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Abstract— The process of predicting a satellite observation
of a vegetated region (e.g. a MODIS scene) involves running
a Radiative Transfer Model (RTM). The RTM takes as input
various biospheric and illumination parameters and computes
the upwelling radiation at the top of the canopy that is ultimately
observed by the satellite mounted sensor. The question we address
is the following: which of the inputs to the RTM has the greatest
impact on the computed observation?

We use the Leaf Canopy Model (LCM) RTM as a surrogate for
the RTM used as the basis of the MODIS production algorithm.
The LCM was designed to study the feasibility of observing leaf
chemistry remotely. It takes as input leaf chemistry variables
(chlorophyll, water, lignin, cellulose) and canopy structural pa-
rameters (leaf area index, leaf angle distribution, soil reflectance,
sun angle). The influence of each input variable, or small subsets
of the inputs, is captured through the determination of the
“main effects”. Computing these quantities numerically requires
extensive runs of the RTM, which is computationally expensive.
Using a Gaussian Process approximation to the LCM RTM, we
compute efficiently the main effects and determine those input
variables that are vital for accurate prediction.

I. INTRODUCTION

The accurate estimation of properties of the biosphere is
critical for our understanding of the Earth’s coupled sys-
tem. The atmosphere, oceans and land comprise a complex,
coupled dynamical system, and valid statistical prediction of
the properties of this system, and its changes, require inputs
that are both accurate and have their uncertainties accurately
quantified.

Global models require global observations, and the only
effective method for making routine global measurements is
via sensors mounted on orbiting satellites. Typically, however,
satellite mounted sensors do not measure directly the quantity
of interest. Passive visible/near infra-red sensors measure
upwelling radiation, and it is from these measurements that
the biospherical parameters of interest must be inferred.

This inference process is complex. It is the inversion of
the process of sunlight passing through the atmosphere, being
reflected off vegetation on the ground, and then passing again
through the atmosphere before being detected by the satellite
mounted sensor. Clearly in this scenario the uncertainty in-

troduced by traditional “noise” in the actual sensor will be
swamped by the number of places at which uncertain process
models enter the estimation. In the brief outline above we have
two, one for the propagation of light through the atmosphere,
and the second for the reflection of light by the vegetation on
the ground. It is the uncertainty characteristics of the second
of these process models that we will analyse in this paper.

Analysing, quantifying and reporting the uncertainty in re-
mote sensed data products is of great importance. It is the only
way in which the uncertainty of further analyses using these
data products as inputs can be quantified. Analysing the source
of the data product uncertainties can identify where the models
must be improved, or where better input information must be
obtained. Both of these aspects are known; the editorial for the
Special Issue on Global Land Product Validation [10] wrote

users need access to quantitative information on
product uncertainties

and that
[m]aking quantified accuracy information available
to the user can ultimately provide developers the
necessary feedback for improving the products.

In terms of actually implementing these ideas, there is
still work to be done. For example, the current MODIS
LAI/fPAR algorithm has been improved continuously since
the satellite’s launch. The main improvements have been in
the use of a better biome map (reducing the uncertainty in that
input); improvements in atmospheric correction; and improved
models of surface reflectance from different biomes [16].

These improvements have reduced the uncertainty in the
resulting data product, but have not necessarily improved the
quantification of the uncertainties, and have not specifically
addressed the statistical identification of the sources of the
uncertainties. Here we will address one aspect of this overall
process. Models of surface reflectance are typically Radiative
Transfer Models (RTMs). We analyse in detail the effects of
the inputs to an RTM in terms of the sensitivity of the RTM’s
output to each of the inputs. Specifically we analyse the Leaf
Canopy Model (LCM) RTM [4], used as a surrogate for the



RTM used as the basis for the MODIS production algorithm
[7]. See section II for a discussion of the LCM. In section III,
we use and develop methods from the statistical literature on
sensitivity analysis [14] to compute the main effects, which
graphically show the relative importance of each input on the
RTM output.

