sodium content | 10.00 |
|  |  | Too alkaline | 10.00 | Shrink-swell | 10.87 | Salinity | 10.50 |
|  |  | Droughty | 10.11 |  |  |  |  |
|  |  | Low content of | 10.24 |  |  |  |  |
|  |  | organic matter |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| 118: |  |  |  |  |  |  |  |
| Farb-------------- | 35 | \| Poor |  | \| Poor |  | \| Poor |  |
|  |  | Droughty | 10.00 | Depth to bedrock | 10.00 | Depth to bedrock | 10.00 |
|  |  | Depth to bedrock | 10.00 |  |  |  |  |
|  |  | Low content of | 10.32 |  |  |  |  |
|  |  | organic matter |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| Chipeta- | 30 | \| Poor |  | \| Poor |  | \| Poor |  |
|  |  | Droughty | 10.00 | Depth to bedrock | 10.00 | Salinity | 10.00 |
|  |  | Depth to bedrock | 10.00 | Low strength | 10.00 | Depth to bedrock | 10.00 |
|  |  | Too clayey | 10.00 | Shrink-swell | 10.87 | Too clayey | 10.00 |
|  |  | Low content of organic matter | 10.12 |  |  | Sodium content | 10.22 |
|  |  | Sodium content | 10.22 |  |  | Slope | 10.37 |
|  |  | Salinity | 10.50 |  | , |  |  |
|  |  | Water erosion | 10.90 |  | \| |  |  |
|  |  |  |  |  |  |  |  |
| Rock outcrop--- | \| 25 | \|Not rated |  | \|Not rated |  | \| Not rated |  |
|  |  |  |  |  | \| |  |  |
| 120:Doak |  |  | \| | |  | \| | \| | \| |
|  | 55 | \|Fair |  | \|Fair | \| | \| Good |  |
|  |  | Low content of | 10.32 |  | \| | \| | \| |
|  |  | organic matter |  |  |  |  |  |

Table 12b.--Construction Materials--Continued


Table 12b.--Construction Materials--Continued

| Map symbol and soil name | \| |Pct. | of $\mid$ \|map |unit $\mid$ | Potential source of reclamation material |  | Potential source of roadfill |  | Potential source of topsoil |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | Rating class and limiting features | \|Value| | Rating class and limiting features | \|Value| | Rating class and limiting features | \|Value |
| 150: |  |  |  |  |  |  |  |
| Escawetter------- | \| 25 | \| Poor |  | Good |  | \| Poor |  |
|  |  | Too sandy | 10.00 |  |  | \| Too sandy | 10.00 |
|  |  | Wind erosion | 10.00 |  |  |  |  |
|  |  | Low content of | 10.50 |  |  |  |  |
|  |  | organic matter |  |  |  |  |  |
|  |  | Droughty | 10.55 |  |  |  |  |
|  |  |  |  |  |  |  |  |
| 160: | , |  |  |  |  |  |  |
| Escawetter------- | \| 40 | \| Poor |  | \|Good |  | \| Poor |  |
|  |  | Too sandy | 10.00 |  |  | Too sandy | 10.00 |
|  |  | Wind erosion | 10.00 |  |  |  |  |
|  |  | Droughty | 10.40 |  |  |  |  |
|  |  | Low content of | 10.50 |  |  |  |  |
|  |  | organic matter |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| Riverwash- | 35 | \| Poor |  | \|Good |  | \| Poor |  |
|  |  | Too sandy | 10.00 |  |  | Too sandy | 10.00 |
|  |  | Droughty | 10.00 |  |  |  |  |
|  |  | Low content of | 10.01 |  |  |  |  |
|  |  | organic matter |  |  |  |  |  |
| Razito------------ | 15 | \| Poor |  | \|Good |  | \| Poor |  |
|  |  | Too sandy | 10.00 |  |  | Too sandy | 10.00 |
|  |  | Wind erosion | 10.00 |  |  |  |  |
|  |  | Low content of | 10.00 |  |  |  |  |
|  |  | organic matter |  |  |  |  |  |
|  |  | Droughty | 10.36 |  |  |  |  |
|  |  |  |  |  |  |  |  |
| 205: |  |  |  |  |  |  |  |
| Penistaja--------- | 45 | \|Fair |  | \| Good |  | \|Good |  |
|  |  | Low content of organic matter | 10.88 |  |  | - |  |
|  |  | organic matter |  |  |  |  |  |
| Tintero---------- | 40 | \|Fair |  | \| Good |  | \|Good |  |
|  |  | Low content of | 10.88 |  |  |  |  |
|  |  | organic matter |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| 208: |  |  |  |  |  |  |  |
| Marianolake------ | 85 | \| Poor |  | \|Fair |  | \|Good |  |
|  |  | Low content of organic matter | 10.00 | Shrink-swell | 10.99 | \| | |  |
|  |  | No water erosion \| | 10.99 |  |  | \| | |  |
|  |  | limitation |  |  |  | \| | |  |
|  |  |  |  |  |  |  |  |
| 210: | \| |  |  |  |  |  |  |
| Marianolake- | 50 | \|Fair |  | \| Poor |  | Fair |  |
|  |  | Low content of organic matter | 10.88 | Low strength | 10.00 | \| Too clayey | 10.70 |
|  |  | Too clayey | 10.98 | Shrink-swell | 10.97 | \| | |  |

Table 12b.--Construction Materials--Continued


Table 12b.--Construction Materials--Continued

| Map symbol and soil name | \| Pct. | of |map |unit | Potential source of reclamation material | Potential source of roadfill |  | Potential source of topsoil |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | \|map | |unit |  |  |  |  |  |
|  | \| | Rating class and \|Value| | Rating class and | \|Value | Rating class and | \|Value |
|  |  | limiting features | limiting features |  | limiting features |  |
|  |  |  |  |  |  |  |
|  |  | \| | |  |  |  |  |
| 361: |  |  |  |  |  |  |
| Monpark----------- | 80 | Poor | \| Poor |  | Poor |  |
|  |  | Too clayey \|0.00 | Depth to bedrock | 10.00 | Too clayey | 10.00 |
|  |  | Depth to bedrock \|0.29 | Low strength | 10.00 | Depth to bedrock | 10.29 |
|  |  | Droughty \|0.33 | Shrink-swell | 10.12 |  |  |
|  |  | Low content of \|0.88 |  |  |  |  |
|  |  | organic matter \| |  |  |  |  |
|  |  | \| |  |  |  |  |
| 365: |  |  |  |  |  |  |
| Vessilla--------- | 55 | Poor | Poor |  | Poor |  |
|  |  | Droughty \|0.00 | Depth to bedrock | 10.00 | Depth to bedrock | 10.00 |
|  |  | Depth to bedrock $\mid 0.00$ |  |  |  |  |
|  |  | Low content of \|0.88 |  |  |  |  |
|  |  | organic matter \| |  |  |  |  |
|  |  | I |  |  |  |  |
| Rock outcrop----- |  | \|Not rated | | \|Not rated |  | \| Not rated |  |
|  |  | \| | | |  |  |  |  |
| 366: \| | | | |  |  |  |  |  |  |
| Bosonoak--------- | 95 | \|Fair | | Fair |  |  | \| Fair |  |
|  |  | Low content of $\mid 0.08$ | Low strength | 10.78 | Too clayey | 10.52 |
|  |  | organic matter |  |  |  |  |
|  |  | Too clayey \|0.92 |  |  |  |  |
|  |  | No water erosion \|0.99 |  |  |  |  |
|  |  | limitation \| |  |  |  |  |
|  |  | \| | |  |  |  |  |
| 367 : |  |  |  |  |  |  |
| Chunkmonk-------- | 85 | \|Poor | | Poor |  | Poor |  |
|  |  | Droughty \|0.00 | Depth to bedrock | 0.00 | Depth to bedrock | 0.00 |
|  |  | Depth to bedrock $\mid 0.00$ |  |  | Rock fragments | 10.00 |
|  |  | Carbonate content\|0.46 |  |  | Carbonate content\|0 | 10.80 |
|  |  | Low content of \|0.50 |  |  |  |  |
|  |  | organic matter \| |  |  |  |  |
|  |  | $1$ |  |  |  |  |
| 368: |  |  |  |  |  |  |
| Simitarq--------- | 60 | \|Poor | | \|Poor |  | Poor \| |  |
|  |  | Droughty \|0.00 | Depth to bedrock | 10.00 | Depth to bedrock | 10.00 |
|  |  | Depth to bedrock $\mid 0.00$ | Shrink-swell | \| 0.12 | Too clayey | 10.00 |
|  |  | Too clayey \|0.00 |  |  | Rock fragments | 10.88 |
|  |  | Low content of \|0.18 |  |  |  |  |
|  |  | organic matter \| |  |  |  |  |
|  |  |  |  |  |  |  |
| Celavar | 20 | \|Fair | | Poor |  | \|Fair |  |
|  |  | Low content of $\mid 0.50$ | Depth to bedrock | 10.00 | Depth to bedrock | 10.65 |
|  |  | organic matter |  |  |  |  |
|  |  | Droughty \|0.55 |  |  |  |  |
|  |  | Depth to bedrock \|0.65 |  |  |  |  |
|  |  | 1 |  |  |  |  |

Table 12b.--Construction Materials--Continued


Table 12b.--Construction Materials--Continued


Table 12b.--Construction Materials--Continued


Table 12b.--Construction Materials--Continued

Map symbol and soil name	Pct.   of \|map	unit	Potential source of reclamation material		Potential source of roadfill		Potential source of topsoil		
		Rating class and limiting features	\|Value		Rating class and limiting features	\|Value		Rating class and limiting features	\|Value
408:									
Mirabal----------	50	Poor		Poor		\| Poor			
		Droughty	10.00	Depth to bedrock	10.00	Rock fragments	10.00		
		Low content of organic matter	10.50	Slope	10.50	Slope	10.00		
		Depth to bedrock	0.54	Stone content	10.69	Depth to bedrock	0.54		
		Stone content	10.71						
		Too acid	10.99						
Zuni-------------	\| 40	\| Poor		Poor		\| Poor			
		Too clayey	10.00	Depth to bedrock	10.00	Rock fragments	0.00		
		Droughty	10.02	Shrink-swell	10.12	Too clayey	10.00		
		Depth to bedrock	10.29	Low strength	10.78	Depth to bedrock	10.29		
		Low content of	10.50						
		organic matter							
$409 \text { : }$   Rauster									
	\| 60	\| Poor		Poor		Poor			
		Too clayey	10.00	Low strength	10.00	Too clayey	10.00		
		Low content of organic matter	10.88	Shrink-swell	10.12	Slope	10.00		
				Slope	10.50				
				Depth to bedrock	10.92				
Rock outcrop-----410 :	30	\|Not rated		Not rated		\| Not rated			
Montillo--------	50	\| Poor		\| Poor		\| Poor			
		\| Too clayey	10.00	\| Depth to bedrock	10.00	\| Too clayey	10.00		
		Droughty	10.36	Low strength	10.00	Depth to bedrock	10.71		
		\| Depth to bedrock	10.71	Shrink-swell	10.12	Slope	10.84		
		No water erosion	10.99						
		limitation							
Tsoodzil---------	40	\| Poor		\| Poor		\| Poor			
		\| Too clayey	10.00	Low strength	10.00	Too clayey	10.00		
		Low content of	10.88	Shrink-swell	10.12	Slope	10.00		
		\| organic matter							
				Slope	10.50	Hard to reclaim	10.88		
						Rock fragments	10.95		
411:									
Ligocki----------	\| 45		\| Poor		\|Fair		Poor		
		Too clayey	10.00	Shrink-swell	10.99	Too clayey	10.00		
		Low content of	10.50						
		organic matter							
					1				
Robolata	35	\|Fair		Fair		\| Poor			
		\| Too clayey	10.50	\| Shrink-swell	10.90	Hard to reclaim	10.00		
		\| Low content of   \| organic matter	10.88		\|	Too clayey	10.36		
		No water erosion	10.99		\|				
		limitation							

Table 12b.--Construction Materials--Continued

| Map symbol and soil name | \| |Pct. $\mid$ \| of | |map |unit $\mid$ | Potential source <br> reclamation materi | $\begin{aligned} & \text { of } \\ & \text { fial } \end{aligned}$ | Potential source of roadfill |  | Potential source of topsoil |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | \| | Rating class and limiting features | \|Value| | Rating class and limiting features | \|Value| | Rating class and limiting features | \|Value |
| Rock outcrop------ | 50 | Not rated |  | Not rated |  | \| Not rated |  |
|  |  |  |  |  |  |  |  |
| Rionutria- | 25 | Poor |  | Poor |  | \| Poor |  |
|  |  | Droughty | 10.00 | Depth to bedrock | 10.00 | Rock fragments | 10.00 |
|  |  | Depth to bedrock | 10.10 | Low strength | 10.22 | Too clayey | 10.09 |
|  |  | Too clayey | \| 0.12 | cobble content | 10.54 | Depth to bedrock | 10.10 |
|  |  | Cobble content | 10.30 | Shrink-swell | 10.87 | Slope | 10.84 |
|  |  | Low content of | 10.88 | Stone content | 10.94 |  |  |
|  |  | organic matter |  |  |  |  |  |
|  |  | Stone content |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| Zaster----------- | 25 | \| Poor |  | \| Poor |  | \| Poor |  |
|  |  | Droughty | 10.00 | Depth to bedrock | 10.00 | Rock fragments | 10.00 |
|  |  | Depth to bedrock | 10.29 | Slope | 10.00 | Slope | 10.00 |
|  |  | Low content of organic matter | 10.50 | Stone content | 10.83 | Depth to bedrock | 10.29 |
|  |  | Stone content | 10.84 | No cobble | 10.99 | Carbonate content | 10.95 |
|  |  |  |  | limitation |  |  |  |
|  |  | Carbonate content\| | 10.95 |  |  |  |  |
|  |  |  |  |  |  |  |  |
| 413: |  |  |  |  |  |  |  |
| Morclay- | 85 | \| Poor |  | \| Poor |  | \| Poor |  |
|  |  | Too clayey | 10.00 | Low strength | 10.00 | Too clayey | 10.00 |
|  |  | Low content of organic matter | 10.50 | Shrink-swell | 10.12 |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| 414: |  |  |  |  |  |  |  |
| Zunalei---------- | 50 | \| Poor |  | \|Good |  | \|Good |  |
|  |  | Wind erosion | 10.00 |  |  |  |  |
|  |  | Low content of organic matter | 10.50 |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| Corzuni---------- | 40 | \| Poor |  | \| Good |  | \|Good |  |
|  |  | Wind erosion | 10.00 |  |  |  |  |
|  |  | Low content of | 10.50 |  |  |  |  |
|  |  | organic matter |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| 415: |  |  |  |  |  |  |  |
| Tsoodzil-------- | 60 | \| Poor |  | \| Poor |  | \| Poor |  |
|  |  | Too clayey | 10.00 | Low strength | 10.00 | Too clayey | 10.00 |
|  |  | Low content of organic matter | 10.88 | Slope | 10.00 | Slope | 10.00 |
|  |  | Too acid | 10.99 | Shrink-swell | 10.12 |  |  |
|  |  |  |  |  |  |  |  |
| Rubble Land- | 20 | \| Not rated |  | Not rated |  | \|Not rated |  |
|  |  |  |  |  |  |  |  |

Table 12b.--Construction Materials--Continued

Map symbol and soil name	Pct.   \| of   \|map   \|unit	Potential source reclamation materi	of   ial	Potential source of roadfill		Potential source of topsoil			
	\|	Rating class and limiting features	\|Value		Rating class and	\|Value		Rating class and limiting features	\|Value
416:									
Rock outcrop-----Bluesky-----------	70	\| Not rated		Not rated		\| Not rated			
	20	\| Poor		Poor		\| Poor			
Bluesky-		\| Too sandy	10.00	Depth to bedrock	0.00	Too sandy	10.00		
		Wind erosion	10.00			Depth to bedrock	0.00		
		Droughty	10.00			Slope	10.84		
		Depth to bedrock	10.00						
		\| Low content of	10.50						
		organic matter							
418:									
Asaayi----------	40	\| Poor		Poor		\| Poor			
		Droughty	10.00	Depth to bedrock	0.00	Depth to bedrock	0.00		
		Depth to bedrock	10.00	Low strength	10.00	Too clayey	10.57		
		Low content of organic matter	$10.50$	Shrink-swell	10.87	Rock fragments	10.97		
		Too clayey	10.88						
Osoridge-	35	\| Poor		Poor		\| Poor			
		\| Too clayey	10.00	Depth to bedrock	10.00	\| Too clayey	10.00		
		Droughty	10.00	Low strength	10.00	Depth to bedrock	10.00		
		Depth to bedrock	10.00	Shrink-swell	10.12				
		Low content of organic matter	10.50						
419:									
Fortwingate-----	35	Poor		\|Poor		\| Poor			
		\| Too clayey	10.00	Depth to bedrock	10.00	\| Too clayey	0.00		
		Droughty	10.17	Low strength	10.00	Slope	10.00		
		Depth to bedrock	10.21	Slope	10.00	Depth to bedrock	0.21		
		Low content of organic matter	10.50	Shrink-swell	10.12				
		organic matter							
Cinnadale--	30	\| Poor		\| Poor		\| Poor			
		Droughty	10.00	Depth to bedrock	10.00	Rock fragments	10.00		
	\|	Depth to bedrock	10.00	Stone content	10.41	Depth to bedrock	10.00		
	\|	Stone content	10.41			Slope	10.84		
		Low content of	10.88						
		organic matter							
		Cobble content	10.99						
Rock outcrop---	\| 20	\| Not rated		\|Not rated		\| Not rated			
420:	\|	\|						\|	
Seco--	\| 85								
		Too clayey	10.00	Low strength	10.00	Too clayey	0.00		
	\|	Low content of	10.88	Shrink-swell	10.12				
	\|	\| organic matter							

Table 12b.--Construction Materials--Continued


Table 12b.--Construction Materials--Continued


(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. See text for definitions of terms used in this table. Absence of an entry indicates that no rating is applicable.)

Map symbol and soil name	Limitations for--			Features affecting--				
	\| Pond reservoir areas	Embankments, dikes, and levees	Aquifer-fed excavated ponds	Drainage	Irrigation	Terraces and diversions	Grassed waterways	
10:Tso								
	Moderate: seepage	Severe: excess sodium	\| Severe:   no water	\|Limitation: deep to water	\|Limitation: excess sodium soil blowing	\|Limitation: erodes easily soil blowing	\|Limitation:   erodes easily excess sodium too arid	
Councelor-	\|Severe: $\mid$ seepage	Severe: piping	\|Severe:   no water	\|Limitation: deep to water $\square$	\|Limitation: soil blowing	\|Limitation:	soil blowing	\|Limitation:   too arid
Blancot-	\| Severe:   seepage	\|Severe: $\mid$ piping	\|Severe:   no water	\|Limitation: deep to water	\|Limitation:   excess sodium   soil blowing droughty	\|Limitation:   \| too sandy   \| soil blowing	LLimitation:   excess sodium   too arid   droughty	
11:								
Doakum-	\|Severe:   seepage	Moderate: piping thin layer	\| Severe:   no water	\|Limitation:   \| deep to water		\|Limitation:   slope   soil blowing	\|Limitation: soil blowing	\|Limitation: too arid
Betonnie-	\|Severe:   seepage	\|Severe: excess sodium seepage piping	Severe:   no water	\|Limitation: deep to water	\|Limitation:   slope   soil blowing   droughty	\|Limitation:   \| too sandy soil blowing	\|Limitation:   excess sodium   too arid   droughty	
12:								
Calladito	\| Severe:   seepage	Severe:   piping	\| Severe:   no water	\|Limitation: deep to water	\|Limitation:   fast intake   slope   droughty	\|Favorable	Limitation: droughty	
Elias-	Moderate:   slope	Slight	\|Severe:   no water	\|Limitation:   \| deep to water	\|Limitation:   slope   soil blowing   droughty	\|Limitation:   percs slowly   soil blowing	\|Limitation:   percs slowly droughty	

Table 13.--Water Management--Continued

Map symbol and soil name	Limitations for--			Features affecting--							
	$\begin{array}{\|l\|} \mid \text { Pond reservoir } \\ \left\lvert\, \begin{array}{c} \text { areas } \end{array}\right. \end{array}$	Embankments, dikes, and levees	Aquifer-fed excavated ponds	Drainage	Irrigation	Terraces and diversions	Grassed waterways				
13:				\|							
Councelor	\|Severe:   seepage	Severe: piping	\|Severe: no water	\|Limitation:	deep to water		$\begin{aligned} & \text { \|Limitation: } \\ & \text { \| slope } \\ & \text { \| soil blowing } \end{aligned}$	\|Limitation: erodes easily soil blowing	\|Limitation:   erodes easily   too arid		
Calladito	\|Severe:   seepage	Severe: piping	\|Severe:   no water	\|Limitation:   \| deep to water	\|Limitation:   \| fast intake   \| slope   \| droughty	\|Favorable	\|Limitation:   droughty				
14:											
Councelor	\|Severe:   seepage	Severe:   piping	\|Severe:   no water	\|Limitation:	deep to water	$\begin{aligned} & \text { \|Limitation: } \\ & \text { slope } \\ & \text { soil blowing } \end{aligned}$	Limitation: soil blowing	\|Limitation:   too arid			
Eslendo-	$\begin{aligned} & \text { \|Severe: } \\ & \mid \text { slope } \\ & \mid \text { depth to rock } \mid \end{aligned}$	Severe: thin layer	\|Severe:   no water	\|Limitation:	deep to water	\|Limitation:	erodes easily	slope	depth to rock	\|Limitation:   erodes easily   slope   depth to rock	\|Limitation:   \| erodes easily   \| slope   \| too arid
Calladito	\|Severe:   seepage	Severe: piping	\|Severe:   no water	\|Limitation:	deep to water		\|Limitation:   fast intake   \| slope   \| droughty	\|Favorable	\|Limitation: droughty		
16:											
Starlake-	\|Slight	Severe: excess sodium	\|Severe: no water	\|Limitation:	deep to water		\|Limitation:   \| percs slowly   \| slow intake   \| droughty	\|Limitation:   percs slowly	\|Limitation:   \| excess sodium   \| too arid   \| droughty		
22:											
Querencia	Moderate:   slope	Moderate: piping	\|Severe:   no water	\|Limitation:	deep to water		$\begin{aligned} & \text { \|Limitation: } \\ & \mid \text { slope } \\ & \text { \| soil blowing } \end{aligned}$	Limitation: soil blowing	\|Limitation:   \| too arid   \|		
Lavodnas	\|Severe:   seepage   slope   depth to rock	Severe:   thin layer	\|Severe:   no water		\|Limitation:	erodes easily	slope	depth to rock $\mid$	\|Limitation:   erodes easily   slope   depth to rock	\|Limitation:   erodes easily   \| slope   \| depth to rock	

Table 13.--Water Management--Continued

Map symbol and soil name	Limitations for--			Features affecting--					
	$\begin{aligned} & \mid \text { Pond reservoir } \mid \\ & \left\|\begin{array}{c} \text { areas } \end{array}\right\| \end{aligned}$	Embankments, dikes, and levees	$\|$Aquifer-fed   excavated   ponds	Drainage	Irrigation	Terraces and diversions	Grassed waterways		
	$\mid$ Moderate:   $\mid$ seepage   $\mid$ slope	\|Moderate:   piping	\|Severe:   \| no water	$\mid$ Limitation:   $\mid$ deep to water $\mid$   $\mid$	\|Limitation:   slope   soil blowing	\|Limitation:   erodes easily   soil blowing	\|Limitation:   erodes easily too arid		
Tinian	$\begin{aligned} & \mid \text { Moderate: } \\ & \mid \text { slope } \\ & \mid \text { depth to rock } \mid \end{aligned}$	\|Severe:   thin layer	\|Severe:   \| no water	$\begin{aligned} & \mid \text { Limitation: } \\ & \mid \text { deep to water } \mid \end{aligned}$	\|Limitation:   slope   soil blowing depth to rock\|	\|Limitation:   \| erodes easily	  \| soil blowing   \| depth to rock		\|Limitation:   erodes easily   too arid   depth to rock
40:									
Nuffel	$\begin{array}{l\|} \mid \text { Moderate: } \\ \mid \text { \| seepage } \end{array}$	\|Severe:   piping	\|Severe:   \| no water	$\mid$ Limitation: $\mid$ deep to water $\mid$	$\mid$ Limitation: \| erodes easily $\mid$ $\mid$ flooding	\|Limitation: erodes easily		\|Limitation:   erodes easily too arid	
42:									
Suwanee	\|Moderate:   \| seepage	\|Slight	\|Severe:   \| no water	$\mid$ Limitation: $\mid$ deep to water $\mid$	Limitation: flooding	\|Limitation:   erodes easily $\square$	\|Limitation:   erodes easily too arid		
44:									
Suwanee	\| Severe:	seepage	\|Moderate:   piping   thin layer	\|Severe:   \| no water	$\mid$ Limitation: $\mid$ deep to water $\mid$	\|Limitation:   flooding   percs slowly   slow intake	\|Favorable	\|Limitation:   percs slowly   too arid	
45:									
Nutreeah	\|Slight		\|Severe:   hard to pack	\|Severe:   \| slow refill	$\mid$ Limitation: $\mid$ $\mid$ deep to water $\mid$	LLimitation:   percs slowly	\|Limitation:   percs slowly	\|Limitation: percs slowly	
47:									
Conchovar	\|Slight	\|Moderate:   hard to pack wetness	\|Severe:   \| slow refill	\|Limitation:   \| percs slowly	\|Limitation:   excess salt   percs slowly   wetness	\|Limitation:   percs slowly   wetness	Limitation: percs slowly		
49:									
Concho	\|Slight	\|Slight	\|Severe:   \| no water	$\mid$ Limitation:   $\mid$ deep to water $\mid$   $\mid$	\|Limitation: percs slowly	\|Favorable	\|Limitation:   percs slowly too arid		

Table 13.--Water Management--Continued


Map symbol and soil name	Limitations for--			Features affecting--						
	$\begin{aligned} & \mid \text { Pond reservoir\| } \\ & \text { areas } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { Embankments, } \\ \text { dikes, and } \\ \text { levees } \end{gathered}\right.$	Aquifer-fed excavated ponds	Drainage	Irrigation	Terraces and diversions	\|c	c	c	$\begin{gathered}\text { Grassed } \\ \text { waterways }\end{gathered}$
Benally	$\begin{array}{\|l\|} \mid \text { Moderate: } \\ \mid \text { seepage } \\ \mid \text { slope } \end{array}$	\|Severe:   excess sodium	Severe: no water		\|Limitation:	excess sodium	slope	soil blowing $\mid$	\|Limitation:   soil blowing	\|Limitation:   \| excess sodium   \| too arid
Fruitland	$\mid$ Severe: $\mid$ seepage	\|Severe:   excess sodium piping	\|Severe:   no water	\|Limitation:	deep to water	$\begin{aligned} & \text { \|Limitation: } \\ & \text { slope } \\ & \text { soil blowing } \end{aligned}$	\|Limitation: soil blowing	\|Limitation:   \| excess sodium   \| too arid		
111:										
Yelives	$\begin{array}{l\|} \mid \text { Severe: } \\ \mid \text { seepage } \end{array}$	\|Severe:   piping	\| Severe:	no water	\|Limitation:	deep to water	$\begin{aligned} & \text { \|Limitation: } \\ & \text { slope } \\ & \text { soil blowing } \end{aligned}$	\|Limitation: soil blowing	\|Limitation:   \| too arid	
115:										
Razito	$\begin{array}{l\|} \text { \| Severe: } \\ \text { \| seepage } \end{array}$	\|Severe:   piping	\|Severe:   no water	\|Limitation:   \| deep to water	\|Limitation:   \| fast intake   \| slope   \| droughty	\|Limitation:   \| too sandy   \| soil blowing	\|Limitation:   \| too arid   \| droughty			
Shipr		\|Severe:			\|Limitation:					
		excess sodium   piping	no water	deep to water	slope   \| soil blowing	soil blowing	\| excess sodium   \| too arid			
116:										
Fajada	\|Moderate:   \| slope   \| depth to rock   $\mid$	\|Severe:   excess sodium\|   thin layer excess gypsum	\|Severe:   no water	\|Limitation:   \| deep to water	\|Limitation:   \| excess sodium	  \| excess gypsum	  \| depth to rock		\|Limitation:   excess gypsum\|   depth to rock	\|Limitation:   \| erodes easily   \| depth to rock   \| droughty
Huerfano	$\begin{aligned} & \text { \|Severe: } \\ & \mid \text { depth to rock\| } \end{aligned}$	\|Severe:   excess sodium	\|Severe:   no water	\|Limitation:   \| deep to water	\|Limitation:   \| percs slowly   \| slope   \| droughty	\|Limitation:   percs slowly depth to rock	\|Limitation:   \| excess sodium   \| too arid   \| droughty			
Benally	$\begin{aligned} & \text { \|Moderate: } \\ & \text { \| depth to rock } \mid \end{aligned}$	\|Severe:   excess sodium	\|Severe:   no water	\|Limitation:	deep to water $\mid$	\|Limitation: $\mid$ excess sodium $\mid$ excess salt $\mid$ droughty	\|Favorable	\|Limitation:   \| excess sodium   \| too arid   \| droughty		

Table 13.--Water Management--Continued

Map symbol and soil name	Limitations for--			Features affecting--						
	$\begin{aligned} & \mid \text { Pond reservoir } \mid \\ & \left\|\begin{array}{c} \text { areas } \end{array}\right\| \end{aligned}$	Embankments, dikes, and levees	Aquifer-fed excavated ponds	Drainage	Irrigation	Terraces and diversions	Grassed waterways			
	$\begin{aligned} & \mid \text { Severe: } \\ & \mid \text { slope } \\ & \mid \text { depth to rock } \mid \end{aligned}$	\|Severe:   thin layer	\|Severe:   no water	\|Limitation:   \| deep to water	\|Limitation:   \| slope   \| soil blowing   depth to rock	\|Limitation:   \| slope   \| soil blowing   \| depth to rock		\|Limitation:   slope   \| too arid   \| depth to rock		
Chipeta	$\mid$ Severe:   $\mid$ slope   $\mid$ depth to rock	\|Severe:   thin layer	\|Severe: no water	\|Limitation:	deep to water	\|Limitation:   \| percs slowly   \| slope   \| slow intake	\|Limitation: $\mid$ erodes easily $\mid$ slope $\mid$ depth to rock	\|Limitation:   \| excess salt   \| slope   \| too arid		
120:										
Doak	\|Severe:   seepage	\|Moderate:   piping   thin layer	\|Severe:   no water	\|Limitation: deep to water	\|Limitation:   slope   soil blowing	\|Limitation:	soil blowing		\|Limitation:   too arid	
Shiprock	\|Severe:   seepage	\|Severe:   excess sodium piping	\|Severe:   no water	\|Limitation: deep to water	\|Limitation:   fast intake   slope   soil blowing	\|Limitation:	soil blowing	\|Limitation:   excess sodium too arid		
122:										
Farb	$\begin{aligned} & \text { \|Severe: } \\ & \text { \| depth to rock\| } \end{aligned}$	\|Severe:   thin layer	\|Severe:   no water	\|Limitation: deep to water	\|Limitation:   slope   depth to rock   droughty		\|Limitation:   \| too arid   \| depth to rock   \| droughty			
125:										
Sanfeco	\|Severe:   seepage	\|Severe:   piping	\|Severe:	no water	\|Limitation:	deep to water	\|Limitation:   percs slowly   soil blowing	\|Limitation:   \| too sandy   \| soil blowing	\|Limitation:   percs slowly   too arid	
130:										
Chipeta	\|Severe: $\mid$ Slope $\mid$ Depth to rock $\mid$	\|Severe:   thin layer	\|Severe   no water	\|Limitation:   \| deep to water	\|Limitation:   percs slowly   slope	\|Limitation:   \| percs slowly   \| slope	\| Limitation:	slope	too arid	
Moncisco-	\|Severe:   seepage	Severe:   seepage	\|Severe:   seepage	\|Limitation:   \| deep to water	\|Limitation:   droughty	$\mid$ Limitation: $\mid$ $\mid$ depth to rock\|	\|Limitation:   \| too arid			
$150:$   Escawetter	\|Severe:   seepage	$\mid$ Severe: seepage	\|Severe:   \| slow refill	$\begin{aligned} & \text { \| } \\ & \text { \|Limitation: } \\ & \text { \| percs slowly } \end{aligned}$	\|Limitation:   flooding		\|Limitation: erodes easily			

Table 13.--Water Management--Continued

Map symbol and soil name	Limitations for--			Features affecting--						
	$\begin{aligned} & \mid \text { Pond reservoir } \mid \\ & \mid \quad \text { areas } \end{aligned}$	Embankments, dikes, and levees	Aquifer-fed excavated ponds	Drainage	Irrigation	Terraces and diversions	Grassed waterways			
160 :										
Escawetter	$\begin{aligned} & \mid \text { Severe: } \\ & \text { \| seepage } \end{aligned}$	Severe: seepage	$\begin{aligned} & \text { \|Severe: } \\ & \text { \| slow refill } \end{aligned}$	\|Limitation:   \| percs slowly	\|Limitation:   \| flooding	\|Limitation: erodes easily	\|Limitation: erodes easily			
Razito	\|Severe:   seepage	Severe: piping	\|Severe:   no water	\|Limitation:   \| deep to water		\|Limitation:   \| fast intake   \| slope   \| droughty	\|Limitation:   too sandy soil blowing	\|Limitation:	too arid	droughty $\mid$
205:										
Penistaja	\|Severe:   \| seepage	Slight	\|Severe:   \| no water	\|Limitation:	deep to water			\|Limitation:   slope   soil blowing	\|Limitation: soil blowing	\|Limitation:   \| too arid
Tintero	\|Severe:   seepage	Severe: piping	\|Severe:   \| no water	\|Limitation:	deep to water		$\begin{aligned} & \text { \|Limitation: } \\ & \text { slope } \\ & \text { \| soil blowing } \end{aligned}$	\|Limitation: soil blowing	\|Limitation:   \| too arid	
208:										
Marianolake	\|Severe:   seepage	Moderate: thin layer	\|Severe:   \| no water	\|Limitation: deep to water	\|Limitation:   slope   soil blowing	LLimitation:   soil blowing	\|Limitation:   \| too arid			
210:										
Marianolake-	\|Severe:   seepage	Moderate: thin layer	\|Severe:   no water	\|Limitation:	deep to water			$\begin{aligned} & \text { \|Limitation: } \\ & \text { slope } \\ & \text { \| soil blowing } \end{aligned}$	\|Limitation: soil blowing	\|Limitation:   \| too arid
Skyvillage	$\begin{aligned} & \text { \|Severe: \|s } \\ & \text { \| depth to rock \| } \end{aligned}$	Severe:   thin layer	\|Severe:   no water	\|Limitation:   \| deep to water		\|Limitation:   slope   soil blowing   depth to rock	\|Limitation:   soil blowing depth to rock	\|Limitation:   \| too arid   depth to rock		
212:										
Rehobeth	\|Slight	Moderate: hard to pack	\|Severe:   no water	\|Limitation:   \| deep to water		\|Limitation:   erodes easily   flooding   percs slowly	\|Limitation: erodes easily	percs slowly	\|Limitation:   \| erodes easily   \| percs slowly   \| too arid	

Table 13.--Water Management--Continued

Map symbol and soil name	Limitations for--			Features affecting--							
	$\begin{aligned} & \mid \text { Pond reservoir } \mid \\ & \text { areas } \end{aligned}$	Embankments, dikes, and levees	Aquifer-fed excavated ponds	Drainage	Irrigation	Terraces and diversions	Grassed waterways				
215:											
Viuda	Severe: depth to rock $\mid$	Severe:   thin layer	\|Severe:   \| no water	\|Limitation: deep to water	\|Limitation:   percs slowly   slope   depth to rock	\|Limitation:   large stones depth to rock	\|Limitation:   \| large stones   \| too arid   \|				
Penistaja	Severe: seepage	Slight	\|Severe:   no water	\|Limitation: deep to water	$\begin{aligned} & \text { \|Limitation: } \\ & \text { \| slope } \\ & \text { \| soil blowing } \end{aligned}$	\|Limitation: soil blowing	\|Limitation:   \| too arid   \|				
220:											
Hagerwest	$\begin{array}{ll} \mid \text { Severe: } & \mid 1 \\ \mid \text { seepage } & \mid \end{array}$	Moderate: thin layer	\|Severe:   no water	\|Limitation:   \| deep to water		\| Limitation:	slope	soil blowing	depth to rock	\|Limitation:   soil blowing depth to rock	\|Limitation:   too arid   depth to rock
Bond-	$\begin{aligned} & \mid \text { Severe: } \\ & \text { \| depth to rock\| } \end{aligned}$	Severe:   thin layer	\|Severe:   no water	\|Limitation:   deep to water	\|Limitation:   slope   soil blowing depth to rock	\|Limitation:   soil blowing   depth to rock	\|Limitation:   too arid   depth to rock				
225:											
Aquima	Moderate:   seepage   slope	Moderate: piping	\|Severe:   \| no water	\|Limitation: deep to water		\|Limitation:   erodes easily   slope	\|Limitation: erodes easily	$\begin{aligned} & \text { \|Limitation: } \\ & \text { erodes easily } \\ & \text { too arid } \end{aligned}$			
Hawaikuh	Severe: seepage	Moderate: thin layer	\|Severe:   no water	\|Limitation: deep to water	\|Limitation: erodes easily slope	\|Limitation:   erodes easily	$\begin{aligned} & \text { \|Limitation: } \\ & \begin{array}{l} \text { erodes easily } \\ \text { too arid } \end{array} \end{aligned}$				
230:											
Sparank	Slight	Moderate: hard to pack	\|Severe:   no water	\|Limitation: deep to water			\|Limitation:   erodes easily percs slowly	\|Limitation:   erodes easily   percs slowly	\|Limitation:   \| erodes easily   \| percs slowly   \| too arid   \|		
San Mateo-	Severe: seepage	Moderate: thin layer	\|Severe:   no water	\|Limitation:   deep to water\|   \|	\|Limitation:   flooding	\|Favorable	\|Limitation:   \| too arid   \|				

Table 13.--Water Management--Continued


Table 13.--Water Management--Continued

Map symbol and soil name	Limitations for--			Features affecting--												
	$\left\lvert\, \begin{gathered}\text { Pond reservoir } \\ \mid \\ \text { areas }\end{gathered}\right.$	$\begin{gathered} \text { Embankments, } \\ \text { dikes, and } \\ \text { levees } \end{gathered}$	$\begin{gathered} \text { Aquifer-fed } \\ \text { excavated } \\ \text { ponds } \end{gathered}$	Drainage	Irrigation	Terraces and diversions	Grassed waterways									
			\|	$\mid$												
245:																
Buckle	\|Severe:   seepage	\|Moderate:   \| thin layer	\|Severe:   no water	\|Limitation:   \| deep to water	\|Limitation: $\mid$ slope $\mid$ soil blowing $\mid$ depth to rock	\|Limitation:   \| soil blowing	depth to rock	\|Limitation:   \| too arid   \| depth to rock								
Gapmesa	\|Severe:   seepage	\|Moderate:   \| thin layer	\|Severe:   no water	\|Limitation:   \| deep to water	\|Limitation:   \| slope   \| soil blowing   \| depth to rock		\|Limitation:	soil blowing	depth to rock	\|Limitation:   \| too arid   \| depth to rock						
Barb		Severe:	\| Severe:	Limitation:	itation: \|I	Limitation:	itation:									
	depth to rock	\| thin layer	no water	\| deep to water	$\left\lvert\, \begin{aligned} & \text { slope } \\ & \text { soil blowing } \mid \\ & \text { depth to rock } \mid \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \text { soil blowing } \\ & \text { depth to rock }\end{aligned}\right.$ $\square$	\| too arid   \| depth to rock									
250:																
Hospah	$\begin{aligned} & \text { \|Severe: } \\ & \mid \text { slope } \\ & \text { \| depth to rock } \mid \end{aligned}$	\|Severe:   \| thin layer   \|	\|Severe:   no water	\|Limitation: deep to water	\|Limitation:   \| percs slowly   \| slope   \| depth to rock		\|Limitation:   \| large stones   \| slope   \| depth to rock	\|Limitation:   \| large stones   \| slope   \| too arid								
Skyvillage	$\begin{aligned} & \mid \text { Severe: } \\ & \mid \text { depth to rock\| } \end{aligned}$	\|Severe:   \| thin layer	\|Severe:   no water	\|Limitation: deep to water		\|Limitation:   slope   depth to rock	\|Limitation:	depth to rock		\|Limitation:   \| too arid   \| depth to rock						
255:																
Farview-	$\mid$ Severe:   $\mid$ seepage   $\mid$ slope   $\mid$ depth to rock	\|Severe:	seepage	thin layer	\|Severe:   no water	\|Limitation: deep to water	\|Limitation: slope	soil blowing	depth to rock	```\|Limitation:	slope	soil blowing	depth to rock```	\|Limitation:	slope	depth to rock
258:																
Eagleye	$\begin{aligned} & \text { \|Severe: } \\ & \mid \text { slope } \\ & \text { \| depth to rock\| } \end{aligned}$	\|Severe:   \| thin layer	\|Severe:   no water	\|Limitation: deep to water		\|Limitation:   \| percs slowly   \| slope   \| depth to rock		\|Limitation:   \| large stones   \| slope   \| depth to rock   \|	\|Limitation:   \| large stones   \| slope   \| too arid   \|							
Atchee	$\begin{array}{\|l\|} \text { \|Severe: } \\ \text { \| depth to rock\| } \end{array}$	\|Severe:   \| thin layer	\|Severe:   \| no water	\|Limitation:   \| deep to water	\|Limitation:   \| slope	\|Limitation:   \| depth to rock	\|Limitation:   \| too arid									
Alesna	\| Severe:   slope	\|Moderate:   \| thin layer	\|Severe:   no water	\|Limitation:   \| deep to water	\|Limitation: $\mid$ percs slowly slope	Limitation: slope	\|Limitation:   \| percs slowly   \| slope   \| too arid									

Table 13.--Water Management--Continued

Map symbol and soil name	Limitations for--			Features affecting--						
	$\begin{aligned} & \mid \text { Pond reservoir } \mid \\ & \left\lvert\, \begin{array}{c} \text { areas } \end{array}\right. \end{aligned}$	Embankments, dikes, and levees	Aquifer-fed excavated ponds	Drainage	Irrigation	Terraces and diversions	Grassed waterways			
275:										
Eldado	\|Severe:   seepage	\|Severe:	\|Severe:	\|Limitation:	\|Limitation:	\|Limitation:	\|Limitation:			
		\| seepage	no water	\| deep to water		slope	\| large stones	large stones		
					\| droughty	too sandy	droughty			
280:										
Azabache	\|Moderate:	S	\| Severe:	\|Severe:	\|Limitation:	\|Limitation:	\|Favorable	\|Limitation:		
	seepage \|	\| excess sodium		no water	\| deep to water		$\left\lvert\, \begin{aligned} & \text { percs slowly } \\ & \text { slope }\end{aligned}\right.$		\| excess sodium	
	slope						\| too arid			
					droughty		droughty			
290:										
Westmion	\| Severe:	S	\|Severe:	\| Severe:	\|Limitation:		\|Limitation:	\|Limitation:	\|Limitation:	
	\| slope		\| thin layer	no water	\| deep to water		\| percs slowly	\| percs slowly	\| slope	
	depth to rock\|				\| slope	slope	too arid			
					\| depth to rock		depth to rock\|	depth to rock		
Skyvillage	\|Severe:	\|Severe:   piping	Severe:	\|Limitation:	\|Limitation:	Limitation:	Limitation:			
	\| slope		\| no water	\| deep to water		slope	slope	\| slope		
	\| depth to rock					\| soil blowing		\| soil blowing		\| too arid
					\| depth to rock		depth to rock\|	depth to rock		
291:										
Eagleye		\|Severe:   thin layer	\|Severe:		\|Limitation:	Limitation:	\|Limitation:			
	\| slope			no water	\| deep to water	percs slowly	large stones	\| large stones		
	depth to rock\|				slope \|	$\left\lvert\, \begin{aligned} & \text { slope } \\ & \mid \text { depth to rock } \mid \end{aligned}\right.$	$\begin{aligned} & \text { slope } \\ & \text { too arid } \end{aligned}$			
					\| depth to rock					
Atchee	\|Severe:	S	\|Severe:	\|Severe:		\|Limitation:		Limitation:		
	\| depth to rock		\| thin layer	no water		slope		too arid		
300:				\| deep to water			\| depth to rock			
Regracic	\|Moderate:		Moderate:	\|Severe:	\|Limitation:   \| deep to water	\|Limitation:	\|Limitation:		\|Limitation:   percs slowly too arid	
	$\begin{aligned} & \text { \| seepage } \\ & \text { \| } \\ & \text { slope } \end{aligned}$	hard to pack	\| no water	\| deep to water		$\begin{aligned} & \text { percs slowly } \\ & \text { slope } \end{aligned}$	percs slowly \|			
305:										
Celavar   Atarque	$\mid$ Moderate:   $\mid$ seepage   $\mid$ slope   $\mid$   $\mid$   depth to rock $\mid$	$\mid$ Moderate:$\mid$ thin layer$\mid$	Severe: no water	$\left\lvert\, \begin{aligned} & \mid \text { Limitation: } \\ & \mid \text { deep to water } \mid \\ & \mid \end{aligned}\right.$	$\mid$ Limitation:$\mid$ erodes easily\|$\mid$ slope$\mid$ depth to rock	\|Limitation: erodes easily depth to rock	\|Limitation:   erodes easily   too arid   depth to rock			
	$\begin{aligned} & \text { \|Severe: } \\ & \mid \text { depth to rock } \mid \end{aligned}$		\|Severe:   no water	\|Limitation:   deep to water	\|Limitation:$\mid$ slope\| soil blowing$\mid$depth to rock	\|Limitation: soil blowing depth to rock	\|Limitation:   depth to rock			
		\| thin layer								

