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low recombination. Nucleotide and haplotype diversity will also
probably parallel recombination rates. Although our baseline long-
range recombination rates will be useful, they should be recalculated
when the human genomic sequences are finished and as higher
resolution genetic maps become available. In the more distant
future, genotyping greater numbers of reference families at much
higher polymorphism densities will lead to short-range maps of
recombination hot spots. M

Methods
Connection of genetic and physical maps
We used short, single-pass genomic sequences and/or PCR primer sequences for STRPs to
identify draft or finished bacterial artificial chromosome (BAC) or cosmid sequences
within GenBank that encompass the STRPs using BLAST27 and ePCR28. Blast criteria were
score (bits) . 200, expect (E) value , e−50, and ratio of matched bases to marker sequence
length . 85%. ePCR criteria were no more than one base mismatch in each primer and
size of PCR product within allele size range for the STRP. About 75% of the STRPs were
connected to the long genomic sequences. The reasons for failure of the remaining 25% are
not fully understood, but include absence of the corresponding sequence in GenBank and
poor quality of the STRP sequences. As the genetic maps are marker rich, the absence of
25% was not a serious limitation. Tables of STRPs with GenBank sequence accession
numbers for encompassing BACs, genetic map positions and recombination rates are
available from the Marshfield web site.

Determination of recombination rates
For each sequence assembly we built new female, male and sex-average genetic maps, using
the marker order provided by the assemblies and using the genotyping data from the eight
CEPH reference families5. We fitted cubic splines to plots of genetic versus physical
distance, and from these curves we obtained recombination rates as first derivatives15. The
statistical significance of the recombination rates was estimated by computer simulation of
1,000 iterations of recombination within each interval between markers, assuming a
constant level of recombination across the genome for each sex. The constant levels of
recombination were taken as the total genetic lengths of all the assemblies analysed divided
by the total physical lengths of these assemblies.

Computation of marker and sequence parameters
We calculated STRP heterozygosities using genotypes of individuals within the eight
CEPH families. We obtained STRP positions relative to centromeres and telomeres as the
fractional sex-average genetic map distances from the centromeres to the telomeres (value
of 0 for a STRP at the centromere and 1.0 for a STRP at the telomere)5. GC content and
STR densities were obtained from programs written and tested at Marshfield29. STR
densities were measured as numbers of runs of non-interrupted repeats rather than total
numbers of repeats. Minimum values of n for (A)n, (AC)n, (AGAT)n, (AAN)n and
(AAAN)n sequences were 12, 11 or 19 ((AC)n), 5, 7 and 5, respectively. We obtained
interspersed repetitive element densities using the program Repeat Masker
(http://ftp.genome.washington.edu/RM/RepeatMasker.html). SINEs and LINEs were
defined by Repeat Masker and consist primarily of Alu and L1 elements, respectively. We
computed all DNA sequence parameters over 250-kb windows centred about each STRP.
For markers # 125 kb from the ends of the sequence assemblies, we defined the window as
the 125 kb of proximal sequence plus all available distal sequence. Unknown bases in the
sequence assemblies were excluded from analysis. All parameters were corrected for
reduced window size owing to unknown bases or proximity to ends.

Measurement of linkage disequilibrium
Recombination deserts and jungles were selected as those chromosomal regions with sex-
average recombination rates of ,0.3 or .3.0, respectively. We measured linkage disequili-
brium for all pairs of STRPs within the deserts (449 pairs) and jungles (467 pairs) using
Fisher’s exact test30. Only disequilibrium results that were significant at P # 0.01 were plotted
in Fig. 2. An overall P-value was obtained by a permutation test treating the regions as units
in order to account for the dependence between marker pairs within a region.
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We have placed 7,600 cytogenetically defined landmarks on the
draft sequence of the human genome to help with the character-
ization of genes altered by gross chromosomal aberrations that
cause human disease. The landmarks are large-insert clones
mapped to chromosome bands by fluorescence in situ hybridiza-
tion. Each clone contains a sequence tag that is positioned on the
genomic sequence. This genome-wide set of sequence-anchored
clones allows structural and functional analyses of the genome.
This resource represents the first comprehensive integration of
cytogenetic, radiation hybrid, linkage and sequence maps of the
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human genome; provides an independent validation of the
sequence map1,2 and framework for contig order and orientation;
surveys the genome for large-scale duplications, which are likely
to require special attention during sequence assembly; and allows
a stringent assessment of sequence differences between the dark
and light bands of chromosomes. It also provides insight into
large-scale chromatin structure and the evolution of chromo-
somes and gene families and will accelerate our understanding of
the molecular bases of human disease and cancer.