Computing the main effects requires the evaluation of
multidimensional integrals over the input space of the model.
Evaluating RTMs is typically computationally expensive, and
so standard numerical integration methods (e.g. multidimen-
sional quadrature or Monte Carlo integration) would be com-
putationally prohibitive in terms of the number of times the
RTM would have to be run. Instead, we adopt the approach of
approximating the RTM by a Gaussian Process (GP) model
[8], [13], [11], which can be constructed using a compara-
tively small number of carefully chosen RTM evaluations. See
section IV. Using the GP approximation instead of the actual
RTM will introduce uncertainty into the evaluation of the main
effects, but this can also be quantified [12]. See section V.

Finally, in section VI we present the main effects for the
LCM RTM, and show how they enable the identification of
the relative importance of each input to the model output.
This also gives information as to how well these inputs can
be predicted from observations of the model output at different
wavelengths.

II. A COUPLED LEAF-CANOPY RADIATIVE TRANSFER
MODEL

Over the past decade, in collaboration with the Ecosystem
science and technology branch at NASA Ames, the Vegeta-
tion Modeling Transport Group (University of Arizona) has
developed a coupled Leaf-Canopy Model (LCM) in order to
capture the essential biophysical processes associated with
the interaction between light and vegetation [4]. LCM was
developed to provide a tool to aid in remote sensing as applied
to ecosystem dynamics in support of the TERRA platform and
it is specifically used to investigate the feasibility of observing
chemistry remotely. The model combines two different radia-
tive transfer models, one at leaf level (LEAFMOD) and one
at canopy level (CANMOD) to predict the radiative regime
inside the vegetation canopy under consideration.

LEAFMOD [3] is the model that simulates the radiative
regime inside the single leaf. From a morphological point of
view, the leaf element is an extremely complex and rich object.
Any model that attempts to describe each single interaction
process for the light moving in such a medium will face
this enormous complexity. The strength of the LEAFMOD
algorithm is its simplicity through natural averaging. The
model relies on the fact that while light is moving in a
complicated medium, natural averaging occurs in such way
that the simpler assumption of isotropic scattering and uniform
absorption seems to capture the transport effects. Moreover,
the model has the ability to include chemistry as a key element
dominating the absorption process. Different concentrations of
chlorophyll, water, lignin and cellulose can be specified to
model the optical properties of the single leaf species. The
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Fig. 1. LCM2 Flow Chart

model is calibrated over the LOPEX leaf species archive [6],
where experimental leaf property data are stored. The calibra-
tion occurs in the sense that the optical properties required by
the canopy model are retrieved through a procedure that uses
the LOPEX archive as input data.

The CANMOD (CANopy Model) algorithm [5], [4] takes
the information coming from LEAFMOD regarding the single
leaf characteristic (transmittance and reflectance) and together
with canopy structural parameters, (LAI and Leaf Angle Dis-
tribution), soil reflectance and sun angle inclination, computes,
at any given wavelength, the radiative regime within and at the
top of the canopy by solving a radiative transfer equation. The
strengths of the model are simplicity and the ability to take
into account leaf chemistry, which is important to properly
describe the light absorption environment.

Figure 1 shows a flowchart that demonstrates the operation
of the coupled algorithm. The algorithm can be explained as
follows. The first module uses LEAFMOD in the forward
and inverse mode to compute the leaf optical properties (i.e.
leaf reflectance and transmittance). The second module uses
the CANMOD forward mode to compute the spectral canopy
hemispherical reflectance factor. The code requires the speci-
fication of the input parameters. In addition to the parameters
listed in table I, the model also takes as input wavelength
(between 400nm and 2100nm), canopy architecture (LAD -
leaf angle distribution, which takes one of 5 discrete values)
and the sun angle.

Note that the soil reflectance depends on the wavelength.
Indeed, usually the spectral soil reflectance is specified de-
pending on the type of soil of interest but once the wavelength



input min max
LAI 0 8
chlorophyll (µg/cm2) 0 100
water fraction 0.1 0.8
protein (g/cm2) 0.0001 0.001
lignin/cellulose (g/cm2) 0.0001 0.006
thickness (cm) 0.001 0.01
soil 0.3 1.3

TABLE I
RANGES OF VALUES OF THE INPUTS TO THE LCM. LAI AND WATER

FRACTION ARE DIMENSIONLESS. THE SOIL PARAMETER IS MULTIPLIED

BY A STANDARD SOIL SPECTRUM. SEE TEXT.

is set, the algorithm will work with the value of soil reflectance
relative to the specified wavelength. We assumed a typical
visible/near infra-red spectrum for a dry soil, and we con-
sidered a multiplicative brightness parameter varying between
0.3-1.3 (see table I) to account for the possible variations of
the background (soil) reflectance level [1]. This multiplicative
parameter is assumed to be wavelength independent.