Table 13.--Water Management--Continued

Map symbol and soil name	Limitations for--			Features affecting--					
	$\begin{aligned} & \mid \text { Pond reservoir } \mid \\ & \left\|\begin{array}{c} \text { areas } \end{array}\right\| \end{aligned}$	Embankments, dikes, and levees	Aquifer-fed   excavated ponds	Drainage	Irrigation	Terraces and diversions	Grassed waterways		
308:									
Fikel	\|Moderate:   \| slope	\|Slight	\|Severe:	\|Limitation:	Limitation:	\|Favorable	\|Limitation:		
			\| no water	\| deep to water		percs slowly		\| percs slowly	
					\| slope				
Venzuni-		\|Severe:	\| Severe:	\|Limitation:		Limitation: percs slowly	\|Limitation:	\|Limitation:	
	\| seepage		hard to pack	\| no water	\| deep to water			percs slowly	\| percs slowly   \| too arid
	\| slope				\| slope				
					slow intake				
310:	\|								
Parkelei-	\|Moderate:	\|Moderate:	\|Severe:   no water				\|Limitation:   \| too arid		
	\| seepage	\| piping		Limitation:   \| deep to water		\|Limitation:			
	\| slope				\| soil blowing	soil blowing			
312:									
Bluewater	\|Slight			\|Favorable		\|Limitation:		\|Limitation:	
		\| piping	\| slow refill	\|	\| erodes easily	erodes easily\|	\| erodes easily		
		\| wetness			percs slowly   wetness	\| wetness			
315:									
Flugle	\|Severe:   \| seepage	\|Severe: piping			Limitation:	\|Limitation:	\|Limitation:		
			\| no water	\| deep to water		$\begin{aligned} & \mid \text { erodes easily } \\ & \mid \text { slope } \end{aligned}$	erodes easily\|	\| erodes easily   \| too arid	
Fragua-	\|Severe:   seepage	\|Severe:   \| piping	\|Severe:   no water	\|Limitation:	Limitation:				
					fast intake		too arid		
					\| slope	soil blowing			
					soil blowing				
				$\|\quad\|$					
316:									
Royosa-	\|Severe:   seepage   slope	\|Severe:   \| seepage   \| piping	\|Severe:   no water	\|Limitation: deep to water$\square$	\|Limitation:	Limitation:	\|Limitation:   slope   droughty		
					fast intake   slope   droughty	slope too sandy soil blowing			

Table 13.--Water Management--Continued

Map symbol and soil name	Limitations for--			Features affecting--							
	\| Pond reservoir   \| areas	Embankments, dikes, and levees	Aquifer-fed excavated ponds	Drainage	Irrigation	Terraces and diversions	Grassed waterways				
317:Highdy											
	$\mid$ Severe:   slope   depth to rock	\|Severe:   thin layer	\|Severe:   no water	\|Limitation:   \| deep to water		\|Limitation:   \| percs slowly   slope   soil blowing	\|Limitation:   large stones   slope   depth to rock	\|Limitation:   large stones   slope   depth to rock			
Evpark-	\|Moderate:   seepage   slope   depth to rock	\|Severe:   thin layer	\|Severe:   \| no water	\|Limitation:   \| deep to water		\|Limitation:   erodes easily   slope   depth to rock	\|Limitation: erodes easily depth to rock	\|Limitation:   erodes easily   too arid   depth to rock			
Bryway	\|Moderate:   slope   depth to rock	\|Severe:   thin layer	\|Severe:   \| no water	Limitation:   \| deep to water		\|Limitation:   \| percs slowly   slope   \| soil blowing	\|Limitation: percs slowly depth to rock	\|Limitation:   too arid   depth to rock			
320:											
Parkelei	\|Severe:   seepage	\|Moderate:   piping   thin layer	\| Severe:   no water	\|Limitation: deep to water	$\begin{aligned} & \text { \|Limitation: } \\ & \text { \| slope } \\ & \text { \| soil blowing } \end{aligned}$	\|Limitation: soil blowing	\|Limitation:   \| too arid				
Fraguni	\|Severe:   seepage	\|Severe:   piping	\|Severe: no water	\|Limitation:   \| deep to water		\|Limitation:   \| fast intake   \| slope   \| soil blowing	\|Limitation: soil blowing	\|Limitation:   \| rooting depth	too arid		
325:											
Venzuni	\|Slight	\|Severe:   \| hard to pack	\|Severe:   no water	\|Limitation:   \| deep to water		\|Limitation:   percs slowly   slow intake	\|Limitation:   percs slowly	\|Limitation:   \| percs slowly   \| too arid			
332:											
Evpark	Moderate:   seepage   slope   depth to rock	\|Moderate:   piping   thin layer	\|Severe:   no water	\|Limitation:   \| deep to water		\|Limitation:	slope	soil blowing	depth to rock	\|Limitation:   soil blowing depth to rock	\|Limitation:   too arid   depth to rock
Arabrab	\|Severe:   depth to rock	\|Severe:   thin layer	\|Severe:   no water	\|Limitation: deep to water		\|Limitation:   \| large stones   \| slope   \| droughty	\|Limitation:   large stones depth to rock	\|Limitation:   large stones droughty			

Table 13.--Water Management--Continued

Map symbol and soil name	Limitations for--			Features affecting--						
	$\begin{aligned} & \mid \text { Pond reservoir } \mid \\ & \left\|\begin{array}{c} \text { areas } \end{array}\right\| \end{aligned}$	Embankments, dikes, and levees	Aquifer-fed excavated ponds	Drainage	Irrigation	Terraces and diversions	Grassed waterways			
335:										
Venadito	\|Slight	\| Severe:   hard to pack	\|Severe:   \| no water	$\mid$ Limitation: $\mid$ deep to water $\mid$	\|Limitation: $\mid$ flooding percs slowly slow intake	\|Limitation:   percs slowly	\|Limitation:   percs slowly			
336:										
Nuffel	\|Slight	\|Slight	\|Severe:   \| no water	$\mid$ Limitation: \| deep to water $\mid$	\|Limitation: $\mid$ erodes easily\| $\mid$ flooding $\mid$ percs slowly	\|Limitation: erodes easily		\|Limitation:   erodes easily   too arid		
Venadito-	\|Slight	\|Severe:   hard to pack	\|Severe:   \| no water		\|Limitation: $\mid$ flooding $\mid$ percs slowly $\mid$ slow intake $\|$	\|Limitation:   percs slowly	\|Limitation:   percs slowly			
338:										
Zyme	$\mid$ Severe: $\mid$ slope $\mid$ depth to rock	\|Severe:   thin layer	\|Severe:   \| no water	$\mid$ Limitation: $\mid$ deep to water $\mid$	\|Limitation:   percs slowly   slope	\|Limitation:   percs slowly   slope	\| Limitation:	slope	too arid	
Lockerby	$\mid$ Severe: $\mid$ depth to rock $\mid$	\| Severe:   hard to pack	\|Severe:   \| no water	$\mid$ Limitation: $\mid$ deep to water $\mid$	\|Limitation: $\mid$ percs slowly \| slope	slow intake	\|Limitation:   percs slowly   depth to rock\|	\|Limitation:   percs slowly   depth to rock		
Tuces	\|Severe:   \| slope	\|Severe:   thin layer	\|Severe:   \| no water	$\mid$ Limitation: $\mid$ $\mid$ deep to water $\mid$	\|Limitation:   percs slowly   slope   depth to rock\|	LLimitation:   percs slowly   slope   depth to rock\|	\|Limitation:   slope   too arid   depth to rock			
350:										
Toldohn		\|Severe:   thin layer	\|Severe:   \| no water	\|Limitation:   deep to water	\|Limitation:   percs slowly   slope   depth to rock\|	Limitation:   percs slowly   slope   depth to rock\|	\|Limitation:   slope   too arid   depth to rock			
Vessilla-	$\mid$ Severe:   $\mid$ seepage   $\mid$ slope   $\mid$ depth to rock   $\mid$	\|Severe:   seepage   thin layer	\|Severe:   \| no water		\|Limitation: $\mid$ slope \| soil blowing $\mid$ depth to rock $\mid$ $\mid$	\|Limitation:   slope   soil blowing   depth to rock\|	\|Limitation:   slope   depth to rock			

Table 13.--Water Management--Continued

Map symbol and soil name	Limitations for--			Features affecting--						
	$\begin{aligned} & \mid \text { Pond reservoir } \\ & \mid \quad \text { areas } \end{aligned}$	Embankments, dikes, and levees	Aquifer-fed excavated ponds	Drainage	Irrigation	$\begin{gathered} \hline \text { Terraces and } \\ \text { diversions } \end{gathered}$	Grassed waterways			
351:Vessi										
	$\mid$ Severe:   \| seepage   $\mid$ slope   $\mid$   depth to rock	\|Severe:   seepage thin layer	\|Severe:   no water	$\mid$ Limitation: $\mid$ $\mid$ deep to water $\mid$	\|Limitation: slope	soil blowing $\mid$ depth to rock $\mid$	\|Limitation: slope soil blowing depth to rock	Limitation:   slope depth to rock		
352:										
Zia	\|Severe:   seepage	\|Severe:   piping	\|Severe:   no water	$\mid$ Limitation: $\mid$ deep to water $\mid$	$\begin{aligned} & \text { \|Limitation: } \\ & \begin{array}{l} \text { slope } \\ \text { \| soil blowing } \end{array} \end{aligned}$	\|Limitation:	soil blowing	$\qquad$	Limitation: too arid	
353:										
Mido	\|Severe:   seepage	Severe:   piping	\|Severe:   no water	$\mid$ Limitation: $\mid$ $\mid$ deep to water $\mid$	\|Limitation:   \| fast intake   \| slope   \| droughty	\|Limitation: $\mid$ too sandy $\mid$ soil blowing	Limitation: too arid droughty			
354:										
Knifehill	Moderate:   slope	Moderate: hard to pack	\|Severe:   no water		\|Limitation:	erodes easily $\mid$ percs slowly $\mid$ slope	\|Limitation:	erodes easily $\mid$ percs slowly $\mid$	Limitation: erodes easily percs slowly	
355:										
Rizno	$\begin{aligned} & \text { \|Severe: } \\ & \mid \text { slope } \\ & \mid \text { depth to rock } \mid \end{aligned}$	\|Severe:   thin layer	\|Severe: no water	$\mid$ Limitation: $\mid$ deep to water $\mid$	\|Limitation: slope	soil blowing $\mid$ depth to rock	\|Limitation:	slope soil blowing	depth to rock $\mid$	Limitation:   slope   too arid   depth to rock
Tekapo	\|Severe:   slope   depth to rock	Severe:   thin layer	\|Severe:   no water	\|Limitation:   \| deep to water		\|Limitation:   \| percs slowly   \| slope   \| depth to rock			Limitation:   slope   too arid   depth to rock	
357:										
Heshotauthla	\|Slight	\|Severe:   excess sodium hard to pack	\|Severe:   no water		\|Limitation:   \| percs slowly   \| slow intake   \| droughty   \|		Limitation: excess sodium too arid droughty			

Table 13.--Water Management--Continued


Table 13.--Water Management--Continued


Table 13.--Water Management--Continued

Map symbol and soil name	Limitations for--			Features affecting--								
	$\begin{aligned} & \mid \text { Pond reservoir } \mid \\ & \left\|\begin{array}{c} \text { areas } \end{array}\right\| \end{aligned}$	Embankments, dikes, and levees	Aquifer-fed excavated ponds	Drainage	Irrigation	Terraces and diversions	Grassed waterways					
395:												
Cabezon	\|Severe:		Severe:   thin layer	\|Severe:   \| no water	\|Limitation: deep to water		\|Limitation:   percs slowly   slope   depth to rock	\|Limitation:   \| percs slowly	  \| depth to rock	  \|		\|Limitation:   \| percs slowly   depth to rock
Mcorreon-	\|Moderate:   \| slope	\|Slight	\|Severe:   \| no water	\|Limitation:	deep to water		\|Limitation:   percs slowly   slope	\|Favorable	\|Limitation:   percs slowly too arid			
400:												
Shoemaker	$\mid$ Moderate:   $\mid$ seepage   $\mid$ slope   $\mid$ depth to rock   $\mid$	\|Severe:   thin layer	\|Severe:   \| no water	\|Limitation:	deep to water	\|Limitation:   \| fast intake   slope   soil blowing	\|Limitation:	soil blowing		depth to rock		\|Limitation:   depth to rock
Stozuni	$\begin{aligned} & \mid \text { Severe: } \\ & \mid \text { depth to rock } \mid \end{aligned}$	\|Severe:   seepage   piping	\|Severe:   \| no water	\|Limitation:   \| deep to water	\|Limitation:   slope   soil blowing   depth to rock	$\mid$ Limitation: \| soil blowing $\mid$ depth to rock $\mid$	\|Limitation: depth to rock					
403:												
Valnor	$\mid$ Severe:   \| slope	\|Severe:   thin layer	\|Severe:   \| no water	\|Limitation:   \| deep to water	\|Limitation:   percs slowly   slope   depth to rock	\|Limitation: $\mid$ percs slowly $\mid$ slope depth to rock	\|Limitation:   percs slowly   slope   depth to rock					
Techado	$\mid$ Severe:   $\mid$ slope   $\mid$ depth to rock	\|Severe:   thin layer	\|Severe:   \| no water	\|Limitation:	deep to water		\|Limitation:   percs slowly   slope   slow intake	\|Limitation:	percs slowly	slope	depth to rock	\|Limitation:   \| percs slowly   \| slope   \| depth to rock
404:												
Techado	$\begin{aligned} & \text { \|Severe: } \\ & \mid \text { slope } \\ & \mid \text { depth to rock } \mid \end{aligned}$	Severe:   hard to pack	\|Severe:   \| no water	\|Limitation: deep to water	\|Limitation:   percs slowly   slope   depth to rock	\|Limitation: $\mid$ percs slowly \| slope depth to rock	\|Limitation:   percs slowly   slope   depth to rock					
Stozuni-		\|Severe:   thin layer	\|Severe:   \| no water	\|Limitation: deep to water	\|Limitation:   slope   depth to rock   droughty	\|Limitation: $\mid$ slope $\mid$ depth to rock $\mid$	\|Limitation:   slope   depth to rock   droughty					

Table 13.--Water Management--Continued


Table 13.--Water Management--Continued

Map symbol and soil name	Limitations for--			Features affecting--						
	$\begin{aligned} & \mid \text { Pond reservoir } \mid \\ & \mid \quad \text { areas } \end{aligned}$	Embankments, dikes, and levees	Aquifer-fed excavated ponds	Drainage	Irrigation	Terraces and diversions	Grassed waterways			
409:										
	$\begin{aligned} & \text { \| Severe: } \\ & \text { \| slope } \end{aligned}$	\|Moderate:   hard to pack thin layer	\|Severe:   no water	\|Limitation:	deep to water $\mid$ $\mid$	\|Limitation:   percs slowly   slope	\|Limitation:   \| percs slowly   \| slope	\|Limitation:   \| percs slowly   slope		
410:										
Montillo	$\mid$ Severe:   \| slope	\|Severe:   hard to pack	\|Severe:   \| no water	$\mid$ Limitation: $\mid$ deep to water $\mid$	\|Limitation:   percs slowly   slope   depth to rock	\|Limitation:	erodes easily	slope	depth to rock	\|Limitation:   erodes easily   slope   depth to rock
Tsoodzi1	\| Severe:   \| slope	\|Severe:   hard to pack	\|Severe:   no water	$\mid$ Limitation: $\mid$ deep to water $\mid$	\|Limitation:   \| percs slowly   slope	\|Limitation:   \| percs slowly   \| slope	\|Limitation:   \| percs slowly   slope			
411:										
Ligocki	\|Moderate:   seepage   slope	\|Moderate:   piping	\|Severe:   no water	$\mid$ Limitation: $\mid$ deep to water $\mid$	\|Limitation:   percs slowly   slope   soil blowing	\|Limitation: soil blowing	\|Limitation:   percs slowly			
Robolata-	\|Severe:   seepage	\|Moderate:   piping   thin layer	\|Severe:   no water		\|Limitation:   erodes easily   percs slowly   slope		\|Limitation:   erodes easily   percs slowly			
412:										
Rionutria	\| Severe:   \| slope	\|Severe:   large stones	\|Severe:   \| no water	$\mid$ Limitation: $\mid$ deep to water $\mid$	\|Limitation:   \| large stones   \| slope   \| depth to rock	\|Limitation: $\mid$ large stones $\mid$ slope depth to rock \|	\|Limitation:   large stones   slope   depth to rock			
Zaster	\|Severe:   slope	\|Severe:   thin layer	\|Severe:   no water		\|Limitation:   \| large stones   slope   droughty	\|Limitation: $\mid$ large stones $\mid$ slope $\mid$ depth to rock	\|Limitation:   \| large stones   \| slope   droughty			

Table 13.--Water Management--Continued

Map symbol and soil name	Limitations for--			Features affecting--							
	$\begin{aligned} & \mid \text { Pond reservoir } \mid \\ & \left\lvert\, \begin{array}{c} \text { areas } \end{array}\right. \end{aligned}$		Aquifer-fed excavated ponds	Drainage	Irrigation	Terraces and diversions	Grassed waterways				
413 :											
Morclay	\|Moderate:   \| slope	\|Severe:   hard to pack	\|Severe:   \| no water		\|Limitation:   percs slowly   slope   slow intake	\|Limitation:   percs slowly	\|Limitation:   \| percs slowly				
414:											
Zunalei	\|Severe:   \| seepage	\|Severe:   \| piping	\|Severe:   \| no water	$\mid$ Limitation: $\mid$ deep to water $\mid$	\|Limitation:   fast intake   slope   soil blowing	\|Limitation: soil blowing	\|Favorable				
Corzuni	\|Severe:   seepage	\|Severe:   piping	\|Severe:   \| no water	$\mid$ Limitation: $\mid$ deep to water $\mid$	\|Limitation:   fast intake   slope   soil blowing	\|Limitation:   soil blowing	\|Favorable				
415:											
Tsoodzi	$\mid$ Severe:	\|Moderate:	\| Severe:	\|Limitation:		\|Limitation:	\|Limitation:	\|Limitation:			
	\| slope	hard to pack	no water	\| deep to water		$\begin{aligned} & \text { percs slowly } \\ & \text { slope } \end{aligned}$	$\begin{aligned} & \text { \| percs slowly } \\ & \text { slope } \end{aligned}$	$\begin{aligned} & \text { percs slowly } \\ & \text { slope } \end{aligned}$			
Bluesky	$\mid$ Severe: $\mid$ slope $\mid$ depth to rock	\|Severe:   \| thin layer	\|Severe:   \| no water		Limitation:   fast intake   slope   droughty	\|Limitation: $\mid$ slope \| soil blowing $\mid$ depth to rock	\|Limitation:   slope   depth to rock   droughty				
418:											
Asaayi-	\|Severe: $\mid$ slope $\mid$ depth to rock $\mid$	\|Severe:   \| thin layer	\|Severe:   \| no water	$\mid$ Limitation: $\mid$ deep to water $\mid$		\|Limitation:	slope	depth to rock $\mid$	\|Limitation:	slope	depth to rock
Osoridge-	$\mid$ Severe:   $\mid$ slope   $\mid$ depth to rock   $\mid$	\|Severe:   \| thin layer   \|	\|Severe:   \| no water		Limitation:   percs slowly   slope   depth to rock\|	\|Limitation:   percs slowly   slope   depth to rock	\|Limitation:   percs slowly   slope   depth to rock				

Table 13.--Water Management--Continued

Map symbol and soil name	Limitations for--			Features affecting--										
	$\begin{aligned} & \mid \text { Pond reservoir } \mid \\ & \left\|\begin{array}{c} \text { areas } \end{array}\right\| \end{aligned}$	Embankments, dikes, and levees	Aquifer-fed excavated ponds	Drainage	Irrigation	Terraces and diversions	Grassed waterways							
419:														
Fortwingate	\|Severe:   slope	\|Severe:   thin layer	\|Severe:   \| no water	\|Limitation:   \| deep to water	\|Limitation:   percs slowly   slope   depth to rock	\|Limitation:   slope   depth to rock\|	\|Limitation:   \| percs slowly   slope   depth to rock							
Cinnadale-	$\mid$ Severe:   $\mid$ slope   $\mid$ depth to rock $\mid$	\|Severe:   seepage	\|Severe:   no water	\|Limitation:   \| deep to water	\|Limitation:   \| large stones   \| slope   \| droughty	\|Limitation: $\mid$ large stones $\mid$ slope $\mid$ depth to rock	\|Limitation:   large stones   slope   droughty							
420:														
Seco	$\begin{aligned} & \text { \|Moderate: } \\ & \text { \| slope } \end{aligned}$	\|Severe:   hard to pack	\|Severe:   no water	\|Limitation: deep to water	\|Limitation:   percs slowly   slope	LLimitation: percs slowly	\|Limitation:   percs slowly							
425:														
Montillo-	$\begin{aligned} & \mid \text { Moderate: } \\ & \mid \text { slope } \\ & \mid \text { depth to rock } \mid \end{aligned}$	\|Severe:   hard to pack	\|Severe:   no water	\|Limitation: $\mid$ deep to water $\mid$ $\mid$	\|Limitation:   \| large stones   \| slope   \| droughty	\|Limitation:   large stones percs slowly depth to rock\|	\|Limitation:   \| large stones   \| depth to rock   droughty							
Canoneros	$\begin{aligned} & \mid \text { Severe: } \\ & \mid \text { depth to rock } \mid \end{aligned}$	\|Severe:   hard to pack	\|Severe:   no water	\|Limitation: deep to water	\|Limitation:   percs slowly   slope   depth to rock	\|Limitation:   percs slowly   depth to rock\|	\|Limitation:   percs slowly   depth to rock							
430:														
Montillo	$\begin{aligned} & \mid \text { Moderate: } \\ & \mid \text { slope } \\ & \mid \text { depth to rock } \mid \end{aligned}$	\|Severe:   hard to pack	\|Severe:   no water	\|Limitation:	deep to water	\|Limitation:   percs slowly   slope   depth to rock	\|Limitation:   percs slowly   depth to rock\|	\|Limitation:   \| percs slowly   \| depth to rock						
435:														
Tsoodzil	$\mid$ Severe:   \| slope	\|Moderate: large stones	\|Severe:   no water	\|Limitation:   \| deep to water	\|Limitation:   percs slowly   slope	\|Limitation:   large stones   slope	\|Limitation:   \| large stones   \| percs slowly   \| slope							
Amcec	$\mid$ Severe:   seepage   slope	Severe:   seepage	\|Severe:   \| no water	\|Limitation:	deep to water	\|Limitation:	slope	droughty		Limitation: slope	\|Limitation:	slope	droughty	

Table 13.--Water Management--Continued

Map symbol and soil name	Limitations for--			Features affecting--			
	$\begin{aligned} & \text { \|Pond reservoir\| } \\ & \text { areas } \end{aligned}$	Embankments, dikes, and levees	Aquifer-fed excavated ponds	Drainage	Irrigation	Terraces and diversions	Grassed waterways
440:							
Chivato	\|Slight	Severe: hard to pack	\|Severe:   \| no water	\|Limitation: deep to water	\|Limitation:   flooding   percs slowly   slow intake	Limitation: percs slowly	\|Limitation: percs slowly
525:							
Silcat	Moderate:   slope	Moderate: hard to pack	\|Severe:   \| no water	\|Limitation: deep to water	\|Limitation:   percs slowly slope	Limitation: percs slowly	\|Limitation:   percs slowly too arid
550 :							
Bryway	$\mid$ Moderate: $\mid$ slope $\mid$ depth to rock $\mid$	\|Severe: thin layer	\|Severe:   \| no water	\|Limitation: deep to water	\|Limitation:   percs slowly   slope	Limitation:   erodes easily\|   percs slowly \|   depth to rock\|	\|Limitation:   erodes easily   too arid   depth to rock
Galzuni	\|Moderate:   seepage   slope	\|Slight	\|Severe:   \| no water	\|Limitation: deep to water	$\mid$ Limitation: $\mid$ erodes easily $\mid$ percs slowly $\mid$ slope	Limitation: erodes easily	\|Limitation:   erodes easily   percs slowly   too arid
555:							
Parkelei	\| Severe:   seepage	Severe: piping	\|Severe:   \| no water	\|Limitation: deep to water	\|Limitation:   slope   soil blowing	Limitation: soil blowing	\|Limitation:   too arid
Evpark	$\mid$ Moderate:   $\mid$ seepage   $\mid$ slope   $\mid$ depth to rock $\mid$	Moderate:   piping   thin layer	\|Severe:   \| no water	\|Limitation:   \| deep to water	\|Limitation:   slope   soil blowing   depth to rock	Limitation: soil blowing depth to rock\|	\|Limitation:   too arid   depth to rock
560 :							
Flugle-	\|Severe:   seepage	Moderate:   piping   thin layer	\|Severe:   \| no water	\|Limitation: deep to water	\|Limitation:   slope   soil blowing	Limitation: soil blowing	\|Limitation:   too arid
Teczuni-	\|Moderate:	Moderate: hard to pack	\|Severe:   \| no water	\|Limitation: deep to water	\|Limitation:   erodes easily   percs slowly   slope	Limitation:   erodes easily\|   percs slowly	\|Limitation:   erodes easily   percs slowly   too arid

Table 13.--Water Management--Continued

Map symbol and soil name	Limitations for--			Features affecting--									
	$\begin{aligned} & \mid \text { Pond reservoir } \mid \\ & \text { areas } \end{aligned}$	Embankments, dikes, and levees	Aquifer-fed excavated ponds	Drainage	Irrigation	$\begin{gathered} \hline \text { Terraces and } \\ \text { diversions } \end{gathered}$	Grassed waterways						
$\begin{aligned} & \text { 561: } \\ & \text { Flug } \end{aligned}$			\|	\|									
	\|Severe:   \| seepage	Severe: piping	\|Severe: no water	\|Limitation:   \| deep to water	$\begin{aligned} & \text { \|Limitation: } \\ & \text { slope } \\ & \text { \| soil blowing } \end{aligned}$	\|Limitation:	soil blowing		\|Limitation:	too arid I			
Plumasano	\|Severe:   \| seepage	Severe: piping	\|Severe:   no water	\|Limitation:   \| deep to water	\|Limitation:   slope   soil blowing	\|Limitation:   \| soil blowing	\|Limitation:   \| too arid   \|						
565:Plumas			\|	\|									
		Severe: piping	\|Severe:   no water	\|Limitation:   \| deep to water	\| Limitation:	slope	soil blowing	droughty	$\begin{aligned} & \text { \|Limitation: } \\ & \text { \| slope } \\ & \text { \| soil blowing } \end{aligned}$	\|Limitation:	slope	too arid	droughty
566:													
Bamac-	\|Severe:   \| seepage   \| slope	Severe: seepage	\|Severe:   no water	\|Limitation:   \| deep to water	$\begin{aligned} & \text { \|Limitation: } \\ & \text { \| slope } \\ & \text { droughty } \end{aligned}$	\|Limitation:   \| large stones   \| slope   \| too sandy	\|Limitation:   \| large stones   \| slope   \| too arid						
575:				$\mid$ \|									
Ramah	$\square$	Moderate: piping	\|Severe:   no water	\|Limitation: deep to water I	\|Limitation: soil blowing $\square$	\|Limitation:	soil blowing I	\|Limitation: too arid					
Pescado-		Severe:   thin layer	\|Severe:   \| no water	\|Limitation:   \| deep to water	\|Limitation:   slope   soil blowing   depth to rock	\|Limitation:   \| soil blowing	depth to rock	\|Limitation: depth to rock					

Table 14.--Engineering Index Properties
(Absence of an entry indicates that the data were not estimated.)


Table 14.--Engineering Index Properties--Continued


Table 14.--Engineering Index Properties--Continued

Map symbol and soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				\|Liquid   \|limit	$\begin{aligned} & \text { \| Plas- } \\ & \text { \|ticity } \end{aligned}$		
				\|	$\begin{aligned} & \|>10\| \\ & \mid \text { inches } \mid \end{aligned}$	$\begin{array}{\|c\|} \|3-10\| \\ \mid \text { inches\| } \end{array}$								
			Unified	AASHTO			4	10	40	200		\|index		
	In	\|			\|	Pct	Pct					Pct		
		,		\|										
250:		,		\|										
Rock outcrop---- \|	0	\|Unweathered		\|	---	---	---	---	---	---	---	---		
		\| bedrock		\|										
255:				\|										
Farview-	0-1	\|Loamy fine sand		\|SM	\| $\mathrm{A}-2-4$	0	0	\|80-100	\|75-100		\|70-90	\|20-35	\|10-15	1-4
	1-10	\|Fine sandy loam		\|SC-SM	\|A-4	0	0	100	100	\|90-100		\|70-90	\|15-25	4-7
	10-17	\|Fine sandy loam		\|SC-SM	\|A-4	0	0	100	100	\|90-100		\|70-90	\|15-25	4-7
	17-20	\|Unweathered			\|	---	---	---	---	\| ---	---	---	---	
		\| bedrock		\|										
				\|										
Rock outcrop---- \|	0	\|Unweathered		\|	---	---	---	---	---	---	---	---		
		\| bedrock		\|										
				\|										
258:														
Eagleye---------\|	0-2	\|Gravelly clay	\| CL	\|A-7-6	0	0-5	\|90-100	\|80-95	\|70-90	60-80	\|35-50	\|15-25		
		\| loam		\|										
	2-10	\| Clay	\| CH	\|A-7-6	0	0	100	\|95-100		\|80-95	\| 70-90	\| 45-55	\|25-35	
	10-20				\| ---	---	---	\| ---	\| ---	---	\| ---	---		
		\| bedrock												
				\|										
Atchee---------- \|	0-2	\|Fine sandy loam		\|SC-SM	\|A-2-4	0-1	0-5	100	\| 80-90	\|25-45	5-25	\|15-25	4-7	
	2-12	\| Extremely	\|GC	\|A-2-4	0-1	\|35-85	\|50-75	\| 45-65	\|25-45	5-25	\|25-35	7-10		
		\| channery sandy												
		\| clay loam			\|									
	12-14	\| Extremely	\|GC	\|A-2-4	0-1	\| 35-85	\|50-75	\| 45-65	\|25-45	5-25	\|25-35	7-10		
		\| channery sandy												
		\| clay loam			\|									
	14-20	\|Unweathered		\|	---	---	---	---	---	---	---	---		
		\| bedrock												
Rock outcrop---- \|	0	\|Unweathered		\|	-	---	---	---	---	---	---	---		
		\| bedrock		\|										
				\|										
260:		\|		\|										
Quarries And		1		\|										
Pits-----------	0			\|	---	---	---	---	---	---	---	---		
		\| bedrock		\|										
				\|										
261:		\|			\|									
Coal Mine Lands- ${ }^{\text {\| }}$	0	\|		\|	---	---	---	---	---	---	---	---		
		\|		\|										
265:		\|		\|										
Uranium Mined		\|		\|										
Lands---------- \|	0	\|Variable		\|	---	---	---	---	---	---	---	---		
		\|			\|									
$270:$		\|			\|									
Alesna---------- \|	0-1	\|Extremely   cobbly loam	\|GC, GC-GM	\|A-1-b, A-2-4	0-10	\|30-55	\|20-40	\|15-35	\|15-25	\|15-20	\| 25-35	5-15		
	1-10	\| Gravelly clay	\|CL, GC, SC	\|A-7-6	0	0-15	\|60-80	\| 55-75	\|50-70	\| 40-60	\|40-50	\|15-25		
	10-20	\|Very gravelly   \| clay	${ }^{1}$ GC	\|A-2-7, A-7-6	0-2	0-10	\|50-70	\| 45-65	\| 40-60	\|30-50	\|50-60	\|25-35		
	20-26	\|Clay	\| $\mathrm{CH}, \mathrm{CL}$	\|A-7-6	0-2	0-10	\|90-100	\|85-95	\|70-90	\| 65-85	\| 45-60	\|25-35		
	26-52	\| Clay loam	\| CL	\|A-7-6	0-2	0-10	\| 100	\|90-100		\|60-80	\| 55-75	\| 40-50	\|15-25	
	52-60	\|Weathered		\|	---	---	---	\| ---	\| ---	---	\| ---	\| ---		
		\| bedrock		\|										
				\|										

Table 14.--Engineering Index Properties--Continued

Map symbol and soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				\|Liquid   \|limit			
			Unified	AASHTO	$\begin{array}{\|l\|} \|>10\| \\ \mid \text { inches } \mid i \end{array}$	$\left\lvert\, \begin{array}{c\|} 3-10 \mid \\ \text { \|inches } \end{array}\right.$								
							4	10	40	200				
	In		-	\|	Pct	Pct					Pct			
		\|		\|	\|				1					
270:Rock outcrop----		$\mid$ \|	\|	\|	\|									
	0	\|Unweathered	\|	\|	---	---	---	---	---	---	---	---		
		\| bedrock		\|	\|									
			\|	\|										
275:		$\mid$ \|	\|	\|										
Eldado----------\|	0-2	\|Gravelly fine		\|GC, GC-GM,	\|A-1, A-2-4	0-2	0-2	\|55-75	\|50-70	\|45-65	\|20-40	20-30	4-10	
		\| sandy loam		\| SC-SM	\|									
	2-9	\|Sandy clay loam		\|SC	\|A-6	0-2	0-10	100	\|90-100		\|55-75	\| 40-60	\|30-40	7-15
	9-13	\|Sandy clay loam		\|SC	\|A-6	0-2	0-10	100	\|90-100		\|55-75	40-60	\|30-40	\|10-15
	13-25	\|Sandy clay loam		\|SC	\|A-6	0-2	0-10	100	\|90-100		\|55-75	40-60	30-40	\|10-15
	25-43	\|Extremely		\|GC-GM, GM,	\|A-1-a	0-10	0-45	\|25-45	\|20-40	\|10-20	5-15	0-0	NP	
		\| gravelly loamy		\| GW-GM	,									
		\| coarse sand												
	43-72	\|Extremely		\|GC-GM, GM,	\|A-1-a	0-10	0-45	\|25-45	\| 20-40	\|10-20	5-15	0-0	NP	
		\| gravelly	\| GW-GM	-										
		\| coarse sand		\|										
			\|	\|										
280:	0-1		\|	\|										
Azabache-------- \|		$\begin{aligned} & \text { \|Extremely } \\ & \text { \| gravelly clay } \\ & \text { \| loam } \end{aligned}$	\|GC, GM	\|A-2-6	0-1	0-5	15-40	\|10-30	\|10-25	10-20	\|35-40	10-15		
		\|Clay		\| $\mathrm{CH}, \mathrm{CL}$	\|A-7-6	0	0-5	\|90-100		\| 85-95	\|80-90	\|75-90	\| 45-55	\|20-30
	5-17	\|Gravelly sandy		\|SC	\|A-2-6	0	0-5	\|50-70	\| 45-65	\|20-40	\|15-35	\|30-40	\|10-15	
		\| clay loam												
	17-32	\|Extremely	\|GC	\|A-2-6	0	0-5	\|20-40	\|15-35	\|10-25	5-20	30-40	10-15		
		\| gravelly sandy			,									
		clay loam		\|										
	32-50	$\begin{aligned} & \text { \| Extremely } \\ & \text { \| gravelly fine } \\ & \text { \| sandy loam } \end{aligned}$	\|GC-GM, GM	\|A-1-a	0	0-5	\|20-40	\|15-30	\|10-25	5-15	20-30	1-4		
				-										
	50-62	\|Very gravelly		\|GM, SC-SM	\|A-4	0	0-5	\|60-80	\| 55-75	\|50-70	40-60	\|15-25	1-4	
		\| fine sandy		-										
		\| loam		I	\|				1					
			\|	\|				1						
290:	0	\|		\|	\|									
Rock outcrop---- \|				\|	---	---	---				---	---		
		\| bedrock	\|	\|										
			\|	\|										
Westmion--------\|	0-2	\|Gravelly clay   \| loam	\| CL	\|A-6, A-7-6	0-10	0-15	100	\|80-100		\|40-60	\|35-55	\|35-45	\|15-20	
	2-14	\| Clay	\| ${ }_{\text {CH, CL }}$	\|A-7-6	0	0-10	100	\|75-85	\|65-85	\| 60-80	45-60	\|20-35		
	14-20	\|Weathered		,	---	---	---	\| ---	\| ---	\| ---	---	---		
		\| bedrock		,										
Skyvillage------\|	0-2	\|Sandy loam		\|SC-SM	\|A-1-b, A-2-4	0-15	0-10	100	\|90-100		\|30-50	\|20-40	\|15-20	4-7
	2-13	\|Sandy loam		\|SC-SM, SM	\|A-2-4, A-4	0	0-5	\|85-100		\|75-95	\|40-60	\|30-50	\|20-30	1-7
	13-20	\|Unweathered		-	---	---	\| ---		\| ---	\| ---	\| ---	\| ---	---	
		\| bedrock		,				,	\|					
		\|			\|	1			,	\|				
291:		\|		\|	\|	1								
Rock outcrop---- \|	0		\|	,	---	---	---	\| ---	\| ---	---	---	---		
			1	\|				1						

Table 14.--Engineering Index Properties--Continued


Table 14.--Engineering Index Properties--Continued


Table 14.--Engineering Index Properties--Continued

Map symbol and soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--					\| Plas-		
					\| >10	3-10								
			Unified	AASHTO	\|inches	\|inches		\| 4	10	40	200			
317:	In	\|		\|		Pct	Pct					Pct		
		\|	\|											
		\|		\|										
Bryway----------\|	0-4	\|Sandy loam	\| SC-SM	\|A-4	0	0	\|90-100	\|85-100		\|70-90	\| 45-65	\|20-30	4-7	
	4-10	\|Clay, clay loam		\| $\mathrm{CH}, \mathrm{CL}$	\|A-7-6	0	0	100	100	\|75-95	\|70-90	\| 40-60	\|15-30	
	10-23	\| Clay	\| $\mathrm{CH}, \mathrm{CL}$	\|A-7-6	0	0	100	100	\| $80-100 \mid$	\|75-95	\| 45-60	\|20-30		
	23-40	\|Unweathered			\| ---	-	---	---	---	---	---	---		
		\| bedrock												
320:			\|											
Parkelei--------\|	0-4	\|Fine sandy loam		\|SC-SM	\|A-4	0	0	100	\|95-100		\|50-70	\| 40-60	\|15-25	4-7
	4-18	\|Sandy clay loam			\|A-6, A-7-6	0	0	100	\|95-100		\|60-80	\| 40-50	\|30-45	\|10-20
	18-28	\|Sandy clay loam			\|A-6, A-7-6	0	0	100	\|95-100		\|60-80	\| $40-50$	\|30-45	\|10-20
	28-39	\|Sandy clay loam			\|A-6, A-7-6	0	0	100	\|95-100		\|60-80	\| 40-50	\|30-45	\|10-20
	39-52	\|Sandy clay loam		\|SC	\|A-6, A-7-6	0	0	100	\|95-100		\|60-80	\| $40-50$	\|30-45	\|10-20
	52-70	\|Fine sandy loam		\|SC-SM	\|A-4	0	0	100	\|95-100		\|50-70	\|40-60	\|15-25	4-7
Fraguni---------\|	0-4	\|Loamy fine sand		\|SM	\|A-2-4, A-4	0	0	100	100	\| 75-95	\|20-40	\|15-20	1-4	
	4-20	\|Fine sandy loam		\|SC-SM	\|A-4	0	0	100	100	\| $55-75$	\| $40-60$	\|20-30	4-7	
	20-46	\|Loamy fine sand			\|A-2-4, A-4	0	0	100	100	\|75-95	\|20-40	\|15-20	1-4	
	46-58	\|Sandy clay loam		\|SC	\|A-6	0	0	100	100	\|75-95	\| $40-50$	\| 30-40	10-20	
	58-70	\|Fine sandy loam		\|SC, SC-SM	\|A-4	0	0	100	100	\| $55-75$	\| 40-60	\|20-30	4-10	
325:														
Venzuni--------- \|	0-2	\|Silty clay	$\mid \mathrm{CH}$	\|A-7-6	0	0	100	100	\|95-100		\|90-100		\|50-60	\|30-40
	2-12	\|Silty clay	$\mid \mathrm{CH}$	\|A-7-6	0	0	100	100	\| 95-100		\|90-100		\|50-60	\|30-40
	12-46	\| Clay	$\mid \mathrm{CH}$	\|A-7-6	0	0	100	100	100	\|95-100		\|65-85	\| 45-65	
	46-65	\| Clay	$\mid \mathrm{CH}$	\|A-7-6	0	0	100	100	100	\|95-100		\|65-85	45-65	
					\|									
332:			\|	\|										
Evpark----------	0-2	\|Fine sandy loam		\|SC	\|A-4	0	0	\|90-100	\|85-100		\|70-90	\| 40-50	\|20-30	7-10
	2-9	\|Clay loam, loam		\| CL	$\mid$ A-6	0	0	\| 100	\| 100	\| 80-100		\|70-90	\|35-40	\|15-20
	9-36	\|Clay loam		\| CL	\|A-6	0	0	100	100	\|80-100		\|70-90	\| 35-40	\|15-20
	36-40	\|Unweathered   \| bedrock		\|	\| ---	---	---	---	\| ---	---	---	\| ---		
Arabrab---------\|	0-2	\|Gravelly fine	\|SC-SM	\|A-2-4	0-10	0	100	\| 80-100		\|55-75	\|30-35	\|20-25	4-7	
		\| sandy loam												
	2-7	\|Sandy clay loam		\|SC	\|A-6	0	0	\|75-90	\|70-85	\| 60-75	\| 45-60	\|30-35	7-15	
	7-12	\|Clay loam		\| CL	\|A-7-6	0	0	\|75-90	\|70-85	\| 60-75	\| 45-60	\|35-50	\|15-25	
	12-17	\|Gravelly clay	\| CL	\|A-7-6	0	0	\|75-90	\|70-85	\|60-75	\| 45-60	\|35-50	\|15-25		
		\| loam		\|										
	17-20	\|Unweathered		\|	\| ---	---	---	---	---	---	---	---		
		\| bedrock												
335:		\|				1								
Venadito--------\|	0-3	\| Clay	\| $\mathrm{CH}, \mathrm{CL}$		0	0	100		\|90-100		\|85-100		\|40-60	\| 20-40
	3-30	\| Clay	\| CH	\|A-7-6	0	0	100	100	\|90-100		\|85-100		\|65-85	\| 45-65
	30-65	\| Clay	\| CH	\|A-7-6	0	0	100	100	\| $90-100 \mid$	\|85-100		\|65-85	\| 45-65	
336:		$\mid$ \|	\|		I									
Nuffel-----------	0-2	\|Silt loam	\| CL, CL-ML	\|A-4, A-6	0	0	100	100	\|80-100		\|75-95	\|20-35	5-15	
	2-10	\| Sandy loam	\| CL-ML, SC-SM	\|A-4	0	0	100	100	\|70-90	\|45-65	\|20-30	4-7		
	10-17	\|Silt loam	\|CL, CL-ML	\|A-4, A-6	0	0	100	100	\|75-95	\|75-95	\|20-35	5-15		
	17-20	\| Loam	\| CL, CL-ML	\|A-4, A-6	0	0	100	100	\|70-90		\|60-80		\|20-35	5-15
	20-47	\|Silty clay loam		\|CL	\|A-6	0	0	100	100	\|80-100		$\|80-100\|$	\|35-40	\|15-20
	47-65	\|Silty clay		\| $\mathrm{CH}, \mathrm{CL}$	\|A-7-6	0	0	100	100	\|85-100		$\|80-100\|$	\|45-60	\|20-30