With the draft of the human genome available2, scientists can
conduct global analyses of its gene content, structure, function and
variation. One important challenge is to define the genetic con-
tribution to human diseases. For many developmental disorders,
inherited conditions and cancers, gross chromosomal aberrations
provide clues to the locations of the causative molecular defects.
These aberrations are visible as alterations in chromosomal banding
patterns3 or in the number or relative positions of DNA sequences
labelled by fluorescence in situ hybridization (FISH)4. Although
tracing gross abnormalities to the level of DNA sequence5 has
revealed the genetic causes of many diseases, molecular character-
ization of chromosomal aberrations has lagged far behind their
discovery6. To proceed from cytogenetic observation to gene dis-
covery and mechanistic explanation, scientists will need access to a
resource of experimental reagents that effectively integrates the
cytogenetic and sequence maps of the human genome.

We describe here the results of a concerted effort to assemble such
a genome-wide resource of well mapped, large-insert DNA clones.
Each clone has been localized directly to chromosomal band(s) by
FISH (Fig. 1a) and assigned one or more unique sequence tags,
which can anchor the clone to the emerging draft sequence. We used
complementary strategies to amass the current set of 8,877 clones.

The set, which consists primarily of bacterial artificial chromosome
(BAC) clones, includes clones targeted to contain sequence-tagged
sites (STSs) ordered along the genome by genetic linkage or radiation
hybrid mapping (for well ordered and distributed coverage); clones
randomly selected for end sequencing from the RPCI-11 library (for
coverage of regions low in STSs); clones identified during intense
mapping efforts that preceded sequencing of some chromosomes
(for denser coverage); and clones suspected of being partially

Table 1 A cytogenetic resource of FISH-mapped, sequence-tagged clones

Number of FISH-mapped clones Connections to the draft squence

Type of sequence tag Coverage % discordant

Chromosome Accession* STS or gene BAC end Total† Avg. density‡ No. of clones
anchored to draft

sequence§

Chrom. Site k % concordant

...................................................................................................................................................................................................................................................................................................................................................................

1 868 318 355 1,248 4.9 1,127 2 2 95
2 43 180 189 297 1.2 241 3 2 95
3 128 222 178 308 1.5 233 5 6 90
4 42 253 227 341 1.7 275 7 1 92
5 35 237 168 296 1.6 255 3 4 93
6 653 212 176 909 5.1 801 3 1 96
7 25 254 151 324 1.9 274 2 1 96
8 31 181 161 245 1.6 203 5 3 92
9 208 169 252 384 2.7 324 4 2 94
10 191 302 288 454 3.2 382 4 4 93
11 119 243 225 378 2.7 324 6 2 92
12 109 251 178 304 2.2 266 7 2 91
13 182 101 175 278 2.4 252 3 1 96
14 48 167 167 222 2.1 196 3 2 96
15 109 117 154 224 2.2 189 5 2 94
16 72 237 196 267 2.8 222 4 2 95
17 21 71 77 119 1.3 93 10 1 89
18 9 73 76 105 1.3 86 2 0 98
19 7 55 49 76 1.1 56 14 0 86
20 228 107 112 388 5.6 333 1 1 98
21 4 64 52 85 1.8 72 1 0 99
22 217 123 108 343 6.5 303 3 1 96
X 641 274 150 872 5.5 782 2 2 96
Y 7 13 15 17 0.3 14 7 0 93

Subtotal 3,997 4,224 3,879 8,484 2.6 7,303 3.6 1.9 95

Multiple sites¶ 209 100 220 393 n.a. 297 n.a. n.a. n.a.