Once the leaf type is specified, the LOPEX database con-
tains the measured leaf optical properties for the leaf of
interest. Nevertheless, we can tune the canopy by considering
leaves that are of the same type but with different biochemistry
and thickness. This gives the code great flexibility in modeling
the effect of biochemistry on the overall canopy reflectance.
The algorithm begins by analyzing the leaf under consider-
ation. Assume, for example that the canopy of interest is a
maple canopy. The LOPEX database is accessed to retrieve the
measured spectral reflectance and transmittance for a nominal
maple leaf. Note that, as before, since the wavelength is set,
reflectance and transmittance for the nominal leaf are selected
for the specific wavelength of interest. The LEAFMOD inverse
mode accepts the reflectance and transmittance and retrieves
scattering and absorption coefficients. It is assumed that, to
first order, the scattering depends on the anatomical structure
of the leaf, while the absorption depends only on the bio-
chemical components [3]. Thus, the scattering coefficient for
maple leaves is assumed to be the same and it is retained.
A new maple leaf having the biochemical components and
thickness specified by the inputs is constructed retaining the
same scattering coefficient and constructing the new absorp-
tion coefficient for the wavelength of interest. Both absorption
and scattering coefficient are fed to the LEAFMOD forward
mode to compute the reflectance and transmittance of the
desired leaf, i.e. the leaf with thickness, water, chlorophyll,
lignin and protein specified by the inputs. Reflectance and
transmittance are fed to the second module together with
LAI, LAD, soil reflectance and sun angle to compute the
hemispherical reflectance.

III. SENSITIVITY ANALYSIS

Sensitivity analysis aims to determine how the variation
in the output of a model can be apportioned amongst the
inputs [15, ch 7]. That is, it attempts to determine how much
of the variation seen in the output is due to variation in

each of the inputs. The type of sensitivity analysis we are
interested in here is global sensitivity analysis, looking at how
the output changes as all the inputs vary continuously, rather
than the more common local sensitivity analyses, which look
at how the output changes as the inputs are each varied about
a fixed point. Clearly this latter type of analysis will give
limited information about how the output varies for substantial
changes in the inputs.

How the inputs vary is determined by a probability distri-
bution that defines the expected distributions of the inputs.
Using v to denote the vector of model inputs, this distribution
is H(v). The actual form of this distribution is problem de-
pendent, and dependent on the amount of knowledge available
about each input variable. It may be that for some inputs all
that can be given is a physically plausible range (e.g. water
fraction is limited to the range 0-1), whereas for others a
more precise distributions may be known (e.g. the distribution
of leaf thickness for a particular tree type may be known
from field measurements). The distribution H(v) also encodes
correlations between variables that are known to vary together.
The authors in [1] give truncated Gaussian distributions for the
variables in table I. In this work we use the simpler formulation
of independent uniform distributions over the ranges given in
table I for each input variable.

A. Main Effects

Denote the response of the model to input v as y = f(v).
The function f(v) can be decomposed as

y = f(v) = E(Y ) +

d
∑

i=1

zi(vi) +
∑

i<j

zi,j(vi, vj) + . . .

+ z1,2,...,d(v1, v2, . . . , vd) (1)

where v = (v1, ..., vd) is d−dimensional (with d = 7 in our
sensitivity analysis of the LCM). The first term is the expected
value of f(v), i.e.,

E(Y ) =

∫

vj ,j=1...d

f(v)dH(v)

and the next d terms are the main effects, given by

zi(vi) = E(Y |vi) − E(Y )

=

∫

v−i

f(v)dH(v−i|vi) − E(Y ) (2)

where v−i denotes all the elements of v except vi. The later
terms of the decomposition are the interactions. They give
information about the combined influence of two or more
inputs taken together. We will not consider them further here.