Table 14.--Engineering Index Properties--Continued


Table 14.--Engineering Index Properties--Continued


Table 14.--Engineering Index Properties--Continued


Table 14.--Engineering Index Properties--Continued


Table 14.--Engineering Index Properties--Continued

Map symbol and soil name	Depth	USDA texture	Classification	Fragments		Percentage passing sieve number--			$\begin{aligned} & \mid \text { Liquid\| } \\ & \mid \text { limit } \end{aligned}$	$\begin{aligned} & \text { \| Plas- } \\ & \mid \text { ticity } \end{aligned}$			
			\|	>10	3-10								
			AASHTO	\|inches	\|inches	$4 \mathrm{l\mid l}$	40	200		\|index			
			\|			\|							
390:	In	\|	\|	Pct	Pct	\|			Pct				
		\|	\|			$\mid$							
		\|	\|			\|							
Banquito-------	0-2	$\mid$ Very fine sandy ${ }^{\text {cL-ML, }}$, SC-SM	\|A-4	0	0-5	\|80-100	75-95	\|70-90	45-55	\|20-30	4-7		
		\| loam		1									
	2-9	\|Clay loam	CL	\|A-6	0	0-10	\|95-100	90-100		\| 55-75	55-75	\|30-40	\|10-20
	9-17	\|Loam	CL, SC	\|A-6	0	0-10	\|85-100	80-100		\|50-70	45-65	\|30-35	\|10-15
	17-22	\|Sandy clay loam	SC	\|A-2-6, A-6	0	0-10	\|85-100	80-100		\|40-60	\|25-45	\|30-40	\|10-15
	22-36	\|Sandy loam	SC-SM	\|A-2-4, A-4	0	0-10	\|85-100	80-100		\|35-55	20-40	\|20-30	4-7
	36-40	\|Unweathered			---	---	--- \| ---	---	---	---	---		
		\| bedrock	\|	\|		\|							
						i							
395:		\|		,	$\|\quad\|$								
Cabezon---------	0-2	\|Very cobbly	GC	\|A-2-6	0-20	\|20-40	\|30-50	20-45	\|20-40	15-35	\|25-35	\| 10-15	
		\| loam	,	$\mid$ \|									
	2-6	\|Clay loam	CL	\|A-6, A-7-6	0	0-2	\|90-100	85-95	\|70-90	60-80	\|35-45	\|15-20	
	6-14	\|Clay $\mid \mathrm{CH}, \mathrm{CL}$	\|A-7-6	0	0	\|90-100	85-95	\|75-95	\|10-90	\| 45-65	\| 20-40		
	14-17	\|Weathered	\|	---	---	\| ---	---	---	---	---	---		
		\| bedrock	।	\|									
	17-20	\| Unweathered	,	---	---	--- \| ---	---	---	---	---			
		\| bedrock	\|	1									
			,	1 \|		,							
Mcorreon-------	0-2	\|Loam	CL	\|A-6	0-2	0-10	\|80-100	75-95	\|60-80	55-75	\|25-35	\| 10-15	
	2-13	\| Clay	CH, CL	\|A-7-6	0	0-2	\|85-100	80-100		\|80-100	75-95	\| 45-65	\| $20-40$
	13-19	\|Clay	CH, CL	\|A-7-6	0	0-2	\|85-100	80-100		\|80-100	\|75-95	\| 45-65	\|20-40
	19-27	\|Clay loam	CL	\|A-6, A-7-6	0	0-2	\|85-100	80-100		\|70-90	\| 60-80	\| 35-45	\|15-20
	27-70	\|Clay loam	CL	\|A-6, A-7-6	0	0-2	\|85-100	80-100		\|70-90	60-80	\|35-45	\|15-20
	70-80	\|Unweathered	\|	---	---	\| ---	---	---	---	---	---		
		\| bedrock		1		-							
		\|		1	1 \|		1						
400:		\|		,	1								
Shoemaker------	0-2	\|Loamy fine sand	SC-SM, SM	\|A-2-4	0	0-10	\|90-100	85-100		\|70-90	20-35	\|15-25	1-7
	2-7	\|Fine sandy loam	SC-SM	\|A-2-4, A-4	0	0-10	\|90-100	85-100		\|70-90	\|25-45	\|20-30	4-7
	7-20	\|Sandy clay loam	SC	\|A-6	0	0-10	\|90-100	85-100		\| 55-80	40-60	\| 25-35	7-15
	20-28	\|Sandy clay loam	SC	\|A-6	0	0-10	\|90-100	85-100		\|55-80	\| 40-60	\|30-40	7-15
	28-40	\|Unweathered		1	--	---	\| ---	---		---	---	---	---
		\| bedrock		1		1							
		,	,	1		1							
Stozuni--------	0-2	\| Sandy loam	SC-SM, SM	\|A-2-4	0	0	$100 \mid 100$	\| 55-75	15-35	\|15-30	1-7		
	2-10	\|Fine sandy loam	SC-SM	\|A-2-4	0	0	\| 100	100	\|70-90	\|15-35	\|15-30	4-7	
	10-15	\|Fine sandy loam	SC-SM	\|A-2-4	0	0	\| 100	100	\|70-90	\|15-35	\|15-30	4-7	
	15-20	\|Unweathered		\|	---	---	--- \| ---	---	---	---	---		
		\| bedrock		I	$\mid$ \|		,						
		\|		1	1		1						
403 :		,	I	1		,							
Valnor---------	0-2	\|Clay loam	CL	\|A-6	0	0	\|90-100	85-100	\|55-75	55-75	\|35-40	\|15-20	
	2-4	\|Clay loam	CL	\|A-6	0	0	\| 100	95-100		\|60-80	\|60-80	\|35-40	\|15-20
	4-20	\|Clay	CH, CL	\|A-7-6	0	0	100 \| 100	\|90-100	\| 85-100	\|45-60	\|20-30		
	20-34	\|Clay	CH, CL	\|A-7-6	0	0	$100 \mid 100$	\|90-100	\| 85-100	\|45-60	\|20-30		
	34-40	\| Weathered	\|	---	---	--- \| ---	---	---	---	---			
		\| bedrock	,	1		,							
			\|	1		,							
Techado--------	0-3	\| Gravelly clay	CH, CL	\|A-7-6	0	0-10	\|65-80	60-75	\| 55-75	55-75	\| 45-60	\|20-30	
	3-13	\|Clay	CH, CL	\|A-7-6	0	0	$100 \mid 100$	\|90-100	\| 85-100	\|45-60	\|20-30		
	13-20	\|Weathered		,	---	---	--- \| ---	\| ---	\| ---	\| ---	---		
		\| bedrock		,	1		\|						
			\|	1		1							

Table 14.--Engineering Index Properties--Continued

Map symbol and soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				\|Liquid	  \|limit		
				\|	>10	3-10								
			Unified	AASHTO	\|inches		\|inches		4	10	40	200		
	In	$\mid$ \|	\|	\|	Pct	Pct					Pct			
		\|		\|	\|	\|								
404:		$\mid$ \|		\|										
Rock outcrop----\|	0	\|Unweathered		\|	\| ---	---	---	--	---	---	---	---		
		\| bedrock		\|										
				\|										
Techado---------\|	0-5	\| Channery clay	\| CL	\|A-6, A-7-6	0	0-10	65-80	\|60-75	\|50-70	\|50-70	\|35-45	\|15-20		
		\| loam												
	5-8	\| Clay	\| $\mathrm{CH}, \mathrm{CL}$	\|A-7-6	0	0	100	100	\|90-100		\|85-100	\|45-65	25-45	
	8-17	\| Clay	\| $\mathrm{CH}, \mathrm{CL}$	\|A-7-6	0	0	100	100	\|90-100		\|85-100	\|45-65	\| $25-45$	
	17-20	\|Weathered		\|	---	---	---	---	\| ---	---	---	---		
		\| bedrock		\|										
Stozuni---------\|	0-1	\| Gravelly sandy	\|SC-SM, SM	\|A-2-4, A-4	0	0-15	\|65-80	\|60-75	\| 50-70	\|30-50	\|15-30	1-7		
		\| loam												
	1-7	\|Gravelly sandy	\|SC-SM	\|A-2-4, A-4	0	0-10	\|70-80	65-75	\|50-70	\|30-50	\|15-30	4-7		
		\| loam		\|										
	7-20	\|Unweathered		\|	---	---	---	---	---	---	---	---		
		\| bedrock		\|										
				\|										
405:				\|										
Fortwingate----- \|	0-1			\|	---	---	---	---	---	---	---	---		
		\| decomposed		\|										
		\| plant material												
	1-4	\|Loam	\| CL, CL-ML	\|A-4, A-6	10	0-10	\|75-95	\|70-90	\| 60-80	\|50-70	\|25-35	5-15		
	4-9	\|Clay loam	\| $\mathrm{CH}, \mathrm{CL}$	\|A-7-6	0	0	100	$\|90-100\|$	\|70-90	\|60-80	\| 45-55	\| $25-35$		
	9-26	\| Clay	\| CH	\|A-7-6	0	0	100	\|95-100		\|80-100		\|75-95	\| 55-65	\| 35-40
	26-40	\|Unweathered		\|	---	---	---	\| ---	---	---	---	---		
		\| bedrock		\|										
Owlrock---------\|	0-1	\|Very gravelly	\|GC-GM	\|A-1-b, A-2-4	0-10	\|15-35	\|30-50	\| 25-45	\|20-40	\|15-35	\|20-30	5-10		
		\| loam												
	1-6	\|Very cobbly	\|CL, GC, SC	\|A-6	5-15	\|55-75	\|60-80	\| 55-75	\| 45-65	\|40-60	\|30-35	10-15		
		\| loam												
	6-13	\|Very cobbly	\|SC, CL, GC	\|A-6	5-15	\|55-75	\|60-80	\| 55-75	\| 45-65	\|40-60	\|30-35	\|10-15		
		\| loam												
	13-20	\|Unweathered		\|	---	---	---	---	---	---	---	---		
		\| bedrock		\|										
				\|	1									
406:		\|			\|									
Polich----------	0-13	\| Silt loam	\| CL, CL-ML	\|A-4, A-6	0	0	100	\|95-100		\|80-100		\|75-95	\|25-35	5-15
	13-23	\| Loam	\| CL	\|A-6	0	0	100	\|95-100		\|85-95	\|60-90	\|25-35	\|10-15	
	23-40	\| Clay loam	\| CL	\|A-6, A-7-6	0	0	100	\|95-100		\|90-100		\|75-95	\| $35-45$	\|15-20
	40-48	\|Clay loam	\| CL	\|A-6, A-7-6	0	0	100	\|95-100		\|80-95		\|75-90	\|35-45	\|15-20
	48-58	\| Clay loam	\| $\mathrm{CH}, \mathrm{CL}$	\|A-6, A-7-6	0	0	100	\|95-100		\|80-100		\|75-95	\| $35-55$	\|15-30
	58-70	\|Loam, silt loam		\| CL	\|A-6	0	0	100	\|95-100		\|85-95	\| 60-90	\|25-35	\|10-15

Table 14.--Engineering Index Properties--Continued

Map symbol and soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				\|Liquid	  \|limit	$\begin{aligned} & \text { Plas- } \\ & \text { \| ticity } \end{aligned}$\|index	
					\| >10		\| 3-10							
			Unified	AASHTO	\|inches		\|inches		4	10	40	200		
407:	In	\|			Pct	Pct					Pct			
		\|			\|	,								
		\|				1								
Cinnadale------	0-2	\|Very channery	\|GC-GM, GM	\|A-1-b, A-2-4	0	0-10	\|40-60	\|35-55	\|25-45	\|15-30	\|15-25	1-7		
		\| fine sandy	\|GC-GM, GM	\|A-1-3, A-2-4	0				125-45	\|15-30	\|15-25	$1-7$		
		\| loam												
	2-9	\|Very channery	\|GC-GM, GM	\|A-1-b, A-2-4	0-5	\|10-30	\| 40-60	\|35-55	\| $25-45$	\|15-30	15-25	1-7		
		\| fine sandy												
		\| loam, very			1									
		\| gravelly fine		\|	1 \|	\|								
		\| sandy loam												
	9-15	\|Very channery	\|GC-GM, GM	\|A-1-b, A-2-4	0	\|10-30	\| 40-60	\|35-55	\|25-45	\|15-30	\|15-25	1-7		
		\| fine sandy												
		\| loam												
	15-20	\|Unweathered		\|	---	---	---	---	---	---	---	---		
		\| bedrock												
Heckly---------	0-3	\|Extremely	\|GC-GM	\|A-1, $\mathrm{A}-2-4$	\| 0-10	\|10-25	\|20-40	\|15-35	\|10-30	5-25	20-30	5-10		
		channery sandy			1									
		\| loam												
	3-15	\|Channery clay		\|A-7-6	\| 0	\| 0	\|60-80	\|55-75	\| 45-65	\| 40-60	\|45-55	\|25-35		
			\| SC											
	15-38	\|Very channery	\|GC	\|A-2-7, A-7-6	0	0	\| 45-65	\| 40-60	\|30-50	\| 25-45	40-50	15-25		
		\| silty clay			1									
		\| loam												
	38-40	\|Unweathered		\|	---	---	---	---	---	---	---	---		
		\| bedrock												
					1									
408:				\|	1									
Mirabal--------	0-1	\|Slightly		\|	\| ---		-	---	---	---	---	---	-	
		\| decomposed		\|	1 \|									
		\| plant material												
	1-2	\|Extremely	\|GC-GM, GM	\|A-1-a	\|15-30	\|15-30	\|15-35	\|10-30	5-25	5-15	\|15-20	1-4		
		\| gravelly loamy				,								
		\| sand				1								
	2-6	\|Gravelly sandy	\|GC-GM, SC-SM	\|A-2-4	0	5-10	\| 65-85	\|40-50	\|20-40	\|20-40	\|15-20	4-7		
		\| loam												
	6-13	\|Very gravelly	\|GC-GM, SC-SM	\|A-1, $\mathrm{A}-2-4$	\| 0-5	5-15	\| 40-60	\|35-55	\|15-35	5-25	\|15-20	4-7		
		\| sandy loam												
	13-30	\| Extremely	\|GC-GM	\|A-1-a, A-2-4	\|10-25	\|10-25	\|15-35	\|10-30	5-25	5-15	15-20	4-7		
		\| gravelly sandy												
		\| loam												
	30-40	\|Unweathered			---	---	---	---	---	---	---	---		
		\| bedrock												
				\|										
Zuni-----------	0-1				\| ---	\| ---	---	---	---	---	---	---		
		\| decomposed		\|	1									
		\| plant material												
	1-3	\|Gravelly sandy   loam	\|SC-SM, SM	\|A-1-b	0	0-5	\|55-75	\|50-70	\|15-35	\|10-20	\|15-20	1-7		
	3-18	\|Gravelly sandy	\|GC, SC	\|A-2-7, A-7-6	0	0-5	\|60-80	\|55-75	\|40-60	\|30-50	\|50-65	\|30-40		
		\| clay												
	18-27		\|GC, SC	\|A-2-7, A-7-6	0	0	\|60-80	\|55-75	\|40-60	\|30-50	\|50-65	\|30-40		
		\| clay												
	27-40	\|Unweathered		\|	---	---	---	---	---	---	---	---		
		\| bedrock		1										
				\|										

Table 14.--Engineering Index Properties--Continued


Table 15.--Physical Properties of the Soils
(Entries under "Erosion factors--T" apply to the entire profile. Entries under "Wind erodibility group" and "Wind erodibility index" apply only to the surface layer. Absence of an entry indicates that data were not estimated.)

| Map symbol and soil name | Depth | Clay |  | Permea- <br> bility <br> (Ksat) | $\mid$ Available <br> $\mid$ water <br> capacity$\|$ | Linear <br> extensibility | \|Organic <br> \| matter | \|Erosion factors |  |  | \|Wind |erodi|bility |group | \|Wind <br> \|erodi- <br> \|bility <br> \|index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Moist |  |  |  |  |  |  |  |  |  |
|  |  |  | bulk |  |  |  |  |  |  |  |  |  |
|  |  |  | density |  |  |  |  | Kw | Kf | T |  |  |
|  | In | Pct | $\mathrm{g} / \mathrm{cc}$ | In/hr | In/in | Pct | Pct |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8: |  |  |  |  |  |  |  |  |  |  |  | \| |
| Water- | --- | --- | - | --- | - | - | --- | --- | --- | - | --- | --- |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10: |  |  |  |  |  |  |  |  |  |  |  |  |
| Tsosie-------------- | 0-2 | 10-20 | \|1.45-1.55 | 2.00-6.00 | \|0.13-0.15 | 0.0-2.9 | \|0.5-1.0 | . 28 | . 28 | 5 | 3 | 86 |
|  | 2-7 | 10-20 | \|1.45-1.55 | 2.00-6.00 | \|0.13-0.15 | 0.0-2.9 | \|0.0-0.5 | . 28 | . 28 |  |  |  |
|  | 7-13 | 10-25 | \|1.25-1.35 | 0.60-2.00 | \|0.19-0.21 | 0.0-2.9 | \|0.0-0.5 | . 43 | . 43 |  |  | \| |
|  | 13-35 | 20-30 | \|1.35-1.45 | 0.60-2.00 | \|0.14-0.16 | 0.0-2.9 | \|0.0-0.5 | . 32 | . 32 |  |  | \| |
|  | 35-47 | 27-35 | \|1.35-1.45 | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|0.0-0.5 | . 32 | . 32 |  |  |  |
|  | 47-65 | 18-27 | \|1.35-1.45 | 0.60-2.00 | \|0.16-0.18 | 0.0-2.9 | \|0.0-0.5 | . 37 | . 37 |  |  | \| |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Councelor | 0-2 | 10-20 | \|1.45-1.55 | 2.00-6.00 | \|0.13-0.15 | 0.0-2.9 | \|0.2-0.6 | . 28 | . 28 | 5 | 3 | 86 |
|  | 2-20 | 10-20 | \|1.45-1.55 | 2.00-6.00 | \|0.13-0.15 | 0.0-2.9 | \|0.2-0.6 | . 28 | . 28 |  |  | \| |
|  | 20-47 | 5-20 | \|1.45-1.55 | 2.00-6.00 | \|0.11-0.13 | 0.0-2.9 | \|0.2-0.6 | . 24 | . 24 |  |  | \| |
|  | 47-65 | 10-20 | \|1.25-1.35 | 0.60-2.00 | \|0.19-0.21 | 0.0-2.9 | \|0.2-0.6 | . 43 | . 43 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Blancot------------ | 0-3 | 10-20 | \|1.45-1.55 | 2.00-6.00 | \|0.13-0.15 | 0.0-2.9 | \|0.5-0.9 | . 28 | . 28 | 4 | 3 | 86 |
|  | 3-11 | 27-35 | \|1.40-1.50 | 0.20-0.60 | \|0.10-0.11 | 3.0-5.9 | \|0.5-0.9 | . 32 | . 32 |  |  | \| |
|  | 11-16 | 20-35 | \|1.40-1.50 | 0.60-2.00 | \|0.07-0.08 | 0.0-2.9 | \|0.5-0.9 | . 32 | . 32 |  |  |  |
|  | 16-37 | 10-20 | \|1.45-1.55 | 2.00-6.00 | \|0.06-0.07 | 0.0-2.9 | \|0.2-0.6 | . 24 | . 24 |  |  | \| |
|  | 37-65 | 5-15 | \|1.45-1.55 | 6.00-20.00 | \| 0.06-0.08 | 0.0-2.9 | \|0.2-0.6 | . 17 | . 17 |  |  | \| |
|  |  |  |  |  |  |  |  |  |  |  |  | \| |
| 11: |  |  |  |  |  |  |  |  |  |  |  |  |
| Doakum------------- | 0-2 | 5-15 | \|1.45-1.55 | 2.00-6.00 | \|0.13-0.15 | 0.0-2.9 | \|0.8-1.0 | . 28 | . 28 | 5 | 3 | 86 |
|  | 2-8 | 20-30 | \|1.40-1.50 | 0.60-2.00 | \|0.14-0.16 | 0.0-2.9 | \|0.5-1.0 | . 32 | . 32 |  |  |  |
|  | 8-13 | 20-30 | \|1.40-1.50 | 0.60-2.00 | \|0.14-0.16 | 0.0-2.9 | \|0.0-0.5 | . 32 | . 32 |  |  | \| |
|  | 13-21 | 20-30 | \|1.40-1.50 | 0.60-2.00 | \|0.14-0.16 | 0.0-2.9 | \|0.0-0.5 | . 32 | . 32 |  |  | \| |
|  | 21-42 | 20-30 | \|1.40-1.50 | 0.60-2.00 | \|0.14-0.16 | 0.0-2.9 | \|0.0-0.5 | . 32 | . 32 |  |  | \| |
|  | 42-65 | 5-20 | \|1.45-1.55 | 2.00-6.00 | \|0.11-0.13 | 0.0-2.9 | \|0.0-0.3 | . 24 | . 24 |  |  |  |
| Betonnie- |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 0-3 | 5-15 | \|1.55-1.65 | 2.00-6.00 | \|0.11-0.13 | 0.0-2.9 | \|1.0-2.0 | . 24 | . 24 | 5 | 3 | 86 |
|  | 3-11 | 10-20 | \|1.60-1.70 | 2.00-6.00 | \|0.11-0.13 | 0.0-2.9 | \|0.5-1.0 | . 24 | . 24 |  |  | \| |
|  | 11-21 | 10-20 | \|1.55-1.65 | 2.00-6.00 | \|0.11-0.13 | 0.0-2.9 | \|0.0-0.5 | . 24 | . 24 |  |  | \| |
|  | 21-29 | 5-10 | \|1.55-1.65 | 6.00-20.00 | \|0.06-0.08 | 0.0-2.9 | \|0.0-0.5 | . 17 | . 17 |  |  | \| |
|  | 29-45 | 5-10 | \|1.55-1.65 | 6.00-20.00 | \|0.06-0.08 | 0.0-2.9 | \|0.0-0.5 | . 17 | . 17 |  | \| | \| |
|  | 45-52 | 10-20 | \|1.55-1.65 | 2.00-6.00 | \|0.11-0.13 | 0.0-2.9 | \|0.0-0.5 | . 24 | . 24 |  |  |  |
|  | 52-60 | 10-20 | \|1.60-1.70 | 2.00-6.00 | \|0.11-0.13 | 0.0-2.9 | \|0.0-0.5 | . 24 | . 24 |  |  | \| |
|  |  |  |  |  |  |  |  |  |  |  |  | \| |
| 12: |  |  |  |  |  |  |  |  |  |  |  |  |
| Calladito--------- | 0-2 | 2-10 | \|1.45-1.55 | 6.00-20.00 | \|0.09-0.10 | 0.0-2.9 | \|0.5-1.0 | . 20 | . 20 | 5 | 2 | 134 |
|  | 2-26 | 2-10 | \|1.55-1.65 | 6.00-20.00 | \|0.06-0.08 | 0.0-2.9 | \|0.0-0.5 | . 17 | . 17 |  |  | \| |
|  | 26-65 | 2-10 | \|1.45-1.55 | 6.00-20.00 | \|0.09-0.10 | 0.0-2.9 | \|0.0-0.5 | . 20 | . 20 |  |  | \| |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Elias-------------- | 0-1 | 10-20 | \|1.50-1.60 | 2.00-6.00 | \|0.13-0.15 | 0.0-2.9 | \|0.3-0.7 | . 28 | . 28 | 5 | 3 | 86 |
|  | 1-3 | 20-35 | \|1.45-1.55 | 0.20-0.60 | \|0.11-0.12 | 0.0-2.9 | \|0.3-0.7 | . 32 | . 32 |  | \| | \| |
|  | 3-10 | 20-35 | \|1.45-1.55 | 0.20-0.60 | \|0.11-0.12 | 0.0-2.9 | \|0.3-0.7 | . 32 | . 32 |  | \| | \| |
|  | 10-18 | 2-10 | \|1.60-1.70 | 2.00-6.00 | \|0.07-0.08 | 0.0-2.9 | \|0.2-0.5 | . 20 | . 20 |  |  | \| |
|  | 18-33 | 20-35 | \|1.55-1.65 | 0.20-0.60 | \|0.07-0.08 | 0.0-2.9 | \|0.2-0.5 | . 32 | . 32 |  | \| | \| |
|  | 33-65 | 30-40 | \|1.55-1.65 | 0.06-0.20 | \|0.10-0.11 | 3.0-5.9 | \|0.2-0.5 | . 32 | . 32 |  | \| | \| |
|  |  |  |  |  |  |  |  |  |  |  | \| | \| |

Table 15.--Physical Properties of the Soils--Continued

Map symbol and soil name	Depth	Clay		Permeability (Ksat)		Linear extensibility	\|Organic   \| matter	\|Erosion factors			\|Wind   \|erodi-   \|bility   \|group	\|Wind   \|erodi-   \|bility   \|index
			Moist		\|Available							
			bulk		\| water							
			density		capacity			Kw	Kf	T		
	In	Pct	$\mathrm{g} / \mathrm{cc}$	In/hr	In/in	Pct	Pct					
					\|							
13:												
Councelor-----------	0-2	10-20	\|1.50-1.60	2.00-6.00	\|0.13-0.15	0.0-2.9	\|0.2-0.6	. 28	. 28	5	3	86
	2-15	10-20	\|1.50-1.60	2.00-6.00	\|0.13-0.15	0.0-2.9	\|0.2-0.6	. 28	. 28			
	15-19	27-35	\|1.45-1.55	0.20-0.60	\|0.19-0.21	3.0-5.9	\|0.2-0.6	. 37	. 37			
	19-42	5-10	\|1.50-1.60	6.00-20.00	\|0.09-0.10	0.0-2.9	\|0.2-0.6	. 20	. 20			
	42-55	20-30	\|1.45-1.55	0.60-2.00	\|0.16-0.18	0.0-2.9	\|0.2-0.6	. 37	. 37			
	55-65	20-30	\|1.45-1.55	0.60-2.00	\|0.16-0.18	0.0-2.9	\|0.2-0.6	. 37	. 37			
Calladito----------	0-3	2-10	\|1.45-1.55	6.00-20.00	\|0.09-0.10	0.0-2.9	\|0.5-1.0	. 20	. 20	5	2	134
	$3-37$	$2-10$	\|1.55-1.65	$6.00-20.00$	\|0.06-0.08	$0.0-2.9$	$10.5-0.5$	. 17	. 17			
	37-65	2-10	\|1.45-1.55	6.00-20.00	\|0.09-0.10	0.0-2.9	\|0.5-0.5	. 20	. 20			
14:												
Councelor----------	0-4	5-10	\|1.50-1.60	2.00-6.00	\|0.13-0.15	0.0-2.9	\|0.2-0.6	. 28	. 28	5	3	86
	4-16	5-20	\|1.50-1.60	2.00-6.00	\|0.13-0.15	0.0-2.9	\|0.2-0.6	. 28	. 28			
	16-65	5-20	\|1.50-1.60	2.00-6.00	\|0.13-0.15	0.0-2.9	\|0.2-0.6	. 28	. 28			
Eslendo------------	0-2	18-27	\|1.20-1.30	0.60-2.00	\|0.16-0.18	0.0-2.9	\|0.2-0.6	. 37	. 37	2	5	56
	$2-11$	27-35	\|1.40-1.50	0.20-0.60	\|0.19-0.21	3.0-5.9	\|0.2-0.6	. 37	. 37			
	11-20	---	--	0.00-0.20	---	--	---	---	---			
					\|							
Calladito----------	0-3	2-10	\|1.45-1.55	6.00-20.00	\|0.09-0.10	0.0-2.9	\|0.5-1.0	. 20	. 20	5	2	134
	$3-41$	$2-10$	\|1.55-1.65	$6.00-20.00$	\|0.06-0.08	0.0-2.9	\|0.5-0.5	. 17	. 17			
	41-65	2-10	\|1.45-1.55	6.00-20.00	\|0.09-0.10	0.0-2.9	\|0.5-0.5	. 20	. 20			
16:												
Starlake------------	0-3	40-50	\|1.35-1.45	0.06-0.20	\|0.11-0.12	6.0-8.9	\|0.6-1.0	. 20	. 20	5	4	86
	3-12	40-60	\|1.30-1.40	0.01-0.06	\|0.11-0.12	6.0-8.9	\|0.6-1.0	. 20	. 20			
	12-20	30-40	\|1.30-1.40	0.20-0.60	\|0.10-0.11	3.0-5.9	\|0.6-1.0	. 32	. 32			
	20-54	40-60	\|1.30-1.40	0.06-0.06	\|0.07-0.08	6.0-8.9	\|0.6-1.0	. 20	. 20			
	54-65	30-40	\|1.30-1.40	0.20-0.60	\|0.07-0.08	3.0-5.9	\|0.6-1.0	. 32	. 32			
22:												
Querencia----------	0-2	10-20	\|1.45-1.55	2.00-6.00	\|0.13-0.15	0.0-2.9	\|1.0-2.0	. 28	. 28	5	3	86
	2-9	28-35	\|1.40-1.50	0.20-0.60	\|0.19-0.21	3.0-5.9	\|0.5-1.0	. 32	. 32			
	9-15	28-35	\|1.40-1.50	0.20-0.60	\|0.19-0.21	3.0-5.9	\|0.5-1.0	. 32	. 32			
	15-65	28-35	\|1.40-1.50	0.20-0.60	\|0.19-0.21	3.0-5.9	\|0.5-1.0	. 32	. 32			
Lavodnas-----------	0-3	15-27	\|1.25-1.35	0.60-2.00	\|0.12-0.14	0.0-2.9	\|0.5-0.9	. 37	. 37	2	4 L	86
	3-9	27-35	\|1.25-1.35	0.20-0.60	\|0.14-0.16	3.0-5.9	\|0.5-0.9	. 32	. 32			
	$9-13$	40-50	\|1.45-1.55	0.06-0.06	\|0.11-0.12	6.0-8.9	\|0.5-0.9	. 20	. 20			
	13-20	---	---	0.00-0.20	\| ---	---	\| ---	_-_	---			
					-		兂					
30:												
Orlie---------------	0-2	10-20	\|1.40-1.50	2.00-6.00	\|0.13-0.15	0.0-2.9	\|0.5-1.0	. 28	. 28	5	3	86
	2-5	15-27	\|1.15-1.25	2.00-6.00	\|0.16-0.18	0.0-2.9	\|0.2-1.0	. 37	. 37			
	5-15	27-40	\|1.35-1.45	0.20-0.60	\|0.19-0.21	3.0-5.9	\|0.2-1.0	. 32	. 32			
	15-36	20-35	\|1.45-1.55	0.60-2.00	\|0.14-0.16	3.0-5.9	\|0.2-1.0	. 32	. 32			
	36-50	27-40	\|1.35-1.45	0.20-0.60	\|0.19-0.21	3.0-5.9	\|0.2-1.0	. 37	. 37			
	50-62	27-40	\|1.45-1.55	0.20-0.60	\|0.19-0.21	3.0-5.9	\|0.2-1.0	. 32	. 32			
Tinian-------------	0-3	10-20	\|1.30-1.40	0.60-2.00	\|0.19-0.21	0.0-2.9	\|0.5-1.0	. 55	. 55	2	3	86
	3-8	27-35	\|1.30-1.40	0.20-0.60	\|0.19-0.21	3.0-5.9	\|0.5-1.0	. 32	. 32			
	8-19	40-50	\|1.25-1.35	0.20-0.60	\|0.19-0.21	3.0-5.9	\|0.5-1.0	. 20	. 20			
	19-24	27-35	\|1.30-1.40	0.20-0.60	\|0.19-0.21	3.0-5.9	\|0.5-1.0	. 32	. 32			
	24-40	---	---	0.00-0.20	\| ---	---	---	---	---			

Table 15.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Clay | \| | Permeability (Ksat) |  | Linear extensibility | Organic matter | \| Erosion factors |  |  | \|Wind |erodi|bility |group | \|Wind |erodi|bility <br> \|index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Moist |  | \|Available |  |  |  |  |  |  |  |
|  |  |  | bulk |  | \| water |  |  |  |  |  |  |  |
|  |  |  | density |  | capacity |  |  | Kw | Kf | T |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | In | Pct | g/cc | In/hr | In/in | Pct | Pct |  |  |  |  |  |
|  |  |  | \| |  |  |  |  |  |  |  |  |  |
| 40: |  |  |  |  |  |  |  |  |  |  |  |  |
| Nuffel------------- | 0-2 | 10-27 | \|1.20-1.30 | 0.60-2.00 | \|0.19-0.21 | 0.0-2.9 | \|0.5-1.0 | . 43 | . 43 | 5 | 4 L | 86 |
|  | $2-12$ | 27-35 | \|1.35-1.45 | 0.20-0.60 | \|0.19-0.21 | $3.0-5.9$ | \|0.5-1.0 | . 32 | . 32 |  |  |  |
|  | 12-18 | 10-27 | \|1.20-1.30 | 0.60-2.00 | \|0.19-0.21 | 0.0-2.9 | \|0.5-1.0 | . 43 | . 43 |  |  |  |
|  | 18-26 | 27-35 | \|1.35-1.45 | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|0.5-1.0 | . 32 | . 32 |  |  |  |
|  | 26-65 | 10-27 | \|1.20-1.30 | 0.60-2.00 | \|0.19-0.21 | 0.0-2.9 | \|0.5-1.0 | . 43 | . 43 |  |  |  |
|  |  |  | \|1.20-1.30 |  |  |  |  |  |  |  |  |  |
| 42: |  |  |  |  |  |  |  |  |  |  |  |  |
| Suwanee------------ | 0-4 | 30-40 | \|1.20-1.30 | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|1.0-2.0 | . 32 | . 32 | 5 | 4 L | 86 |
|  | 4-34 | 30-35 | \|1.40-1.50 | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|0.2-1.0 | . 32 | . 32 |  |  |  |
|  | 34-48 | 18-25 | \|1.20-1.30 | 0.60-2.00 | \|0.19-0.21 | 0.0-2.9 | \|0.2-1.0 | . 43 | . 43 |  |  |  |
|  | 48-65 | 30-35 | \|1.40-1.50 | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|0.2-1.0 | . 32 | . 32 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 44: |  |  |  |  |  |  |  |  |  |  |  |  |
| Suwanee------------ | 0-10 | 40-55 | \|1.30-1.40 | 0.06-0.20 | \|0.14-0.16 | 6.0-8.9 | \|0.5-1.0 | . 20 | . 20 | 5 | 4 | 86 |
|  | 10-17 | 40-55 | \|1.35-1.45 | 0.06-0.20 | \|0.14-0.16 | 6.0-8.9 | \|0.2-1.0 | . 20 | . 20 |  |  |  |
|  | 17-30 | 30-40 | \|1.40-1.50 | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|0.2-1.0 | . 32 | . 32 |  |  |  |
|  | 30-47 | 25-35 | \|1.35-1.45 | 0.60-2.00 | \|0.14-0.16 | 3.0-5.9 | \|0.2-1.0 | . 32 | . 32 |  |  |  |
|  | 47-65 | 10-20 | \|1.45-1.55 | 2.00-6.00 | \|0.11-0.13 | 0.0-2.9 | \|0.2-1.0 | . 24 | . 24 |  |  |  |
|  |  |  | 11. |  | \| |  |  |  |  |  |  |  |
| 45: |  |  |  |  |  |  |  |  |  |  |  |  |
| Nutreeah----------- | 0-10 | 30-40 | \|1.25-1.35 | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|2.0-3.0 | . 32 | . 32 | 5 | 4 | 86 |
|  | 10-16 | 30-40 | \|1.25-1.35 | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|1.0-2.0 | . 32 | . 32 |  |  |  |
|  | 16-24 | 35-40 | \|1.35-1.45 | 0.06-0.20 | \|0.14-0.16 | 3.0-5.9 | \|0.2-1.0 | . 20 | . 20 |  |  |  |
|  | 24-40 | 40-60 | \|1.30-1.40 | 0.01-0.06 | \|0.14-0.16 | 6.0-8.9 | \|0.2-1.0 | . 20 | . 20 |  |  |  |
|  | 40-65 | 40-60 | \|1.30-1.40 | 0.01-0.06 | \|0.14-0.16 | 6.0-8.9 | \|0.2-1.0 | . 20 | . 20 |  |  |  |
|  |  |  | \| |  |  |  |  |  |  |  |  |  |
| 47 : |  |  |  |  |  |  |  |  |  |  |  |  |
| Conchovar---------- | 0-3 | 35-40 | \|1.30-1.40 | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|1.0-2.0 | . 32 | . 32 | 5 | 4 L | 86 |
|  | 3-9 | 40-60 | \|1.30-1.40 | 0.01-0.06 | \|0.14-0.16 | 6.0-8.9 | \|1.0-2.0 | . 20 | . 20 |  |  |  |
|  | 9-26 | 35-55 | \|1.30-1.40 | 0.01-0.06 | \|0.10-0.12 | 6.0-8.9 | \|0.2-1.0 | . 20 | . 20 |  |  |  |
|  | 26-36 | 40-60 | \|1.30-1.40 | 0.01-0.06 | \|0.10-0.12 | 6.0-8.9 | \|0.2-1.0 | . 20 | . 20 |  |  |  |
|  | 36-54 | 40-60 | \|1.30-1.40 | 0.01-0.06 | \|0.14-0.16 | 6.0-8.9 | \|0.2-1.0 | . 20 | . 20 |  |  |  |
|  | 54-65 | 40-55 | \|1.30-1.40 | 0.06-0.20 | \|0.14-0.16 | 6.0-8.9 | \|0.2-1.0 | . 32 | . 32 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 49 : |  |  |  |  |  |  |  |  |  |  |  |  |
| Concho------------- | 0-4 | 30-40 | \|1.25-1.35 | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|2.0-3.0 | . 32 | . 32 | 5 | 4 | 86 |
|  | 4-28 | 30-40 | \|1.40-1.50 | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|1.0-2.0 | . 32 | . 32 |  |  |  |
|  | 28-38 | 40-55 | \|1.30-1.40 | 0.06-0.20 | \|0.14-0.16 | 6.0-8.9 | \|0.5-1.0 | . 20 | . 24 |  |  |  |
|  | 38-65 | 30-40 | \|1.45-1.55 | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|0.5-1.0 | . 32 | . 32 |  |  |  |
|  |  |  | \| |  |  |  |  |  |  |  |  |  |
| 51: |  |  |  |  |  |  |  |  |  |  |  |  |
| Kwakina------------ | 0-7 | 5-12 | \|1.35-1.45 | 6.00-20.00 | \|0.09-0.10 | 0.0-2.9 | \|0.5-1.0 | . 20 | . 20 | 4 | 2 | 134 |
|  | 7-11 | 5-12 | \|1.50-1.60 | $6.00-20.00$ | \|0.09-0.10 | 0.0-2.9 | \|0.5-1.0 | . 20 | . 20 |  |  |  |
|  | 11-23 | 2-10 | \|1.35-1.45 | 6.00-20.00 | \|0.05-0.07 | 0.0-2.9 | \|0.5-1.0 | . 17 | . 17 |  |  |  |
|  | 23-33 | 10-18 | \|1.35-1.45 | 2.00-6.00 | \|0.11-0.13 | 0.0-2.9 | \|0.5-1.0 | . 24 | . 24 |  |  |  |
|  | 33-65 | 5-12 | \|1.35-1.45 | 6.00-20.00 | \|0.09-0.10 | 0.0-2.9 | \|0.5-1.0 | . 20 | . 20 |  |  |  |
|  |  |  | \| |  |  |  |  |  |  |  |  |  |
| 52: |  |  |  |  |  |  |  |  |  |  |  |  |
| Zuniven------------ | 0-12 | 5-10 | \|1.15-1.25 | 6.00-20.00 | \|0.09-0.10 | 0.0-2.9 | \|0.5-2.0 | . 20 | . 20 | 5 | 2 | 134 |
|  | 12-42 | 20-35 | \|1.20-1.30 | 0.20-0.60 | \|0.19-0.21 | 0.0-2.9 | \|0.5-2.0 | . 43 | . 43 |  |  |  |
|  | 42-65 | 5-10 | \|1.15-1.25 | 6.00-20.00 | \|0.09-0.10 | 0.0-2.9 | \|0.5-2.0 | . 20 | . 20 |  |  |  |
|  |  |  | \| |  |  |  |  |  |  |  |  |  |

Table 15.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Clay | \| | Permeability (Ksat) |  | Linear extensibility | \|Organic <br> \| matter | \| Erosion factors |  |  | \|Wind |erodi|bility |group | \|Wind |erodi|bility |index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Moist |  | \|Available |  |  |  |  |  |  |  |
|  |  |  | bulk |  | \| water |  |  |  |  |  |  |  |
|  |  |  | density |  | \| capacity |  |  | Kw | Kf | T |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | In | Pct | $\mathrm{g} / \mathrm{CC}$ | In/hr | In/in | Pct | Pct |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 53 : |  |  |  |  |  |  |  |  |  |  |  |  |
| Hawaikuh----------- | 0-10 | 30-40 | \|1.40-1.50 | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|0.5-1.0 | . 32 | . 32 | 5 | 4L | 86 |
|  | $10-24$ | 35-45 | \|1.45-1.55 | 0.20-0.60 | \| 0.15-0.17 | 6.0-8.9 | \| 0.2-1.0 | . 32 | . 32 |  |  |  |
|  | 24-32 | 30-40 | \|1.45-1.55 | 0.20-0.60 | \|0.19-0.21 | 6.0-8.9 | \|0.2-1.0 | . 32 | . 32 |  |  |  |
|  | 32-42 | 30-40 | \|1.45-1.55 | 0.20-0.60 | \|0.19-0.21 | 3.0-8.9 | \|0.2-1.0 | . 32 | . 32 |  |  |  |
|  | 42-65 | 40-50 | \|1.50-1.60 | 0.06-0.20 | \| $0.14-0.16$ | 6.0-8.9 | \|0.2-1.0 | . 20 | . 20 |  |  |  |
|  |  |  |  |  | 10.14-0.16 |  | 10.2-1.0 |  |  |  |  |  |
| 54: |  |  |  |  |  |  |  |  |  |  |  |  |
| Venadito----------- | 0-5 | 55-70 | \|1.25-1.35 | 0.06-0.20 | \| 0.14-0.16 | 6.0-8.9 | \|1.0-3.0 | . 20 | . 20 | 5 | 4 | 86 |
|  | 5-29 | 60-70 | \|1.20-1.30 | 0.00-0.06 | \| 0.10-0.12 | 6.0-8.9 | \|0.5-1.0 | . 20 | . 20 |  |  |  |
|  | $29-40$ | $40-55$ | \|1.25-1.35 | 0.20-0.60 | \| 0.11-0.13 | 6.0-8.9 | \|0.5-1.0 | . 32 | . 32 |  |  |  |
|  | 40-65 | 60-70 | \|1.20-1.30 | 0.00-0.06 | \| 0.07-0.08 | 6.0-8.9 | \|0.5-1.0 | . 20 | . 20 |  |  |  |
|  |  |  |  |  | - |  |  |  |  |  |  |  |
| 55: |  |  |  |  |  |  |  |  |  |  |  |  |
| Sparham------------ | 0-2 | 35-40 | \|1.35-1.45 | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|1.0-2.0 | . 32 | . 32 | 5 | 4 | 86 |
|  | 2-14 | 40-60 | \|1.30-1.40 | 0.06-0.20 | \|0.14-0.16 | 6.0-8.9 | \|0.5-1.0 | . 20 | . 20 |  |  |  |
|  | 14-18 | 25-35 | \|1.40-1.50 | 0.20-2.00 | \| $0.14-0.21$ | 3.0-5.9 | \|0.5-1.0 | . 32 | . 32 |  |  |  |
|  | 18-27 | 40-60 | \|1.30-1.40 | 0.06-0.20 | \| 0.14-0.17 | 6.0-8.9 | \|0.5-1.0 | . 20 | . 20 |  |  |  |
|  | 27-31 | 25-35 | \|1.40-1.50 | 0.60-2.00 | \| 0.14-0.16 | 3.0-5.9 | \|0.5-1.0 | . 32 | . 32 |  |  |  |
|  | 31-65 | 40-60 | \|1.30-1.40 | 0.01-0.06 | \| 0.14-0.16 | 6.0-8.9 | \|0.5-1.0 | . 20 | . 20 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 60: |  |  |  |  |  |  |  |  |  |  |  |  |
| Redpen------------- | 0-4 | 20-25 | \|1.30-1.40 | 0.60-2.00 | \| 0.14-0.16 | 0.0-2.9 | \|1.0-2.0 | . 32 | . 32 | 5 | 5 | 56 |
|  | $4-24$ | 27-35 | \|1.30-1.40 | 0.60-2.00 | \| 0.14-0.16 | 3.0-5.9 | \|0.5-1.0 | . 32 | . 32 |  |  |  |
|  | 24-52 | 27-35 | \|1.30-1.40 | 0.60-2.00 | \| 0.14-0.16 | 3.0-5.9 | \|0.5-1.0 | . 32 | . 32 |  |  |  |
|  | 52-65 | 27-35 | \|1.30-1.40 | 0.20-0.60 | \| $0.19-0.21$ | 3.0-5.9 | \|0.5-1.0 | . 32 | . 32 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 100: |  |  |  |  | \| |  |  |  |  |  |  |  |
| Norkiki------------ | 0-3 | 5-10 | \|1.60-1.70 | 6.00-20.00 | \|0.06-0.08 | 0.0-2.9 | \|0.2-0.5 | . 17 | . 17 | 2 | 2 | 134 |
|  | 3-13 | 20-35 | \|1.25-1.35 | 0.60-2.00 | \| 0.14-0.16 | 3.0-5.9 | \|0.2-0.5 | . 32 | . 32 |  |  |  |
|  | 13-19 | 10-20 | \|1.50-1.60 | 2.00-6.00 | \| $0.11-0.13$ | 0.0-2.9 | \|0.2-0.5 | . 24 | . 24 |  |  |  |
|  | 19-28 | 20-35 | \|1.25-1.35 | 0.60-2.00 | \| $0.14-0.16$ | 3.0-5.9 | \|0.2-0.5 | . 32 | . 32 |  |  |  |
|  | 28-40 | -- |  | 0.00-0.20 | _-_ | - | \| --- | --- | --- |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Kimnoli------------ | 0-2 | 10-15 | \|1.45-1.55 | 2.00-6.00 | \|0.13-0.15 | 0.0-2.9 | \|0.2-0.6 | . 28 | . 28 | 1 | 3 | 86 |
|  | 2-7 | 15-20 | \|1.45-1.55 | 2.00-6.00 | \|0.11-0.13 | 0.0-2.9 | \|0.0-0.5 | . 24 | . 24 |  |  |  |
|  | 7-14 | 20-30 | \|1.50-1.60 | 0.60-2.00 | \|0.13-0.15 | 0.0-2.9 | \|0.0-0.5 | . 32 | . 37 |  |  |  |
|  | 14-20 | -- |  | 0.00-0.20 | --- | - | \| --- | --- | --- |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 110: |  |  |  |  |  |  |  |  |  |  |  |  |
| Benally------------ | 0-2 | 10-20 | \|1.45-1.55 | 2.00-6.00 | \| 0.12-0.14 | 0.0-2.9 | \|0.3-0.8 | . 28 | . 28 | 5 | 3 | 86 |
|  | 2-9 | 20-35 | \|1.45-1.55 | 0.20-0.60 | \|0.13-0.15 | 3.0-5.9 | \|0.2-0.5 | . 32 | . 32 |  |  |  |
|  | 9-25 | 20-35 | \|1.50-1.60 | 0.20-0.60 | \| 0.13-0.15 | 3.0-5.9 | \|0.2-0.5 | . 32 | . 32 |  | \| |  |
|  | 25-65 | 20-35 | \|1.50-1.60 | 0.60-2.00 | \| $0.13-0.15$ | 3.0-5.9 | \|0.0-0.2 | . 32 | . 32 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Fruitland---------- | 0-3 | 5-10 | \|1.40-1.55 | 6.00-20.00 | \|0.09-0.11 | 0.0-2.9 | \|0.5-1.0 | . 20 | . 20 | 5 | 2 | 134 |
|  | 3-10 | 5-10 | \|1.40-1.55 | 6.00-20.00 | \|0.09-0.11 | 0.0-2.9 | \|0.0-0.5 | . 20 | . 20 |  |  |  |
|  | 10-19 | 5-10 | \|1.40-1.55 | 6.00-20.00 | \| 0.09-0.11 | 0.0-2.9 | \|0.0-0.5 | . 20 | . 20 |  |  |  |
|  | 19-29 | 5-10 | \|1.40-1.55 | 6.00-20.00 | \| 0.09-0.11 | 0.0-2.9 | \|0.0-0.5 | . 20 | . 20 |  |  |  |
|  | 29-65 | 10-15 | \|1.35-1.50 | 2.00-6.00 | \| 0.11-0.13 | 0.0-2.9 | \|0.0-0.5 | . 28 | . 28 |  | \| |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