Total 4,206 4,324 4,099 8,877 n.a. 7,600
...................................................................................................................................................................................................................................................................................................................................................................
All clones are associated with a sequence-tag; localized directly to cytogenetic bands by FISH; BACs, P1, or PACs; archived as single-colony-purified stocks; and publicly available.
n.d., not done. n.a., not applicable.
* Clones whose draft or finished sequence is deposited in GenBank.
† Total is less than sum of preceding three columns because some clones have .1 type of sequence tag.
‡ In clones per Mb, that is, number of FISH-mapped clones/chromosome size in Mb30.
§ Sequence tags of 8,325 single-site and 352 multisite clones were used to search the 7 October 2000 draft. Clones whose sole tag consisted of a Unigene accession (Hs.) and some multisite clones have
not yet been evaluated.
kDiscordant site refers to clones mapped by FISH to location .1 band away from, but on same chromosome as, neighbours on draft.
¶ Because most clones in the resource were not selected randomly, fraction of multi-site clones does not accurately reflect frequency of low-copy duplications in the genome.

a b

der(11)

der(19)

nl19

Figure 1 Cytogenetic analyses of sequence-integrated clones. a, Using FISH, fluorescent
signals are observed at cytogenetic bands (grey) where fragments of a sequence-tagged
BAC hybridize (red). b, Clones selected on the basis of band location were used in FISH
analyses to map the breakpoint of a translocation involving chromosomes 11 and 19 in a
patient with multiple congenital malformations and mental retardation (DGAP012,
http://dgap.harvard.edu). Clone CTD-3193o13 spans the breakpoint on chromosome 19;
red signal is split between the derivative chomosome 11 and derivative 19 chromosomes
and is also present on the normal chromosome 19. The GTG-banded karyotype for this
patient is 46,XY,t(11;19)(p11.2;p13.3).
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duplicated at more than one location in the genome (to flag regions
of the genome that might complicate sequence assembly7). The
molecular signatures are STSs (many corresponding to genes or
expressed sequence tags (ESTs)), BAC end sequences, or the actual
draft or final sequence of the clone (Table 1). Earlier publications
have described genome-wide and chromosome-specific subsets of
this collection8–12.

Each clone is publicly available as single-colony-purified bacterial
stocks and is ready for distribution. Each clone can each be obtained
from one of three stock centres by e-mail: mapped-clones@mail.
cho.org, libraries@resgen.com and clonerequest@sanger.ac.uk. The
website http://www.ncbi.nlm. nih.gov/genome/cyto provides infor-
mation about all clones in this collection, including how to obtain
each clone. (Additional information can be obtained at the websites
listed in Supplementary Information 1).

The 8,877 clones provide excellent coverage of the human
genome (Table 1), with at least one clone on average per megabase
(Mb) for 23 of the 24 chromosomes. Clone density ranges from
greater than ,5 clones per Mb for chromosomes 1, 6, 20, 22 and X
to about 0.3 clones per Mb for chromosome Y.

Our study provides an assessment of the representation of the
human genome in the RPCI-11 BAC library13, which serves as the
intermediate template for most sequencing efforts2 and the founda-
tion of genome-wide contig assembly by fingerprint analyses1. We

randomly selected 1,243 clones from this library for FISH analysis.
The number of clones assigned to each chromosome correlated well
with chromosome size, with no significant bias in the distribution of
clones between Giemsa (G)-dark and G-light bands of chromo-
somes (see Supplementary Information 2 and 3).