Plotting the main effects, zi(vi) for each i gives a visual
impression of the relative importance of each input to the
variation in the output. This visual impression is heightened if
the inputs are normalized (to the range 0-1, for example, for
uniformly distributed inputs), allowing all the main effects to
be plotted together on the same plot. See section VI where we
present main effects plots for the LCM RTM.



To compute the main effects requires the evaluation of
a (d − 1)−dimensional integral. For even moderately com-
plex functions f(v) it will be impossible to evaluate this
integral analytically; indeed, for most cases of interest an
analytic form for f(v) does not exist, rather, f(v) only
exists as a computer program. In these cases the zi(vi) must
be computed numerically. If evaluating f(v) for a given v

requires appreciable computation then the standard methods of
numerical integration, multidimensional quadrature and Monte
Carlo integration, will be too computationally intensive to be
practical. In these cases we can approximate f(v) and compute
the main effects of the approximation, and also compute the
uncertainty introduced by the approximation to f(v). This is
given in sections IV and V. Details of the Gaussian Process
approximation we use for f(v) is given in section IV, and its
application to computing the main effects in section V.

IV. APPROXIMATING THE LCM USING A GAUSSIAN
PROCESS

Gaussian Processes (GPs) are probability distributions over
functions. Rather than placing a distribution over a (small)
set of parameters, a GP places a distribution directly over the
function of interest. Under a GP probability model for function
f(·), the joint distribution of (f(v1), ..., f(vk)) is multivariate
Gaussian, for any finite set of input points v1, ..., vk. It is this
property that allows for tractable computation – whilst the GP
is defined over an infinite dimensional quantity (the continuous
function, f(v)), any computation is necessarily done over only
a finite set of locations.

A GP is specified by its mean function, E(f(v)), and
its covariance function Cov(f(v), f(v′)). The flexibility of
choosing and adapting the mean and covariance functions
allows a GP model to be successfully used to approximate
a wide spectrum of functions f(v), based on a set of training
examples, d = {y, x1, ..., xn}, where y = (y1, ..., yn) and yi

is the response f(xi) at observed input point xi, i = 1, ..., n.
The set of training examples is chosen carefully to optimally
sample the input space. Here we used a Latin Hypercube
design [9] to choose the set of inputs to the LCM. The
other choices made were to use a constant mean function,
E(f(v)) = µ, a constant variance Var(f(v)) = σ2, and the
product Gaussian correlation function

Corr(f(v), f(v′); θ) = exp

(

−

d
∑

`=1

(v` − v′`)
2

γ`

)

where θ = (γ1, ..., γd), and d is the number of dimensions in
the inputs, v. The γ parameters give a measure of the scale
over which the function f(v) varies in each input dimension,
and σ2, the variance of the GP, determines the overall scale of
f(v). Using this mean and correlation function, the GP defines
the joint distribution

p(y|θ, µ, σ2) =
1

(2πσ2)n/2|C|1/2
× (3)

exp

(

−
1

2σ2
(y − µ1n)T C−1(y − µ1n)

)

where C is the correlation matrix with (i, j)-th element
Corr(f(xi), f(xj)), and 1n denotes an n-dimensional vector
with all elements equal to 1.

We use the set of training examples, d, to estimate the
parameters {θ, µ, σ2} of the GP model using maximum like-
lihood estimation. From equation 3 the log-likelihood is

L = −
1

2σ2
(y − µ1n)T C(θ)−1(y − µ1n)

−
1

2
log |C(θ)| −

n

2
log(2πσ2) (4)

where we have made explicit the dependence of C on the
parameters θ. The derivatives of L with respect to each of
the parameters can be straightforwardly derived. Maximizing
L results in a point estimate for the parameters, denoted by
{θ̂, µ̂, σ̂2}, that we use when evaluating the main effects. Note
that using point estimates for these parameters will cause
the uncertainty of the main effects to be underestimated. In
future work we will consider a fully inferential Bayesian
approach where expectations are also taken with respect to
these parameters.