Table 15.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Clay |  | Permeability (Ksat) | $\begin{aligned} & \text { \|Available } \\ & \mid \text { water } \\ & \text { capacity } \end{aligned}$ | Linear extensibility | \|Organic <br> \| matter | \|Erosion factors |  |  | \|Wind |erodi|bility |group | \|Wind |erodi|bility |index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Moist |  |  |  |  |  |  |  |  |  |
|  |  |  | bulk |  |  |  |  |  |  |  |  |  |
|  |  |  | density |  |  |  |  | Kw | Kf | T |  |  |
|  | In | Pct | $\mathrm{g} / \mathrm{cc}$ | $\mathrm{In} / \mathrm{hr}$ | In/in | Pct | Pct |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 111: |  |  |  |  |  |  |  |  |  |  |  |  |
| Yelives------------ | 0-2 | 10-20 | \|1.45-1.55 | 2.00-6.00 | \|0.13-0.15 | 0.0-2.9 | \|0.5-1.0 | . 28 | . 28 | 5 | 3 | 86 |
|  | 2-12 | 10-20 | \|1.45-1.55 | 2.00-6.00 | \|0.13-0.15 | 0.0-2.9 | \|0.5-1.0 | . 28 | . 28 |  |  |  |
|  | 12-30 | 10-25 | \|1.35-1.45 | 0.60-2.00 | \|0.16-0.18 | 0.0-2.9 | \|0.0-0.5 | . 37 | . 37 |  |  |  |
|  | 30-41 | 2-10 | \|1.55-1.65 | 6.00-20.00 | \|0.09-0.11 | 0.0-2.9 | \|0.0-0.5 | . 20 | . 20 |  | I |  |
|  | 41-56 | 2-10 | \|1.55-1.65 | 6.00-20.00 | \|0.09-0.11 | 0.0-2.9 | \|0.0-0.5 | . 20 | . 20 |  | \| |  |
|  | 56-80 | 2-10 | \|1.55-1.65 | 6.00-20.00 | \|0.09-0.11 | 0.0-2.9 | \|0.0-0.5 | . 20 | . 20 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 115: |  |  |  |  |  |  |  |  |  |  |  |  |
| Razito------------- | 0-4 | 5-10 | \|1.45-1.65 | 6.00-20.00 | \| 0.06-0.08 | 0.0-2.9 | \|0.1-0.5 | . 17 | . 17 | 5 | 2 | 134 |
|  | 4-34 | 5-10 | \|1.45-1.65 | 6.00-20.00 | \|0.06-0.08 | 0.0-2.9 | \|0.1-0.5 | . 17 | . 17 |  |  |  |
|  | 34-65 | 5-10 | \|1.45-1.65 | 6.00-20.00 | \|0.06-0.08 | 0.0-2.9 | \|0.1-0.5 | . 17 | . 17 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Shiprock- | 0-3 | 5-15 | \|1.45-1.55 | 2.00-6.00 | \| 0.13-0.15 | 0.0-2.9 | \|0.5-0.6 | . 28 | . 28 | 5 | 3 | 86 |
|  | 3-15 | 10-20 | \|1.50-1.60 | 2.00-6.00 | \|0.13-0.15 | 0.0-2.9 | \|0.1-0.2 | . 28 | . 28 |  |  |  |
|  | 15-37 | 10-20 | \|1.50-1.60 | 2.00-6.00 | \|0.13-0.15 | 0.0-2.9 | \|0.1-0.2 | . 28 | . 28 |  |  |  |
|  | 37-60 | 5-15 | \|1.50-1.60 | 2.00-20.00 | \|0.13-0.15 | 0.0-2.9 | \|0.1-0.2 | . 28 | . 28 |  |  |  |
| 116: |  |  |  |  |  |  |  |  |  |  |  |  |
| Fajada------------- | 0-2 | 20-30 | \|1.50-1.55 | 0.60-2.00 | \| 0.11-0.12 | 0.0-2.9 | \|0.5-1.0 | . 15 | . 32 | 3 | 6 | 48 |
|  | 2-6 | 30-40 | \|1.50-1.60 | 0.06-0.20 | \|0.07-0.10 | 3.0-5.9 | \|0.2-0.8 | . 32 | . 32 |  |  |  |
|  | 6-12 | 20-35 | \|1.65-1.75 | 0.20-0.60 | \|0.06-0.08 | 3.0-5.9 | \|0.2-0.8 | . 32 | . 32 |  |  |  |
|  | 12-16 | 27-35 | \|1.75-1.85 | 0.20-0.60 | \|0.06-0.08 | 3.0-5.9 | \|0.2-0.8 | . 32 | . 32 |  |  |  |
|  | 16-28 | 27-35 | \|1.65-1.75 | 0.20-0.60 | \|0.06-0.10 | 3.0-5.9 | \|0.1-0.5 | . 32 | . 32 |  |  |  |
|  | 28-40 | --- | -- | 0.00-0.20 | --- | --- | --- | --- | --- |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Huerfano- | 0-2 | 15-27 | \|1.25-1.35 | 0.20-0.60 | \|0.10-0.12 | 0.0-2.9 | \|0.2-0.6 | . 28 | . 37 | 2 | 5 | 56 |
|  | 2-17 | 27-35 | \|1.55-1.65 | 0.06-0.20 | \|0.08-0.10 | 3.0-5.9 | \|0.2-0.6 | . 28 | . 32 |  |  |  |
|  | 17-20 | - | --- | 0.00-0.20 | --- | --- | \| --- | --- | --- |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Benally------------ | 0-2 | 20-30 | \|1.25-1.35 | 0.20-0.60 | \| 0.10-0.12 | 0.0-2.9 | \|0.5-0.8 | . 32 | . 32 | 4 | 5 | 56 |
|  | 2-18 | 20-35 | \|1.50-1.60 | 0.20-0.60 | \|0.07-0.08 | 3.0-5.9 | \|0.2-0.5 | . 32 | . 32 |  |  |  |
|  | 18-45 | 20-35 | \|1.50-1.60 | 0.20-0.60 | \|0.07-0.08 | 3.0-5.9 | \|0.2-0.5 | . 32 | . 32 |  |  |  |
|  | 45-55 | --- | --- | 0.00-0.20 | --- | --- | --- | --- | --- |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 118: |  |  |  |  |  |  |  |  |  |  |  |  |
| Farb-------------- | 0-2 | 5-20 | \|1.45-1.55 | 2.00-6.00 | \|0.11-0.13 | 0.0-2.9 | \|0.2-0.6 | . 24 | . 24 | 1 | 3 | 86 |
|  | 2-9 | 5-20 | \|1.45-1.55 | 2.00-6.00 | \|0.11-0.13 | 0.0-2.9 | \|0.2-0.6 | . 24 | . 24 |  |  |  |
|  | 9-20 | --- | \| --- | 0.20-2.00 | --- | --- | --- | -- | --- |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Chipeta------------ | 0-2 | 40-47 | \|1.15-1.25 | 0.06-0.20 | \|0.11-0.16 | 3.0-5.9 | \|0.5-2.0 | . 43 | . 43 | 2 | 4 | 86 |
|  | 2-12 | 35-45 | \|1.15-1.25 | 0.06-0.20 | \|0.11-0.16 | 3.0-5.9 | \|0.0-0.5 | . 43 | . 43 |  |  |  |
|  | 12-20 | --- | --- | 0.00-0.06 | --- | -- | --- | -- | --- |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Rock outcrop------120 : | 0 | --- | - | 0.00-0.20 | \| --- | --- | --- | --- | --- | - | --- | --- |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 120: |  |  |  |  |  |  |  |  |  |  |  |
| Doak--------------- | 0-2 | 10-15 | \|1.50-1.60 | 2.00-6.00 | \|0.13-0.15 | 0.0-2.9 | \|0.2-0.6 | . 28 | . 28 | 5 | 3 | 86 |
|  | 2-8 | 20-30 | \|1.45-1.55 | 0.60-2.00 | \|0.14-0.16 | 3.0-5.9 | \|0.2-0.6 | . 32 | . 32 |  | \| |  |
|  | 8-12 | 20-30 | \|1.45-1.55 | 0.60-2.00 | \|0.14-0.16 | 3.0-5.9 | \|0.2-0.6 | . 32 | . 32 |  | \| |  |
|  | 12-40 | 20-30 | \|1.45-1.55 | 0.60-2.00 | \|0.14-0.16 | 3.0-5.9 | \|0.2-0.6 | . 32 | . 32 |  | \| |  |
|  | 40-65 | 10-20 | \|1.50-1.60 | 2.00-6.00 | \|0.11-0.13 | 0.0-2.9 | \|0.2-0.6 | . 24 | . 24 |  | \| |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Shiprock- | 0-4 | 5-10 | \|1.45-1.55 | 6.00-20.00 | \|0.09-0.10 | 0.0-2.9 | \|0.2-0.3 | . 20 | . 20 | 5 | 2 | 134 |
|  | 4-18 | 10-20 | \|1.50-1.60 | 2.00-6.00 | \|0.13-0.15 | 0.0-2.9 | \|0.1-0.2 | . 28 | . 28 |  | \| |  |
|  | 18-37 | 10-20 | \|1.50-1.60 | 2.00-6.00 | \|0.13-0.15 | 0.0-2.9 | \|0.1-0.2 | . 28 | . 28 |  | \| |  |
|  | 37-65 | 5-15 | \|1.50-1.60 | 2.00-20.00 | \|0.13-0.15 | 0.0-2.9 | \|0.1-0.2 | . 28 | . 28 |  | \| |  |
|  |  |  |  |  |  |  |  |  |  |  | \| |  |

Table 15.--Physical Properties of the Soils--Continued


Table 15.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Clay | \| | Permeability (Ksat) |  | Linear extensibility |  | \| Erosion factors |  |  | \|Wind |erodi|bility |group | \|Wind |erodi|bility |index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Moist |  | \|Available |  | \|Organic <br> matter |  |  |  |  |  |
|  |  |  | bulk |  | water |  |  |  |  |  |  |  |
|  |  |  | density |  | capacity |  |  | Kw | Kf | T |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | In | Pct | $\mathrm{g} / \mathrm{cc}$ | In/hr | In/in | Pct | Pct |  |  |  |  |  |
|  |  |  | \| |  |  |  |  |  |  |  |  |  |
| 205: |  |  |  |  |  |  |  |  |  |  |  |  |
| Penistaja---------- | 0-3 | 10-20 | \|1.40-1.50 | 2.00-6.00 | \| 0.11-0.13 | 0.0-2.9 | \|1.0-2.0 | . 24 | . 24 | 5 | 3 | 86 |
|  | 3-19 | 20-30 | \|1.45-1.55 | 0.60-2.00 | \| $0.14-0.16$ | 0.0-2.9 | \|0.5-1.0 | . 32 | . 32 |  |  |  |
|  | 19-65 | 15-30 | \|1.45-1.55 | 0.60-6.00 | \| 0.11-0.16 | 0.0-2.9 | \|0.5-1.0 | . 32 | . 32 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Tintero------------ | 0-4 | 5-15 | \|1.45-1.55 | 2.00-6.00 | \| 0.13-0.15 | 0.0-2.9 | \|0.5-1.0 | . 28 | . 28 | 5 | 3 | 86 |
|  | 4-16 | 10-18 | \|1.45-1.55 | 2.00-6.00 | \| 0.13-0.15 | 0.0-2.9 | \|0.5-1.0 | . 28 | . 28 |  |  |  |
|  | 16-48 | 10-18 | \|1.45-1.55 | 2.00-6.00 | \| 0.13-0.15 | 0.0-2.9 | \|0.5-1.0 | . 28 | . 28 |  |  |  |
|  | 48-65 | 2-10 | \|1.45-1.55 | 6.00-20.00 | \| 0.09-0.10 | 0.0-2.9 | \|0.5-1.0 | . 20 | . 20 |  |  |  |
|  |  |  | 1. |  |  |  |  |  |  |  |  |  |
| 208: |  |  |  |  |  |  |  |  |  |  |  |  |
| Marianolake-------- | 0-2 | 10-20 | \|1.45-1.55 | 2.00-6.00 | \| 0.13-0.15 | 0.0-2.9 | \|0.5-1.0 | . 28 | . 28 | 5 | 3 | 86 |
|  | 2-8 | 18-30 | \|1.35-1.45 | 0.60-2.00 | \| 0.16-0.18 | 3.0-5.9 | \|0.0-0.5 | . 37 | . 37 |  |  |  |
|  | 8-14 | 27-35 | \|1.35-1.45 | 0.20-0.60 | \| 0.19-0.21 | 3.0-5.9 | \|0.0-0.5 | . 32 | . 32 |  |  |  |
|  | 14-24 | 15-25 | \|1.45-1.55 | 2.00-6.00 | \| 0.13-0.15 | 3.0-5.9 | \|0.0-0.5 | . 28 | . 28 |  |  |  |
|  | 24-39 | 15-25 | \|1.45-1.55 | 2.00-6.00 | \| 0.13-0.15 | 3.0-5.9 | \|0.0-0.5 | . 28 | . 28 |  |  |  |
|  | 39-70 | 5-15 | \|1.55-1.65 | 6.00-20.00 | \| 0.09-0.10 | 0.0-2.9 | \|0.0-0.5 | . 20 | . 20 |  |  |  |
|  |  |  | \| |  |  |  |  |  |  |  |  |  |
| 210: |  |  |  |  |  |  |  |  |  |  |  |  |
| Marianolake-------- | 0-5 | 10-20 | \|1.35-1.45 | 2.00-6.00 | \| 0.13-0.15 | 0.0-2.9 | \|1.0-2.0 | . 28 | . 28 | 5 | 3 | 86 |
|  | 5-11 | 20-35 | \|1.50-1.60 | 0.60-2.00 | \| 0.14-0.16 | 3.0-5.9 | \|0.5-1.0 | . 32 | . 32 |  |  |  |
|  | 11-47 | 27-35 | \|1.55-1.65 | 0.20-0.60 | \| 0.19-0.21 | 3.0-5.9 | \|0.5-1.0 | . 32 | . 32 |  |  |  |
|  | 47-65 | 10-20 | \|1.60-1.70 | 2.00-6.00 | \| 0.13-0.15 | 0.0-2.9 | \|0.5-1.0 | . 32 | . 32 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Skyvillage--------- | 0-2 | 5-15 | \|1.35-1.45 | 2.00-6.00 | \|0.07-0.09 | 0.0-2.9 | \|0.5-1.0 | . 15 | . 24 | 1 | 4 | 86 |
|  | 2-5 | 10-15 | \|1.45-1.55 | 2.00-6.00 | \| 0.11-0.13 | 0.0-2.9 | \|0.2-0.6 | . 24 | . 24 |  |  |  |
|  | 5-9 | 20-25 | \|1.45-1.55 | 0.60-2.00 | \| 0.14-0.16 | 3.0-5.9 | \|0.2-0.6 | . 32 | . 32 |  |  |  |
|  | 9-15 | 20-25 | \|1.45-1.55 | 0.60-2.00 | \| 0.14-0.16 | 3.0-5.9 | \|0.2-0.6 | . 32 | . 32 |  |  |  |
|  | 15-20 | --- | - | 0.20-2.00 | --- | -- | \| --- | --- | --- |  |  |  |
|  |  |  | \| |  |  |  |  |  |  |  |  |  |
| 212: |  |  |  |  |  |  |  |  |  |  |  |  |
| Rehobeth----------- | 0-2 | 30-40 | \|1.25-1.35 | 0.20-0.60 | \| 0.18-0.20 | 6.0-8.9 | \|0.5-1.0 | . 37 | . 37 | 5 | 4L | 86 |
|  | 2-5 | 30-40 | \|1.25-1.35 | 0.20-0.60 | \| 0.18-0.20 | 6.0-8.9 | \|0.5-1.0 | . 37 | . 37 |  |  |  |
|  | 5-12 | 40-55 | \|1.40-1.50 | 0.06-0.20 | \| 0.13-0.15 | 6.0-8.9 | \|0.5-1.0 | . 20 | . 20 |  |  |  |
|  | 12-18 | 40-55 | \|1.40-1.50 | 0.06-0.20 | \| 0.13-0.15 | 6.0-8.9 | \|0.5-1.0 | . 20 | . 20 |  |  |  |
|  | 18-32 | 40-55 | \|1.40-1.50 | 0.06-0.20 | \| 0.13-0.15 | 6.0-8.9 | \|0.2-0.5 | . 20 | . 20 |  |  |  |
|  | 32-80 | 40-55 | \|1.40-1.50 | 0.06-0.20 | \| 0.13-0.15 | 6.0-8.9 | \|0.2-0.5 | . 20 | . 20 |  |  |  |
|  |  |  | , |  |  |  |  |  |  |  |  |  |
| 215: |  |  |  |  |  |  |  |  |  |  |  |  |
| Viuda----------------1 | 0-3 | 10-20 | \|1.30-1.40 | 2.00-6.00 | \| 0.07-0.09 | 0.0-2.9 | \|0.5-0.9 | . 10 | . 37 | 1 | 6 | 48 |
|  | 3-15 | 35-50 | \|1.40-1.45 | 0.06-0.20 | \| 0.14-0.17 | 6.0-8.9 | \|0.0-0.0 | . 20 | . 20 |  | \| |  |
|  | 15-17 | 20-35 | \|1.45-1.50 | 0.60-2.00 | \| 0.15-0.17 | 3.0-5.9 | \|0.0-0.0 | . 15 | . 32 |  |  |  |
|  | 17-20 | --- | --- | 0.00-0.20 | --- | --- | \| --- | --- | --- |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Penistaja---------- | 0-2 | 10-20 | \|1.40-1.50 | 2.00-6.00 | \| $0.11-0.13$ | 0.0-2.9 |  | . 24 | . 24 | 5 | 3 | 86 |
|  | 2-22 | 20-30 | \|1.45-1.55 | 0.60-2.00 | \| $0.14-0.16$ | 3.0-5.9 | \|0.5-1.0 | . 32 | . 32 |  |  |  |
|  | 22-65 | 15-30 | \|1.45-1.55 | 0.60-6.00 | \| 0.11-0.16 | 3.0-5.9 | \|0.5-1.0 | . 32 | . 32 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Rock outcrop------- | 0 | - | -- | 0.00-0.20 | --- | -- | --- | --- | --- | - | --- | --- |
|  |  |  | \| |  |  |  |  |  |  |  |  |  |
| 220: |  |  |  |  |  |  |  |  |  |  |  |  |
| Hagerwest---------- | 0-2 | 10-20 | \|1.20-1.25 | 2.00-6.00 | \| 0.13-0.15 | 0.0-2.9 | \|0.5-1.0 | . 28 | . 28 | 2 | 3 | 86 |
|  | 2-13 | 20-35 | \|1.35-1.45 | 0.60-2.00 | \| 0.14-0.16 | 3.0-5.9 | \|0.2-0.8 | . 32 | . 32 |  |  |  |
|  | 13-19 | 20-35 | \|1.35-1.45 | 0.60-6.00 | \| 0.14-0.16 | 3.0-5.9 | \|0.2-0.8 | . 32 | . 32 |  |  |  |
|  | 19-35 | 10-20 | \|1.50-1.60 | 2.00-6.00 | \| $0.11-0.13$ | 0.0-2.9 | \|0.2-0.8 | . 24 | . 24 |  |  |  |
|  | 35-40 | --- | \| --- | 0.00-0.20 | --- | --- | \| --- | --- | --- |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

Table 15.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Clay | \| | Permeability (Ksat) |  | Linear extensibility | \|Organic <br> \| matter | \| Erosion factors |  |  | \|Wind |erodi|bility |group | \|Wind |erodi|bility |index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Moist |  | \|Available |  |  |  |  |  |  |  |
|  |  |  | bulk |  | \| water |  |  |  |  |  |  |  |
|  |  |  | density |  | \| capacity |  |  | Kw | Kf | T |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | In | Pct | $\mathrm{g} / \mathrm{CC}$ | In/hr | In/in | Pct | Pct |  |  |  |  |  |
|  |  |  | \| |  |  |  |  |  |  |  |  |  |
| 220: |  |  |  |  |  |  |  |  |  |  |  |  |
| Bond---------------- | 0-2 | 10-20 | \|1.45-1.55 | 2.00-6.00 | \|0.13-0.15 | 0.0-2.9 | \|1.0-2.0 | . 28 | . 28 | 1 | 3 | 86 |
|  | $2-5$ | 10-20 | \|1.45-1.55 | 2.00-6.00 | \|0.13-0.15 | $0.0-2.9$ | $0.5-0.9$ | . 28 | . 28 |  |  |  |
|  | 5-14 | 20-30 | \|1.45-1.55 | 0.60-2.00 | \| 0.13-0.15 | 0.0-2.9 | \|0.5-0.9 | . 32 | . 32 |  |  |  |
|  | 14-20 | --- | --- | 0.00-0.20 | --- | --- | --- | --- | --- |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 225: |  |  |  |  |  |  |  |  |  |  |  |  |
| Aquima------------- | 0-2 | 10-27 | \|1.25-1.35 | 0.60-2.00 | \|0.19-0.21 | 0.0-2.9 | \|0.5-1.0 | . 43 | . 43 | 5 | 4 L | 86 |
|  | 2-11 | 10-27 | \|1.40-1.60 | 0.20-2.00 | \| $0.14-0.21$ | 0.0-2.9 | \|0.1-0.9 | . 43 | . 43 |  |  |  |
|  | 11-17 | 20-30 | \|1.30-1.50 | 0.60-2.00 | \| 0.14-0.16 | 3.0-5.9 | \|0.1-0.9 | . 32 | . 32 |  |  |  |
|  | $17-45$ | 18-35 | \|1.20-1.40 | 0.20-2.00 | \| 0.19-0.21 | 3.0-5.9 | \|0.1-0.9 | . 43 | . 43 |  |  |  |
|  | 49-65 | 30-40 | \|1.20-1.30 | 0.20-2.00 | \| 0.12-0.18 | 3.0-5.9 | \|0.1-0.9 | . 15 | . 32 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Hawaikuh------------ | 0-3 | 10-27 | \|1.20-1.30 | 0.60-2.00 | \| 0.19-0.21 | 0.0-2.9 | \|0.5-1.0 | . 43 | . 43 | 5 | 6 | 48 |
|  | 3-12 | 30-40 | \|1.25-1.35 | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|0.2-1.0 | . 37 | . 37 |  |  |  |
|  | 12-29 | 30-40 | \|1.35-1.45 | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|0.2-1.0 | . 32 | . 32 |  |  |  |
|  | 29-39 | 20-30 | \|1.40-1.50 | 0.60-2.00 | \| 0.14-0.16 | 3.0-5.9 | \|0.2-1.0 | . 32 | . 32 |  |  |  |
|  | 39-54 | 10-20 | \|1.45-1.55 | 2.00-6.00 | \| 0.11-0.13 | 0.0-2.9 | \|0.2-1.0 | . 24 | . 24 |  |  |  |
|  | 54-65 | 30-40 | \|1.30-1.40 | 0.20-0.60 | \| 0.19-0.21 | 3.0-5.9 | \|0.2-1.0 | . 37 | . 37 |  |  |  |
|  |  |  |  |  |  |  | , |  |  |  |  |  |
| 230: |  |  |  |  |  |  |  |  |  |  |  |  |
| Sparank------------ | 0-2 | 30-40 | \|1.35-1.45 | 0.20-0.60 | \| 0.19-0.21 | 3.0-5.9 | \|1.0-2.0 | . 37 | . 37 | 5 | 4 | 86 |
|  | 2-25 | 35-50 | \|1.35-1.45 | 0.06-0.60 | \| $0.14-0.21$ | 6.0-8.9 | \|0.5-1.0 | . 20 | . 20 |  |  |  |
|  | 25-65 | 40-60 | \|1.35-1.45 | 0.01-0.06 | \| $0.14-0.17$ | 6.0-8.9 | \|0.5-1.0 | . 20 | . 20 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| San Mateo---------- | 0-2 | 27-40 | \|1.20-1.30 | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|1.0-2.0 | . 32 | . 32 | 5 | 4 | 86 |
|  | 2-15 | 27-40 | \|1.35-1.45 | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|0.5-1.0 | . 32 | . 32 |  |  |  |
|  | 15-30 | 20-30 | \|1.35-1.45 | 0.60-2.00 | \| 0.14-0.16 | 3.0-5.9 | \|0.5-1.0 | . 32 | . 32 |  |  |  |
|  | 30-39 | 27-40 | \|1.35-1.45 | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|0.5-1.0 | . 32 | . 32 |  |  |  |
|  | 39-45 | 10-20 | \|1.40-1.50 | 2.00-6.00 | \| $0.11-0.13$ | 0.0-2.9 | \|0.5-1.0 | . 24 | . 24 |  |  |  |
|  | 45-65 | 27-40 | \|1.35-1.45 | 0.20-0.60 | \| 0.19-0.21 | 3.0-5.9 | \|0.5-1.0 | . 32 | . 32 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Zia---------------- | 0-3 | 5-20 | \|1.40-1.50 | 2.00-6.00 | \| 0.13-0.15 | 0.0-2.9 | \|1.0-2.0 | . 28 | . 28 | 5 | 3 | 86 |
|  | 3-12 | 8-18 | \|1.45-1.55 | 2.00-6.00 | \|0.13-0.15 | 0.0-2.9 | \|0.5-1.0 | . 28 | . 28 |  |  |  |
|  | 12-20 | 8-18 | \|1.45-1.55 | 2.00-6.00 | \|0.13-0.15 | 0.0-2.9 | \|0.5-1.0 | . 28 | . 28 |  |  |  |
|  | 20-28 | 8-18 | \|1.45-1.55 | 2.00-20.00 | \|0.06-0.13 | 0.0-2.9 | \|0.5-1.0 | . 24 | . 24 |  |  |  |
|  | 28-70 | 8-18 | \|1.45-1.55 | 2.00-6.00 | \| 0.13-0.15 | 0.0-2.9 | \|0.5-1.0 | . 28 | . 28 |  |  |  |
|  |  |  |  |  | \| |  | 1 |  |  |  |  |  |
| 235: |  |  |  |  |  |  |  |  |  |  |  |  |
| Notal--------------- | 0-1 | 20-27 | \|1.35-1.45 | 0.60-2.00 | \| 0.15-0.17 | 0.0-2.9 | \|0.5-2.0 | . 37 | . 37 | 5 | 6 | 48 |
|  | 1-3 | 30-40 | \|1.35-1.45 | 0.20-0.60 | \| 0.17-0.19 | 3.0-5.9 | \|0.5-2.0 | . 32 | . 32 |  |  |  |
|  | 3-13 | 20-35 | \|1.35-1.45 | 0.20-0.60 | \| 0.13-0.14 | 0.0-2.9 | \|0.5-2.0 | . 32 | . 32 |  |  |  |
|  | 13-27 | 30-40 | \|1.35-1.45 | 0.20-0.60 | \| 0.17-0.19 | 3.0-5.9 | \|0.5-2.0 | . 32 | . 32 |  | \| |  |
|  | 27-44 | 40-50 | \|1.25-1.35 | 0.01-0.06 | \| 0.14-0.15 | 6.0-8.9 | \|0.5-2.0 | . 24 | . 24 |  |  |  |
|  | 44-65 | 20-35 | \|1.35-1.45 | 0.20-0.60 | \|0.13-0.14 | 0.0-2.9 | \|0.5-2.0 | . 32 | . 32 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Hamburn------------ | 0-3 | 27-40 | \|1.25-1.35 | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|1.0-2.0 | . 32 | . 32 | 5 | 4 | 86 |
|  | 3-8 | 27-40 | \|1.25-1.35 | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|0.2-0.5 | . 32 | . 32 |  |  |  |
|  | 8-29 | 25-35 | \|1.25-1.35 | 0.20-0.60 | \| 0.14-0.16 | 3.0-5.9 | \|0.2-0.5 | . 32 | . 32 |  |  |  |
|  | 29-52 | 25-35 | \|1.25-1.35 | 0.20-0.60 | \|0.14-0.16 | 3.0-5.9 | \|0.2-0.5 | . 32 | . 32 |  |  |  |
|  | 52-70 | 27-40 | \|1.25-1.35 | 0.20-0.60 | \| 0.19-0.21 | 3.0-5.9 | \|0.2-0.5 | . 32 | . 32 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

Table 15.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Clay | \| | Permeability (Ksat) |  | Linear extensibility | \|Organic <br> matter | \|Erosion factors |  |  | \|Wind |erodi|bility |group | \|Wind |erodi|bility |index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Moist |  | \|Available |  |  |  |  |  |  |  |
|  |  |  | bulk |  | water |  |  |  |  |  |  |  |
|  |  |  | density |  | \| capacity |  |  | Kw | Kf | T |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | In | Pct | g/cc | In/hr | In/in | Pct | Pct |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 240: |  |  |  |  |  |  |  |  |  |  |  |  |
| Breadsprings------- | 0-3 | 15-25 | \|1.35-1.45 | 0.60-2.00 | \|0.16-0.18 | 0.0-2.9 | \|0.2-0.5 | . 37 | . 37 | 5 | 4L | 86 |
|  | 3-7 | 15-25 | \|1.35-1.45 | 0.60-2.00 | \|0.16-0.18 | 3.0-5.9 | \|0.2-0.5 | . 37 | . 37 |  |  |  |
|  | 7-14 | 10-35 | \|1.35-1.45 | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|0.2-0.5 | . 32 | . 32 |  |  |  |
|  | 14-22 | 10-19 | \|1.45-1.55 | 2.00-6.00 | \|0.14-0.16 | 0.0-2.9 | \|0.2-0.5 | . 28 | . 28 |  |  |  |
|  | 22-29 | 15-25 | \|1.25-1.35 | 0.60-2.00 | \|0.15-0.17 | 0.0-2.9 | \|0.2-0.5 | . 43 | . 43 |  |  |  |
|  | 29-36 | 15-27 | \|1.35-1.45 | 0.60-2.00 | \|0.16-0.18 | 3.0-5.9 | \|0.2-0.5 | . 37 | . 37 |  |  |  |
|  | 36-70 | 15-25 | \|1.25-1.35 | 0.60-2.00 | \| 0.15-0.17 | 0.0-2.9 | \|0.2-0.5 | . 43 | . 43 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Nahodish | 0-1 | 15-25 | \|1.25-1.35 | 0.60-2.00 | \|0.19-0.21 | 0.0-2.9 | \|0.5-1.0 | . 43 | . 43 | 5 | 4L | 86 |
|  | 1-9 | 30-40 | \|1.25-1.35 | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|0.5-1.0 | . 24 | . 37 |  |  |  |
|  | 9-17 | 40-55 | \|1.25-1.35 | 0.06-0.20 | \|0.15-0.17 | 3.0-5.9 | \|0.2-0.5 | . 24 | . 24 |  |  |  |
|  | 17-31 | 40-55 | \|1.25-1.35 | 0.06-0.20 | \|0.15-0.17 | 3.0-5.9 | \|0.2-0.5 | . 24 | . 24 |  |  |  |
|  | 31-36 | 30-40 | \|1.35-1.45 | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|0.2-0.5 | . 32 | . 20 |  |  |  |
|  | 36-58 | 15-25 | \|1.25-1.35 | 0.60-2.00 | \|0.19-0.21 | 0.0-2.9 | \|0.2-0.5 | . 43 | . 43 |  |  |  |
|  | 58-80 | 40-50 | \|1.25-1.35 | 0.06-0.20 | \| 0.14-0.16 | 6.0-8.9 | \|0.2-0.5 | . 20 | . 20 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 241: |  |  |  |  |  |  |  |  |  |  |  |  |
| Mentmore----------- | 0-1 | 18-25 | \|1.35-1.45 | 0.60-2.00 | \|0.16-0.18 | 3.0-5.9 | \|0.5-1.0 | . 37 | . 37 | 5 | 5 | 56 |
|  | 1-2 | 28-35 | \|1.35-1.45 | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|0.5-1.0 | . 32 | . 32 |  |  |  |
|  | 2-7 | 25-35 | \|1.35-1.45 | 0.60-2.00 | \|0.14-0.16 | 3.0-5.9 | \|0.0-0.5 | . 32 | . 32 |  |  |  |
|  | 7-13 | 28-35 | \|1.35-1.45 | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|0.0-0.5 | . 32 | . 32 |  |  |  |
|  | 13-22 | 28-35 | \|1.35-1.45 | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|0.0-0.5 | . 32 | . 32 |  |  |  |
|  | 22-70 | 28-35 | \|1.35-1.45 | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|0.0-0.5 | . 32 | . 32 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 242: |  |  |  |  |  |  |  |  |  |  |  |  |
| Gish---------------- | 0-3 | 30-35 | \|1.35-1.45 | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|0.0-0.5 | . 32 | . 32 | 5 | --- | --- |
|  | 3-13 | 40-50 | \|1.25-1.35 | 0.06-0.20 | \|0.14-0.16 | 6.0-8.9 | \|0.0-0.5 | . 20 | . 20 |  |  |  |
|  | 13-27 | 40-50 | \|1.25-1.35 | 0.06-0.20 | \|0.14-0.16 | 6.0-8.9 | \|0.0-0.5 | . 20 | . 20 |  |  |  |
|  | 27-55 | 40-50 | \|1.25-1.35 | 0.06-0.20 | \|0.14-0.16 | 6.0-8.9 | \|0.0-0.5 | . 20 | . 20 |  |  |  |
|  | 55-64 | 30-40 | \|1.35-1.45 | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|0.0-0.5 | . 32 | . 32 |  |  |  |
|  | 64-70 | 40-50 | \|1.25-1.35 | 0.06-0.20 | \|0.14-0.16 | 6.0-8.9 | \|0.0-0.5 | . 20 | . 20 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Mentmore----------- | 0-2 | 14-19 | \|1.45-1.55 | 2.00-6.00 | \|0.13-0.15 | 0.0-2.9 | \|0.0-0.5 | . 28 | . 28 | 5 | --- | --- |
|  | 2-4 | 30-40 | \|1.35-1.45 | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|0.0-0.5 | . 32 | . 32 |  |  |  |
|  | 4-13 | 30-35 | \|1.35-1.45 | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|0.0-0.5 | . 32 | . 32 |  |  |  |
|  | 13-24 | 30-35 | \|1.35-1.45 | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|0.0-0.5 | . 32 | . 32 |  |  |  |
|  | 24-44 | 30-35 | \|1.35-1.45 | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|0.0-0.5 | . 32 | . 32 |  |  |  |
|  | 44-62 | 30-35 | \|1.35-1.45 | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|0.0-0.5 | . 32 | . 32 |  |  |  |
|  | 62-70 | 30-35 | \|1.35-1.45 | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|0.0-0.5 | . 32 | . 32 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 244: |  |  |  |  |  |  |  |  |  |  |  |  |
| Buckle-------------- | 0-4 | 10-20 | \|1.35-1.45 | 2.00-6.00 | \|0.13-0.15 | 0.0-2.9 | \|1.0-2.0 | . 28 | . 28 | 5 | 3 | 86 |
|  | 4-14 | 20-30 | \|1.25-1.35 | 0.60-2.00 | \|0.14-0.16 | 3.0-5.9 | \|0.5-1.0 | . 32 | . 32 |  |  |  |
|  | 14-22 | 20-30 | \|1.25-1.35 | 0.60-2.00 | \|0.14-0.16 | 3.0-5.9 | \|0.0-0.5 | . 32 | . 32 |  |  |  |
|  | 22-34 | 20-27 | \|1.25-1.35 | 0.60-2.00 | \|0.16-0.18 | 3.0-5.9 | \|0.0-0.5 | . 37 | . 37 |  |  |  |
|  | 34-48 | 30-35 | \|1.25-1.35 | 0.20-0.60 | \|0.19-0.21 | 6.0-8.9 | \|0.0-0.5 | . 32 | . 32 |  |  |  |
|  | 48-62 | 30-35 | \|1.25-1.35 | 0.20-0.60 | \|0.19-0.21 | 6.0-8.9 | \|0.0-0.5 | . 32 | . 32 |  |  |  |
|  | 62-75 | 30-35 | \|1.25-1.35 | 0.20-0.60 | \|0.19-0.21 | 6.0-8.9 | \|0.0-0.5 | . 32 | . 32 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 245: |  |  |  |  |  |  |  |  |  |  |  |  |
| Buckle------------- | 0-1 | 10-20 | \|1.55-1.65 | 2.00-6.00 | \|0.09-0.11 | 0.0-2.9 | \|0.5-1.0 | . 20 | . 20 | 5 | 3 | 86 |
|  | 1-7 | 27-35 | \|1.35-1.45 | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|0.0-0.5 | . 32 | . 32 |  |  |  |
|  | 7-25 | 20-35 | \|1.25-1.35 | 0.60-2.00 | \|0.14-0.16 | 3.0-5.9 | \|0.0-0.5 | . 32 | . 32 |  |  |  |
|  | 25-35 | 27-35 | \|1.35-1.45 | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|0.0-0.5 | . 32 | . 32 |  |  |  |
|  | 35-80 | 10-25 | \|1.45-1.55 | 2.00-6.00 | \|0.13-0.15 | 0.0-2.9 | \|0.0-0.5 | . 28 | . 28 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

Table 15.--Physical Properties of the Soils--Continued


Table 15.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Clay |  | Permea- <br> bility <br> (Ksat) | $\begin{aligned} & \text { \|Available } \\ & \text { \| water } \\ & \text { \| capacity } \end{aligned}$ | Linear extensibility | \|Organic <br> \| matter | \|Erosion factors |  |  | \|Wind |erodi|bility |group | \|Wind <br> \|erodi- <br> \|bility <br> \|index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Moist |  |  |  |  |  |  |  |  |  |
|  |  |  | bulk |  |  |  |  |  |  |  |  |  |
|  |  |  | density |  |  |  |  | Kw | Kf | T |  |  |
|  | In | Pct | $\mathrm{g} / \mathrm{cc}$ | In/hr | In/in | Pct | Pct |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  | \| |
| 270: |  |  |  |  |  |  |  |  |  |  |  |  |
| Alesna------------ | 0-1 | 15-27 | \|1.20-1.30 | 0.60-2.00 | \|0.06-0.07 | 0.0-2.9 | \|0.5-1.0 | . 05 | . 37 | 4 | 8 | 0 |
|  | 1-10 | 30-40 | \|1.35-1.45 | 0.20-0.60 | \|0.15-0.17 | 6.0-8.9 | \|0.5-1.0 | . 15 | . 32 |  |  | \| |
|  | 10-20 | 40-55 | \|1.35-1.45 | 0.06-0.20 | \|0.08-0.10 | 6.0-8.9 | \|0.5-0.5 | . 05 | . 20 |  |  | \| |
|  | 20-26 | 40-55 | \|1.35-1.45 | 0.20-0.60 | \|0.14-0.16 | 6.0-8.9 | \|0.5-0.5 | . 20 | . 20 |  |  | \| |
|  | 26-52 | 30-40 | \|1.50-1.60 | 0.20-0.60 | \| 0.17-0.19 | 6.0-8.9 | \|0.5-0.5 | . 32 | . 32 |  | I | \| |
|  | 52-60 | --- | --- | 0.00-0.06 | --- | --- | --- | --- | --- |  | , | \| |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Rock outcrop- | 0 | --- | --- | 0.00-0.20 | --- | --- | --- | --- | --- | - | --- | --- |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 275: |  |  |  |  |  |  |  |  |  |  |  |  |
| Eldado- | 0-2 | 10-20 | \|1.45-1.55 | 2.00-6.00 | \|0.11-0.13 | 0.0-2.9 | \|0.5-1.0 | . 15 | . 28 | 2 | 5 | 56 |
|  | 2-9 | 20-35 | \|1.40-1.50 | 0.60-2.00 | \|0.13-0.15 | 3.0-5.9 | \|0.5-0.5 | . 32 | . 32 |  |  | \| |
|  | 9-13 | 20-35 | \|1.40-1.50 | 0.60-2.00 | \|0.13-0.15 | 3.0-5.9 | \|0.5-0.5 | . 32 | . 32 |  |  | \| |
|  | 13-25 | 20-35 | \|1.40-1.50 | 0.60-2.00 | \|0.13-0.15 | 3.0-5.9 | \|0.5-0.5 | . 32 | . 32 |  |  |  |
|  | 25-43 | 5-10 | \|1.50-1.60 | \|20.00-20.00 | \|0.01-0.02 | 0.0-2.9 | \|0.5-0.5 | . 02 | . 15 |  |  |  |
|  | 43-72 | 1-5 | \|1.50-1.60 | \|20.00-20.00 | \|0.00-0.00 | 0.0-2.9 | \|0.5-0.5 | . 02 | . 10 |  |  | \| |
|  |  |  |  |  |  |  |  |  |  |  |  | \| |
| 280: |  |  |  |  |  |  |  |  |  |  |  |  |
| Azabache----------- | 0-1 | 27-35 | \|1.35-1.45 | 0.20-0.60 | \|0.05-0.06 | 0.0-2.9 | \|0.5-0.9 | . 05 | . 32 | 3 | 8 | 0 |
|  | 1-5 | 40-50 | \|1.25-1.35 | 0.01-0.06 | \|0.12-0.14 | 6.0-8.9 | \|0.5-0.9 | . 20 | . 20 |  |  | \| |
|  | 5-17 | 20-35 | \|1.45-1.55 | 0.20-0.60 | \|0.10-0.11 | 0.0-2.9 | \|0.2-0.8 | . 15 | . 32 |  |  |  |
|  | 17-32 | 20-35 | \|1.45-1.55 | 0.20-0.60 | \|0.04-0.05 | 0.0-2.9 | \|0.2-0.5 | . 05 | . 32 |  |  | \| |
|  | 32-50 | 10-20 | \|1.45-1.55 | 0.60-2.00 | \|0.03-0.04 | 0.0-2.9 | \|0.2-0.5 | . 05 | . 28 |  |  | \| |
|  | 50-62 | 10-20 | \|1.55-1.65 | 0.60-2.00 | \|0.09-0.10 | 0.0-2.9 | \|0.2-0.5 | . 10 | . 28 |  |  | \| |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 290 : |  |  |  |  |  |  |  |  |  |  |  |  |
| Rock outcrop- | 0 | --- | - | 0.00-0.20 | \| --- | --- | -- | --- | -- | - | --- | -- |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Westmion----------- | 0-2 | 30-40 | \|1.35-1.45 | 0.20-0.60 | \|0.15-0.17 | 3.0-5.9 | \|0.5-1.0 | . 15 | . 32 | 2 | 6 | 48 |
|  | 2-14 | 40-55 | \|1.40-1.50 | 0.06-0.20 | \|0.14-0.16 | 6.0-8.9 | \|0.2-0.6 | . 20 | . 20 |  |  | \| |
|  | 14-20 | - | \| --- | 0.00-0.20 | \| --- | - | \| --- | --- | --- |  |  | \| |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Skyvillage--------- | 0-2 | 10-20 | \|1.35-1.45 | 2.00-6.00 | \|0.11-0.13 | 0.0-2.9 | \|0.5-1.0 | . 24 | . 24 | 1 | 3 | 86 |
|  | 2-13 | 10-20 | \|1.35-1.45 | 2.00-6.00 | \|0.11-0.13 | 0.0-2.9 | \|0.2-0.6 | . 24 | . 24 |  |  | \| |
|  | 13-20 | --- | --- | 0.20-2.00 | --- | --- | --- | --- | --- |  |  | \| |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 291: |  |  |  |  |  |  |  |  |  |  |  |  |
| Rock outcrop- | 0 | --- |  | --- |  | - | --- | --- | --- | - | --- | \| --- |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Eagleye----------- | 0-2 | 30-40 | \|1.25-1.35 | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|0.0-0.5 | . 10 | . 37 | 2 | 5 | 56 |
|  | 2-7 | 30-40 | \|1.25-1.35 | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|0.0-0.5 | . 37 | . 37 |  |  | \| |
|  | 7-13 | 30-40 | \|1.25-1.35 | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|0.0-0.5 | . 37 | . 37 |  |  |  |
|  | 13-20 | --- | --- | 0.00-0.01 | --- | --- | --- | --- | --- |  |  | \| |
|  |  |  |  |  |  |  |  |  |  |  |  | \| |
| Atchee------------- | 0-2 | 10-15 | \|1.45-1.55 | 0.60-2.00 | \|0.13-0.15 | 0.0-2.9 | \|0.0-0.5 | . 10 | . 28 | 1 | 4L | 86 |
|  | 2-8 | 10-15 | \|1.45-1.55 | 0.60-2.00 | \|0.13-0.15 | 0.0-2.9 | \|0.0-0.5 | . 15 | . 28 |  |  | \| |
|  | 8-20 | - | --- | 0.00-0.01 | --- | --- | --- | --- | --- |  | \| | \| |
|  |  |  |  |  |  |  |  |  |  |  | \| | \| |
| 300: |  |  |  |  |  |  |  |  |  |  |  |  |
| Regracic----------- | 0-2 | 20-30 | \|1.15-1.25 | 0.60-2.00 | \|0.10-0.11 | 0.0-2.9 | \|1.0-2.0 | . 15 | . 32 | 4 | 6 | 48 |
|  | 2-31 | 35-50 | \|1.20-1.25 | 0.06-0.60 | \|0.14-0.18 | 6.0-8.9 | \|1.0-2.0 | . 20 | . 20 |  | \| | \| |
|  | 31-45 | 35-45 | \|1.35-1.40 | 0.20-0.60 | \|0.07-0.08 | 6.0-8.9 | \|0.5-0.9 | . 10 | . 32 |  | \| | \| |
|  | 45-50 | 27-40 | \|1.20-1.25 | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|0.5-0.9 | . 32 | . 32 |  |  | \| |
|  | 50-60 | 25-35 | \|1.25-1.30 | 0.20-2.00 | \|0.09-0.14 | 3.0-5.9 | \|0.5-0.9 | . 10 | . 37 |  | \| | \| |
|  | 60-80 | 10-20 | \|1.40-1.50 | 2.00-6.00 | \|0.08-0.10 | 0.0-2.9 | \|0.5-0.9 | . 15 | . 24 |  | \| | \| |
|  |  |  |  |  |  |  |  |  |  |  | \| | \| |