Cytogenetic mapping is one of several methods that can produce
a framework of ordered clones upon which the human sequence can
be assembled. The resource provides an opportunity to cross-check
these critical framework maps, because over 3,300 FISH-mapped
clones have STSs that reference the radiation hybrid14 or linkage
maps15,16. Overall, the concordance between cytogenetic map order
and marker order established by radiation hybrid and linkage
mapping is very high for clones with single cytogenetic locations
(94–98%, depending on the map; Table 2). Significant discrepancies
were observed for only around 140 of these clones and are probably
due to errors in clone tracking. Integration of cytogenetic and
linkage maps also aids efforts to map disease genes. The location of
the cytogenetic abnormality in one patient can guide the choice of
polymorphic markers to assess linkage in other families that have
similar phenotypes, but no visible chromosomal aberrations.

At present, 7,303 clones that map to single cytogenetic locations
are positioned by their sequence tags on the draft sequence assembly
of 7 October 2000 (Table 1). The fraction of clones located on
the draft sequence ranges from 76% to 91% across different
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Figure 2 The correspondence between cytogenetic location and position on the
7 October 2000 draft sequence for chromosome 12. The band location of each clone is
indicated by a range on the y-axis. Clones mapping to chromosomes other than 12 are
indicated at the bottom. Colours differentiate assignments made in different laboratories.
Each clone is anchored on the draft sequence by one or more sequence tags. Plots for the
other chromosomes and the 5 September, 2000 assembly can be found at http://

genome.ucsc.edu/goldenPath/mapPlots/. Genome browsers that assist researchers in
navigating from cytogenetic location to other maps and detailed, annotated sequence
information are available at http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/hum_srch (NCBI
Mapviewer, which includes chromosomal aberrations associated with cancer and
inherited disorders), http://www.ensembl.org/ and http://genome.ucsc.edu.
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chromosomes (see Supplementary Information 4). We expect these
percentages to rise as more sequence is merged into the draft and
algorithms for locating tags are refined.

The connections between the cytogenetic map and the draft
sequence are well distributed across the genome, and the corre-
spondence in position on the two maps is excellent for these 7,303
clones (Fig. 2 shows chromosome 12 as an example). Of the 943
contigs of overlapping clones in the 7 October 2000 draft sequence,
660 are connected to the cytogenetic map by at least one clone, and
531 by two or more clones. Thus, many contigs can be oriented on
the chromosome on the basis of FISH results of constituent clones.
Relatively few discrepancies between cytogenetic location and
position in the draft sequence are apparent at this level of resolution
(,5% of the clones map either to other chromosomes or more than
one band away from the expected position; Table 1). We found only
eight locations where the cytogenetic data indicated that portions of
the sequence were misplaced within an earlier draft assembly (5
September 2000). The sequencing centres used these cytogenetic
findings to locate errors in the assembly and produce the later draft
of improved quality (Table 2).

FISH analyses of this clone collection reveal abundant paralogous
relationships among sites dispersed across the human genome. Of
1,243 clones randomly selected from the RPCI-11 library, 5.4%
hybridize to more than one chromosomal location (see Supple-
mentary Information 3). The entire collection includes 393 clones
that together identify over 150 bands containing at least one
segment with significant homology to one or more (up to 25)
other sites in the genome (see Supplementary Information 5). These
data provide clues to duplications and exchanges that have occurred
within and between chromosomes. Among the 393 clones, 111
contain blocks duplicated within the same chromosome; 282
hybridize to more than one chromosome. Paralogous relationships
involving pericentromeric and subtelomeric regions of multiple
chromosomes are particularly frequent and complex. Clones in the
collection also identify low-copy duplications specific to chromo-
somes 1, 7, 11 and 16, the pseudoautosomal regions of X and Y, and
sites of the olfactory receptor gene family17. Many previously
undescribed patterns were also observed; some were confirmed
with two or more clones, but others require further study to verify
that they reflect true duplications.