Once the GP model parameters are estimated, the first
quantities of interest are the conditional predictive distributions
for sets of new inputs. From the definition of the GP, these
distributions will be Gaussian. For a single new input v the
predictive distribution for f(v) has mean

m ≡ m(v; µ̂, θ̂, d) = µ̂ + rT (θ̂)C−1(θ̂)(y − µ̂1n)

and variance

S ≡ S(v; µ̂, σ̂2, θ̂, d) = σ̂2

(

1 − rT (θ̂)C−1(θ̂)r(θ̂)
)

.

Here r(θ̂) is the n × 1 vector with i-th element given by
Corr(f(v), f(xi)) = exp(−

∑d
`=1

(v` − xi`)
2/γ̂`), and C(θ̂)

is the observed n×n correlation matrix with (i, j)-th element
given by exp(−

∑d
`=1

(xi` −xj`)
2/γ̂`). Recall that the xi are

the input values of the training examples.
The joint predictive distribution for (f(v), f(v′)) corre-

sponding to generic inputs v = (v1, ..., vd) and v′ =
(v′

1
, ..., v′d) is bivariate normal with (2× 1) mean vector

w = µ̂12 + RT (θ̂)C−1(θ̂)(y − µ̂1n) (5)

and (2× 2) covariance matrix

W = σ̂2

(

B(θ̂) − RT (θ̂)C−1(θ̂)R(θ̂)
)

, (6)

where B(θ̂) is the (2×2) correlation matrix for (f(v), f(v′))
with off-diagonal element given by exp(−

∑d
`=1

(v` −

v′`)
2/γ̂`), and R(θ̂) is the (n × 2) matrix with first row

elements exp(−
∑d

`=1
(v` − xi`)

2/γ̂`), i = 1, ..., n, and anal-
ogously for the second row elements replacing v` with v′`.

V. APPROXIMATING THE MAIN EFFECTS USING THE
GAUSSIAN PROCESS APPROXIMATION TO THE LCM

To compute the main effects requires evaluating E(Y | vj)
and E(Y ), as indicated in equation 2. However, we recall that
we are approximating the function y = f(v) by a GP model,



and we must account for this approximation by computing
E∗ {E(Y | vj)} and E∗ {E(Y )}, where, following [12], we use
E∗{ }, Var∗{ } and Cov∗{ } to indicate expectation, variance
and covariance, respectively, with respect to the GP predictive
distributions. We give details of these quantities here.

For the global mean, we have

E(Y ) =

∫

v

f(v)
d
∏

`=1

dH`(v`)

where H(v) =
∏d

`=1
H`(v`) is the input distribution, com-

prising independent components H`(v`), which are uniform
distributions over ranges (a`, b`), ` = 1, ..., d. Therefore,

E∗ {E(Y )} =

∫

E(Y )dN(f(v); m, S)

=

∫

v

m(v)

d
∏

`=1

dH`(v`)

=

∫

v

{µ̂ + rT (θ̂)C−1(θ̂)(y − µ̂1n)}

×

d
∏

`=1

dH`(v`)

= µ̂ + T T C−1(θ̂)(y − µ̂1n),

where T is the n × 1 vector with i-th element given by
∏d

`=1

{

∫ b`

a`
exp(−(v` − xi`)

2/γ̂`)(b` − a`)
−1dv`

}

.
For E(Y | vj), for each value uj of the j−th input, we have

E(Y | uj) =

∫

{v`:`6=j}

f(v1, ..., uj , ..., vd)
∏

{`:`6=j}

dH`(v`)

and thus

E∗ {E(Y | uj)}

=

∫

E(Y | uj)dN(f(v1, ..., uj , ..., vd); m, S)

=

∫

{v`:`6=j}

m(v1, ..., uj , ..., vd)
∏

{`:`6=j}

dH`(v`)

= µ̂ + T T
j (uj)C

−1(θ̂)(y − µ̂1n), (7)

where Tj(uj) is the (n×1) vector with i-th element given by
the following integral

exp

(

−
(uj − xij)

2

γ̂j

)

×

∏

{`:`6=j}

{

∫ b`

a`

exp

(

−
(v` − xi`)

2

γ̂`

)

1

b` − a`
dv`

}

. (8)

The previous expressions provide point estimates for all
main effects associated with the d inputs. In particular, for
each input j = 1, ..., d, E∗ {E(Y | uj)} can be computed
over a grid of uj values to obtain point estimates for the
functions E(Y | uj) (or for E(Y | uj) − E(Y ) using also
E∗ {E(Y )}). These estimates can be compared graphically

(linear transformations can be applied so that all inputs are
on the same scale).