Table 15.--Physical Properties of the Soils--Continued


Table 15.--Physical Properties of the Soils--Continued

Map symbol and soil name	Depth	Clay		Permeability (Ksat)	$\mid$ Available   $\mid$ water   $\mid$ capacity	Linear extensibility	\|Organic   \| matter	\|Erosion factors			\|Wind	erodi	bility	group	\|Wind   \|erodi-   \|bility   \|index					
			Moist																	
			bulk																	
			density					Kw	Kf	T										
	In	Pct	$\mathrm{g} / \mathrm{cc}$	In/hr	In/in	Pct	Pct													
317 :																				
Highdye------------	0-3	10-20	\|1.40-1.50	2.00-6.00	\|0.13-0.15	0.0-2.9	\|1.0-2.0	. 28	. 28	1	3	86								
	3-5	30-40	\|1.45-1.55	0.20-0.60	\|0.19-0.21	3.0-5.9	\| 0.5-1.0	. 32	. 32											
	5-12	40-55	\|1.35-1.45	0.06-0.60	\|0.14-0.16	6.0-8.9	\|0.5-1.0	. 20	. 20		,									
	12-20	---	---	0.06-2.00	---	---	---	---	---		\|									
Evpark-	0-5	10-25	\|1.45-1.55	0.60-2.00	\|0.16-0.18	0.0-2.9	\|1.0-2.0	. 37	. 37	2	5	56								
	5-10	27-35	\|1.40-1.50	0.20-0.60	\|0.19-0.21	3.0-5.9	\|1.0-2.0	. 32	. 32		\|									
	10-24	20-35	\|1.45-1.55	0.60-2.00	\|0.14-0.16	3.0-5.9	\| 0.5-1.0	. 32	. 32		\|									
	24-40	---	\| ---	0.06-2.00	---	---	---	---	---											
Bryway-	0-4	10-20	\|1.50-1.60	2.00-6.00	\|0.11-0.13	0.0-2.9	\|1.0-2.0	. 24	. 24	3	3	86								
	4-10	35-55	\|1.40-1.50	0.06-0.60	\|0.14-0.16	6.0-8.9	\|0.5-1.0	. 20	. 20		\|									
	10-23	40-55	\|1.40-1.50	0.06-0.20	\|0.14-0.16	6.0-8.9	\|0.5-1.0	. 20	. 20		\|									
	23-40	---	---	0.00-0.20	---	---	---	---	---		\|									
320:																				
Parkelei----------	0-4	5-15	\|1.35-1.45	2.00-6.00	\|0.12-0.14	0.0-2.9	\|1.0-2.0	. 24	. 28	5	3	86								
	4-18	20-35	\|1.25-1.35	0.60-2.00	\|0.14-0.16	3.0-5.9	\|0.5-1.0	. 32	. 32		\|									
	18-28	20-35	\|1.25-1.35	0.60-2.00	\|0.14-0.16	3.0-5.9	\|0.5-1.0	. 32	. 32		\|									
	28-39	20-35	\|1.25-1.35	0.60-2.00	\|0.14-0.16	3.0-5.9	\|0.5-1.0	. 32	. 32		\|									
	39-52	20-35	\|1.25-1.35	0.60-2.00	\|0.14-0.16	3.0-5.9	\|0.5-1.0	. 32	. 32		\|									
	52-70	5-15	\|1.35-1.45	2.00-6.00	\| 0.12-0.14	0.0-2.9	\|0.5-0.5	. 24	. 28		\|									
Fraguni-------------	0-4	5-10	\|1.75-1.85	6.00-20.00	\|0.09-0.10	0.0-2.9	\|0.5-1.0	. 20	. 20	5	2	134								
	4-20	10-20	\|1.75-1.85	2.00-6.00	\|0.13-0.15	0.0-2.9	\|0.0-0.5	. 28	. 28		\|									
	20-46	5-10	\|1.75-1.85	6.00-20.00	\|0.09-0.10	0.0-2.9	\|0.0-0.5	. 20	. 20		\|									
	46-58	20-35	\|1.70-1.80	0.60-2.00	\|0.14-0.16	3.0-5.9	\|0.0-0.5	. 32	. 32		\|									
	58-70	10-20	\|1.75-1.85	2.00-6.00	\|0.13-0.15	0.0-2.9	\|0.0-0.5	. 28	. 28		\|									
325:																				
Venzuni-----------	0-2	50-60	\|1.20-1.30	0.06-0.20	\|0.15-0.17	6.0-8.9	\|1.0-2.0	. 24	. 24	5	4	86								
	2-12	50-60	\|1.25-1.35	0.06-0.20	\|0.15-0.17	6.0-8.9	\|0.5-1.0	. 24	. 24		\|									
	12-46	60-80	\|1.25-1.35	0.00-0.06	\|0.14-0.16	6.0-8.9	\|0.5-1.0	. 20	. 20		\|									
	46-65	60-80	\|1.25-1.35	0.00-0.06	\|0.14-0.16	6.0-8.9	\|0.5-1.0	. 20	. 20											
											\|									
332 :																				
Evpark-------------	0-2	10-20	\|1.50-1.60	2.00-6.00	\|0.13-0.15	0.0-2.9	\|1.0-2.0	. 28	. 28	2	3	86								
	2-9	25-35	\|1.45-1.55	0.20-0.60	\|0.19-0.21	3.0-5.9	\|1.0-2.0	. 32	. 32		\|									
	9-36	27-35	\|1.55-1.65	0.20-0.60	\|0.19-0.21	3.0-5.9	\|0.2-1.0	. 32	. 32		\|									
	36-40	---	--	0.06-2.00	---	---	---	---	---		\|									
Arabrab-----------	0-2	10-18	\|1.50-1.60	2.00-6.00	\|0.06-0.11	0.0-2.9	\|1.0-2.0	. 15	. 28	1	6	48								
	2-7	20-27	\|1.45-1.55	0.60-2.00	\|0.14-0.16	0.0-2.9	\|0.5-1.0	. 32	. 32		\|									
	7-12	30-35	\|1.45-1.55	0.20-0.60	\|0.19-0.21	3.0-5.9	\|0.0-0.5	. 32	. 32		\|									
	12-17	30-35	\|1.45-1.55	0.20-0.60	\|0.19-0.21	3.0-5.9	\|0.0-0.5	. 32	. 32		\|									
	17-20	---	---	0.00-0.20	---	---	---	---	---		\|									
											\|									
335:																				
Venadito----------	0-3	40-60	\|1.15-1.25	0.06-0.20	\|0.14-0.16	6.0-8.9	\|2.0-3.0	. 20	. 20	5	4	86								
	3-30	60-80	\|1.10-1.20	0.01-0.06	\|0.14-0.16	6.0-8.9	\|1.0-2.0	. 20	. 20		\|									
	30-65	60-80	\|1.10-1.20	0.01-0.06	\|0.14-0.16	6.0-8.9	\|0.2-1.0	. 20	. 20		\|									
											\|									

Table 15.--Physical Properties of the Soils--Continued


Table 15.--Physical Properties of the Soils--Continued

Map symbol and soil name	Depth	Clay		Permeability (Ksat)	$\mid$ Available   $\mid$ water   $\mid$ capacity	Linear   extensibility	\|Organic   \| matter	\|Erosion factors			\|Wind   \|erodi-   \|bility   \|group	\|Wind   \|erodi-   \|bility   \|index								
			Moist																	
			bulk																	
			density					Kw	Kf	T										
	In	Pct	$\mathrm{g} / \mathrm{cc}$	In/hr	In/in	Pct	Pct													
354:																				
Knifehill----------	0-2	18-27	\|1.25-1.35	0.60-2.00	\|0.16-0.18	0.0-2.9	\|1.0-2.0	. 37	. 37	5	6	48								
	2-6	30-40	\|1.45-1.55	0.20-0.60	\|0.19-0.21	3.0-5.9	\|1.0-2.0	. 32	. 32											
	6-11	30-40	\|1.45-1.55	0.20-0.60	\|0.19-0.21	3.0-5.9	\|1.0-2.0	. 32	. 32											
	11-26	40-50	\|1.40-1.50	0.06-0.20	\|0.14-0.16	6.0-8.9	\|1.0-2.0	. 20	. 20		\|									
	26-35	40-50	\|1.40-1.50	0.06-0.20	\|0.14-0.16	6.0-8.9	\|1.0-2.0	. 20	. 20		\|									
	35-65	35-50	\|1.40-1.50	0.06-0.20	\|0.14-0.16	6.0-8.9	\|1.0-2.0	. 20	. 20											
355:																				
Rizno--------------	0-3	10-18	\|1.45-1.55	2.00-6.00	\|0.11-0.13	0.0-2.9	\|0.5-1.0	. 24	. 24	1	3	86								
	3-8	10-18	\|1.45-1.55	2.00-6.00	\|0.11-0.13	0.0-2.9	\|0.5-1.0	. 24	. 24											
	8-20	-	.	0.20-2.00	---	---	---	---	---		\|									
Tekapo-	0-2	28-40	\|1.15-1.25	0.20-0.60	\|0.15-0.17	3.0-5.9	\|0.5-1.0	. 20	. 37	2	5	56								
	2-10	35-50	\|1.40-1.50	0.06-0.60	\|0.15-0.17	6.0-8.9	\|0.2-1.0	. 24	. 24		\|									
	10-20	---	---	0.00-0.20	---	---	---	---	---		\|									
Rock outcrop--	0	---	-	0.00-0.20	--	---	---	---	---	-	---	---								
357:																				
Heshotauthla-------	0-3	40-50	\|1.40-1.50	0.06-0.20	\|0.14-0.16	3.0-5.9	\|1.0-2.0	. 20	. 20	5	4	86								
	3-18	50-60	\|1.40-1.50	0.00-0.06	\| 0.10-0.12	6.0-8.9	\|1.0-2.0	. 20	. 20											
	18-65	50-60	\|1.40-1.50	0.00-0.06	\|0.07-0.08	6.0-8.9	\| $0.2-1.0$	. 20	. 20		\|									
360 :																				
Hosta--------------	0-2	10-26	\|1.45-1.55	0.60-2.00	\|0.16-0.18	0.0-2.9	\|1.0-2.0	. 37	. 37	5	5	56								
	2-4	30-40	\|1.40-1.50	0.20-0.60	\|0.19-0.21	3.0-5.9	\|0.5-1.0	. 32	. 32		\|									
	4-24	30-40	\|1.40-1.50	0.20-0.60	\|0.19-0.21	3.0-5.9	\|0.5-1.0	. 32	. 32											
	24-51	40-55	\|1.30-1.40	0.06-0.20	\|0.14-0.16	6.0-8.9	\|0.5-1.0	. 20	. 20											
	51-65	20-30	\|1.50-1.60	0.60-2.00	\|0.14-0.16	3.0-5.9	\|0.5-1.0	. 32	. 32		\|									
Concho-	0-1	30-40	\|1.25-1.35	0.20-0.60	\|0.19-0.21	3.0-5.9	\|2.0-3.0	. 32	. 32	5	4	86								
	1-5	40-55	\|1.30-1.40	0.06-0.20	\|0.14-0.16	6.0-8.9	\|1.0-2.0	. 20	. 20		\|									
	5-32	40-55	\|1.25-1.35	0.06-0.20	\|0.14-0.16	6.0-8.9	\|0.5-1.0	. 20	. 20		\|									
	$32-51$	40-55	\|1.25-1.35	0.06-0.20	\|0.14-0.16	6.0-8.9	\|0.5-1.0	. 20	. 20											
	51-65	40-55	\|1.25-1.35	0.06-0.20	\|0.14-0.16	6.0-8.9	\|0.5-1.0	. 20	. 20		\|									
361:																				
Monpark------------	0-4	40-55	\|1.10-1.20	0.06-0.20	\|0.15-0.17	6.0-8.9	\|0.5-1.0	. 24	. 24	3	4	86								
	4-7	35-55	\|1.25-1.35	0.06-0.20	\|0.15-0.17	6.0-8.9	\|0.5-1.0	. 24	. 24		\|									
	7-27	40-60	\|1.25-1.35	0.06-0.06	\|0.14-0.16	6.0-8.9	\|0.5-1.0	. 20	. 20		\|									
	27-40	-	---	0.00-0.20	---	---	---	---	---		\|									
365:																				
Vessilla----------	0-2	10-20	\|1.50-1.60	2.00-6.00	\|0.13-0.15	0.0-2.9	\|0.5-1.0	. 28	. 28	1	3	86								
	2-6	10-20	\|1.50-1.60	2.00-6.00	\|0.13-0.15	0.0-2.9	\|0.5-1.0	. 28	. 28		\|									
	6-15	10-20	\|1.50-1.60	2.00-6.00	\|0.13-0.15	0.0-2.9	\|0.5-1.0	. 28	. 28		\|									
	15-20	-	---	0.20-2.00	---	---	---	---	---		\|									
											\|									
Rock outcrop-------	0	---	---	0.00-0.20	---	---	---	---	---	-	---	---								
											\|									

Table 15.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Clay | Moist bulk density | Permeability <br> (Ksat) | $\mid$ Available <br> \| water <br> \| capacity | Linear extensibility | \|Organic <br> matter | \|Erosion factors |  |  | \|Wind |erodi|bility |group | \|Wind |erodi|bility |index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | Kw | Kf | T |  |  |
|  | In | Pct | $\mathrm{g} / \mathrm{cc}$ | In/hr | In/in | Pct | Pct |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 366: |  |  |  |  |  |  |  |  |  |  |  |  |
| Bosonoak----------- | 0-2 | 20-27 | --- | 0.60-2.00 | \|0.16-0.18 | 0.0-2.9 | \|0.5-1.0 | . 37 | . 37 | 5 | 4L | 86 |
|  | 2-5 | 30-35 | --- | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|0.0-0.5 | . 32 | . 32 |  |  |  |
|  | 5-28 | 30-35 | --- | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|0.0-0.5 | . 32 | . 32 |  |  |  |
|  | 28-40 | 15-27 | --- | 0.60-2.00 | \|0.16-0.18 | 0.0-2.9 | 10.0-0.5 | . 37 | . 37 |  |  |  |
|  | 40-63 | 15-27 | --- | 0.60-2.00 | \|0.16-0.18 | 0.0-2.9 | \|0.0-0.5 | . 37 | . 37 |  |  |  |
|  | 63-80 | 20-27 | --- | 0.60-2.00 | \|0.19-0.21 | 0.0-2.9 | \|0.0-0.5 | . 43 | . 43 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 367: |  |  |  |  |  |  |  |  |  |  |  |  |
| Chunkmonk---------- | 0-1 | 5-15 | \|1.45-1.55 | 2.00-6.00 | \|0.09-0.11 | 0.0-2.9 | \|0.5-1.0 | . 10 | . 28 | 1 | 4L | 86 |
|  | 1-4 | 10-25 | \|1.30-1.40 | 0.60-2.00 | \|0.09-0.11 | 0.0-2.9 | \|0.5-1.0 | . 10 | . 37 |  |  |  |
|  | 4-8 | 10-25 | \|1.30-1.40 | 0.60-2.00 | \|0.14-0.16 | 0.0-2.9 | \|0.5-0.5 | . 20 | . 37 |  |  |  |
|  | 8-10 | 10-25 | \|1.30-1.40 | 0.60-2.00 | \|0.14-0.16 | 0.0-2.9 | \|0.5-0.5 | . 20 | . 37 |  |  |  |
|  | 10-20 | --- | --- | 0.00-0.60 | --- | --- | --- | --- | --- |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 368: |  |  |  |  |  |  |  |  |  |  |  |  |
| Simitarq---------- | 0-1 | 5-18 | \|1.25-1.35 | 2.00-6.00 | \| 0.12-0.14 | 0.0-2.9 | \|0.5-0.9 | . 24 | . 28 | 1 | 3 | 86 |
|  | 1-6 | 20-35 | \|1.30-1.35 | 0.60-2.00 | \|0.13-0.14 | 3.0-5.9 | \|0.1-0.5 | . 32 | . 32 |  |  |  |
|  | 6-14 | 35-45 | \|1.30-1.35 | 0.20-0.60 | \|0.14-0.16 | 6.0-8.9 | \|0.1-0.5 | . 32 | . 32 |  |  |  |
|  | 14-20 | --- | - | 0.20-2.00 | --- | - | --- | --- | --- |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Celavar------------- | 0-1 | --- | - | 6.00-20.00 | - | --- | --- | --- | --- | 2 | 3 | 86 |
|  | 1-2 | 10-20 | \|1.25-1.35 | 2.00-6.00 | \|0.11-0.13 | 0.0-2.9 | \|0.5-1.0 | . 24 | . 24 |  |  |  |
|  | 2-11 | 20-30 | \|1.35-1.45 | 0.60-2.00 | \|0.14-0.16 | 0.0-2.9 | \|0.5-0.5 | . 32 | . 32 |  |  | \| |
|  | 11-27 | 20-30 | \|1.55-1.65 | 0.60-2.00 | \|0.14-0.16 | 0.0-2.9 | \|0.5-0.5 | . 32 | . 32 |  |  |  |
|  | 27-31 | 25-35 | \|1.55-1.65 | 0.60-2.00 | \|0.14-0.16 | 3.0-5.9 | \|0.5-0.5 | . 32 | . 32 |  |  |  |
|  | 31-40 | --- | --- | 0.20-2.00 | \| --- | --- | --- | -- | --- |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| $375:$ |  |  |  |  |  |  |  |  |  |  |  |  |
| Todest------------- | 0-1 | 10-15 | \|1.50-1.60 | 2.00-6.00 | \|0.13-0.15 | 0.0-2.9 | 10.5-0.9 | . 28 | . 28 | 2 | 3 | 86 |
|  | 1-3 | 10-20 | \|1.50-1.60 | 2.00-6.00 | \|0.13-0.15 | 0.0-2.9 | \|0.1-0.5 | . 28 | . 28 |  |  |  |
|  | 3-10 | 20-35 | \|1.45-1.55 | 0.60-2.00 | \|0.14-0.16 | 0.0-2.9 | \|0.1-0.5 | . 32 | . 32 |  |  |  |
|  | 10-18 | 20-35 | \|1.45-1.55 | 0.60-2.00 | \|0.14-0.16 | 0.0-2.9 | \|0.1-0.5 | . 32 | . 32 |  |  |  |
|  | 18-25 | 10-20 | \|1.45-1.55 | 0.60-2.00 | \|0.15-0.17 | 0.0-2.9 | \|0.1-0.5 | . 37 | . 37 |  |  |  |
|  | 25-40 |  | \| | 0.00-0.60 | - | --- | \| --- | --- | --- |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Shadilto----------- | 0-1 | 8-18 | \|1.45-1.65 | 2.00-6.00 | 10.05-0.06 | 0.0-2.9 | \|0.1-0.5 | . 15 | . 24 | 1 | 6 | 48 |
|  | 1-9 | 8-18 | \|1.45-1.65 | 2.00-6.00 | \|0.10-0.12 | 0.0-2.9 | \|0.1-0.5 | . 24 | . 24 |  |  |  |
|  | 9-13 | 8-18 | \|1.45-1.65 | 2.00-6.00 | \|0.10-0.12 | 0.0-2.9 | \|0.1-0.5 | . 24 | . 24 |  |  |  |
|  | 13-15 | 8-18 | \|1.45-1.65 | 2.00-6.00 | \|0.10-0.12 | 0.0-2.9 | \|0.1-0.5 | . 24 | . 24 |  |  | \| |
|  | 15-20 | -- | --- | 0.00-0.60 | \| --- | --- | \| --- | --- | --- |  |  | \| |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 376: |  |  |  |  |  |  |  |  |  |  |  |  |
| Todest------------- | 0-1 | 10-20 | \|1.50-1.60 | 2.00-6.00 | \| 0.12-0.14 | 0.0-2.9 | \|0.5-0.9 | . 28 | . 28 | 2 | 3 | 86 |
|  | 1-8 | 20-35 | \|1.45-1.55 | 0.60-2.00 | \|0.14-0.16 | 0.0-2.9 | \|0.1-0.5 | . 32 | . 32 |  |  | \| |
|  | 8-14 | 20-35 | \|1.45-1.55 | 0.60-2.00 | \|0.13-0.14 | 0.0-2.9 | \|0.1-0.5 | . 32 | . 32 |  |  | \| |
|  | 14-24 | 20-35 | \|1.45-1.55 | 0.60-2.00 | \|0.13-0.14 | 0.0-2.9 | \|0.1-0.5 | . 15 | . 32 |  |  | \| |
|  | 24-40 | --- | --- | 0.00-0.60 | --- | -- | --- | --- | --- |  |  | \| |
|  |  |  | \| |  |  |  |  |  |  |  |  | \| |
| 380: |  |  |  |  |  |  |  |  |  |  |  |  |
| Berryhill---------- | 0-2 | 40-50 | \|1.25-1.35 | 0.06-0.20 | \|0.13-0.15 | 6.0-8.9 | \|0.5-1.0 | . 20 | . 20 | 5 | 4 | 86 |
|  | 2-12 | 45-60 | \|1.40-1.50 | 0.01-0.06 | \|0.13-0.15 | 6.0-8.9 | \|0.5-1.0 | . 20 | . 20 |  |  | \| |
|  | 12-26 | 45-60 | \|1.40-1.50 | 0.01-0.06 | \|0.13-0.15 | 6.0-8.9 | \|0.5-1.0 | . 20 | . 20 |  |  | \| |
|  | 26-39 | 45-60 | \|1.40-1.50 | 0.01-0.06 | \|0.13-0.15 | 6.0-8.9 | \|0.2-0.5 | . 20 | . 20 |  |  | \| |
|  | 39-70 | 45-60 | \|1.40-1.50 | 0.01-0.06 | \|0.13-0.15 | 6.0-8.9 | \|0.2-0.5 | . 20 | . 20 |  |  | \| |
|  |  |  |  |  |  |  |  |  |  |  |  | \| |

Table 15.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Clay |  | Permeability <br> (Ksat) | $\mid$ Available <br> $\mid$ water <br> $\mid$ capacity | Linear extensibility | \|Organic <br> \| matter | \|Erosion factors |  |  | \|Wind |erodi|bility |group | \|Wind |erodi|bility |index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Moist |  |  |  |  |  |  |  |  |  |
|  |  |  | bulk |  |  |  |  |  |  |  |  |  |
|  |  |  | density |  |  |  |  | Kw | Kf | T |  |  |
|  | In | Pct | g/cc | In/hr | In/in | Pct | Pct |  |  |  | \| |  |
|  |  |  |  |  |  |  |  |  |  |  | \| |  |
| 380: |  |  |  |  |  |  |  |  |  |  |  |  |
| Casamero----------- | 0-3 | 45-60 | \|1.25-1.35 | 0.06-0.20 | \|0.13-0.15 | 6.0-8.9 | \|0.5-1.0 | . 20 | . 20 | 2 | 4 | 86 |
|  | 3-11 | 50-70 | \|1.40-1.50 | 0.01-0.06 | \|0.13-0.15 | 6.0-8.9 | \|0.5-0.5 | . 20 | . 20 |  | \| |  |
|  | 11-18 | 50-70 | \|1.40-1.50 | 0.01-0.06 | \|0.13-0.15 | 6.0-8.9 | \|0.5-0.5 | . 20 | . 20 |  | \| |  |
|  | 18-20 | -- | \| --- | 0.00-0.20 | --- | --- | --- | --- | --- |  | \| |  |
|  |  |  |  |  |  |  |  |  |  |  | \| |  |
| 385: |  |  |  |  |  |  |  |  |  |  |  |  |
| Mcorreon----------- | 0-2 | 20-27 | \|1.25-1.35 | 0.60-2.00 | \|0.03-0.04 | 0.0-2.9 | \|0.5-2.0 | . 05 | . 37 | 5 | 8 | 0 |
|  | 2-5 | 30-40 | \|1.25-1.35 | 0.20-0.60 | \|0.18-0.20 | 3.0-5.9 | \|0.5-2.0 | . 32 | . 32 |  | \| |  |
|  | 5-16 | 40-60 | \|1.35-1.45 | 0.06-0.20 | \|0.14-0.16 | 6.0-8.9 | \|0.5-2.0 | . 20 | . 20 |  | \| |  |
|  | 16-22 | 40-60 | \|1.35-1.45 | 0.06-0.20 | \|0.14-0.16 | 6.0-8.9 | \|0.5-1.0 | . 20 | . 20 |  | \| |  |
|  | 22-70 | 40-60 | \|1.35-1.45 | 0.06-0.20 | \|0.13-0.14 | 6.0-8.9 | \|0.5-1.0 | . 20 | . 20 |  | \| |  |
|  | 70-74 | - | --- | 0.00-0.60 | --- | --- | --- | --- | --- |  | \| |  |
|  |  |  |  |  |  |  |  |  |  |  | \| |  |
| Rock outcrop- | 0 | --- | - | 0.00-0.00 | -- | - | --- | --- | --- | - | --- | --- |
|  |  |  |  |  |  |  |  |  |  |  | \| |  |
| 390: |  |  |  |  |  |  |  |  |  |  |  |  |
| Banquito---------- | 0-2 | 10-20 | \|1.35-1.50 | 0.60-2.00 | \|0.15-0.17 | 0.0-2.9 | \|0.5-1.0 | . 55 | . 55 | 2 | 3 | 86 |
|  | 2-9 | 25-35 | \|1.25-1.40 | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|0.2-0.5 | . 32 | . 32 |  | \| |  |
|  | 9-17 | 20-27 | \|1.25-1.40 | 0.60-2.00 | \|0.16-0.18 | 0.0-2.9 | \|0.2-0.5 | . 37 | . 37 |  | \| |  |
|  | 17-22 | 20-30 | \|1.25-1.40 | 0.60-2.00 | \|0.14-0.16 | 3.0-5.9 | \|0.2-0.5 | . 32 | . 32 |  | \| |  |
|  | 22-36 | 10-20 | \|1.35-1.50 | 2.00-6.00 | \| 0.11-0.13 | 0.0-2.9 | \|0.2-0.5 | . 24 | . 24 |  | \| |  |
|  | 36-40 | - | \| --- | 0.01-20.00 | \| --- |  | \| --- | --- | --- |  | \| |  |
|  |  |  |  |  |  |  |  |  |  |  | \| |  |
| 395: |  |  |  |  |  |  |  |  |  |  |  |  |
| Cabezon------------ | 0-2 | 20-27 | \|1.25-1.35 | 0.60-2.00 | \|0.08-0.09 | 0.0-2.9 | \|0.5-2.0 | . 10 | . 37 | 1 | 8 | 0 |
|  | 2-6 | 35-40 | \|1.30-1.40 | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|0.5-1.0 | . 32 | . 32 |  | \| |  |
|  | 6-14 | 40-60 | \|1.35-1.45 | 0.06-0.20 | \| 0.13-0.14 | 6.0-8.9 | \|0.5-1.0 | . 15 | . 20 |  | \| |  |
|  | 14-17 | --- | --- | 0.00-0.06 | --- | --- | --- | --- | --- |  | \| |  |
|  | 17-20 | --- | --- | 0.00-0.06 | --- | --- | --- | --- | --- |  | \| |  |
|  |  |  |  |  |  |  |  |  |  |  | \| |  |
| Mcorreon----------- | 0-2 | 20-27 | \|1.25-1.35 | 0.60-2.00 | \|0.14-0.16 | 0.0-2.9 | \|0.5-2.0 | . 24 | . 37 | 5 | 6 | 48 |
|  | 2-13 | 40-60 | \|1.35-1.45 | 0.06-0.20 | \|0.14-0.16 | 6.0-8.9 | \|0.5-2.0 | . 20 | . 20 |  | \| |  |
|  | 13-19 | 40-60 | \|1.35-1.45 | 0.06-0.20 | \|0.13-0.14 | 6.0-8.9 | \|0.5-2.0 | . 15 | . 20 |  | \| |  |
|  | 19-27 | 30-40 | \|1.25-1.35 | 0.20-0.60 | \|0.18-0.20 | 3.0-5.9 | \|0.5-1.0 | . 28 | . 32 |  | \| |  |
|  | 27-70 | 30-40 | \|1.25-1.36 | 0.20-0.60 | \|0.18-0.20 | 3.0-5.9 | \| 0.5-1.0 | . 28 | . 32 |  | \| |  |
|  | 70-80 | --- | \| --- | 0.00-0.60 | \| --- | --- | \| --- | --- | --- |  | \| |  |
|  |  |  |  |  |  |  |  |  |  |  | \| |  |
| 400: |  |  |  |  |  |  |  |  |  |  |  |  |
| Shoemaker---------- | 0-2 | 5-15 | \|1.50-1.60 | 2.00-6.00 | \|0.13-0.15 | 0.0-2.9 | \|2.0-3.0 | . 20 | . 20 | 2 | 2 | 134 |
|  | 2-7 | 10-20 | \|1.45-1.55 | 2.00-6.00 | \|0.13-0.15 | 0.0-2.9 | \|1.0-2.0 | . 28 | . 28 |  | \| |  |
|  | 7-20 | 20-30 | \|1.50-1.60 | 0.60-2.00 | \|0.14-0.16 | 0.0-2.9 | \|0.5-1.0 | . 32 | . 32 |  | \| |  |
|  | $20-28$ | 25-35 | \|1.50-1.60 | 0.60-2.00 | \|0.14-0.16 | 0.0-2.9 | \|0.2-1.0 | . 32 | . 32 |  | \| |  |
|  | 28-40 | --- | --- | 0.00-0.06 | --- | --- | --- | --- | --- |  | , |  |
|  |  |  |  |  |  |  |  |  |  |  | \| |  |
| Stozuni----------- | 0-2 | 6-18 | \|1.40-1.50 | 2.00-6.00 | \|0.11-0.13 | 0.0-2.9 | \|1.0-2.0 | . 24 | . 24 | 1 | 3 | 86 |
|  | 2-10 | 6-18 | \|1.40-1.50 | 2.00-6.00 | \|0.13-0.15 | 0.0-2.9 | \|0.5-1.0 | . 28 | . 28 |  | \| |  |
|  | 10-15 | 6-18 | \|1.40-1.50 | 2.00-6.00 | \|0.13-0.15 | 0.0-2.9 | \|0.2-1.0 | . 28 | . 28 |  | \| |  |
|  | 15-20 | - | --- | 0.00-0.20 | --- | --- | --- | --- | --- |  | \| |  |
|  |  |  |  |  |  |  |  |  |  |  | \| |  |

Table 15.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Clay | \| | Permeability (Ksat) |  | Linear extensibility | \|Organic <br> \| matter | \| Erosion factors |  |  | \|Wind |erodi|bility |group | \|Wind |erodi|bility |index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Moist |  | \|Available |  |  |  |  |  |  |  |
|  |  |  | bulk |  | \| water |  |  |  |  |  |  |  |
|  |  |  | density |  | \| capacity |  |  | Kw | Kf | T |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | In | Pct | $\mathrm{g} / \mathrm{CC}$ | In/hr | In/in | Pct | Pct |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 403: |  |  |  |  |  |  |  |  |  |  |  |  |
| Valnor------------- | 0-2 | 27-35 | \|1.25-1.35 | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|1.0-2.0 | . 32 | . 32 | 3 | 4 | 86 |
|  | $2-4$ | 27-35 | \|1.45-1.55 | 0.20-0.60 | \| 0.19-0.21 | 3.0-5.9 | \|0.5-1.0 | . 32 | . 32 |  |  |  |
|  | 4-20 | 40-60 | \|1.35-1.45 | 0.06-0.20 | \|0.14-0.16 | 6.0-8.9 | \|0.5-1.0 | . 20 | . 20 |  |  |  |
|  | 20-34 | 40-60 | \|1.35-1.45 | 0.06-0.20 | \| 0.14-0.16 | 6.0-8.9 | \|0.5-1.0 | . 20 | . 20 |  |  |  |
|  | 34-40 | --- | --- | 0.00-0.20 | --- | --- | \| --- | --- | --- |  |  |  |
|  |  |  |  |  |  |  | 1 |  |  |  |  |  |
| Techado------------- | 0-3 | 40-60 | \|1.20-1.30 | 0.06-0.20 | \|0.11-0.12 | 6.0-8.9 | \|1.0-2.0 | . 10 | . 20 | 2 | 4 L | 86 |
|  | 3-13 | 40-60 | \|1.25-1.40 | 0.06-0.20 | \| 0.14-0.16 | 6.0-8.9 | \|0.5-1.0 | . 20 | . 20 |  |  |  |
|  | 13-20 | --- | --- | 0.00-0.20 | --- | --- | \| --- | --- | --- |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 404: |  |  |  |  |  |  |  |  |  |  |  |  |
| Rock outcrop------- | 0 | --- | _-_ | 0.00-0.20 | -- | - | --- | --- | --- | - | --- | --- |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 0-5 | 27-40 | \|1.35-1.40 | 0.20-0.60 | \| 0.16-0.18 | 3.0-5.9 | \|1.0-2.0 | . 15 | . 32 | 2 | 4 L | 86 |
| Techado------------ | 5-8 | 40-60 | \|1.30-1.40 | 0.06-0.20 | \| $0.14-0.16$ | 6.0-8.9 | \|0.5-1.0 | . 20 | . 20 |  |  |  |
|  | 8-17 | 40-60 | \|1.30-1.40 | 0.06-0.20 | \| 0.14-0.16 | 6.0-8.9 | \|0.5-1.0 | . 20 | . 20 |  |  |  |
|  | 17-20 | --- | --- | 0.00-0.06 | --- | --- | \| --- | --- | --- |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Stozuni------------ | 0-1 | 6-18 | \|1.40-1.50 | 2.00-6.00 | \| 0.08-0.10 | 0.0-2.9 | \|1.0-2.0 | . 15 | . 24 | 1 | 4 | 86 |
|  | 1-7 | 6-18 | \|1.40-1.50 | 2.00-6.00 | \| 0.09-0.10 | 0.0-2.9 | \|0.2-1.0 | . 15 | . 24 |  |  |  |
|  | 7-20 | --- | _-- | 0.20-2.00 | \| --- | --- | \| --- | --- | --- |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 405: |  |  |  |  |  |  |  |  |  |  |  |  |
| Fortwingate | 0-1 | --- | -- | 6.00-20.00 | - | --- | --- | --- | --- | 2 | 5 | 56 |
|  | 1-4 | 15-25 | \|1.15-1.25 | 0.60-2.00 | \| 0.13-0.15 | 0.0-2.9 | \|1.0-2.0 | . 32 | . 37 |  |  |  |
|  | 4-9 | 30-40 | \|1.35-1.45 | 0.20-0.60 | \| 0.17-0.19 | 6.0-8.9 | \|0.5-1.0 | . 32 | . 32 |  |  |  |
|  | 9-26 | 40-50 | \|1.25-1.35 | 0.06-0.20 | \| 0.12-0.14 | 6.0-8.9 | \|0.5-1.0 | . 20 | . 20 |  |  |  |
|  | 26-40 | --- | \| --- | 0.00-0.60 | \| --- |  | \| --- | _-_ | --- |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Owlrock------------ | 0-1 | 10-20 | \|1.15-1.25 | 0.60-2.00 | \|0.06-0.08 | 0.0-2.9 | \|1.0-2.0 | . 10 | . 37 | 1 | 6 | 86 |
|  | 1-6 | 18-25 | \|1.25-1.35 | 0.60-2.00 | \| 0.13-0.15 | $0.0-2.9$ | \|1.0-2.0 | . 10 | . 37 |  |  |  |
|  | 6-13 | 18-25 | \|1.25-1.35 | 0.60-2.00 | \| 0.13-0.15 | 0.0-2.9 | \|1.0-2.0 | . 10 | . 37 |  |  |  |
|  | 13-20 | --- | \| --- | 0.00-0.60 | \| --- | --- | \| --- | _-- | --- |  |  |  |
|  |  |  |  |  |  |  | 1 |  |  |  |  |  |
| 406: |  |  |  |  |  |  |  |  |  |  |  |  |
| Polich------------- | 0-13 | 15-27 | \|1.15-1.25 | 0.60-2.00 | \|0.19-0.21 | 3.0-5.9 | \|1.0-3.0 | . 43 | . 43 | 5 | 6 | 48 |
|  | 13-23 | 20-27 | \|1.20-1.30 | 0.60-2.00 | \| 0.16-0.18 | 3.0-5.9 | \|1.0-2.0 | . 37 | . 37 |  |  |  |
|  | 23-40 | 30-40 | \|1.25-1.35 | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|1.0-2.0 | . 32 | . 32 |  |  |  |
|  | 40-48 | 30-40 | \|1.25-1.35 | 0.20-0.60 | \| 0.19-0.21 | 3.0-5.9 | \|1.0-2.0 | . 32 | . 32 |  |  |  |
|  | 48-58 | 30-50 | \|1.30-1.40 | 0.20-0.60 | \|0.19-0.21 | 6.0-8.9 | \|0.5-0.5 | . 32 | . 32 |  | \| |  |
|  | 58-70 | 20-27 | \|1.30-1.40 | 0.60-2.00 | \| 0.16-0.18 | 3.0-5.9 | \|0.5-0.5 | . 37 | . 37 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 407: |  |  |  |  |  |  |  |  |  |  |  |  |
| Cinnadale---------- | 0-2 | 10-18 | \|1.25-1.35 | 2.00-6.00 | \|0.09-0.11 | 0.0-2.9 | \|0.5-1.0 | . 10 | . 28 | 1 | 4 L | 86 |
|  | 2-9 | 10-18 | \|1.35-1.45 | 2.00-6.00 | \| 0.08-0.10 | 0.0-2.9 | \|0.5-0.5 | . 10 | . 28 |  | \| |  |
|  | 9-15 | 10-18 | \|1.35-1.45 | 2.00-6.00 | \| $0.08-0.10$ | 0.0-2.9 | \|0.5-0.5 | . 10 | . 28 |  |  |  |
|  | 15-20 | --- | --- | 0.20-2.00 | --- | --- | \| --- | --- | --- |  |  |  |
|  |  |  |  |  |  |  | 1 |  |  |  |  |  |
| Heckly------------- | 0-3 | 10-20 | \|1.45-1.55 | 2.00-6.00 | \|0.05-0.07 | 0.0-2.9 | \|0.5-1.0 | . 05 | . 24 | 2 | 8 | 0 |
|  | 3-15 | 40-50 | \|1.25-1.35 | 0.06-0.20 | \| 0.12-0.14 | 6.0-8.9 | \|0.5-0.5 | . 10 | . 20 |  |  |  |
|  | 15-38 | 30-40 | \|1.25-1.35 | 0.20-0.60 | \| $0.14-0.16$ | 3.0-5.9 | \|0.5-0.5 | . 15 | . 37 |  |  |  |
|  | 38-40 | --- | --- | 0.20-2.00 | --- | --- | \| --- | --- | --- |  |  |  |
|  |  |  |  |  | 1 |  | - |  |  |  |  |  |