Many of these duplications are functionally significant, as some
have generated multigene families, and some are potential sites of
recombination events, which can result in chromosome abnormal-
ities. The cytogenetic data should greatly facilitate analyses of these
regions, which are likely to pose challenges to sequence assembly.
The sequence tags of 84% of the clones that hybridize to more than
one site were placed in the 7 October 2000 draft assembly, and the
location(s) were roughly consistent with at least one FISH observa-
tion for 88% of these clones. Collectively, the multisite clones
highlight regions that are more likely to become entangled with
other regions of the genome during sequence assembly than clones
with single FISH locations. Indeed, global BLASTanalyses show that

regions encompassing sequence tags of multi-site clones (either the
sequence of the FISH-mapped clone or a surrogate clone from the
assembly) contain blocks of homology found at an average of
around 3.9 chromosomal locations (compared to around 1.3 for
the regions underlying clones with single FISH signals). The regions
observed by FISH and revealed through homology searches are not
fully congruent, however (not shown). These findings indicate that
both FISH and sequence analyses may underestimate large-scale
duplications and that these complex, inter-related regions of the
genome will require special attention during the finishing stages of
genome sequencing.

The extensive integration of cytogenetic and primary sequence
data gives investigators access to fine-structure information—
including details on predicted genes—for cytogenetic locations of
interest. Tools such as NCBI’s MapViewer and the UCSC and
ENSEMBL genome browsers (see Fig. 2 for URLs) allow researchers
to navigate readily between chromosomal location and annotated
sequence.

This integration provides insight into the sequence differences
underlying cytogenetic banding patterns. Sequence analyses of 200-
kilobase (kb) regions surrounding the sequence tags of 338 clones
mapped with the finest band resolution reveal more striking
differences in the base-pair composition between Giemsa-positive
and -negative bands than were predicted from earlier studies18.
These clones were mapped with high precision to 850-level bands of
varying staining intensity19 on seven chromosomes. The AT content
of 58 of the 59 clones in the darkest G-bands exceeds the genome-
wide average of 0.59 (mean 0.63), whereas the AT content of only 22
of the 143 clones in G-negative bands is higher than average (mean
0.55; x2 = 43, P , 0.005). These data confirm that dark G-bands are
more AT-rich than G-negative bands.

The utility of a sequence-integrated cytogenetic resource is
illustrated by two examples. In the first, clones are applied in
conventional FISH assays to rapidly narrow the search for candidate
genes disrupted or deregulated by translocations causing develop-
mental disorders. The process is expedited by selection of clones
assigned to the regions implicated by banding analyses. In a patient
with multiple congenital malformations and mental retardation
(DGAP012, http://dgap.harvard.edu), a breakpoint-spanning clone
was identified (Fig. 1b). This clone spans a 170-kb interval contain-
ing the gene for MKK7, a human mitogen-activated protein kinase,
and a novel sequence with homology to the tre-2 oncogene, both
plausible candidate genes. More typically, breakpoints will be
mapped to an interval between neighbouring clones. For example,
a translocation implicated in mental retardation in another patient
maps to an interval containing at least 12 genes, including proto-
cadherin 8, a promising candidate given its exclusive expression in
fetal and adult brain20.

In the second example, an array of around 2,000 BAC clones from
the collection is used to perform a genome-wide scan for segmental
aneuploidy by comparative genomic hybridization (CGH) (Fig. 3
and A. Snijders et al., in preparation). The array format offers better
sensitivity and resolution21,22 than metaphase chromosomes, the
traditional target for CGH23, and, because the arrayed clones are
integrated into the draft, copy-number abnormalities can be related
directly to sequence information. To illustrate the power of array
CGH, the ML-2 cancer cell line was ‘karyotyped’ using the array.
Array CGH revealed relative copy-number losses on 1p, 6q, 11q and
20p and gains of 12, 13 and 20q (Fig. 3). Copy-number abnorm-
alities on chromosomes 6, 11 and 20 were subsequently confirmed
by FISH using clones predicted by array CGH to be included in the
region of loss. Several of these alterations were noted in previous
banding analyses (1p−, 6q−, 11q−, +12, +13q+)24, but array CGH
locates the breakpoints precisely relative to BACs that reference
specific locations in the sequence.