For a measure of the uncertainty associated with these
estimates, we use

Var∗ {E(Y | uj)} = E∗
{

(E(Y | uj))
2
}

− (E∗ {E(Y | uj)})
2.

Because we already have the expression for E∗ {E(Y | uj)}
through (7) and (8), what is needed is an expression for
E∗
{

(E(Y | uj))
2
}

. Note that,

(E(Y | uj))
2 =







∫

{v`:`6=j}

f(v1, ..., uj , ..., vd)
∏

{`: 6̀=j}

dH`(v`)







2

=

∫∫

{v`:`6=j}
{v′

`:`6=j}

f(v1, ..., uj , ..., vd)f(v′
1
, ..., uj , ..., v

′
d)

×
∏

{`:`6=j}

dH`(v`)
∏

{`:`6=j}

dH`(v
′
`)

and thus we need to take E∗{·} with respect
to the bivariate predictive distribution for
(f(v1, ..., uj , ..., vd), f(v′

1
, ..., uj , ..., v

′
d)). Specifically,

E∗
{

(E(Y | uj))
2
}

=
∫∫

{v`:`6=j}
{v′

`:`6=j}

E∗ {f(v1, ..., uj , ..., vd)f(v′
1
, ..., uj , ..., v

′
d)}

×
∏

{`: 6̀=j}

dH`(v`)
∏

{`: 6̀=j}

dH`(v
′
`), (9)

where

E∗ {f(v1, ..., uj , ..., vd)f(v′
1
, ..., uj , ..., v

′
d)} =

Cov∗ {f(v1, ..., uj , ..., vd), f(v′
1
, ..., uj , ..., v

′
d)}

+ (E∗ {f(v1, ..., uj , ..., vd)}E∗ {f(v′
1
, ..., uj , ..., v

′
d)}) . (10)

Denote by RT
1
(θ̂) and RT

2
(θ̂) the first and second rows,

respectively, of the (n × 2) matrix R(θ̂) defined in section
IV. Note that here the input vectors we are working with,
(v1, ..., uj , ..., vd) and (v′

1
, ..., uj , ..., v

′
d), have common ele-

ment uj . Therefore, R1(θ̂) is the n× 1 vector with elements

exp



−
(uj − xij)

2

γ̂j
−

∑

{`: 6̀=j}

(v` − xi`)
2

γ̂`



 , i = 1, ..., n,

and analogously for R2(θ̂), replacing v` with v′`. Then, using
(5) and (6), we obtain

E∗ {f(v1, ..., uj , ..., vd)} = µ̂ + RT
1
(θ̂)C−1(θ̂)(y − µ̂1n)

E∗ {f(v′
1
, ..., uj , ..., v

′
d)} = µ̂ + RT

2
(θ̂)C−1(θ̂)(y − µ̂1n)
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Fig. 2. The main effects for the LCM RTM

Cov∗ {f(v1, ..., uj , ..., vd), f(v′
1
, ..., uj , ..., v

′
d)} =

σ̂2







exp



−
∑

{`:`6=j}

(v` − v′`)
2

γ̂`



− RT
1
(θ̂)C−1(θ̂)R2(θ̂)







.

(11)

Finally, substituting (10) and (11) in (9), we obtain for each
j = 1, ..., d,

E∗
{

(E(Y | uj))
2
}

= σ̂2

(

e(θ̂) − T T
j (uj)C

−1(θ̂)Tj(uj)
)

+
(

µ̂ + T T
j (uj)C

−1(θ̂)(y − µ̂1n)
)2

,

(12)

where Tj(uj) is the n × 1 vector with elements given in (8),
and

e(θ̂) =
∏

{`:`6=j}

{

∫ b`

a`

∫ b`

a`

exp

(

−
(v` − v′`)

2

γ̂`

)

dv`dv′`
(b` − a`)2

}

.