Table 15.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Clay |  | Permeability (Ksat) | $\mid$ Available <br> $\mid$ water <br> $\mid$ capacity | Linear extensibility | \|Organic <br> \| matter | \|Erosion factors |  |  | \|Wind |erodi|bility |group | \|Wind |erodi|bility |index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Moist |  |  |  |  |  |  |  |  |  |
|  |  |  | bulk |  |  |  |  |  |  |  |  |  |
|  |  |  | density |  |  |  |  | Kw | Kf | T |  |  |
|  | In | Pct | $\mathrm{g} / \mathrm{cc}$ | In/hr | In/in | Pct | Pct |  |  |  |  |  |
| 408: |  |  |  |  |  |  |  |  |  |  |  |  |
| Mirabal------------ | 0-1 | --- | --- | 6.00-20.00 | --- | --- | --- | --- | --- | 2 | 8 | 0 |
|  | 1-2 | 5-10 | \|1.30-1.40 | 6.00-20.00 | \| 0.01-0.03 | 0.0-2.9 | \|0.5-1.0 | . 02 | . 17 |  |  |  |
|  | 2-6 | 8-15 | \|1.35-1.45 | 2.00-6.00 | \|0.08-0.10 | 0.0-2.9 | \|0.5-0.5 | . 15 | . 24 |  | , |  |
|  | 6-13 | 8-15 | \|1.35-1.45 | 2.00-6.00 | \|0.06-0.08 | 0.0-2.9 | \|0.5-0.5 | . 10 | . 24 |  | \| |  |
|  | 13-30 | 8-15 | \|1.35-1.45 | 2.00-6.00 | \| 0.03-0.05 | 0.0-2.9 | \|0.5-0.5 | . 05 | . 24 |  | \| |  |
|  | 30-40 | --- | --- | 0.00-20.00 | --- | --- | --- | --- | --- |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Zuni- | 0-1 | --- | --- | 6.00-20.00 | --- | --- | --- | --- | --- | 2 | 4 | 86 |
|  | 1-3 | 10-15 | \|1.25-1.35 | 2.00-6.00 | \|0.09-0.11 | 0.0-2.9 | \|0.5-1.0 | . 10 | . 24 |  |  |  |
|  | 3-18 | 35-50 | \|1.25-1.35 | 0.06-0.20 | \| 0.12-0.14 | 6.0-8.9 | \|0.5-0.5 | . 15 | . 32 |  | \| |  |
|  | 18-27 | 35-50 | \|1.35-1.45 | 0.06-0.20 | \| 0.11-0.13 | 6.0-8.9 | \|0.5-0.5 | . 17 | . 32 |  | \| |  |
|  | 27-40 | --- | - | 0.00-0.20 | --- | - | --- | --- | --- |  | \| |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 409: |  |  |  |  |  |  |  |  |  |  |  |  |
| Rauster------------ | 0-1 | 30-40 | \|1.35-1.45 | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|1.0-2.0 | . 32 | . 32 | 5 | 5 | 56 |
|  | 1-5 | 40-50 | \|1.25-1.35 | 0.06-0.20 | \|0.14-0.16 | 6.0-8.9 | \|1.0-2.0 | . 20 | . 20 |  | \| |  |
|  | 5-28 | 40-50 | \|1.25-1.35 | 0.06-0.20 | \|0.14-0.16 | 6.0-8.9 | \|1.0-2.0 | . 20 | . 20 |  | \| |  |
|  | 28-55 | 40-50 | \|1.25-1.35 | 0.01-0.06 | \|0.14-0.16 | 6.0-8.9 | \| $0.5-1.0$ | . 20 | . 20 |  | \| |  |
|  | 55-60 | --- | - | 0.00-0.06 | --- | - | --- | --- | --- |  | \| |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Rock outcrop- | 0 | --- | - | 0.00-0.20 | - | --- | --- | --- | --- | - | --- | --- |
| 410: |  |  |  |  |  |  |  |  |  |  |  |  |
| Montillo----------- | 0-3 | 15-27 | \|1.25-1.35 | 0.60-2.00 | \|0.10-0.12 | 0.0-2.9 | \|2.0-5.0 | . 10 | . 37 | 2 | 7 | 38 |
|  | 3-8 | 35-40 | \|1.15-1.25 | 0.20-0.60 | \|0.15-0.17 | 3.0-5.9 | \|2.0-4.0 | . 37 | . 37 |  | \| |  |
|  | 8-15 | 40-60 | \|1.35-1.45 | 0.06-0.20 | \|0.12-0.14 | 6.0-8.9 | \|1.0-3.0 | . 24 | . 24 |  | \| |  |
|  | 15-27 | 50-70 | \|1.35-1.45 | 0.06-0.20 | \|0.13-0.15 | 6.0-8.9 | \|1.0-3.0 | . 20 | . 20 |  | \| |  |
|  | 27-32 | 40-60 | \|1.40-1.50 | 0.06-0.20 | \|0.09-0.10 | 6.0-8.9 | \|1.0-3.0 | . 05 | . 20 |  |  |  |
|  | 32-40 | --- | --- | 0.01-20.00 | \| --- | --- | --- | --- | --- |  | \| |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Tsoodzil----------- | 0-3 | 15-27 | \|1.20-1.30 | 0.60-2.00 | \|0.11-0.12 | 0.0-2.9 | \|2.0-5.0 | . 15 | . 43 | 5 | 8 | 0 |
|  | 3-10 | 30-40 | \|1.50-1.60 | 0.20-0.60 | \|0.11-0.12 | 3.0-5.9 | \|2.0-3.0 | . 32 | . 37 |  | \| |  |
|  | 10-21 | 60-70 | \|1.30-1.40 | 0.06-0.20 | \|0.13-0.15 | 6.0-8.9 | \|1.0-3.0 | . 20 | . 20 |  | \| |  |
|  | 21-46 | 60-70 | \|1.30-1.40 | 0.06-0.20 | \|0.13-0.15 | 6.0-8.9 | \|0.5-1.0 | . 17 | . 20 |  |  |  |
|  | 46-70 | 35-55 | \|1.40-1.50 | 0.20-0.60 | \|0.14-0.16 | 6.0-8.9 | \|0.2-0.5 | . 24 | . 32 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 411: |  |  |  |  |  |  |  |  |  |  |  |  |
| Ligocki------------ | 0-2 | 10-20 | \|1.25-1.35 | 2.00-6.00 | \|0.13-0.15 | 0.0-2.9 | \|1.0-2.0 | . 28 | . 28 | 5 | 3 | 86 |
|  | 2-8 | 10-20 | \|1.25-1.35 | 2.00-6.00 | \|0.13-0.15 | 0.0-2.9 | \|0.5-1.0 | . 28 | . 28 |  | \| |  |
|  | 8-21 | 40-50 | \|1.25-1.35 | 0.06-0.20 | \|0.14-0.16 | 6.0-8.9 | \|0.5-0.5 | . 20 | . 20 |  | \| |  |
|  | 21-30 | 30-40 | \|1.35-1.45 | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|0.5-0.5 | . 28 | . 32 |  | \| |  |
|  | 30-41 | 20-30 | \|1.35-1.45 | 0.60-2.00 | \|0.11-0.13 | 0.0-2.9 | \|0.5-0.5 | . 20 | . 32 |  | \| |  |
|  | 41-70 | 20-30 | \|1.35-1.45 | 0.60-2.00 | \|0.14-0.16 | 0.0-2.9 | \|0.5-0.5 | . 32 | . 32 |  | \| |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Robolata- | 0-6 | 15-25 | \|1.25-1.35 | 0.60-2.00 | \|0.16-0.18 | 0.0-2.9 | \|1.0-2.0 | . 37 | . 37 | 4 | 5 | 56 |
|  | 6-12 | 20-27 | \|1.25-1.35 | 0.60-2.00 | \|0.16-0.18 | 0.0-2.9 | \|1.0-2.0 | . 37 | . 37 |  | \| |  |
|  | 12-20 | 40-50 | \|1.25-1.35 | 0.06-0.20 | \|0.14-0.16 | 6.0-8.9 | \|1.0-2.0 | . 20 | . 20 |  | \| |  |
|  | 20-30 | 30-40 | \|1.25-1.35 | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|0.5-1.0 | . 32 | . 32 |  | \| |  |
|  | 30-50 | 20-35 | \|1.25-1.35 | 0.60-2.00 | \|0.14-0.16 | 3.0-5.9 | \|0.5-1.0 | . 32 | . 32 |  | \| |  |
|  | 50-70 | 5-15 | \|1.35-1.45 | 2.00-6.00 | \|0.05-0.07 | 0.0-2.9 | \|0.5-0.5 | . 10 | . 24 |  | \| |  |
|  |  |  |  |  |  |  |  |  |  |  | \| |  |

Table 15.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Clay |  | Permeability (Ksat) |  | Linear extensibility | \|Organic <br> \| matter | \|Erosion factors |  |  | \|Wind |erodi|bility |group | \|Wind |erodi|bility |index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Moist |  | \|Available |  |  |  |  |  |  |  |
|  |  |  | bulk |  | \| water |  |  |  |  |  |  |  |
|  |  |  | density |  | capacity |  |  | Kw | Kf | T |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | In | Pct | $\mathrm{g} / \mathrm{Cc}$ | In/hr | In/in | Pct | Pct |  |  |  |  |  |
|  |  |  |  |  | \| |  |  |  |  |  |  | \| |
| 412: |  |  |  |  |  |  |  |  |  |  |  |  |
| Rock outcrop- | 0 | --- | --- | 0.00-0.20 | --- | --- | --- | -- | --- | - | --- | --- |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Rionutria---------- | 0-3 | 15-25 | \|1.15-1.25 | 0.60-2.00 | \|0.10-0.12 | 0.0-2.9 | \|1.0-2.0 | . 15 | . 37 | 2 | 6 | 48 |
|  | 3-12 | 35-40 | \|1.25-1.35 | 0.20-0.60 | \|0.10-0.12 | 3.0-5.9 | \|1.0-2.0 | . 10 | . 32 |  |  |  |
|  | 12-24 | 35-40 | \|1.25-1.35 | 0.20-0.60 | \| 0.11-0.13 | 3.0-5.9 | \|0.5-1.0 | . 10 | . 32 |  |  |  |
|  | 24-40 | --- | --- | 0.00-0.60 | --- | --- | --- | --- | --- |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Zaster-------------- | 0-3 | 10-20 | \|1.15-1.25 | 2.00-6.00 | \|0.04-0.06 | 0.0-2.9 | \|0.5-1.0 | . 05 | . 37 | 2 | 8 | 0 |
|  | 3-11 | 10-20 | \|1.25-1.35 | 2.00-6.00 | \|0.13-0.15 | 0.0-2.9 | \|0.5-1.0 | . 20 | . 37 |  |  |  |
|  | 11-27 | 10-20 | \|1.25-1.35 | 2.00-6.00 | \|0.05-0.07 | 0.0-2.9 | \|0.5-0.5 | . 05 | . 37 |  |  |  |
|  | 27-40 | --- | --- | 0.00-0.20 | --- | --- | --- | --- | --- |  |  | \| |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 413 : |  |  |  |  |  |  |  |  |  |  |  |  |
| Morclay------------ | 0-1 | 40-60 | \|1.15-1.25 | 0.06-0.20 | \|0.15-0.17 | 6.0-8.9 | \|0.5-1.0 | . 24 | . 24 | 5 | 4 | 86 |
|  | 1-5 | 40-60 | \|1.35-1.45 | 0.01-0.06 | \| $0.14-0.16$ | 6.0-8.9 | \|0.5-1.0 | . 20 | . 20 |  |  |  |
|  | 5-48 | 40-60 | \|1.35-1.45 | 0.01-0.06 | \|0.14-0.16 | 6.0-8.9 | \|0.5-0.5 | . 20 | . 20 |  |  | \| |
|  | 48-56 | 40-60 | \|1.35-1.45 | 0.01-0.06 | \|0.14-0.16 | 6.0-8.9 | \|0.5-0.5 | . 20 | . 20 |  |  |  |
|  | 56-70 | 40-60 | \|1.35-1.45 | 0.01-0.06 | \|0.14-0.16 | 6.0-8.9 | \|0.5-0.5 | . 20 | . 20 |  |  | \| |
|  | 70-80 | --- | --- | 0.00-0.06 | --- | -- | --- | --- | --- |  |  |  |
|  |  |  |  |  | \| |  |  |  |  |  |  | \| |
| 414: |  |  |  |  |  |  |  |  |  |  |  |  |
| Zunalei------------- | 0-1 | 5-10 | \|1.30-1.40 | 6.00-20.00 | \|0.09-0.11 | 0.0-2.9 | \|1.0-2.0 | . 20 | . 20 | 5 | 2 | 134 |
|  | 1-6 | 10-15 | \|1.35-1.45 | 2.00-6.00 | \|0.13-0.15 | 0.0-2.9 | \|0.5-1.0 | . 28 | . 28 |  |  | \| |
|  | 6-20 | 20-35 | \|1.25-1.35 | 0.60-2.00 | \|0.14-0.16 | 3.0-5.9 | \|0.5-0.5 | . 32 | . 32 |  |  | \| |
|  | 20-50 | 10-20 | \|1.35-1.45 | 2.00-6.00 | \|0.13-0.15 | 0.0-2.9 | \|0.5-0.5 | . 28 | . 28 |  |  | \| |
|  | 50-70 | 10-20 | \|1.35-1.45 | 2.00-6.00 | \|0.13-0.15 | 0.0-2.9 | \|0.5-0.5 | . 28 | . 28 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Corzuni------------ | 0-1 | --- | --- | 6.00-20.00 | \| --- | --- | \| --- | --- | --- | 5 | 2 | 134 |
|  | 1-8 | 5-10 | \|1.30-1.40 | 6.00-20.00 | \|0.09-0.11 | 0.0-2.9 | \|1.0-2.0 | . 20 | . 20 |  |  | \| |
|  | 8-29 | 10-20 | \|1.35-1.45 | 2.00-6.00 | \|0.13-0.15 | 0.0-2.9 | \|0.5-1.0 | . 28 | . 28 |  |  | \| |
|  | 29-45 | 10-20 | \|1.35-1.45 | 2.00-6.00 | \|0.13-0.15 | 0.0-2.9 | \|0.5-0.5 | . 28 | . 28 |  |  | \| |
|  | 45-70 | 10-20 | \|1.35-1.45 | 2.00-6.00 | \|0.13-0.15 | 0.0-2.9 | \|0.5-0.5 | . 28 | . 28 |  |  | I |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 415: |  |  |  |  |  |  |  |  |  |  |  |  |
| Tsoodzil----------- | 0-3 | 15-25 | \|1.60-1.70 | 0.60-2.00 | \|0.09-0.10 | 0.0-2.9 | \|2.0-5.0 | . 15 | . 37 | 5 | 8 | 0 |
|  | 3-7 | 30-40 | \|1.55-1.65 | 0.20-0.60 | \| $0.18-0.20$ | 0.0-2.9 | \|2.0-3.0 | . 28 | . 32 |  |  | \| |
|  | 7-22 | 40-60 | \|1.45-1.55 | 1 0.06-0.20 | \|0.11-0.13 | 6.0-8.9 | \|0.5-1.0 | . 10 | . 20 |  |  | , |
|  | 22-65 | 40-60 | \|1.45-1.55 | 0.06-0.20 | \| 0.13-0.14 | 6.0-8.9 | \|0.5-1.0 | . 15 | . 20 |  |  | I |
|  |  |  |  | , |  |  |  |  |  |  |  | , |
| Rubble Land-------- | 0 | --- | --- | \| --- | --- | - | --- | --- | --- | 5 | --- | --- |
|  |  |  |  | 1 |  |  |  |  |  |  |  | \| |
| $416 \text { : }$ |  |  |  |  |  |  |  |  |  |  |  |  |
| Rock outcrop- | 0 | --- | --- | 0.00-0.20 | --- | --- | --- | --- | --- | - | --- | --- |
|  |  |  |  |  | 1 |  |  |  |  |  |  | \| |
| Bluesky------------ | 0-5 | 1-5 | \|1.45-1.55 | \| 20.00-20.00 | \|0.05-0.07 | 0.0-2.9 | \|0.5-0.5 | . 17 | . 17 | 1 | 1 | 220 |
|  | 5-8 | 1-5 | \|1.45-1.55 | \| 20.00-20.00 | \|0.05-0.07 | 0.0-2.9 | \|0.5-0.5 | . 17 | . 17 |  |  | \| |
|  | 8-20 | --- | --- | 1 0.20-2.00 | --- | --- | --- | --- | --- |  |  | \| |
|  |  |  |  | \| |  |  | \| |  |  |  |  | \| |
| 418: |  |  |  |  |  |  |  |  |  |  |  |  |
| Asaayi------------- | 0-1 | --- | --- | 6.00-20.00 | --- | --- | --- | --- | --- | 1 | 4 | 86 |
|  | 1-3 | 5-15 | \|1.25-1.35 | 2.00-6.00 | \|0.11-0.13 | 0.0-2.9 | \|0.5-1.0 | . 10 | . 28 |  |  | \| |
|  | 3-5 | 10-19 | \|1.25-1.35 | 1 2.00-6.00 | \|0.13-0.15 | 0.0-2.9 | \|0.5-0.5 | . 28 | . 28 |  |  | \| |
|  | 5-16 | 30-35 | \|1.25-1.35 | 1 0.20-0.60 | \|0.18-0.20 | 3.0-5.9 | \|0.5-0.5 | . 32 | . 32 |  |  | \| |
|  | 16-20 | --- | --- | 0.20-2.00 | \| --- | --- | \| --- | --- | --- |  |  | \| |
|  |  |  |  |  | \| |  |  |  |  |  |  |  |

Table 15.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Clay |  | Permeability (Ksat) | $\mid$ Available <br> $\mid$ water <br> $\mid$ capacity | Linear extensibility | \|Organic <br> \| matter | \|Erosion factors |  |  | \|Wind <br> \|erodi- <br> \|bility <br> \|group | \|Wind |erodi|bility |index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Moist |  |  |  |  |  |  |  |  |  |
|  |  |  | bulk |  |  |  |  |  |  |  |  |  |
|  |  |  | density |  |  |  |  | Kw | Kf | T |  |  |
|  | In | Pct | $\mathrm{g} / \mathrm{cc}$ | $\mathrm{In} / \mathrm{hr}$ | In/in | Pct | Pct |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 418: |  |  |  |  |  |  |  |  |  |  |  |  |
| Osoridge----------- | 0-2 | 30-40 | \|1.15-1.25 | 0.20-0.60 | \|0.11-0.13 | 3.0-5.9 | \|0.5-1.0 | . 10 | . 32 | 1 | 7 | 38 |
|  | 2-6 | 40-50 | \|1.25-1.35 | 0.06-0.20 | \|0.13-0.15 | 6.0-8.9 | \|0.5-0.5 | . 15 | . 20 |  |  |  |
|  | 6-18 | 40-50 | \|1.35-1.45 | 0.06-0.20 | \|0.14-0.16 | 6.0-8.9 | \|0.5-0.5 | . 20 | . 20 |  |  |  |
|  | 18-20 | - | --- | 0.20-2.00 | --- | - | - | --- | --- |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 419: |  |  |  |  |  |  |  |  |  |  |  |  |
| Fortwingate-------- | 0-5 | 10-20 | \|1.45-1.55 | 2.00-6.00 | \|0.06-0.08 | 0.0-2.9 | \|0.5-1.0 | . 10 | . 24 | 2 | 6 | 48 |
|  | 5-13 | 40-50 | \|1.25-1.35 | 0.06-0.20 | \|0.13-0.15 | 6.0-8.9 | \|0.5-0.5 | . 17 | . 20 |  |  |  |
|  | 13-21 | 30-40 | \|1.35-1.45 | 0.20-0.60 | \|0.19-0.21 | 6.0-8.9 | \|0.5-0.5 | . 32 | . 32 |  | \| |  |
|  | 21-26 | 35-45 | \|1.40-1.50 | 0.20-0.60 | \|0.14-0.16 | 6.0-8.9 | \|0.5-0.5 | . 28 | . 32 |  |  |  |
|  | 26-40 | - | --- | 0.20-2.00 | --- | - | --- | --- | --- |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Cinnadale---------- | 0-6 | 10-18 | \|1.25-1.35 | 2.00-6.00 | \|0.04-0.06 | 0.0-2.9 | \|0.5-1.0 | . 02 | . 24 | 1 | 8 | 0 |
|  | 6-11 | 10-18 | \|1.35-1.45 | 2.00-6.00 | \|0.08-0.10 | 0.0-2.9 | \|0.5-0.5 | . 10 | . 28 |  |  |  |
|  | 11-20 | --- | --- | 0.20-2.00 | --- | --- | --- | --- | --- |  | \| |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Rock outcrop- | 0 | --- | --- | 0.00-0.20 | -- | --- | --- | --- | --- | - | --- | --- |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 420: |  |  |  |  |  |  |  |  |  |  |  |  |
| Seco--------------- | 0-3 | 35-40 | \|1.20-1.30 | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|2.0-4.0 | . 32 | . 32 | 5 | 4 | 86 |
|  | 3-11 | 55-65 | \|1.20-1.30 | 0.06-0.20 | \|0.14-0.16 | 6.0-8.9 | \|1.0-3.0 | . 20 | . 20 |  |  |  |
|  | 11-23 | 60-70 | \|1.20-1.30 | 0.01-0.06 | \|0.14-0.16 | 6.0-8.9 | \|1.0-3.0 | . 20 | . 20 |  |  |  |
|  | 23-58 | 60-70 | \|1.25-1.35 | 0.01-0.06 | \|0.14-0.16 | 6.0-8.9 | \|0.5-1.0 | . 20 | . 20 |  |  |  |
|  | 58-70 | 60-70 | \|1.20-1.30 | 0.01-0.06 | \|0.14-0.16 | 6.0-8.9 | \|0.0-0.2 | . 20 | . 20 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 425: |  |  |  |  |  |  |  |  |  |  |  |  |
| Montillo----------- | 0-2 | 15-27 | \|1.40-1.50 | 0.60-2.00 | \|0.14-0.15 | 0.0-2.9 | \|2.0-5.0 | . 20 | . 37 | 2 | 7 | 38 |
|  | 2-8 | 40-50 | \|1.40-1.50 | 0.06-2.00 | \| 0.13-0.14 | 6.0-8.9 | \|2.0-4.0 | . 15 | . 20 |  |  |  |
|  | 8-18 | 50-60 | \|1.40-1.50 | 0.06-0.20 | \|0.11-0.12 | 6.0-8.9 | \|1.0-2.0 | . 10 | . 20 |  |  |  |
|  | 18-35 | 50-60 | \|1.40-1.50 | 0.06-0.20 | \|0.07-0.08 | 6.0-8.9 | \|0.5-1.0 | . 05 | . 20 |  | \| |  |
|  | 35-40 | --- | - | 0.01-20.00 | --- | --- | --- | --- | --- |  |  | \| |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Canoneros----------- | 0-2 | 10-25 | \|1.20-1.30 | 0.60-2.00 | \|0.10-0.12 | 0.0-2.9 | \|2.0-4.0 | . 10 | . 37 | 1 | 8 | 0 |
|  | 2-8 | 30-40 | \|1.35-1.45 | 0.20-0.60 | \|0.17-0.19 | 3.0-5.9 | \|0.5-2.0 | . 32 | . 32 |  |  |  |
|  | 8-13 | 45-60 | \|1.25-1.35 | 0.06-0.20 | \|0.13-0.15 | 6.0-8.9 | \|0.5-2.0 | . 20 | . 20 |  |  |  |
|  | 13-20 | --- | --- | 0.00-0.01 | --- | --- | --- | --- | --- |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 430: |  |  |  |  |  |  |  |  |  |  |  |  |
| Montillo------------ | 0-4 | 15-27 | \|1.40-1.50 | 0.60-2.00 | \|0.13-0.14 | 0.0-2.9 | \|2.0-5.0 | . 20 | . 37 | 2 | 7 | 38 |
|  | 4-13 | 40-50 | \|1.40-1.50 | 0.06-2.00 | \|0.13-0.15 | 6.0-8.9 | \|2.0-4.0 | . 20 | . 20 |  |  |  |
|  | 13-31 | 50-70 | \|1.40-1.50 | 0.06-0.20 | \|0.13-0.15 | 6.0-8.9 | \|1.0-2.0 | . 20 | . 20 |  | \| |  |
|  | 31-38 | 50-60 | \|1.40-1.50 | 0.06-0.20 | \|0.11-0.13 | 6.0-8.9 | \|0.5-1.0 | . 10 | . 20 |  |  |  |
|  | 38-40 | - | --- | 0.01-20.00 | - | --- | \| --- | --- | --- |  | \| |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 435: |  |  |  |  |  |  |  |  |  |  |  |  |
| Tsoodzil----------- | 0-3 | 15-25 | \|1.40-1.50 | 0.60-2.00 | \|0.13-0.14 | 0.0-2.9 | \|2.0-5.0 | . 15 | . 37 | 1 | 8 | 0 |
|  | 3-11 | 40-50 | \|1.45-1.55 | 0.06-0.20 | \| 0.13-0.14 | 6.0-8.9 | \|2.0-3.0 | . 15 | . 20 |  | \| |  |
|  | 11-25 | 60-70 | \|1.35-1.45 | 0.06-0.20 | \|0.12-0.14 | 6.0-8.9 | \|1.0-3.0 | . 15 | . 20 |  | \| |  |
|  | 25-32 | 40-60 | \|1.50-1.60 | 0.06-0.20 | \| 0.11-0.13 | 6.0-8.9 | \|0.5-1.0 | . 10 | . 20 |  |  |  |
|  | 32-65 | 30-40 | \|1.60-1.70 | 0.20-0.60 | \|0.05-0.06 | 3.0-5.9 | \|0.2-0.5 | . 05 | . 32 |  | \| |  |
|  |  |  |  |  |  |  |  |  |  |  | \| |  |
| Amcec-------------- | 0-4 | 15-25 | \|1.10-1.20 | 0.60-2.00 | \|0.02-0.03 | 0.0-2.9 | \|2.0-5.0 | . 05 | . 37 | 3 | 8 | 0 |
|  | 4-16 | 20-30 | \|1.15-1.25 | 0.60-2.00 | \|0.08-0.09 | 0.0-2.9 | \|2.0-4.0 | . 10 | . 37 |  |  |  |
|  | 16-39 | 10-20 | \|1.50-1.60 | 2.00-6.00 | \|0.01-0.02 | 0.0-2.9 | \|0.1-0.5 | . 02 | . 20 |  | \| |  |
|  | 39-53 | 5-15 | \|1.45-1.55 | 6.00-20.00 | \|0.00-0.01 | 0.0-2.9 | \|0.1-0.5 | . 02 | . 15 |  | \| |  |
|  | 53-70 | 5-15 | \|1.45-1.55 | 6.00-20.00 | \|0.00-0.01 | 0.0-2.9 | \|0.1-0.5 | . 02 | . 15 |  | \| |  |
|  |  |  |  |  |  |  |  |  |  |  | \| |  |

Table 15.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Clay |  | Permeability (Ksat) | $\mid$ Available <br> $\mid$ water <br> $\mid$ capacity | Linear extensibility | $\mid$ Organic <br> $\mid$ matter | \|Erosion factors |  |  | \|Wind <br> \|erodi|bility |group | \|Wind <br> \|erodi- <br> \|bility <br> \|index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Moist |  |  |  |  |  |  |  |  |  |
|  |  |  | bulk |  |  |  |  |  |  |  |  |  |
|  |  |  | density |  |  |  |  | Kw | Kf | T |  |  |
|  | In | Pct | $\mathrm{g} / \mathrm{cc}$ | In/hr | In/in | Pct | Pct |  |  |  |  |  |
| 440: |  |  |  |  |  |  |  |  |  |  |  |  |
| Chivato------------ | 0-2 | 45-55 | \|1.20-1.30 | 0.01-0.06 | \|0.14-0.16 | 6.0-8.9 | \|2.0-4.0 | . 20 | . 20 | 5 | 4 | 86 |
|  | 2-13 | 55-70 | \|1.25-1.35 | 0.01-0.06 | \|0.12-0.15 | 6.0-8.9 | \|2.0-3.0 | . 20 | . 20 |  |  |  |
|  | 13-40 | 55-70 | \|1.25-1.35 | 0.01-0.06 | \|0.12-0.15 | 6.0-8.9 | \|1.0-3.0 | . 20 | . 20 |  |  |  |
|  | 40-52 | 55-70 | \|1.25-1.35 | 0.01-0.06 | \|0.12-0.15 | 6.0-8.9 | \|0.0-1.0 | . 20 | . 20 |  |  |  |
|  | 52-65 | 55-70 | \|1.25-1.35 | 0.01-0.06 | \|0.12-0.15 | 6.0-8.9 | \|0.0-1.0 | . 20 | . 20 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 525: |  |  |  |  |  |  |  |  |  |  |  |  |
| Silcat------------- | 0-2 | 30-40 | \|1.25-1.35 | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|1.0-2.0 | . 32 | . 32 | 5 | 4 | 86 |
|  | 2-38 | 45-55 | \|1.45-1.55 | 0.01-0.06 | \|0.13-0.15 | 6.0-8.9 | \|1.0-2.0 | . 20 | . 20 |  |  |  |
|  | 38-65 | 40-55 | \|1.45-1.55 | 0.01-0.06 | \|0.13-0.15 | 6.0-8.9 | \| $0.5-1.0$ | . 20 | . 20 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 550: |  |  |  |  |  |  |  |  |  |  |  |  |
| Bryway------------ | 0-2 | 10-25 | \|1.50-1.60 | 0.60-2.00 | \|0.16-0.18 | 0.0-2.9 | \|1.0-2.0 | \| . 37 | . 37 | 3 | 5 | 56 |
|  | 2-6 | 35-55 | \|1.40-1.50 | 0.06-0.60 | \|0.14-0.16 | 6.0-8.9 | \|0.5-1.0 | \| . 20 | . 20 |  |  |  |
|  | 6-32 | 40-55 | \|1.40-1.50 | 0.06-0.20 | \|0.14-0.16 | 6.0-8.9 | \|0.5-1.0 | . 20 | . 20 |  |  |  |
|  | 32-40 | --- | --- | 0.00-0.20 | \| --- | - | \| --- | --- | --- |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Galzuni------------- | 0-2 | 20-27 | \|1.20-1.30 | 0.60-2.00 | \|0.16-0.18 | 0.0-2.9 | \|1.0-2.0 | . 37 | . 37 | 5 | 6 | 48 |
|  | 2-4 | 40-55 | \|1.40-1.50 | 0.06-0.20 | \|0.14-0.16 | 6.0-8.9 | \|0.2-1.0 | . 20 | . 20 |  |  |  |
|  | 4-23 | 40-55 | \|1.40-1.50 | 0.06-0.20 | \|0.14-0.16 | 6.0-8.9 | \|0.2-1.0 | . 20 | . 20 |  |  |  |
|  | 23-32 | 30-40 | \|1.35-1.45 | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|0.2-1.0 | . 32 | . 32 |  |  |  |
|  | 32-52 | 35-45 | \|1.35-1.45 | 0.20-0.60 | \|0.15-0.17 | 3.0-5.9 | \|0.2-1.0 | . 32 | . 32 |  |  |  |
|  | 52-65 | 20-35 | \|1.40-1.50 | 0.60-2.00 | \|0.14-0.16 | 3.0-5.9 | \|0.2-1.0 | . 32 | . 32 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 555 : |  |  |  |  |  |  |  |  |  |  |  |  |
| Parkelei----------- | 0-3 | 10-20 | \|1.50-1.60 | 2.00-6.00 | \|0.13-0.15 | 0.0-2.9 | \|1.0-2.0 | . 28 | . 28 | 5 | 3 | 86 |
|  | 3-12 | 27-35 | \|1.55-1.65 | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|0.5-1.0 | . 32 | . 32 |  |  |  |
|  | 12-21 | 20-35 | \|1.45-1.55 | 0.60-2.00 | \|0.14-0.16 | 3.0-5.9 | \|0.5-1.0 | . 32 | . 32 |  |  |  |
|  | 21-65 | 10-20 | \|1.50-1.60 | 2.00-6.00 | \|0.11-0.13 | 0.0-2.9 | \|0.5-1.0 | . 24 | . 24 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Evpark--------------1 | 0-3 | 10-20 | \|1.50-1.60 | 2.00-6.00 | \|0.13-0.15 | 0.0-2.9 | \|1.0-2.0 | . 28 | . 28 | 2 | 3 | 86 |
|  | 3-16 | 25-35 | \|1.45-1.55 | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|1.0-2.0 | . 32 | . 32 |  |  |  |
|  | 16-20 | 27-35 | \|1.55-1.65 | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|0.2-1.0 | . 32 | . 32 |  | \| |  |
|  | 20-29 | 20-35 | \|1.55-1.65 | 0.60-2.00 | \|0.14-0.16 | 3.0-5.9 | \|0.2-1.0 | . 32 | . 32 |  |  |  |
|  | 29-35 | 20-35 | \|1.45-1.55 | 0.60-2.00 | \|0.14-0.16 | 3.0-5.9 | \|0.2-1.0 | . 32 | . 32 |  |  |  |
|  | 35-40 | --- | - | 0.20-2.00 | --- | --- | --- | --- | --- |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 560: |  |  |  |  |  |  |  |  |  |  |  |  |
| Flugle------------- | 0-3 | 10-20 | \|1.40-1.50 | 2.00-6.00 | \|0.13-0.15 | 0.0-2.9 | \|1.0-2.0 | . 28 | . 28 | 5 | 3 | 86 |
|  | 3-35 | 20-35 | \|1.50-1.60 | 0.60-2.00 | \|0.14-0.16 | 0.0-2.9 | \|0.2-1.0 | . 32 | . 32 |  |  |  |
|  | 35-65 | 10-20 | \|1.50-1.60 | 2.00-6.00 | \|0.13-0.15 | 0.0-2.9 | \|0.2-1.0 | . 28 | . 28 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Teczuni------------ | 0-2 | 15-25 | \|1.15-1.25 | 0.60-2.00 | \|0.16-0.18 | 0.0-2.9 | \|1.0-2.0 | . 37 | . 37 | 5 | 5 | 56 |
|  | 2-16 | 30-40 | \|1.45-1.55 | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|0.2-1.0 | . 32 | . 32 |  | \| |  |
|  | 16-33 | 35-40 | \|1.35-1.45 | 0.20-0.60 | \|0.19-0.21 | 3.0-5.9 | \|0.2-1.0 | . 32 | . 32 |  | \| |  |
|  | 33-65 | 40-50 | \|1.40-1.50 | 0.06-0.20 | \|0.14-0.16 | 3.0-5.9 | \|0.2-1.0 | . 20 | . 20 |  | \| |  |
|  |  |  |  |  |  |  |  |  |  |  | 1 |  |
| 561: |  |  |  |  |  |  |  |  |  |  |  |  |
| Flugle------------- | 0-3 | 10-20 | \|1.40-1.50 | 2.00-6.00 | \|0.13-0.15 | 0.0-2.9 | \|1.0-2.0 | . 28 | . 28 | 5 | 3 | 86 |
|  | 3-17 | 20-35 | \|1.50-1.60 | 0.60-2.00 | \|0.14-0.16 | 0.0-2.9 | \|0.2-1.0 | . 32 | . 32 |  | \| |  |
|  | 17-65 | 10-20 | \|1.50-1.60 | 2.00-6.00 | \|0.13-0.15 | 0.0-2.9 | \|0.2-1.0 | . 28 | . 28 |  | \| |  |
|  |  |  |  |  |  |  |  |  |  |  | \| |  |

Table 15.--Physical Properties of the Soils--Continued


Table 16.--Chemical Properties of the Soils
(Absence of an entry indicates that data were not estimated.)


Table 16.--Chemical Properties of the Soils--Continued


Table 16.--Chemical Properties of the Soils--Continued

Map symbol and soil name	Depth	\| Cation-   \| exchange   capacity	Soil reaction	Calcium carbonate	Gypsum	Salinity	$\begin{aligned} & \text { Sodium } \\ & \text { \|adsorption } \\ & \text { ratio } \end{aligned}$
	In	\|meq/100 g	pH	Pct	Pct	mmhos/cm	
40 :							
Nuffel-------------	0-2	30-40	7.9-8.4	5-10	0	0.0-2.0	0-5
	2-12	35-45	7.9-8.4	5-10	0	0.0-2.0	0-5
	12-18	30-40	7.9-8.4	5-10	0	0.0-2.0	0-5
	18-26	35-45	7.9-8.4	5-10	0	0.0-2.0	0-5
	26-65	30-40	7.9-8.4	5-10	0	0.0-2.0	0-5
		\|					
42 :							
Suwanee------------	0-4	15-30	7.4-7.8	5-10	0	0.0-2.0	0
	4-34	\| 15-25	7.4-7.8	5-10	0	0.0-2.0	0
	34-48	5.0-15	7.4-7.8	5-10	0	0.0-2.0	0
	48-65	15-25	7.4-7.8	5-10	0	0.0-2.0	0
		\|					
44:							
Suwanee------------	0-10	15-35	7.4-7.8	5-10	0	0.0-2.0	0
	10-17	15-35	7.9-8.4	5-10	0	0.0-2.0	0
	17-30	15-25	7.9-8.4	5-10	0	0.0-2.0	0
	30-47	10-25	7.9-8.4	5-10	0	0.0-2.0	0
	47-65	5.0-15	7.9-8.4	5-10	0	0.0-2.0	0
45:							
Nutreeah-----------	0-10	15-30	7.4-8.4	0-1	0	0.0-2.0	0-1
	10-16	15-25	7.4-8.4	0-1	0	0.0-2.0	1-5
	16-24	15-30	7.4-8.4	0-1	0	0.0-2.0	1-5
	24-40	15-40	7.4-8.4	0-1	0	0.0-4.0	1-5
	40-65	15-40	7.4-8.4	0-1	0	2.0-8.0	1-5
47 :							
Conchovar----------	0-3	15-30	7.4-7.8	0-1	0	2.0-4.0	1-5
	3-9	20-40	7.4-7.8	0-1	0	2.0-4.0	1-5
	9-26	15-35	7.4-8.4	0-1	0-1	4.0-8.0	1-5
	26-36	20-40	7.9-8.4	0	0-1	4.0-8.0	1-5
	36-54	20-40	7.9-8.4	0	0	2.0-4.0	1-5
	54-65	20-35	7.9-8.4	0	0	0.0-2.0	1-5
49 :							
Concho-------------	0-4	15-30	6.6-7.8	0-1	0	0.0-2.0	0
	4-28	15-30	6.6-7.8	0-1	0	0.0-2.0	0
	28-38	20-35	6.6-7.8	1-5	0	0.0-2.0	0
	38-65	15-30	7.4-8.4	1-5	0	2.0-4.0	0
							\|
51:							
Kwakina------------	0-7	5.0-10	7.4-9.0	0-5	0	0.0-2.0	0
	7-11	5.0-10	7.4-9.0	0-5	0	0.0-2.0	0
	11-23	5.0-10	7.4-9.0	0-5	0	2.0-8.0	0
	23-33	5.0-15	7.4-9.0	5-10	0	2.0-8.0	0
	33-65	5.0-10	7.4-9.0	5-10	0	2.0-8.0	0
52 :							
Zuniven------------	0-12	5.0-10	7.4-7.8	0-5	0	0.0-2.0	1-5
	12-42	10-20	7.4-7.8	0-5	0	0.0-2.0	1-5
	42-65	20-40	7.4-7.8	0-5	0	0.0-2.0	1-5
							\|

Table 16.--Chemical Properties of the Soils--Continued

Map symbol and soil name	Depth	$\begin{aligned} & \text { Cation- } \\ & \text { \|exchange } \\ & \text { \| capacity } \end{aligned}$	Soil reaction	Calcium \|carbonate	Gypsum	Salinity	Sodium   $\mid$ adsorption   $\mid$ ratio
	In	\|meq/100 g	pH	Pct	Pct	mmhos/cm	
$53:$							
Hawaikuh-----------	0-10	15-25	7.4-7.8	1-5	0	0.0-2.0	0-2
	10-24	15-30	7.4-9.0	1-5	0	0.0-4.0	0-2
	24-32	15-25	7.4-9.0	5-10	0	0.0-4.0	0-2
	32-42	15-25	7.4-9.0	5-10	0	0.0-4.0	0-2
	42-65	15-30	7.4-9.0	5-10	0	0.0-4.0	0-2
		\|					
54:							
Venadito------------	0-5	40-50	7.4-7.8	5-10	0	0.0-2.0	0-2
	5-29	45-55	7.4-7.8	5-10	0-2	2.0-4.0	5-10
	29-40	45-55	7.9-8.4	5-10	0-2	2.0-4.0	5-10
	40-65	45-55	7.9-8.4	5-10	0-2	4.0-8.0	5-10
		\|					
55:							
Sparham------------	0-2	15-30	7.4-8.4	1-5	0	0.0-2.0	1-5
	2-14	15-40	7.4-8.4	1-5	0	0.0-2.0	1-5
	14-18	10-25	7.4-8.4	1-5	0	0.0-2.0	1-5
	18-27	15-40	7.4-8.4	1-5	0	0.0-2.0	1-5
	27-31	10-25	7.4-8.4	1-5	0	0.0-2.0	1-5
	31-65	15-40	7.4-8.4	1-5	0-1	2.0-4.0	1-5
		\|					
60 :							
Redpen-------------	0-4	10-20	7.4-8.4	5-10	0	0.0-2.0	0
	4-24	10-25	7.4-8.4	5-10	0	0.0-2.0	0
	24-52	10-25	7.4-8.4	5-10	0	0.0-2.0	0
	52-65	10-25	7.4-8.4	5-10	0	0.0-2.0	0-1
		\|					
100:							
Norkiki------------	0-3	5.0-10	6.6-7.8	0-5	0	0.0-2.0	0
	3-13	10-20	7.4-7.8	0-5	0	0.0-2.0	0
	13-19	5.0-15	7.4-7.8	0-5	0	0.0-2.0	0
	19-28	10-20	7.4-8.4	5-15	0	0.0-2.0	0
	28-40	---	-	---	---	---	---
Kimnoli------------	0-2	5.0-10	6.6-7.3	0-1	0	0.0-2.0	0-2
	2-7	5.0-15	6.6-7.3	0-1	0	0.0-2.0	1-5
	7-14	10-20	7.4-7.8	5-15	0	0.0-2.0	1-5
	14-20	---	-	---	---	---	---
110:							
Benally-------------	0-2	5.0-15	7.9-9.0	1-5	0	0.0-2.0	13-30
	2-9	10-20	8.5-9.6	5-10	0-1	0.0-2.0	13-30
	9-25	10-20	8.5-9.6	5-10	0-1	2.0-4.0	13-30
	25-65	10-20	8.5-9.6	5-10	0-1	2.0-4.0	13-30
Fruitland-	0-3	0.0-5.0	7.4-7.8	0-1	0	0.0-2.0	0
	3-10	0.0-5.0	7.4-8.4	0-1	0	0.0-2.0	0
	10-19	0.0-5.0	7.4-8.4	0-1	0	0.0-2.0	0
	19-29	0.0-5.0	7.4-8.4	1-10	0	0.0-2.0	1-5
	29-65	5.0-10	8.4-9.0	1-10	0	0.0-2.0	5-10
111:							
Yelives------------	0-2	5.0-15	7.4-8.4	0-5	0	0.0-2.0	0-2
	2-12	5.0-15	7.4-8.4	0-5	0	0.0-2.0	0-2
	12-30	5.0-15	7.4-8.4	0-5	0	0.0-2.0	0-2
	30-41	5.0-10	7.4-8.4	0-5	0	0.0-2.0	0-2
	41-56	5.0-10	7.4-8.4	0-5	0	0.0-2.0	0-2
	56-80	5.0-10	7.4-8.4	0-5	0	0.0-2.0	0-2

Table 16.--Chemical Properties of the Soils--Continued


Table 16.--Chemical Properties of the Soils--Continued


Table 16.--Chemical Properties of the Soils--Continued

Map symbol and soil name	Depth	$\begin{aligned} & \text { Cation- } \\ & \text { \|exchange } \\ & \text { capacity } \end{aligned}$	Soil reaction	Calcium carbonate	Gypsum	Salinity	$\begin{array}{\|c} \text { Sodium } \\ \text { \|adsorption } \\ \text { ratio } \end{array}$
	In	\|meq/100 g	pH	Pct	Pct	mmhos/cm	
205:							
Penistaja----------	0-3	5.0-15	6.6-7.8	0-1	0	0.0-2.0	0
	3-19	10-20	6.6-8.4	0-1	0	0.0-2.0	0
	19-65	5.0-20	7.4-8.4	5-10	0	0.0-2.0	0
Tintero------------	0-4	5.0-10	6.6-7.3	0-5	0	0	0
	4-16	5.0-15	7.4-7.8	1-5	0	0	0
	16-48	5.0-15	7.4-7.8	5-10	0	0.0-2.0	0
	48-65	1.0-1.0	7.4-7.8	5-10	0	0.0-2.0	0
208:							
Marianolake--------	0-2	5.0-15	7.4-8.4	0-5	0-1	0.0-2.0	0
	2-8	5.0-15	7.4-8.4	0-5	0-1	0.0-2.0	0-1
	8-14	15-25	7.4-8.4	0-5	0-1	0.0-2.0	0-1
	14-24	5.0-15	7.9-8.4	0-5	0-1	0.0-2.0	0-1
	24-39	5.0-15	7.9-8.4	0-5	0-1	0.0-2.0	0-1
	39-70	0.0-5.0	7.9-8.4	0-5	0-1	0.0-2.0	0-1
210:							
Marianolake-------	0-5	5.0-15	7.4-8.4	0-5	0	0.0-2.0	0
	5-11	10-25	7.4-8.4	5-10	0	0.0-2.0	0
	11-47	10-25	7.4-8.4	5-10	0	0.0-2.0	0
	47-65	5.0-15	7.4-8.4	5-10	0	0.0-2.0	0
Skyvillage---------	0-2	5.0-10	7.4-8.4	0-5	0	0.0-2.0	0
	2-5	5.0-10	7.4-8.4	5-10	0	0.0-2.0	0
	5-9	10-20	7.4-8.4	5-10	0	0.0-2.0	0
	9-15	10-20	7.4-8.4	5-10	0	0.0-2.0	0
	15-20	---	---	---	---	---	---
212:							
Rehobeth-----------	0-2	20-30	7.9-9.0	1-5	1-10	0.0-2.0	1-5
	2-5	20-30	7.9-9.0	1-5	1-10	0.0-2.0	1-5
	5-12	20-40	7.9-9.0	1-5	1-10	0.0-2.0	1-5
	12-18	20-40	7.9-9.0	1-5	5-10	0.0-2.0	5-13
	18-32	20-40	7.9-9.0	1-5	5-10	0.0-2.0	5-14
	32-80	20-40	7.9-9.0	1-5	1-5	2.0-8.0	5-14
215:							
Viuda---------------	0-3	2.0-7.0	6.6-7.3	0	0	0.0-2.0	0-2
	3-15	2.0-20	7.9-8.4	0	0	0.0-2.0	0-2
	15-17	2.0-10	7.9-8.4	1-15	0	0.0-2.0	0-2
	17-20	---	--	---	---	--	---
Penistaja----------	0-2	5.0-15	6.6-7.8	0-1	0	0.0-2.0	0
	2-22	10-20	6.6-8.4	0-1	0	0.0-2.0	0
	22-65	5.0-20	7.4-8.4	1-10	0	0.0-2.0	0
Rock outcrop-------	0	--	--	---	---	---	---
220:							
Hagerwest----------	0-2	5.0-15	6.6-7.8	0	0	0.0-2.0	0
	2-13	10-20	6.6-7.8	0	0	0.0-2.0	0
	13-19	10-20	7.4-8.4	1-10	0	0.0-2.0	0
	19-35	5.0-15	7.4-8.4	1-10	0	0.0-2.0	0
	35-40	---	---	---	---	---	---