More than 7,500 clones now link the cytogenetic map and
sequence of the human genome. Application of these reagents in

Table 2 Clones connecting the cytogenetic map and other maps of the
human genome

Map type Version Number % concordant % discordant

Chrom. Site

Genetic Genethon 1,686 98 1.4 0.7
Marshfield 1,757 98 1.4 0.9

Radiation hybrid GM99-GB4 1,433 98 1.3 1.2
GM99-G3 1,654 96 2.5 1.4

TNG 908 94 2.9 2.5
Draft sequence 5 Sept. 2000 7,364 94 3.7 2.2

7 Oct. 2000 7,303 95 3.6 1.9
.............................................................................................................................................................................
Many clones have markers positioned on more than one map. Only clones assigned to single
chromosome locations by FISH are considered above. An additional 91 clones that map by FISH to
more than one location contain STSs placed on other maps. STSs are by definition unique, single-
copy markers, so each is assigned to a single genomic location by other mapping approaches. In
88% of these 91 cases, the STS location corresponds to one of the FISH-detected locations.
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combination with increasingly detailed knowledge of genes and
other functional motifs in the human sequence will transform the
process of identifying genes that are altered in cancer and other
diseases. Ultimately, this resource will contribute to a better under-
standing of the organization of the cell nucleus, the compacting of
DNA into mitotic chromosomes, and the basis of the chromosomal
banding patterns that have been so valuable in uncovering the
aetiology of human diseases. M

Methods
GenBank was screened for draft, finished or end sequences derived from clones in this
collection. BACs were screened for STS content by a combination of hybridization and
polymerase chain reaction (see refs 8, 25 and Supplementary Information for details).
Sequence tags were located on the draft sequence by a combination of methods (see
Supplementary Information and refs 26, 27). Sequence at these locations was compiled
with the results of a genome-wide BLAST analysis (ref. 2 and J. A. Bailey and E. E. Eichler,
in preparation) to identify paralogous regions of the genome (regions in the draft
sequence containing , 20 kb of sequence that match sequence of the FISH-mapped clone
or that of a surrogate clone from the assembly at , 90% identity in non-repeat-masked
bases over each 1-kb segment), and these locations were translated into estimated band
positions using a dynamic programming algorithm (T. S. Furey et al., in preparation; and
see Supplementary Information).

Details of FISH procedures are provided elsewhere4,28. Only locations of unique or low-
copy portions of the clone are identified, because high-copy interspersed repetitive
sequences were suppressed by addition of unlabelled Cot1 DNA. Replicate analyses
indicate that the precision of FISH assignments to metaphase bands is roughly 5–10 Mb
(1–1.5 band). A subset of 442 clones was ordered at very high (,2–3-Mb) resolution11.
FISH analyses were performed using DNA from the bacterial stock used for STS typing.
Data that failed to replicate (for example, replicate FISH analyses of the same clone or
different clones assigned the same marker) have been removed. Hybridization to arrays
was carried out as described previously29 and by Snijders et al. (in preparation).
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Figure 3 Copy-number analysis of myeloblastic leukaemia ML-2 cell line using CGH and a
genome-wide array of around 2,000 BAC clones. The ML-2 cell line has acquired
chromosomal abnormalities in addition to those present in the original tumour during
long-term culture. CGH maps regions of abnormal copy number by comparing the relative
efficiency with which test (Cy3-labelled ML-2 DNA) and reference (Cy5-labelled normal
female DNA) hybridize to clones on the array. The array excludes clones that hybridize to
multiple sites in the genome. a, Fluorescence ratios of Cy3 to Cy5 fluorescence for each

BAC normalized to the median ratio for all 2,000 clones on the array, ordered from 1pter
to Xqter. Arrows, chromosomal regions showing significant copy number variations. The
lower ratio on the X indicates expected ratio for mismatched sex of test and reference
DNAs. Fluorescence ratios of clones on chromosomes 11 (b) and 20 (c) are shown with
clones ordered according to position of their STSs on the G3 radiation hybrid or Genethon
linkage maps, respectively.
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