Table 16.--Chemical Properties of the Soils--Continued


Table 16.--Chemical Properties of the Soils--Continued

Map symbol and soil name	Depth	$\begin{array}{\|l} \mid \text { Cation- } \\ \text { \| exchange } \\ \text { \| capacity } \end{array}$	$\begin{aligned} & \text { Soil } \\ & \text { reaction } \end{aligned}$	$\begin{aligned} & \text { Calcium } \\ & \text { \| carbonate } \end{aligned}$	Gypsum	Salinity	$\begin{array}{\|l\|l} \mid \text { Sodium } \\ \mid \text { adsorption } \\ \mid \quad \text { ratio } \end{array}$
	In	\|meq/100 g	pH	Pct	Pct	mmhos/cm	
240:							
Breadsprings-------	0-3	5.0-10	7.4-8.4	0-1	0	0.0-2.0	0
	3-7	5.0-10	7.4-8.4	0-1	0	0.0-2.0	0-2
	7-14	15-25	7.4-8.4	0-1	0	0.0-2.0	0-2
	14-22	5.0-15	7.4-8.4	0-5	0-2	0.0-2.0	0-2
	22-29	5.0-10	7.4-8.4	1-5	0-2	0.0-2.0	0-2
	29-36	\| 5.0-10	7.4-8.4	1-15	0-2	0.0-2.0	0-5
	36-70	5.0-10	7.4-8.4	1-15	0-2	0.0-2.0	0-5
Nahodish-----------	0-1	5.0-15	7.4-7.8	0-1	0-2	0.0-2.0	1-5
	1-9	10-15	7.4-8.4	0-1	0-2	0.0-2.0	1-5
	9-17	15-20	7.9-9.0	1-5	0-2	0.0-2.0	1-10
	17-31	15-20	7.9-9.0	1-10	1-5	0.0-2.0	1-10
	31-36	15-25	7.9-9.0	1-10	1-10	0.0-2.0	1-10
	36-58	5.0-15	7.9-9.0	1-10	1-10	2.0-4.0	1-10
	58-80	15-35	7.9-9.0	1-10	1-10	2.0-4.0	1-10
				\|			
241:							
Mentmore-----------	0-1	5.0-10	7.4-7.8	0-2	0	0.0-2.0	0
	1-2	15-25	7.4-7.8	0-2	0	0.0-2.0	0
	2-7	10-25	7.4-7.8	\| 0-2	0	0.0-2.0	0
	7-13	15-25	7.4-8.4	2-10	0	0.0-2.0	0
	13-22	15-25	7.9-8.4	2-10	0	0.0-2.0	0
	22-70	15-25	7.9-8.4	2-10	0	0.0-2.0	0
		\|		\|			
242:							
Gish---------------	0-3	15-25	7.4-8.4	0	0	0.0-2.0	0
	3-13	15-35	7.4-8.4	0	0	0.0-2.0	0
	13-27	15-35	7.4-8.4	0-10	0-2	0.0-2.0	0-2
	27-55	15-35	7.4-7.8	0-10	0-2	0.0-2.0	0-2
	55-64	15-25	7.4-7.8	\| 0-10	0-2	0.0-2.0	0-2
	64-70	15-35	7.4-7.8	0-10	0-2	0.0-2.0	0-2
Mentmore-----------	0-2	5.0-15	7.4-7.8	\| 0-2	0	0.0-2.0	0
	2-4	15-25	7.4-8.4	0-2	0	0.0-2.0	0
	4-13	15-25	7.4-8.4	0-2	0	0.0-2.0	0
	13-24	15-25	7.4-8.4	0-2	0	0.0-2.0	0
	24-44	15-25	7.4-8.4	1-5	0-2	0.0-2.0	0
	44-62	15-25	7.4-8.4	1-5	0-2	0.0-2.0	0
	62-70	15-25	7.4-8.4	0-5	0-2	0.0-2.0	0
		\|					
244:							
Buckle-------------		5.0-15	7.4-7.8	0	0	0	0
	4-14	10-25	7.4-7.8	0	0	0	0
	14-22	10-25	7.4-7.8	\| 0	0	0	0
	22-34	10-25	7.4-8.4	\| 0	0	0	0
	34-48	15-30	7.4-8.4	\| 0-5	0	0.0-2.0	0
	48-62	15-30	7.4-8.4	\| 0-5	0-1	0.0-2.0	0
	62-75	15-30	7.4-8.4	\| 0-5	0-1	0.0-2.0	0
		\|					
245:							
Buckle-------------	0-1	0.0-5.0	6.6-7.8	\| 0-1	0	0.0-2.0	0
	1-7	15-25	6.6-7.8	\| 0-1	0	0.0-2.0	0
	7-25	10-25	7.4-8.4	\| 5-10	0	0.0-2.0	0
	25-35	15-25	7.4-8.4	5-10	0	0.0-2.0	0
	35-80	\| 5.0-15	7.4-8.4	\| 5-10	0	0.0-2.0	0

Table 16.--Chemical Properties of the Soils--Continued


Table 16.--Chemical Properties of the Soils--Continued

| Map symbol and soil name | Depth | \| Cation|exchange | capacity | Soil reaction | \| Calcium |carbonate | Gypsum | Salinity | $\begin{array}{\|l} \text { Sodium } \\ \text { \|adsorption } \\ \mid \quad \text { ratio } \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | In | \|meq/100 g | pH | Pct | Pct | mmhos/cm |  |
| 366: |  |  |  |  |  |  |  |
| Bosonoak------------ | 0-2 | 5.0-15 | 7.4-8.4 | 0-1 | 0 | 0.0-2.0 | 0 |
|  | 2-5 | 10-25 | 7.4-8.4 | 0-1 | 0 | 0.0-2.0 | 0 |
|  | 5-28 | 10-25 | 7.9-8.4 | 1-5 | 0 | 0.0-2.0 | 0 |
|  | 28-40 | \| 5.0-15 | 7.9-8.4 | 1-5 | 0 | 0.0-2.0 | 0 |
|  | 40-63 | \| 5.0-15 | 7.9-8.4 | 1-10 | 0 | 0.0-2.0 | 0 |
|  | 63-80 | \| 5.0-10 | 7.9-8.4 | 1-10 | 0 | 0.0-2.0 | 0 |
|  |  |  |  |  |  |  |  |
| 367: |  |  |  |  |  |  |  |
| Chunkmonk- | 0-1 | 5.0-10 | 7.4-7.8 | 0-5 | 0 | 0.0-2.0 | 0 |
|  | 1-4 | \| 5.0-15 | 7.9-8.4 | 0-5 | 0 | 0.0-2.0 | 0 |
|  | 4-8 | \| 5.0-15 | 7.9-8.4 | 5-40 | 0 | 0.0-2.0 | 0 |
|  | 8-10 | \| 5.0-15 | 7.9-8.4 | 15-40 | 0 | 0.0-2.0 | 0 |
|  | 10-20 | \| --- | --- | --- | --- | --- | --- |
|  |  | \| |  |  |  |  |  |
| 368: |  |  |  |  |  |  |  |
| Simitarq----------- | 0-1 | 2.0-10 | 6.6-7.8 | 0 | 0 | 0 | 0 |
|  | 1-6 | 10-20 | 6.6-7.8 | 0 | 0 | 0 | 0 |
|  | 6-14 | 20-30 | 7.4-7.8 | 0 | 0 | 0 | 0 |
|  | 14-20 | --- | --- | --- | --- | --- | --- |
|  |  |  |  |  |  |  |  |
| Celavar------------- | 0-1 | --- | -- | --- | --- | --- | --- |
|  | 1-2 | 5.0-10 | 6.6-7.8 | 0 | 0 | 0.0-2.0 | 0 |
|  | 2-11 | 10-15 | 7.4-7.8 | 0 | 0 | 0.0-2.0 | 0 |
|  | 11-27 | 10-15 | 7.4-7.8 | 1-5 | 0 | 0.0-2.0 | 0 |
|  | 27-31 | 15-20 | 7.4-7.8 | 1-5 | 0 | 0.0-2.0 | 0 |
|  | 31-40 | --- | --- | --- | --- | --- | --- |
|  |  | \| |  |  |  |  |  |
| 375: |  |  |  |  |  |  |  |
| Todest------------- | 0-1 | 5.0-10 | 7.4-7.8 | 5-15 | 0 | 0 | 0 |
|  | 1-3 | \| 5.0-10 | 7.4-7.8 | 1-5 | 0 | 0 | 0 |
|  | 3-10 | 10-15 | 7.4-7.8 | 5-15 | 0 | 0 | 0 |
|  | 10-18 | 10-15 | 7.9-8.4 | 15-40 | 0 | 0 | 0 |
|  | 18-25 | 5.0-10 | 7.9-8.4 | 40-80 | 0 | 0 | 0 |
|  | 25-40 | --- | --- | --- | --- | --- | --- |
|  |  |  |  |  |  |  |  |
| Shadilto- | 0-1 | 2.0-10 | 7.9-8.4 | 10-40 | 0 | 0.0-2.0 | 0 |
|  | 1-9 | \| 2.0-10 | 7.9-8.4 | 40-80 | 0 | 0.0-2.0 | 0 |
|  | 9-13 | \| 2.0-10 | 7.9-8.4 | 40-80 | 0 | 0.0-2.0 | 0 |
|  | 13-15 | \| 2.0-10 | 7.9-8.4 | 40-80 | 0 | 0.0-2.0 | 0 |
|  | 15-20 | \| --- | --- | --- | --- | --- | --- |
|  |  | \| |  |  |  |  |  |
| 376: |  |  |  |  |  |  |  |
| Todest------------- | 0-1 | 5.0-10 | 7.4-7.8 | 5-15 | 0 | 0 | 0 |
|  | 1-8 | 10-15 | 7.9-8.4 | 10-15 | 0 | 0 | 0 |
|  | 8-14 | 10-15 | 7.9-8.4 | 15-40 | 0 | 0 | 0 |
|  | 14-24 | 10-15 | 7.9-8.4 | 40-80 | 0 | 0 | 0 |
|  | 24-40 | --- | --- | --- | --- | --- | --- |
|  |  | \| |  |  |  |  |  |
| 380: |  |  |  |  |  |  |  |
| Berryhill---------- | 0-2 | 20-30 | 7.9-9.0 | 1-10 | 0-1 | 0.0-2.0 | 0-2 |
|  | 2-12 | 20-40 | 7.9-9.0 | 1-10 | 0-1 | 2.0-4.0 | 2-5 |
|  | 12-26 | 20-40 | 7.9-9.0 | 1-10 | 10-35 | 2.0-8.0 | 2-8 |
|  | 26-39 | 20-40 | 7.9-9.0 | 1-10 | 2-8 | 2.0-8.0 | 2-8 |
|  | 39-70 | 20-40 | 7.9-9.0 | 1-10 | 2-8 | $2.0-8.0$ | 2-8 |
|  |  |  |  |  |  |  |  |

Table 16.--Chemical Properties of the Soils--Continued

| Map symbol and soil name | Depth | \| Cation| exchange capacity | Soil reaction | $\begin{aligned} & \text { Calcium } \\ & \text { \|carbonate } \end{aligned}$ | Gypsum | Salinity | Sodium \|adsorption ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | In | $\mid \mathrm{meq} / 100 \mathrm{~g}$ | pH | Pct | Pct | mmhos/cm |  |
|  |  | \| |  |  |  |  |  |
| 380: |  | \| |  |  |  |  |  |
| Casamero- | 0-3 | \| 20-30 | 7.9-9.0 | 1-10 | 0-1 | 0.0-4.0 | 0-2 |
|  | 3-11 | 20-40 | 7.9-9.0 | 1-10 | 1-5 | 2.0-4.0 | 2-5 |
|  | 11-18 | \| 20-40 | 7.9-9.0 | 1-10 | 1-5 | 2.0-8.0 | 2-5 |
|  | 18-20 | --- | --- | --- | --- | --- | --- |
|  |  | \| |  |  |  |  |  |
| 385: |  | \| |  |  |  |  |  |
| Mcorreon | 0-2 | \| 10-20 | 6.6-7.3 | 0-5 | 0 | 0 | 0 |
|  | 2-5 | \| 15-30 | 6.1-6.5 | 0-5 | 0 | 0 | 0-1 |
|  | 5-16 | \| 30-40 | 6.1-6.5 | 0-5 | 0 | 0 | 0-1 |
|  | 16-22 | 30-40 | 7.9-9.0 | 15-45 | 0 | 0.0-2.0 | 0-1 |
|  | 22-70 | \| 30-40 | 7.9-9.0 | 15-45 | 0 | 0.0-2.0 | 0-1 |
|  | 70-74 | --- | --- | --- | --- | --- | --- |
|  |  | , |  |  |  |  |  |
| Rock outcrop- | 0 | --- | --- | --- | --- | --- | --- |
|  |  | \| |  |  |  |  |  |
| 390: |  | \| |  |  |  |  |  |
| Banquito- | 0-2 | \| 5.0-15 | 7.4-7.8 | 0-5 | 0 | 0.0-2.0 | 0 |
|  | 2-9 | \| 10-20 | 7.9-8.4 | 5-15 | 0 | 0.0-2.0 | 0 |
|  | 9-17 | \| 10-20 | 7.9-8.4 | 15-30 | 0 | 0.0-2.0 | 0 |
|  | 17-22 | \| 5.0-20 | 7.9-8.4 | 15-55 | 0 | 0.0-2.0 | 0 |
|  | 22-36 | \| 5.0-20 | 7.9-8.4 | 15-55 | 0 | 0.0-2.0 | 0 |
|  | 36-40 | \| 5.0-20 | 7.9-8.4 | 15-55 | 0 | 0.0-2.0 | 0 |
|  |  | , |  |  |  |  |  |
| 395: |  | \| |  |  |  |  |  |
| Cabezon- | 0-2 | \| 10-20 | 6.1-7.3 | 0 | 0 | 0 | 0 |
|  | 2-6 | \| 15-30 | 6.1-7.3 | 0 | 0 | 0 | 0-1 |
|  | 6-14 | 20-40 | 6.6-7.8 | 0 | 0 | 0.0-2.0 | 0-1 |
|  | 14-17 | \| --- | --- | --- | --- | --- | --- |
|  | 17-20 | --- | --- | --- | --- | -- | --- |
|  |  | \| |  |  |  |  |  |
| Mcorreon | 0-2 | 10-20 | 6.6-7.8 | 0-5 | 0 | 0 | 0 |
|  | 2-13 | \| 30-40 | 6.6-7.8 | 0-5 | 0 | 0 | 0-1 |
|  | 13-19 | \| 30-40 | 6.6-7.8 | 0-5 | 0 | 0 | 0-1 |
|  | 19-27 | \| 15-30 | 7.9-8.4 | 15-45 | 0 | 0.0-2.0 | 0-1 |
|  | 27-70 | 15-30 | 7.9-8.4 | 15-45 | 0 | 0.0-2.0 | 0-1 |
|  | 70-80 | --- | --- | --- | --- | --- | --- |
|  |  | \| |  |  |  |  |  |
| 400: |  | \| |  |  |  |  |  |
| Shoemaker- | 0-2 | \| 5.0-15 | 6.1-7.3 | 0 | 0 | 0 | 0 |
|  | 2-7 | \| 5.0-15 | 6.1-7.3 | 0 | 0 | 0 | 0 |
|  | 7-20 | \| 10-25 | 6.1-7.3 | 0 | 0 | 0 | 0 |
|  | 20-28 | \| 10-25 | 6.1-7.3 | 0 | 0 | 0 | 0 |
|  | 28-40 | --- | --- | --- | --- | --- | --- |
| Stozuni- | 0-2 | 5.0-15 | 6.6-7.3 | 0 | 0 | 0 | 0 |
|  | 2-10 | \| 5.0-15 | 6.6-7.3 | 0 | 0 | 0 | 0 |
|  | 10-15 | \| 5.0-15 | 6.6-7.3 | 0 | 0 | 0 | 0 |
|  | 15-20 | \| --- | --- | --- | --- | --- | --- |
|  |  | \| |  |  |  |  |  |
| 403: |  | \| |  |  |  |  |  |
| Valnor- | 0-2 | \| 15-25 | 6.6-7.8 | 0 | 0 | 0 | \| 0 |
|  | 2-4 | \| 10-25 | 6.6-7.8 | 0 | 0 | 0.0-2.0 | 0 |
|  | 4-20 | 15-40 | 6.6-7.8 | 0 | 0 | 0.0-2.0 | 0 |
|  | 20-34 | \| 15-40 | 6.6-7.8 | 1-5 | 0 | 0.0-2.0 | \| 0 |
|  | 34-40 | \| --- | --- | --- | --- | --- | --- |
|  |  |  |  |  |  |  |  |

Table 16.--Chemical Properties of the Soils--Continued


Table 16.--Chemical Properties of the Soils--Continued


Table 16.--Chemical Properties of the Soils--Continued


Table 16.--Chemical Properties of the Soils--Continued

Map symbol and soil name	Depth	Cationexchange capacity	Soil reaction	Calcium carbonate	Gypsum	Salinity	Sodium adsorption ratio
	In	meq/100 g	pH	Pct	Pct	mmhos/cm	
419 :							
Fortwingate-------	0-5	5.0-10	6.6-7.3	0	0	0	0
	5-13	15-30	6.6-7.8	0	0	0	0
	13-21	10-15	6.6-7.8	0	0	0	0
	21-26	15-20	6.6-7.8	0	0	0	0
	26-40	---	---	---	---	---	---
Cinnadale----------	0-6	5.0-10	6.6-7.3	0	0	0	0
	6-11	5.0-10	6.6-7.3	0	0	0	0
	11-20	---	---	---	---	---	---
Rock outcrop-------	0	---	---	---	---	---	---
420:							
Seco----------------	0-3	20-30	6.1-7.3	0	0	0	0
	3-11	30-45	6.6-8.4	0	0	0	0
	11-23	30-50	6.6-8.4	0	0	0.0-2.0	0
	23-58	30-50	7.4-8.4	1-5	0	0.0-2.0	0
	58-70	30-50	7.4-8.4	1-5	0	0.0-2.0	0
425:							
Montillo-----------	0-2	10-25	6.1-7.3	0	0	0	0
	2-8	20-40	6.1-7.3	0	0	0	0
	8-18	20-40	6.1-7.3	0	0	0	0
	18-35	20-40	6.1-7.3	0	0	0	0
	35-40	---	---	---	---	---	---
Canoneros----------	0-2	10-20	6.1-7.3	0	0	0	0
	2-8	15-25	6.1-7.3	0	0	0	0
	8-13	20-35	6.1-7.3	0	0	0	0
	13-20	---	--	---	---	---	---
430:							
Montillo-----------	0-4	10-25	6.1-7.3	0	0	0	0
	4-13	20-40	6.6-7.8	0	0	0	0
	13-31	20-40	6.6-7.8	0	0	0	0
	31-38	20-40	6.6-7.8	0	0	0	0
	38-40	---	---	---	---	---	---
435 :							
Tsoodzil-----------	0-3	15-25	6.1-7.3	0	0	0	0-2
	3-11	20-35	6.1-7.3	0	0	0	0-2
	11-25	25-45	6.6-7.3	0	0	0	0-2
	25-32	20-40	7.4-7.8	1-10	0	0	0-2
	32-65	15-35	7.4-7.8	1-10	0	0.0-2.0	0-2
Amcec--------------	0-4	15-20	6.6-7.3	0	0	0	0
	4-16	15-20	7.4-7.8	0	0	0	0
	16-39	15-20	7.4-8.4	1-10	0	0	0
	39-53	5.0-10	7.4-8.4	1-10	0	0	0
	53-70	5.0-10	7.4-8.4	1-10	0	0	0

Table 16.--Chemical Properties of the Soils--Continued

Map symbol and soil name	Depth	$\begin{aligned} & \text { \| Cation- } \\ & \text { \|exchange } \\ & \text { \| capacity } \end{aligned}$	Soil reaction	Calcium carbonate	Gypsum	Salinity	$\begin{aligned} & \text { Sodium } \\ & \mid \text { adsorption } \\ & \text { ratio } \end{aligned}$
	In	\|meq/100 g	pH	Pct	Pct	mmhos/cm	
440 :							
Chivato------------	0-2	25-40	6.1-7.3	0	0	0.0-2.0	0-1
	2-13	25-45	6.6-7.8	0	0	0.0-2.0	0-1
	13-40	25-45	6.6-7.8	0	0	0.0-2.0	0-1
	40-52	25-45	6.6-7.8	0	0	0.0-2.0	0-1
	52-65	25-45	6.6-7.8	0	0	0.0-2.0	0-1
525 :							
Silcat--------------	0-2	15-30	7.4-7.8	0-1	0	0.0-2.0	0-2
	2-38	20-40	7.4-8.4	0-5	0	0.0-2.0	0-2
	38-65	20-40	7.4-8.4	0-5	0	0.0-2.0	0-2
550 :							
Bryway--------------	0-2	5.0-20	6.6-7.8	0	0	0	0
	2-6	15-35	6.6-7.8	0	0	0	0
	6-32	15-35	7.4-7.8	0-5	0	0	0
	32-40	---	---	---	---	---	---
Galzuni-------------	0-2	10-20	6.6-7.8	0	0	0	0
	2-4	15-35	7.4-7.8	0	0	0	0
	4-23	15-35	7.4-7.8	0-1	0	0.0-2.0	0-2
	23-32	15-25	7.4-7.8	1-5	0	0.0-2.0	0-2
	32-52	15-30	7.4-7.8	1-5	0	0.0-2.0	0-2
	52-65	10-25	7.4-7.8	1-5	0	0.0-2.0	0-2
555 :							
Parkelei-----------	0-3	5.0-15	6.6-7.8	0	0	0	0-1
	3-12	10-25	6.6-7.8	0	0	0	0-1
	12-21	10-25	6.6-7.8	0	0	0	0-1
	21-65	5.0-15	6.6-7.8	0-5	0	0.0-2.0	0-1
Evpark--------------	0-3	5.0-15	6.6-7.3	0	0	0	0
	3-16	15-25	6.6-7.3	0	0	0	0
	16-20	10-20	6.6-7.3	0	0	0	0
	20-29	10-20	7.4-7.8	0	0	0.0-2.0	0-1
	29-35	10-20	7.4-7.8	1-10	0	0.0-2.0	0-1
	35-40	---	---	---	---	-	---
560:							
Flugle-------------	0-3	5.0-15	6.6-7.8	0-1	0	0.0-2.0	0-1
	3-35	10-25	6.6-7.8	0-1	0	0.0-2.0	0-1
	35-65	5.0-15	7.4-8.4	5-10	0	0.0-2.0	0-1
Teczuni------------	0-2	10-20	6.6-7.8	0-5	0	0.0-2.0	0
	2-16	15-25	6.6-7.8	0-5	0	0.0-2.0	0
	16-33	15-25	6.6-7.8	5-15	0	0.0-2.0	0
	33-65	15-30	7.4-8.4	15-30	0	0.0-2.0	0
561:							
Flugle-------------	0-3	5.0-15	6.6-7.8	0-5	0	0	0
	3-17	10-25	6.6-7.8	0-5	0	0.0-2.0	\| 0-1
	17-65	5.0-15	7.4-8.4	5-10	0	0.0-2.0	0-1
							\|

Table 16.--Chemical Properties of the Soils--Continued


Table 17.--Soil Features
(See text for definitions of terms used in this table. Absence of an entry indicates that the feature is not a concern or that data were not estimated.)


Table 17.--Soil Features--Continued

Map symbol and soil name	Restrictive layer		$\begin{aligned} & \text { Potential } \\ & \text { for } \\ & \text { frost action } \end{aligned}$	Risk of corrosion				
		Depth		Uncoated				
	Kind	to top		steel	Concrete			
		In		\|	\|			
44: \|								
Suwanee----------	---	---	\|Low	\|High	\|Low			
45:								
Nutreeah---------	---	---	\|Low	\|High	\|Moderate			
				\|	,			
47:								
Conchovar	---	---	\| Low	\|High	\|High			
				,	\|			
49:								
Concho	-	---	\|Low	\|High	\|Low			
					\|			
51:								
Kwakina--	---	---	\|Low	\|High	\|Low			
					\|			
52:								
Zuniven----	---	---	\|Moderate	\|High	\|Low			
53:								
Hawaikuh----	---	---	\|Low	\|High	\|Low			
					\|			
54:								
Venadito---------	---	---	\|Low	\|High	\|High			
				,	,			
55:								
Sparham----------	---	---	\|Low	\|High	\|Low			
				\|				
60: \|								
Redpen	---	---	\|Low	\|High	\|Low			
				\|	\|			
100: \|								
Norkiki--	$\mid$ Bedrock (lithic)	20-40	\|Low	\|High	\|Low			
Kimnoli-	\|Bedrock (lithic)		5-20	\| Low	\|High	\| Low		
	Bedrock (1ithic)\|							
110:								
Benally--	---	---	\|Low	\|High	\|High			
Fruitland--	--- \|	---	\|Low	\|High	\| Moderate			
111:								
Yelives---	---	---	\|Low	\|High	\|Low			
115:								
Razito---	---	---	\| Low	\| High	\|Low			
					\|			
Shiprock---------	---	---	\| Low	\|High	\| Moderate			
				\|	,			
116: \|								
Fajada-	\|Bedrock   (paralithic)	20-40	\|Low	\|High	\|High			
				\|	崖			
				\|	\|			
Huerfano-	\|Bedrock   \| (paralithic)	10-20	\|Low	\|High	\|High			
				\|	\|			
Benally	\|Bedrock   (paralithic)	40-60	\|Low	\|High	\|High			
				,	,			

Table 17.--Soil Features--Continued


Table 17.--Soil Features--Continued


Table 17.--Soil Features--Continued


Table 17.--Soil Features--Continued

Map symbol and soil name	Restrictive layer		Potential for	Risk of corrosion		
		Depth		Uncoated	\|	
	Kind	to top	frost action	steel	Concrete	
		In	\|	\|	\|	
291:						
Rock outcrop-	\|Bedrock (lithic)	0-0	---	---	---	
				\|	\|	
Eagleye-	\| Bedrock	5-20	\|Low	\|High	\| Low	
	(paralithic)				\|	
				\|	\|	
Atchee-	\|Bedrock (lithic)		5-20	\|Low	\|High	\|Low
	\|					
300:						
Regracic--	---	---	\|Low	\|Moderate	\|Low	
305:						
Celavar	$\mid$ Bedrock (lithic) $\mid$	20-40	\|Moderate	\|High	\|Low	
Atarque-	$\mid$ Bedrock (lithic)	10-20	\|Moderate	\|High	\| Low	
308:						
Fikel-	---	---	\|Low	\|High	\|Low	
Venzuni--	---	---	\|Low	\|High	\| Low	
			\|	\|	,	
310:						
Parkelei---------	---	---	\|Moderate	\|High	\|Low	
				\|		
312:						
Bluewater-	---	---	\|Moderate	\|High	\| Low	
315:						
Flugle-	---	---	\|Moderate	\|High	\| Low	
Fragua-	---	---	\|Moderate	\|High	\|Low	
316:						
Royosa--	---	---	\|Low	\|Moderate	\|Low	
				,		
317:						
Highdye-	$\mid$ Bedrock (lithic)	5-20	\|Low	\|High	\| Low	
Evpark-	$\mid$ Bedrock (lithic)	20-40	\|Moderate	\|High	\| Low	
Bryway-	\|Bedrock	20-40	\|Moderate	\|High	\|Low	
	(paralithic)			\|	,	
				,	\|	
320:						
Parkelei-	---	---	\|Moderate	\|High	\| Low	
Fraguni-----------	---	---	\|Moderate	\| Moderate	\| Low	
325:						
Venzuni------------	---	---	\|Low	\|High	\| Low	
				\|	\|	
332:						
Evpark--	$\mid$ Bedrock (lithic)	20-40	\|Moderate	\| High	\|Low	
	$1$				\|	
Arabrab	$\mid$ Bedrock (lithic)	10-20	\|Moderate	\|Moderate	\| Low	

Table 17.--Soil Features--Continued

Map symbol and soil name	Restrictive layer		Potential for	Risk of corrosion		
		Depth		Uncoated	\|	
	Kind	to top	frost action	steel	Concrete	
		In		\|	\|	
335:						
Venadito--	---	---	\|Low	\|High	\|Low	
					\|	
336:						
Nuffel---	---	---	\|Low	\|High	\|Low	
Venadito---	---	---	\|Low	\|High	\|Low	
				,	\|	
338:						
Zyme	$\begin{aligned} & \text { \|Bedrock } \\ & \text { \| (paralithic) } \end{aligned}$	5-20	\|Low	\| High	\|Low	
				\|	\|	
					\|	
Lockerby-	Bedrock	20-40	\|Low	\|High	\|Low	
	\| (paralithic)					
345:	\|		0-0	\|None	\|	---
Rock outcrop-	\|Bedrock (lithic)				\| ---	
				\|		
Tuces-	\|Bedrock   \| (paralithic)	20-40	\|Low	\| High	\|Low	
350:		5-20	\|Low	\|	\|	
Toldohn	Bedrock (paralithic)			\| High	\|Low	
Vessilla-	\|Bedrock (lithic)		5-20	\|Moderate	\|Low	\|Low
Rock outcrop-	\|Bedrock (lithic)		0-0	\| None	---	---
				\|	\|	
351:	\|Bedrock (lithic)		0-0	\| None	\|	\|
Rock outcrop				---	---	
	\|					\|
Vessilla$352:$Zia-	$\mid$ Bedrock (lithic) $\mid$	5-20	\|Moderate	\|Low	\|Low	
					\|	
	---	---	\|Low		\|	
				\|High	\|Low	
353:		---	\|Low	\|Moderate	\|	
Mido-----------------354:	\| ---				\| Low	
	\| ---	---		\| High	\|	
Knifehill----------355 :			\|Moderate		\| Low	
	\|Bedrock (lithic)		5-20	\|Low	\|Moderate	\|Low
355:Rizno						
Tekapo-	\|Bedrock   \| (paralithic)	5-20	\|Low	\| High	\|Low	
Rock outcrop--	\|Bedrock (lithic)		0-0	\| None	\| ---	---
					\|	
357:		---			\|	
			\|Low	$\begin{aligned} & \text { \|High } \\ & \text { \| } \end{aligned}$	\|High	

Table 17.--Soil Features--Continued

Map symbol and soil name	Restrictive layer		Potential for	Risk of corrosion									
		Depth		Uncoated	\|								
	Kind	to top	frost action	steel	Concrete								
		In		\|	\|								
360 :													
Hosta--	---	-	\|Moderate	\|High	\|Low								
					\|								
Concho---	---	---	\|Low	\|High	\|Low								
					\|								
361:													
Monpark-	\|Bedrock	20-40	\|Low	\|High	\| Moderate								
	(paralithic)				\|								
				\|	\|								
365:													
Vessilla	\|Bedrock (lithic)		5-20	\|Moderate	\|High	\|Low							
					\|								
Rock outcrop	\|Bedrock (lithic)		0-0	\| None	\| ---	---							
				\|	\|								
366:													
Bosonoak-	---	---	\|Moderate	\|High	\|Low								
				\|	\|								
367:													
Chunkmonk-	\|Bedrock (lithic)		10-20	\|Moderate	\|High	\|Low							
368:													
Simitarq-	\|Bedrock (lithic)		5-20	\|Moderate	\|Moderate	\|Low							
Celavar	\|Bedrock (lithic)		20-40	\|Moderate	\|High	\|Low							
				\|	,								
375:													
Todest	\|Bedrock (lithic)		20-40	\|Moderate	\|High	\|Low							
				\|									
Shadilto-	\|Bedrock (lithic)		5-20	\|Moderate	\|High	\|Low							
376:													
Todest-	\|Bedrock (lithic)		20-40	\|Moderate	\|High	\|Low							
					\|								
380 :													
Berryhill--	---	--	\|Low	\|High	\|High								
Casamero-	\|Bedrock	10-20	\|Low	\|High	\|High								
	(paralithic)			\|	\|								
				\|	\|								
385:													
Mcorreon-	\|Bedrock (lithic)		---	\|Low	\|High	\|Low							
Rock outcrop-	\|Bedrock (lithic)		0-0	\| None	---	---							
					\|								
390:													
Banquito-	\|Bedrock (lithic)		20-40	\|Moderate	\|High	\|Low							
					\|								
395: \|													
Cabezon-	$\mid$ Bedrock (lithic)\|	10-20	\|Low	\|High	\|Low								
				\|									
Mcorreon-	\|Bedrock (lithic)		---	\|Low	\|High	\|Low							
				,	\|								
400:													
Shoemaker--	\|Bedrock (lithic)		20-40	\|Moderate	\|Moderate	\|Low							
Stozuni	\|Bedrock (lithic)		5-20	\| Moderate	\|Low	\|Low							
				,	\|								

Table 17.--Soil Features--Continued


Table 17.--Soil Features--Continued

Map symbol and soil name	Restrictive layer		Potential for	Risk of corrosion		
		Depth		Uncoated	\|	
	Kind	to top	frost action	steel	Concrete	
		In		\|	\|	
413 :						
Morclay-	\| Bedrock	---	\|Low	\|High	\|Low	
	(paralithic)			\|	\|	
				\|	\|	
414:						
Zunalei--	---	---	\|Moderate	\|High	\|Low	
				,		
Corzuni---	---	---	\|Moderate	\|Low	\|Low	
415:						
Tsoodzil---------	---	---	\|Low	\|High	\| Low	
Rubble Land--------	---	---	\|None	\|High	\|Low	
Rubble Land--------------\|				\|	\|	
416:						
Rock outcrop-	\|Bedrock (lithic)	0-0	\|None	---	---	
				\|	\|	
Bluesky-	\|Bedrock (lithic)		5-20	\|Low	\|Low	\| Low
				,	\|	
418:						
Asaayi-	\|Bedrock (lithic)		5-20	\|Moderate	\|Low	\| Low
				,	\|	
Osoridge-	\|Bedrock (1ithic)	10-20	\|Low	\|High	\| Low	
				,		
419:						
Fortwingate--	\|Bedrock (lithic)	20-40	\|Low	\|High	\| Low	
Cinnadale-	\|Bedrock (lithic)	5-20	\|Moderate	\|Moderate	\| Low	
					\|	
Rock outcrop-----	---	---	\| None	\| ---	---	
				\|	\|	
420:						
Seco-	-	---	\|Low	\|High	\| Low	
425:						
Montillo--	\|Bedrock (lithic)	20-40	\|Low	\|High	\|Low	
Canoneros-	\|Bedrock (lithic)	10-20	\|Low	\|High	\|Low	
				,	,	
430:						
Montillo-	\|Bedrock (lithic)	20-40	\|Low	\|High	\| Low	
435:						
Tsoodzil--	---	---	\|Low	\|High	\| Low	
Amcec-	---	---	\|Moderate	\|High	\| Low	
				\|	\|	
440:						
Chivato----------	---	---	\|Low	\|High	\| Low	
			\|	\|	\|	
525:						
Silcat-------------	---	---	\|Low	\|High	\| Low	
				\|	\|	
550:						
Bryway	\|Bedrock	20-40	\|Moderate	\|High	\| Low	
	\| (paralithic)		\|Moderate	\|	\|	
				,	\|	

Table 17.--Soil Features--Continued

Map symbol and soil name	Restrictive layer		Potential for	Risk of corrosion		
		Depth		Uncoated	\|	
	Kind	to top	frost action	steel	Concrete	
	\|	In		\|	\|	
550:						
Galzuni-	\| ---	---	\|Low	\|High	\|Low	
					\|	
555:						
Parkelei-	\| ---	---	\|Moderate	\|High	\|Low	
Evpark-	\|Bedrock (lithic)		20-40	\|Moderate	\|High	\| Low
560:						
Flugle--	---	---	\|Moderate	\|High	\|Low	
Teczuni-	---	---	\|Moderate	\|High	\| Low	
				\|		
561:						
Flugle---	---	---	\|Moderate	\|High	\| Low	
Plumasano--	---	---	\|Moderate	\| High	\| Low	
				,	\|	
565:						
Plumasano-----	---	---	\|Moderate	\|High	\|Low	
Rock outcrop-	$\mid$ Bedrock (1ithic) $\mid$	0-0	\| None	---	---	
				\|	\|	
566:						
Bamac---	---	---	\|Low	\|High	\| Low	
575:						
Ramah	\| ---	---	\|Moderate	\| High	\| Low	
Pescado------------	\|Bedrock (lithic)		5-20	\| Moderate	\| High	\| Low

Table 18.--Water Features
(Depths of layers are in feet. See text for definitions of terms used in this table. Estimates of the frequency of ponding and flooding apply to the whole year rather than to individual months. Absence of an entry indicates that the feature is not a concern or that data were not estimated.)

| Map symbol and soil name | \| | | Month | Water table |  | Ponding |  |  | Flooding |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | \|Hydro- <br> \|logic <br> \|group |  | Upper | Lower | \|Surface| | Duration | \|Frequency | Duration | Frequency |
|  |  |  | limit | limit | \| water | |  |  |  |  |
|  |  |  |  |  | \| depth | |  |  |  |  |
|  |  |  | Ft | Ft | Ft |  | \| |  |  |
|  | \| |  |  |  |  |  | \| |  |  |
| 8: |  |  |  |  |  |  |  |  |  |
| Water--------------- | --- |  |  |  |  |  | \| |  |  |
|  |  | \|Jan-Dec | --- | --- | --- | --- | None | --- | None |
|  |  |  |  |  |  |  | \| |  |  |
| 10: |  |  |  |  |  |  |  |  |  |
| Tsosie-------------- | B |  |  |  |  |  | \| |  |  |
|  | , | \|March | --- | --- | --- | --- | \| None | Very brief | Rare |
|  | 1 \| | \|April | --- | --- | --- | --- | \| None | Very brief | Rare |
|  |  | \|May | --- | --- | --- | --- | \| None | Very brief | Rare |
|  |  | \|June | --- | --- | --- | --- | \| None | Very brief | Rare |
|  | 1 \| | \|July | --- | --- | --- | --- | \| None | Very brief | Rare |
|  | 1 \| | \|August | --- | --- | --- | --- | \| None | Very brief | Rare |
|  |  |  |  |  |  |  |  |  |  |
| Councelor----------- | - ${ }^{\text {B }}$ |  |  |  |  |  | \| |  |  |
|  | 1 \| | \|March | --- | --- | --- | --- | \| None | Very brief | Rare |
|  |  | \|April | --- | --- | --- | --- | \| None | Very brief | Rare |
|  |  | \|May | --- | --- | --- | --- | \| None | Very brief | Rare |
|  | 1 \| | \|June | --- | --- | --- | --- | \| None | Very brief | Rare |
|  | $\mid$ \| | \|July | --- | --- | --- | --- | \| None | Very brief | Rare |
|  | 1 | \|August | --- | --- | --- | --- | \| None | Very brief | Rare |
|  | 1 |  |  |  |  |  | I |  |  |
| Blancot- | B |  |  |  |  |  | \| |  |  |
|  |  | \|Jan-Dec | --- | --- | --- | --- | \| None | --- | None |
|  |  |  |  |  |  |  | \| |  |  |
| 11: |  |  |  |  |  |  | \| |  |  |
| Doakum- | B |  |  |  |  |  | \| |  |  |
|  |  | \|Jan-Dec | --- | --- | --- | --- | \| None | --- | None |
|  | 1 |  |  |  |  |  | \| |  |  |
| Betonnie- | B |  |  |  |  |  | \| |  |  |
|  |  | \|Jan-Dec | --- | --- | --- | --- | None | --- | None |
|  |  | \| |  |  |  |  | \| |  |  |
| 12: |  | \| |  |  |  |  | \| |  |  |
| Calladito------------ | A |  |  |  |  |  | \| |  |  |
|  |  | \|Jan-Dec | --- | --- | --- | --- | \| None | --- | None |
|  | 1 |  |  |  |  |  | \| |  |  |
| Elias | C |  |  |  |  |  | \| |  |  |
|  |  | \|Jan-Dec | --- | --- | --- | --- | \| None | --- | None |
|  |  |  |  |  |  |  | \| |  |  |
| 13: | 1 \| | \| |  |  |  |  | \| |  |  |
| Councelor----------- | B | \| |  |  |  |  | \| |  |  |
|  |  | \|March | --- | --- | --- | --- | \| None | Very brief | Rare |
|  | 1 | \|April | --- | --- | --- | --- | \| None | Very brief | Rare |
|  | 1 \| | \| May | --- | --- | --- | --- | \| None | Very brief | Rare |
|  | 1 \| | \|June | --- | --- | --- | --- | \| None | Very brief | Rare |
|  | 1 | \|July | --- | --- | --- | --- | \| None | Very brief | Rare |
|  | 1 \| | \|August | --- | --- | --- | --- | \| None | Very brief | Rare |
|  | 1 |  |  |  |  |  | \| |  |  |
| Calladito----------- | \| A |  |  |  | 1 |  | \| |  |  |
|  |  | \|Jan-Dec | --- | --- | --- | --- | \| None | --- | None |
|  |  |  |  |  |  |  |  |  |  |

Table 18.--Water Features--Continued

Map symbol and soil name		\| Month	Water table		Ponding			Flooding			
	\|Hydro-			Upper	Lower	\|Surface		Duration	\|Frequency	Duration	Frequency
	\|logic		limit	limit	water						
	\| group				\| depth						
	\|	\|	Ft	Ft	Ft						
	\|										
14:											
Councelor-----------	B										
	,	$\mid$ March	---	---	---	---	None	Very brief	Rare		
	\|	\|April	---	---	---	--	None	Very brief	Rare		
		\|May	---	---	---	---	None	Very brief	Rare		
	,	\|June	---	---	---	--	None	Very brief	Rare		
	,	\|July	--	---	-	--	None	Very brief	Rare		
	\|	\|August	---	---	---	---	None	Very brief	Rare		
	,										
Eslendo-------------	D										
	\|	\|Jan-Dec	---	---	---	---	None	---	None		
	\|										
Calladito-	A										
		\|Jan-Dec	---	---	---	---	None	---	None		
	\|										
16:											
Starlake------------	D										
		\|March	---	---	---	---	None	Very brief	Rare		
	\|	\|April	---	---	--	-	None	Very brief	Rare		
	\|	\|May	---	---	---	---	None	Very brief	Rare		
	\|	\|June	---	---	---	---	None	Very brief	Rare		
	\|	\|July	---	---	---	---	None	Very brief	Rare		
	\|	\|August	---	---	---	---	None	Very brief	Rare		
	\|										
22:											
Querencia------------	- B										
		\|Jan-Dec	---	---	---	---	None	---	None		
Lavodnas------------	C										
		\|Jan-Dec	-	---	---	---	None	---	None		
	,										
30:											
Orlie---------------	- B										
	\|	\|Jan-Dec	---	---	---	---	None	---	None		
	\|	\|									
Tinian---------------------- ${ }^{\text {\| }}$											
		\|									
40:											
Nuffel---------------	B	\|									
	\|	\|January	---	---	---	---	None	Very brief	Frequent		
	\|	\|February	---	---	---	---	None	Very brief	Frequent		
	\|	\|March	---	---	---	---	None	Very brief	Frequent		
	\|	\|April	---	---	---	---	None	Very brief	Frequent		
	\|	\|July	---	---	\| ---	---	None	Very brief	Frequent		
	\|	\|August	---	---	---	---	None	Very brief	Frequent		
	\|	\| September	---	---	---	---	None	Very brief	Frequent		
	\|	\| October	---	---	\| ---	---	None	Very brief	Frequent		
	\|	\| November	---	---	--- \|	---	None	Very brief	Frequent		
	\|	\| December	---	---	\| ---	---	None	Very brief	Frequent		
					\|						

Table 18.--Water Features--Continued


Table 18.--Water Features--Continued

Map symbol and soil name			Water table		Ponding			Flooding			
	\|Hydro-	logic   group	\| Month	Upper	Lower	\|Surface		Duration	\|Frequency	Duration	Frequency
			limit	limit	\| water						
					depth						
	\|		Ft	Ft	Ft						
			\|								
51:											
Kwakina-------------	B										
		\|July	---	---	\| ---	---	None	Very brief	Occasional		
		\|August	---	-	\| ---	---	None	Very brief	Occasional		
		\| September	---	---	---	--	None	Very brief	Occasional		
	\|	\| October	---	---	---	---	None	Very brief	Occasional		
		\| November	---	--	\| ---	---	None	Very brief	Occasional		
	\|		\|		\|						
52:											
Zuniven-------------1	B										
		$\mid$ March	---	---	---	--	None	Brief	Frequent		
		\|April	---	---	---	-	None	Brief	Frequent		
		\|May	---	---	-	-	None	Brief	Occasional		
		\|June	---	---	---	---	None	Brief	Occasional		
		\|July	---	---	-	-	None	Brief	Frequent		
		\|August	---	---	\| ---	---	None	Brief	Frequent		
		\| September	---	---	---	---	None	Brief	Frequent		
		\| October	---	---	---	---	None	Brief	Occasional		
53:			\|								
Hawaikuh------------	C				\|						
		\|Jan-Dec	---	---	---	---	None	-	None		
54:											
Venadito------------	D										
		\|March	$\|3.0-5.0\|$	---	---	-	None	Very brief	Occasional		
		\|April	$\|3.0-5.0\|$	---	---	-	None	Very brief	Occasional		
		\|May	$\|3.0-5.0\|$	---	---	-	None	Very brief	Occasional		
		\|June	$\|3.0-5.0\|$	-	-	---	None	Very brief	Occasional		
		\|July	$\|3.0-5.0\|$	---	---	---	None	Very brief	Occasional		
	\|	\|August	$\|3.0-5.0\|$	---	-	---	None	Very brief	Occasional		
		\| September	$\|3.0-5.0\|$	-	--	-	None	Very brief	Occasional		
		\| October	$\|3.0-5.0\|$	---	---	---	None	Very brief	Occasional		
	\|	\| November	$\|3.0-5.0\|$	---	---	---	None	---	None		
55:					1 \|						
Sparham-------------	D				\|						
		\|January	---	---	-	---	None	Very brief	Frequent		
		\| February	---	---	---	---	None	Very brief	Frequent		
		\|March	---	---	---	---	None	Very brief	Frequent		
		\|April	---	---	---	---	None	Very brief	Frequent		
		\|July	---	---	---	---	None	Very brief	Frequent		
		\|August	---	---	---	---	None	Very brief	Frequent		
		\| September	---	---	---	--	None	Very brief	Frequent		
		\| October	---	---	---	---	None	Very brief	Frequent		
		\| November	---	---	---	---	None	Very brief	Frequent		
		\| December	---	---	---	---	None	Very brief	Frequent		
					1						
60:			1		1 \|						
Redpen--------------	B				$\|\quad\|$		\|				
		\|Jan-Dec	--- \|	---	\| ---		---	None	---	None	
					\|						

Table 18.--Water Features--Continued

Map symbol and soil name		Month	Water table		Ponding			Flooding			
	\|Hydro-			\| Upper	Lower	\|Surface		Duration	\|Frequency	Duration	Frequency
	\|logic			\| limit	limit	\| water					
	\| group				depth						
	\|		Ft	Ft	Ft						
			\|								
100:											
Norkiki-------------	\| C		\|				\|				
		\|Jan-Dec	\| ---	---	---	---	None	---	None		
Kimnoli-------------	-		\|								
		\|Jan-Dec	\| ---	---	---	---	None	---	None		
	\|		\|								
110:							\|				
Benally	C		\|				\|				
		\|Jan-Dec	\| ---	---	---	---	None	---	None		
	1		\|								
Fruitland--	B		\|								
		\|Jan-Dec	\| ---	---	---	---	None	---	None		
	\|		\|								
111:		,					\|				
Yelives-------------	\| B										
		\|March	\| ---	---	---	---	None	Very brief	Rare		
	$\mid$ \|	\|April	\| ---	---	---	---	None	Very brief	Rare		
	1 \|	\|May	---	---	---	---	None	Very brief	Rare		
		\|June	\| ---	---	---	---	None	Very brief	Rare		
	1 \|	\|July	---	---	---	---	None	Very brief	Rare		
	1 \|	\|August	---	---	---	---	None	Very brief	Rare		
	1 \|		\|								
115:	\|		\|	\|				\|			
Razito-	A		\|				,				
		\|Jan-Dec	\| ---	---	---	---	None	---	None		
	\|			\|							
Shiprock-	B		,				\|				
		\|Jan-Dec	\| ---	---	---	---	\| None	---	None		
			\|								
116:	1	\|	\|				\|				
Fajada-	C		\|								
		\|Jan-Dec	\| ---	---	---	---	None	---	None		
			\|								
Huerfano-	D		\|				\|				
		\|Jan-Dec	\| ---	---	---	---	\| None	---	None		
	1		\|								
Benally-	C		\|				\|				
		\|Jan-Dec	\| ---	---	---	---	None	---	None		
	1		\|								
118:			\|				\|				
Farb-	D		\|				\|				
	\|		\|Jan-Dec	\| ---	---	---	---	\| None	---	None	
			\|								
Chipeta-------------	\| D		,				\|				
		\|Jan-Dec	\| ---	---	---	---	None	---	None		
			\|								
Rock outcrop--------	\| ---		\|				\|				
		\|Jan-Dec	\| ---	---	---	---	\| None	---	None		
			\|								

Table 18.--Water Features--Continued

Map symbol and soil name		Month	Water table		Ponding			Flooding			
	Hydro\|logic group		Upper	Lower	\| Surface		Duration	\|Frequency	Duration	Frequency	
			limit	limit	\| water						
					depth						
	1		Ft	Ft	Ft						
120:											
Doak----------------	\| B										
		\|Jan-Dec	---	---	---	---	None	---	None		
					\|						
Shiprock------------	\| B										
		\|Jan-Dec	---	---	---	---	None	---	None		
					\|						
121:											
Badland-	D										
		\|Jan-Dec	---	---	---	---	None	---	None		
	\|					\|					
122:											
Farb-	D				\|						
		\|Jan-Dec	---	---	---	---	None	---	None		
					$\|\quad\|$						
Rock outcrop-------	\| ---				1						
		\|Jan-Dec	---	---	---	---	None	---	None		
					\|						
125:											
Sanfeco-------------	-				\|						
		\| March	---	---	---	---	None	Very brief	Rare		
	1 \|	\|April	---	---	---	---	None	Very brief	Rare		
	$\mid$ \|	\| May	---	---	---	---	None	Very brief	Rare		
	$\mid$ \|	\|June	---	---	---	---	None	Very brief	Rare		
	1	\|July	---	---	---	---	None	Very brief	Rare		
		\|August	---	---	---	---	None	Very brief	Rare		
	1				$\|\quad\|$						
130:											
Chipeta-------------	- D				\|						
	1 \|	\|Jan-Dec	---	---	---	---	None	---	None		
	1 \|				1						
Badlands------------	-				,						
	1 \|	\|Jan-Dec	---	---	---	---	None	---	None		
					1						
Moncisco------------	\| A				\|						
	1 \|	\|Jan-Dec	---	---	---	---	None	---	None		
	\|										
150:											
Riverwash-----------	\| ---				1						
	1 \|	\|March	---	---	\| ---	---	None	Very brief	Occasional		
	\|	\|April	---	---	\| ---	---	None	Very brief	Occasional		
	\|	\|May	---	---	---	---	None	Very brief	Occasional		
	\|	\|June	---	---	---	---	None	Very brief	Occasional		
	\|	\|July	-	---	\| ---	---	None	Brief	Frequent		
	,	\|August	---	---	\| ---		---	None	Brief	Frequent	
	1 \|	\| September	---	---	\| ---		---	None	Very brief	Occasional	
					1 \|						

Table 18.--Water Features--Continued

Map symbol and soil name	\|	Month	Water table		Ponding			Flooding			
	\|Hydro-		Upper	Lower	\|Surface		Duration	\|Frequency	Duration	Frequency	
	\|logic		limit	limit	\| water						
	\| group				\| depth						
	\|		Ft	Ft	Ft		\|				
					\|						
150:											
Escawetter----------	\| A				\|						
		\|January	$\|3.0-4.9\|$	---	\| ---		-	None	---	None	
		\|March	\|3.3-5.0		---	-	-	None	Very brief	Occasional	
		\|April	\|3.3-5.0		--	---	---	None	Very brief	Occasional	
		\|May	\|3.3-5.0		---	--- \|	---	None	Very brief	Occasional	
		\|June	\|3.3-5.0		--	-- \|	-	None	Very brief	Occasional	
		\|July	\|3.3-5.0		-	---	---	None	Brief	Frequent	
		\|August	\|3.3-5.0		---	\| ---	---	None	Brief	Frequent	
		\| September	\|3.3-5.0		---	---	---	None	Very brief	Occasional	
					\|						
160:											
Escawetter----------	A				1 \|						
		$\mid$ March	\|3.3-5.0		---	--- \|	---	None	Very brief	Occasional	
		\|April	\|3.3-5.0		---	\| ---		--	None	Very brief	Occasional
		\|May	\|3.3-5.0		---	\| ---		--	None	Very brief	Occasional
		\|June	\|3.3-5.0		---	\| ---		---	None	Very brief	Occasional
		\|July	\|3.3-5.0		---	---	---	None	Brief	Frequent	
		\|August	---	-	--- \|	-	None	Brief	Frequent		
	\|	\| September	---	---	\| ---		---	None	Very brief	Occasional	
					\|						
Riverwash-	---				\|						
		$\mid$ March	---	---	\| ---		---	None	Very brief	Occasional	
	\|	\|April	---	---	\| ---		---	None	Very brief	Occasional	
		\|May	---	---	\| ---		---	None	Very brief	Occasional	
		\|June	---	---	\| ---		---	None	Very brief	Occasional	
	\|	\|July	---	---	$\mid---1$	---	None	Brief	Frequent		
	\|	\|August	---	---	\| ---		---	None	Brief	Frequent	
	\|	$\mid$ September	--- \|	---	--- \|	---	None	Very brief	Occasional		
	\|	\| October	$\|3.0-4.9\|$	---	--- \|	---	None	---	None		
					,						
Razito---------------	\| A		1		\|						
		\|Jan-Dec	---	---	--- \|	---	None	---	None		
					1 \|						
205:			\|		,						
Penistaja-----------	\| B	\|	\|		\|						
	,	\|Jan-Dec	---	---	\| ---		---	None	---	None	
			1 \|		1 \|						
Tintero--------------	\| B		1		\|						
	\|	\|Jan-Dec	---	---	\| ---		---	None	---	None	
208:			1 \|		,				,		
Marianolake---------	\| B		1 \|		\|						
		\|Jan-Dec	---	---	\| ---		---	None	---	None	
					,						
210:			1		\|						
Marianolake---------	\| B		1 \|		\|						
		\|Jan-Dec	---	---	\| ---		---	None	---	None	
			$1 \quad 1$		,						
Skyvillage----------	D		-		-		\|				
		\|Jan-Dec	--- \|	---	\| ---		---	None	---	None	
									1		

Table 18.--Water Features--Continued


Table 18.--Water Features--Continued

Map symbol and soil name	\|	\| Month	Water table		Ponding			Flooding			
	\| Hydro-			Upper	Lower	\|Surface		Duration	\|Frequency	Duration	Frequency
	\|logic		limit	limit	\| water						
	\| group				\| depth						
	\|		\|	Ft	Ft	Ft					
	1										
230:											
San Mateo-----------	-										
	1 \|	\|January	-	--	--	--- \|	None	Very brief	Occasional		
	$\mid$ \|	\|February	---	--	---	---	None	Very brief	Occasional		
	$\mid$ \|	\|March	---	---	--- \|	--	None	Very brief	Occasional		
	1 \|	\|April	---	---	---	---	None	Very brief	Occasional		
	$\mid$ \|	\|July	---	--	--- \|	---	None	Very brief	Occasional		
	$\mid$ \|	\|August	---	---	---	---	None	Very brief	Occasional		
	1 \|	\| September	---	---	--- \|	---	None	Very brief	Occasional		
	1	\| October	---	--	--	---	None	Very brief	Occasional		
	1 \|	\| November	---	--	---	-	None	Very brief	Occasional		
	$\mid$ \|	\| December	---	---	---	---	None	Very brief	Occasional		
	\|										
Zia-	B										
	$\mid$ \|	\|March	---	-	- \|	--- \|	None	Very brief	Rare		
	1 \|	\|April	---	---	--- \|	---	None	Very brief	Rare		
	1 \|	\|May	---	---	--- \|	---	None	Very brief	Rare		
	$\mid$ \|	\|June	---	---	---	-	None	Very brief	Rare		
	1 \|	\|July	---	-	-- \|	---	None	Very brief	Rare		
	$\mid$ \|	\|August	---	---	--- \|	---	None	Very brief	Rare		
	\|										
235:											
Notal-	D										
	1 \|	\|March	---	---	--- \|	---	None	Very brief	Rare		
	1 \|	\|April	---	---	---	---	None	Very brief	Rare		
	1 \|	\|May	---	---	--- \|	---	None	Very brief	Rare		
	$\mid$ \|	\|June	---	---	--- \|	---	None	Very brief	Rare		
	1 \|	\|July	---	--	---	--- \|	None	Very brief	Rare		
	1 \|	\|August	---	---	---	---	None	Very brief	Rare		
	1										
Hamburn	B										
	1	\| January	---	---	--- \|	---	None	Very brief	Rare		
	1 \|	\|February	---	---	---	---	None	Very brief	Rare		
	$\mid$ \|	\|March	---	---	--- \|	---	None	Very brief	Occasional		
	1	\|April	---	---	--- \|	--- \|	None	Very brief	Occasional		
	1 \|	\|May	---	---	--- \|	---	None	Very brief	Occasional		
	1 \|	\|June	---	---	--- \|	--- \|	None	Very brief	Occasional		
	1 \|	\|July	---	---	--- \|	---	None	Very brief	Occasional		
	1 \|	\|August	---	---	--- \|	---	None	Very brief	Occasional		
	1 \|	\| September	---	---	--- \|	---	None	Very brief	Rare		
	1 \|	\| October	---	---	--- \|	--- \|	None	Very brief	Rare		
	1	\| November	-	--	--- \|	--- \|	None	Very brief	Rare		
	$\mid$ \|	\| December	---	---	--- \|	---	None	Very brief	Rare		
	\|					\|					
240:											
Breadsprings--------	C										
	,	\|March	---	---	\|0.0-0.2		Very brief\|	Rare	Extremely	Rare	
	1							brief			
	1	\|April	---	---	\|0.0-0.2		Very brief	Rare	Extremely   brief	Rare	
	1	\|May	---	---	\|0.0-0.2		Brief	Rare	Extremely	Rare	
	1				1			brief			
	1	\|June	---	---	\|0.0-0.2		Brief	Rare	Very brief	Rare	
	1 \|	\|July	---	---	\|0.0-0.2		Brief	Rare	Very brief	Rare	
	1	\|August	---	---	\|0.0-0.2		Brief	Rare	Very brief	Rare	
	1										

Table 18.--Water Features--Continued

Map symbol and soil name			Water table		Ponding			Flooding			
	\|Hydro-		\| Month	Upper	Lower	\|Surface		Duration	\|Frequency	Duration	Frequency
	\|logic			limit	limit	water					
	\| group					\| depth					
	\|		Ft	Ft	Ft						
	\|										
240:											
Nahodish------------	\| D										
	\|	\|March	---	---	\|0.0-0.2		Very brief\|	Rare	Extremely	Rare	
	\|							brief			
	\|	\|April	---	---	\|0.0-0.2		Very brief\|	\| Rare	Extremely	Rare	
								brief			
	\|	\| May	---	---	\|0.0-0.2		Brief	Rare	Extremely	Rare	
	\|							brief			
	I	\| June	---	---	\|0.0-0.2		Brief	Rare	Very brief	Rare	
	\|	\|July	---	---	\|0.0-0.2		Brief	Rare	Very brief	Rare	
	\|	\|August	---	---	\|0.0-0.2		Brief	Rare	Very brief	Rare	
	\|										
241:											
Mentmore-------------	\| B										
	\|	\|Jan-Dec	---	---	--- \|	---	None	---	None		
	\|										
242:											
Gish	D										
	\|	\|June	---	---	--- \|	---	None	Very brief	Rare		
	\|	\|July	---	---	---	---	None	Very brief	Rare		
	\|	\|August	---	---	---	---	None	Very brief	Rare		
	\|	\| September	---	---	---	---	None	Very brief	Rare		
	\|										
Mentmore-------------	\| B										
	\|	\|Jan-Dec	---	---	---	---	None	---	None		
	\|										
244:											
Buckle--------------	\| B										
	\|	\|Jan-Dec	---	---	--- \|	---	None	---	None		
	\|										
245:											
Buckle---------------	\| B										
	\|	\|Jan-Dec	---	---	--- \|	---	None	---	None		
	\|										
Gapmesa--------------	B										
	\|	\|Jan-Dec	---	---	--- \|	---	None	---	None		
	\|										
Barboncito----------	D										
	\|	\|Jan-Dec	---	---	--- \|	---	None	---	None		
	\|										
250:		\|									
Hospah--------------	D										
	,	\|Jan-Dec	---	---	--- \|	---	None	---	None		
	\|										
Skyvillage----------	D				1						
	,	\|Jan-Dec	---	---	--- \|	---	None	---	None		
	1										
Rock outcrop--------	\| ---				-						
	,	\|Jan-Dec	---	---	--- \|	---	None	---	None		
	\|				-	-					
255:	\|	\|			,	-					
Farview-------------	D				,						
	,	\|Jan-Dec	---	---	--- \|	---	None	---	None		
Rock outcrop--------	\| ---					\|					
	\|	\|Jan-Dec	---	---	\| ---		---	\| None	---	None	
	,										

Table 18.--Water Features--Continued

Map symbol
and soil name

Table 18.--Water Features--Continued

Map symbol and soil name		\| Month	Water table		Ponding			Flooding			
	\| Hydro-			Upper	Lower	\|Surface		Duration	\|Frequency	Duration	Frequency
	\|logic			limit	limit	\| water					
	\| group					\| depth					
	\|			Ft	Ft	Ft		\|			
	1		\|								
300:											
Regracic------------	\| D		\|								
	1 \|	\|Jan-Dec	---	---	---	---	None	---	None		
	1				$\|\quad\|$						
305:											
Celavar--------------	- ${ }^{\text {c }}$		\|								
	1 \|	\|Jan-Dec	---	---	\| ---	---	None	---	None		
	1 \|		\|								
Atarque-	D		I								
	1 \|	\|Jan-Dec	\| ---	---	\| ---	---	None	---	None		
	1 \|		\|		\|						
308:											
Fikel----------------	\| C		\|								
		\|Jan-Dec	---	---	---	---	None	---	None		
	1 \|		1 \|								
Venzuni-------------	- D		\|		1						
	1 \|	\|June	---	---	---	---	None	Very brief	Rare		
	1 \|	\|July	---	---	---	---	None	Very brief	Rare		
	1 \|	\|August	---	---	---	---	None	Very brief	Rare		
	1		\|								
310 :											
Parkelei------------	\| B		1 \|		1						
	\|	\|Jan-Dec	---	---	--- \|	---	None	---	None		
	\|				\|						
312:											
Bluewater-----------	-				\|						
	\|	\| January	\|2.0-4.0		---	\| ---	---	None	---	None	
	\|	\|February	\|2.0-4.0		---	---	---	None	---	None	
	1 \|	\|March	\|2.0-4.0		---	\| ---	---	None	Very brief	Rare	
	1 \|	\|April	\|2.0-4.0		---	---	---	None	Very brief	Rare	
	1 \|	\| May	\|2.0-4.0		---	---	---	None	Very brief	Rare	
	1 \|	\|June	$\|2.0-4.0\|$	---	---	---	None	Very brief	Rare		
	1 \|	\|July	\| ----		---	---	---	None	Very brief	Rare	
	1 \|	\|August	\|2.0-4.0		---	---	---	None	Very brief	Rare	
	1 \|	\| September	\|2.0-4.0		---	\| ---		---	None	---	None
	1 \|	\| October	\|2.0-4.0		---	\| ---		---	None	---	None
	1 \|	\| November	\|2.0-4.0		---	---	---	None	---	None	
	1	\| December	\|2.0-4.0		---	--- \|	---	None	---	None	
	1 \|				\|						
315:											
Flugle--------------	\| B		1		1						
	,	\|Jan-Dec	---	---	--- \|	---	None	---	None		
	1 \|		1 \|								
Fragua--------------	\| B		1 \|		,						
	,	\|Jan-Dec	--- \|	---	\| ---		---	None	---	None	
	1				\|						
316:			I		1 \|						
Royosa---------------	A		1		\|		\|				
	\|	\|Jan-Dec	--- \|	---	\| ---		---	None	---	None	
	,										

Table 18.--Water Features--Continued


Table 18.--Water Features--Continued

Map symbol and soil name		Month	Water table		Ponding			Flooding			
	\|Hydro-			Upper	Lower	\|Surface		Duration	\|Frequency	Duration	Frequency
	\|logic			limit	limit	water					
	\| group					\| depth			\|		
			Ft	Ft	Ft		\|				
							\|				
336:											
Venadito-------------	\| D				\|			\|			
	\|	\|March	---	---	--- \|	---	None	Very brief	Frequent		
	\|	\|April	---	---	--- \|	---	None	Very brief	Frequent		
	\|	\|May	---	---	--- \|	---	None	Very brief	Occasional		
	\|	\|June	---	---	--- \|	---	None	Very brief	Occasional		
	\|	\|July	---	---	--- \|	---	None	Very brief	Frequent		
	\|	\|August	---	---	--- \|	---	None	Very brief	Frequent		
	,	\| September	---	---	--- \|	---	None	Very brief	Occasional		
	\|	\| October	---	---	--- \|	---	None	Very brief	Occasional		
	\|						\|				
338:											
Zyme-	D	\|					\|				
	\|	\|Jan-Dec	---	---	---	---	None	---	None		
	\|						\|				
Lockerby------------	-						I				
	\|	\|Jan-Dec	---	---	---	---	\| None	---	None		
	\|						\|				
345:											
Rock outcrop--------	\| ---						,				
	\|	\|Jan-Dec	---	---	---	---	\| None	---	None		
	\|						\|				
Tuces-	-				\|		\|				
	\|	\|Jan-Dec	---	---	---	---	\| None	---	None		
	\|						\|				
350:											
Toldohn--------------	\| D						I				
	\|	\|Jan-Dec	---	---	---	---	\| None	---	None		
	\|						\|				
Vessilla------------	- D				1		\|				
	\|	\|Jan-Dec	---	---	---	---	\| None	---	None		
	\|						\|				
Rock outcrop--------	\| ---						\|				
	\|	\|Jan-Dec	---	---	--- \|	---	\| None	---	None		
	\|						\|				
351:											
Rock outcrop--------	\| ---						\|				
	\|	\|Jan-Dec	---	---	--- \|	---	\| None	---	None		
	1						\|				
Vessilla------------	-						\|				
	1	\|Jan-Dec	---	---	--- \|	---	\| None	---	None		
	\|						\|				
352:							\|				
Zia-	\| B						\|				
	1	\|Jan-Dec	---	---	--- \|	---	\| None	---	None		
	I						\|				
353:	\|	\|					\|				
Mido-	A						\|				
	,	\|Jan-Dec	---	---	\| ---		---	\| None	---	None	
	\|						\|				
354:	\|	\|					\|				
Knifehill-----------	C				1		\|				
	\|	\|Jan-Dec	---	---	--- \|	---	\| None	---	None		
	,						\|				

Table 18.--Water Features--Continued

Map symbol and soil name		\| Month	Water table		Ponding			Flooding			
	\|Hydro-			Upper	Lower	\|Surface		Duration	\|Frequency	Duration	Frequency
	\|logic		limit	limit	\| water						
	\|group				depth		\|				
			Ft	Ft	Ft		\|				
							I				
355:											
Rizno----------------	\| D						\|				
	\|		\|Jan-Dec	---	---	---	---	\| None	---	None	
	\|							\|			
Tekapo	D										
		\|Jan-Dec	---	---	---	---	\| None	---	None		
	1 \|						\|				
Rock outcrop--------	\| ---						\|				
		\|Jan-Dec	---	---	---	---	None	---	None		
357:											
Heshotauthla-------	\| D						\|				
		\|March	---	---	---	---	None	Very brief	Occasional		
		\|April	---	---	---	---	\| None	Very brief	Occasional		
	$\mid$ \|	\|May	---	---	---	---	None	Very brief	Rare		
	1 \|	\|June	---	---	---	---	None	Very brief	Rare		
	1 \|	\|July	---	---	---	---	None	Very brief	Occasional		
	1 \|	\|August	---	---	--	---	\| None	Very brief	Occasional		
	$\mid$ \|	\| September	---	---	---	---	None	Very brief	Occasional		
	1	\|October	---	---	---	---	None	Very brief	Occasional		
	\|										
360:											
Hosta-	c										
	$\mid$ \|	\|Jan-Dec	---	---	---	---	\| None	---	None		
	$\|\quad\|$										
Concho-	C										
		\|March	---	---	---	---	\| None	Very brief	Rare		
		\|April	---	---	---	---	\| None	Very brief	Rare		
		\|May	---	---	---	---	\| None	Very brief	Rare		
		\|June	---	---	---	---	None	Very brief	Rare		
	1 \|	\|July	---	---	---	---	None	Very brief	Rare		
	$\mid$ \|	\|August	---	---	---	--	None	Very brief	Rare		
	1 \|										
361:											
Monpark--------------	\| D										
	,	\|Jan-Dec	---	---	---	---	\| None	---	None		
	\|										
365:											
Vessilla------------	-	\|					\|				
	,	\|Jan-Dec	---	---	---	---	\| None	---	None		
							\|				
Rock outcrop--------	\| ---						\|				
	1 \|	\|Jan-Dec	---	---	---	---	\| None	---	None		
							\|				
366:											
Bosonoak-------------	\| B						\|				
		\|Jan-Dec	---	---	---	---	\| None	---	None		
							\|				
367:											
Chunkmonk-----------	- C						\|				
		\|Jan-Dec	---	---	--- \|	---	\| None	---	None		
					1 \|		,				

Table 18.--Water Features--Continued

Map symbol and soil name		Month	Water table		Ponding			Flooding			
	\|Hydro-			Upper	Lower	\|Surface		Duration	\|Frequency	Duration	Frequency
	\|logic		limit	limit	\| water						
	\| group					\| depth					
			\| Ft	Ft	Ft		\|				
	1						\|				
368:											
Simitarq------------	-						\|				
		\|Jan-Dec	\| ---	---	---	---	None	---	None		
	1 \|		,				\|				
Celavar-------------	B		,				\|				
		\|Jan-Dec	\| ---	---	---	---	\| None	---	None		
							\|				
375 :											
Todest---------------	- ${ }^{\text {B }}$										
		\|Jan-Dec	\| ---	---	---	---	\| None	---	None		
	,										
Shadilto-	D		\|				\|				
		\|Jan-Dec	\| ---	---	---	---	\| None	---	None		
	\|						\|				
376:											
Todest---------------	- ${ }^{\text {B }}$						I				
		\|Jan-Dec	\| ---	---	---	---	\| None	---	None		
	\|						\|				
380:											
Berryhill-----------	D										
		\|Jan-Dec	---	---	---	---	\| None	---	None		
	1						\|				
Casamero------------	- D		\|				\|				
		\|Jan-Dec	\| ---	---	---	---	\| None	---	None		
	\|						\|				
385:											
Mcorreon-------------	-						\|				
		\|Jan-Dec	\| ---	---	---	---	\| None	---	None		
	,		\|								
Rock outcrop--------	\| ---		,				\|				
		\|Jan-Dec	\| ---	---	---	---	\| None	---	None		
	\|						\|				
390:											
Banquito-------------	\| B						\|				
	\|	\|Jan-Dec	\| ---	---	---	---	\| None	---	None		
	1		,				,				
395:											
Cabezon-------------	\| D						\|				
	,	\|Jan-Dec	\| ---	---	---	---	\| None	---	None		
	1		\|				\|				
Mcorreon-------------	C		\|				\|				
	\|	\|Jan-Dec	\| ---	---	---	---	\| None	---	None		
	1		\|				,				
400:											
Shoemaker------------	B						\|				
	\|	\|Jan-Dec	\| ---	---	---	---	\| None	---	None		
	,		\|				\|				
Stozuni-------------	-		\|		,		\|				
		\|Jan-Dec	\| ---	---	\| ---	---	\| None	---	None		
			\|				\|				
403:											
Valnor---------------	C		\|		\|		\|				
		\|Jan-Dec	\| ---	---	\| ---	---	\| None	---	None		
			\|				\|				
Techado--	-		\|		\|		\|				
		\|Jan-Dec	\| ---	---	\| ---		---	\| None	---	None	
	1 \|		\|				\|				

Table 18.--Water Features--Continued

Map symbol and soil name	1		Water table		Ponding			Flooding				
	\|Hydro-		\| Month	\| Upper		Lower	\|Surface		Duration	\|Frequency	Duration	Frequency
	\|logic			limit \|	limit	\| water						
	\| group					\| depth						
			\| Ft	Ft	Ft							
404:												
Rock outcrop---------------\|												
	1 \|	\|Jan-Dec	\| ---	---	--- \|	---	None	---	None			
	1											
Techado-------------	D											
	\|		\|Jan-Dec	\| ---		---	---	---	None	---	None	
	,											
Stozuni-------------	D		\|									
		\|Jan-Dec	\| ---	---	---	---	None	---	None			
	1											
405:												
Fortwingate---------	C		\|									
		\|Jan-Dec	\| ---		---	---	---	None	---	None		
Owlrock-	D											
		\|Jan-Dec	\| ---		---	--- \|	---	None	---	None		
	\|											
406:												
Polich--------------	\| C											
		$\mid$ March	\|0.5-5.0		---	---	---	None	Long	Frequent		
	\|	\|April	\|0.5-5.0		---	---	---	None	Long	Frequent		
		\|May	\|0.5-5.0		---	--- \|	---	None	Long	Frequent		
	\|	\|June	\|0.5-5.0		---	--- \|	---	None	---	None		
	\|	\| September	\|3.3-5.0		---	--- \|	---	None	---	None		
	\|	\| October	\|3.3-5.0		---	--- \|	---	None	---	None		
407:												
Cinnadale-----------	D		$\mid 1$									
		\|Jan-Dec	\| ---		---	--- \|	---	None	---	None		
Heckly---------------	C		\|		1							
		\|Jan-Dec	\| ---		---	--- \|	---	None	---	None		
408:												
Mirabal-------------	\| B		$\mid 1$		1							
		\|Jan-Dec	\| ---		---	--- \|	---	None	---	None		
Zuni-----------------	C		\|		1							
		\|Jan-Dec	\| ---		---	--- \|	---	None	---	None		
	\|											
409:												
Rauster-------------	C											
	\|	\|Jan-Dec	\| ---		---	--- \|	---	None	---	None		
Rock outcrop--------	\| ---		\|		,							
		\|Jan-Dec	\| ---		---	\| ---		---	None	---	None	
	\|				-							
410:												
Montillo------------	C		\|		\|							
		\|Jan-Dec	\| ---		---	\| ---		---	None	---	None	
Tsoodzil------------	C											
		\|Jan-Dec	\| ---		---	\| ---		---	None	---	None	

Table 18.--Water Features--Continued

Map symbol and soil name		\| Month	Water table		Ponding			Flooding			
	\|Hydro-			Upper	Lower	\|Surface		Duration	\|Frequency	Duration	Frequency
	\|logic			\| limit	limit	water					
	\|group					\| depth					
	\|		\|	\| Ft	Ft	Ft				,	
	\|			\|						\|	
411:											
Ligocki-------------	\| C										
	$\mid$ \|	\|Jan-Dec	---	---	---	---	None	---	None		
Robolata------------	-		\|								
		\|March	\| ---	---	---	---	None	Brief	Occasional		
	1 \|	\|April	---	---	---	---	None	Brief	Occasional		
		\|May	---	---	---	---	None	Brief	\| Occasional		
	\|		\|								
412:											
Rock outcrop--------------\| ---											
		\|Jan-Dec	---	---	---	---	None	---	None		
Rionutria			\|								
	-		\|								
		\|Jan-Dec	---	---	---	---	None	---	None		
			\|								
Zaster-	C										
		\|Jan-Dec	---	---	---	---	None	---	None		
	\|										
413 :											
Morclay-------------	-		\|								
		\|Jan-Dec	---	---	---	---	None	---	None		
	\|		\|								
414:											
Zunalei-------------	\| B										
		\|Jan-Dec	\| ---	---	---	---	None	---	None		
			\|								
Corzuni-------------	\| B		\|								
		\|Jan-Dec	\| ---	---	---	---	None	---	None		
	\|		\|								
415:											
Tsoodzil------------	\| C										
	\|	\|Jan-Dec	\| ---	---	---	---	None	---	None		
Rubble Land---------	\| A		\|								
	\|	\|Jan-Dec	\| ---	---	---	---	None	---	None		
	\|										
416:											
Rock outcrop--------------- --- \|											
	\|	\|Jan-Dec	\| ---	---	---	---	None	---	None		
Bluesky-------------	-		\|								
	\|	\|Jan-Dec	\| ---	---	---	---	None	---	\| None		
	\|		\|						I		
418:		\|	\|						\|		
Asaayi--------------	-										
	\|	\|Jan-Dec	\| ---	---	---	---	None	---	\| None		
	,		\|						,		
Osoridge-----------	D		\|						\|		
	\|	\|Jan-Dec	\| ---	---	--- \|	---	None	---	\| None		
									I		

Table 18.--Water Features--Continued

Map symbol and soil name	\|		Month	Water table		Ponding			Flooding		
	\|Hydro-			Upper	Lower	\|Surface		Duration	\|Frequency	Duration	Frequency
	\|logic			limit	limit	\| water					
	\| group				\| depth						
	\|	\|	Ft	Ft	Ft						
		\|									
419:											
Fortwingate---------	- C										
	$\mid$	\|Jan-Dec	---	---	\| ---		---	None	---	None	
					1 \|						
Cinnadale-----------	- D				\|						
	\|		\|Jan-Dec	---	---	\| ---		---	None	---	None
	$\|\quad\|$				\|						
Rock outcrop--------	\| ---				\|						
	1	\|Jan-Dec	---	---	\| ---		---	None	---	None	
	1				\|						
420:											
Seco-	C				\|						
		\|March	---	---	\| ---		---	None	Very brief	Rare	
	1 \|	\|April	---	---	\| ---		---	None	Very brief	Rare	
		\|May	---	---	\| ---		---	None	Very brief	Rare	
	$\mid$ \|	\|June	---	---	\| ---		---	None	Very brief	Rare	
	1 \|	\|July	---	---	\| ---		---	None	Very brief	Rare	
	1	\|August	---	---	\| ---	---	None	Very brief	Rare		
	\|										
425:											
Montillo------------	C				1						
		\|Jan-Dec	---	---	\| ---		---	None	---	None	
Canoneros------------	D				1						
	,	\|Jan-Dec	---	---	\| ---		---	None	---	None	
	1										
430:											
Montillo------------	- C				\|						
		\|Jan-Dec	---	---	--- \|	---	None	---	None		
	\|				1						
435:											
Tsoodzil------------	C										
	1	\|Jan-Dec	---	---	--- \|	---	None	---	None		
Amcec-	\| B										
	\|	\|Jan-Dec	---	---	\| ---		---	None	---	None	
	\|				$1$						
440:											
Chivato-------------	-						\|				
	\|	\|July	--	---	\|0.2-0.8		Brief	\|Occasional		---	None
	\|	\|August	---	---	$\|0.2-0.8\|$	Brief	\|Occasional		---	None	
	\|	\| September	---	---	$\|0.2-0.8\|$	Brief	\|Occasional		---	None	
	I	\| October	---	---	\|0.2-0.8		Brief	\|Occasional		---	None
	,										
525:											
Silcat-	D				1						
	\|	\|Jan-Dec	---	---	\| ---		---	\| None		---	None
	\|				1 \|						
550:											
Bryway-	C				1		\|				
	\|	\|Jan-Dec	---	---	\| ---		---	None \|	---	None	
					1 \|		1				
Galzuni-	C		-		1		1				
	\|	\|Jan-Dec	---	---	\| ---		---	\| None		---	None
					1 \|						

Table 18.--Water Features--Continued

Map symbol and soil name	\|	\| Month	Water table		Ponding			Flooding			
	\|Hydro-			Upper	Lower	\|Surface		Duration	\|Frequency	Duration	Frequency
	\|logic		limit	limit	\| water						
	\| group				\| depth						
	$\|\quad\|$		Ft	Ft	Ft		\|				
	1 \|										
555:											
Parkelei------------	\| B										
	\|		\|Jan-Dec	---	---	---	---	None	---	None	
Evpark---------------	\| B										
		\|Jan-Dec	---	---	\| ---	---	None	---	None		
560 :											
Flugle	B				\|						
		\|Jan-Dec	---	---	---	---	None	---	None		
	1				\|						
560:											
Teczuni-------------	-				\|						
		\|Jan-Dec	---	---	---	---	None	---	None		
	1				\|						
561:											
Flugle--------------	\| B										
		\|Jan-Dec	---	---	\| ---	---	None	---	None		
	\|					\|					
Plumasano-----------	\| B				\|						
		\|Jan-Dec	---	---	\| ---	---	None	---	None		
	1				\|						
565 :											
Plumasano-----------	\| B				\|						
		\|Jan-Dec	---	---	\| ---	---	None	---	None		
	1		\|		\|						
Rock outcrop--------	\| ---				\|						
	$\mid$ \|	\|Jan-Dec	---	---	\| ---	---	None	---	None		
					\|						
566:											
Bamac----------------	\| A				\|						
		\|Jan-Dec	---	---	\| ---	---	None	---	None		
			\|		\|						
575:											
Ramah---------------	-				\|						
		\|Jan-Dec	---	---	\| ---	---	None	---	None		
					\|				\|		
Pescado-------------	-				,		\|				
	\|	\|Jan-Dec	---	---	\| ---	---	None	---	None		
	\|				\|						

Table 19.--Classification of the Soils

Soil name	Family or higher taxonomic class
Alesna	Fine, mixed, superactive, mesic Ustic Calciargids
Amce	Loamy-skeletal, mixed, superactive, frigid Vitrandic Haplustalfs
Aquim	Fine-loamy, mixed, superactive, mesic Ustic Haplocambids
Arabrab	Loamy, mixed, superactive, mesic Lithic Haplustalfs
Asaayi	Loamy, mixed, active, frigid Lithic Haplustalfs
Atarque	Loamy, mixed, superactive, mesic Lithic Haplustalfs
Atchee	Loamy-skeletal, mixed, active, calcareous, mesic Lithic Ustic Torriorthents
Azabache	Fine-loamy, mixed, superactive, mesic Typic Natrargids
Bamac	Sandy-skeletal, mixed, mesic Aridic Ustorthents
Banqui	Fine-loamy, mixed, superactive, mesic Calcidic Haplustalfs
Barbonci	Loamy, mixed, superactive, mesic Lithic Ustic Haplargids
Benally	Fine-loamy, mixed, superactive, mesic Typic Natrargids
Berryhil	Fine, mixed, superactive, mesic Chromic Gypsitorrerts
Betonni	Coarse-loamy, mixed, superactive, mesic Ustic Haplargids
Blancot	Fine-loamy, mixed, superactive, mesic Ustic Haplargids
Bluesky	Mixed, frigid Lithic Ustipsamments
Bluewate	Fine-loamy, mixed, superactive, mesic Pachic Argiustolls
Bond	Loamy, mixed, superactive, mesic Lithic Ustic Haplargids
Bosonoak	Fine-loamy, mixed, superactive, mesic Aridic Haplustalfs
Breadsprings	Fine-loamy, mixed, superactive, mesic Ustifluventic Haplocambids
Bryway	Fine, mixed, superactive, mesic Aridic Paleustalfs
Buckle	Fine-loamy, mixed, superactive, mesic Ustic Haplargids
Cabezon	Clayey, smectitic, mesic Lithic Argiustolls
Calladito	Mixed, mesic Ustic Torripsamments
Canonero	Clayey, mixed, superactive, frigid Lithic Argiustolls
Casamero	Clayey, smectitic, mesic, shallow Leptic Haplotorrerts
Celavar	Fine-loamy, mixed, superactive, mesic Aridic Haplustalfs
Chipeta	Clayey, mixed, active, calcareous, mesic, shallow Typic Torriorthents
Chivato	Fine, mixed, active, frigid Typic Haplusterts
Chunkmonk	Loamy-skeletal, mixed, superactive, mesic Lithic Haplustalfs
Cinnadal	Loamy-skeletal, mixed, superactive, frigid Lithic Haplustepts
Concho	Fine, mixed, superactive, mesic Aridic Argiustolls
Conchova	Fine, mixed, superactive, mesic Pachic Argiustolls
Corzuni	Coarse-loamy, mixed, superactive, mesic Typic Haplustalfs
Councel	Coarse-loamy, mixed, superactive, calcareous, mesic Ustic Torriorthents
Doa	Fine-loamy, mixed, active, mesic Typic Haplargids
Doakum	Fine-loamy, mixed, superactive, mesic Ustic Haplargids
Eagleye	Clayey, mixed, active, nonacid, mesic, shallow Ustic Torriorthents
Eldado	Fine-loamy over sandy or sandy-skeletal, mixed, superactive, mesic Ustic Calciargids
Elia	Fine-loamy, mixed, superactive, mesic Ustic Natrargids
Escawet	Sandy, mixed, mesic Oxyaquic Torrifluvents
Eslendo	Loamy, mixed, superactive, calcareous, mesic, shallow Ustic Torriorthents
Evpar	Fine-loamy, mixed, superactive, mesic Aridic Haplustalfs
Fajad	Fine-loamy, mixed, superactive, mesic Typic Natrargids
Farb	Loamy, mixed, superactive, calcareous, mesic Lithic Torriorthents
Farvie	Loamy, mixed, active, calcareous, mesic Lithic Ustic Torriorthents
Fikel	Fine, mixed, superactive, mesic Aridic Haplustalfs
Flugl	Fine-loamy, mixed, superactive, mesic Aridic Haplustalfs
Fortwingate	Fine, mixed, superactive, frigid Vertic Haplustalfs
Fragua	Coarse-loamy, mixed, superactive, mesic Aridic Haplustalfs
Fragun	Coarse-loamy, mixed, superactive, mesic Aridic Haplustalfs
Fruit	Coarse-loamy, mixed, superactive, calcareous, mesic Typic Torriorthents
Galzun	Fine, mixed, superactive, mesic Aridic Paleustalfs
Gapmesa	Fine-loamy, mixed, superactive, mesic Ustic Haplargids
Gis	Fine, mixed, superactive, mesic Ustic Haplocambids
Hagerwes	Fine-loamy, mixed, superactive, mesic Ustic Haplargids
Hamburn	Fine-loamy, mixed, superactive, calcareous, mesic Ustic Torrifluvents

Table 19.--Classification of the Soils--Continued


Table 19.--Classification of the Soils--Continued

Soil name	Family or higher taxonomic class
Stozun	Loamy, mixed, superactive, nonacid, frigid Lithic Ustorthents
Suwanee	Fine-loamy, mixed, superactive, calcareous, mesic Ustic Torrifluvents
Techado	Clayey, mixed, superactive, nonacid, frigid, shallow Typic Ustorthents
Teczuni	Fine, mixed, superactive, mesic Calcidic Haplustalfs
Tekapo	Clayey, mixed, superactive, calcareous, mesic, shallow Ustic Torriorthents
Tinian	Fine, mixed, superactive, mesic Aridic Haplustalfs
Tintero	Coarse-loamy, mixed, superactive, mesic Ustic Haplargids
Todest	Fine-loamy, mixed, superactive, mesic Calcidic Haplustalfs
Toldoh	Clayey, mixed, superactive, nonacid, mesic, shallow Aridic Ustorthents
Tsoodzil	Fine, smectitic, frigid Vertic Argiustolls
Tsosie	Fine-loamy, mixed, superactive, calcareous, mesic Ustic Torriorthents
Tuces	Fine, mixed, superactive, mesic Aridic Haplustepts
Valnor	Fine, mixed, superactive, frigid Typic Haplustalfs
Venadito	Very-fine, smectitic, mesic Chromic Haplotorrerts
Venzuni	Very-fine, smectitic, mesic Aridic Haplusterts
Vessilla	Loamy, mixed, active, calcareous, mesic Aridic Lithic Ustorthents
Viuda	Clayey, mixed, superactive, mesic Lithic Ustic Haplargids
Westmion	Clayey, mixed, superactive, calcareous, mesic, shallow Ustic Torriorthents
Yelive	Coarse-loamy, mixed, superactive, calcareous, mesic Typic Torrifluvents
Zas	Loamy-skeletal, mixed, superactive, mesic Typic Calciustolls
Zia	Coarse-loamy, mixed, superactive, calcareous, mesic Ustic Torriorthents
Zunal	Fine-loamy, mixed, superactive, mesic Typic Haplustalfs
Zun	Fine, mixed, superactive, frigid Typic Haplustalfs
Zuniven	Fine-silty, mixed, superactive, calcareous, mesic Aridic Ustifluvents
Zyme	Clayey, smectitic, calcareous, mesic, shallow Ustic Torriorthents

## NRCS Accessibility Statement

The Natural Resources Conservation Service (NRCS) is committed to making its information accessible to all of its customers and employees. If you are experiencing accessibility issues and need assistance, please contact our Helpdesk by phone at 1-800-457-3642 or by email at helpdesk@ helpdesk.its.nrcs.gov. For assistance with publications that include maps, graphs, or similar forms of information, you may also wish to contact our State or local office. You can locate the correct office and phone number athttp://offices.sc.egov.usda.gov/locator/app.


[^0]:    * Less than 0.1 percent.