Note that the second term in equation 12 is (E∗ {E(Y | uj)})
2,

and so the required variance has the simpler expression

Var∗ {E(Y | uj)} = σ̂2

(

e(θ̂) − T T
j (uj)C

−1(θ̂)Tj(uj)
)
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Fig. 3. The uncertainty in the main effects due to using the GP approximation
to the LCM RTM. Band 1. Line colours as in figure 2.

VI. RESULTS

To generate the training data for the GP model we generated
a 250 point Latin Hypercube design over the 7-dimensional
space of inputs given in table I. The Leaf Angle Distribution
(LAD) variable was set to planophile (leaves mostly horizon-
tal) and the sun angle was set to zenith. While the sun angle
will vary, for any given satellite scene it will be known, and so
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Fig. 4. The uncertainty in the main effects due to using the GP approximation
to the LCM RTM. Band 4. Line colours as in figure 2.

band number wavelength (nm) MODIS band
1 469 ref3
2 555 ref4
3 1240 ref5
4 1640 ref6
5 2130 ref7
6 667 ref13
7 748 ref15
8 870 ref16

TABLE II
THE WAVELENGTH FOR EACH BAND USED, AND THE CORRESPONDING

MODIS BAND NUMBER.

we do not consider it as one of the inputs for the uncertainty
analysis. The LCM was run at 8 wavelengths, given in table II,
corresponding to eight of the MODIS bands that are sensitive
to vegetation. The corresponding MODIS band is also given
in table II. Note that the bands are in MODIS band order, not
in wavelength order.

Figure 2 shows plots of the main effects for the 7 input
variables for each of the 8 bands. The larger the variation of
the main effect plot, the greater the influence of that input on
the LCM response.

In bands 1, 2 and 6 the response is dominated by LAI
and chlorophyll. This is consistent with the results of a much
more restricted sensitivity analysis in [2]. The analysis here,
however, reveals that for other spectral bands other input
variables become important. For example, in bands 4 and 5
there is a strong response to the lignin input, and the leaf
thickness is important in bands 7 and 8.

Figures 3 and 4 show the same main effects plots for band 1
and 4, but include the uncertainty bounds due to approximating
the LCM by the GP. The uncertainties are sufficiently small
that they do not affect any conclusions drawn from the main
effects plots.

These results show that analysing the uncertainty character-
istics of RTMs used in remote sensed data product generation
is practical and important. It gives information on the level
of accuracy needed in the model’s inputs, can guide data col-
lection efforts to most effectively reduce the uncertainties, and

can guide further development effort for the RTMs themselves.
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[1] C. Bacour, F. Baret, D. Béal, M. Weiss, and K. Pavageau. Neural
network estimation of LAI, fAPAR, fCover and LAI ×Cab from
top of canopy MERIS reflectance data: Principles and validation. Remote
Sensing of the Environment, 105:313–325, 2006.

[2] J. Dungan and B. Ganapol. Sources of uncertainty in the prediction of
LAI/fPAR from MODIS. In AGU Fall Meeting, San Francisco, 2002.

[3] B.D. Ganapol, L.F. Johnson, C.A. Hlavka, and D.L. Peterson. LEAF-
MOD: A new within-leaf radiative transfer model. Remote Sensing of
the Environment, 63:182–193, 1998.

[4] B.D. Ganapol, L.F. Johnson, C.A. Hlavka, D.L. Peterson, and B. Bond.
LCM2: A coupled leaf/canopy radiative transfer model. Remote Sensing
of the Environment, 70:153–166, 1999.

[5] B.D. Ganapol and R.B Myneni. The FN method for the one-angle
radiative transfer equation applied to plant canopies. Remote Sensing of
the Environment, 39:213–231, 1992.

[6] B. Hosgood, S. Jacquemound, G. Andreoli, J. Verdebout, G. Peredrini,
and G. Schmuck. Leaf OPtical Properties EXperiment (LOPEX93:
Report EUR16095EN. Technical report, Joint Research Center-European
Commission, Institute for Remote Sensing Applications, 1995.

[7] Y. Knyazikhin, J.V. Martonchik, R.B. Myneni, D.J. Diner, and S.W.
Running. Synergistic algorithm for estimating vegetation canopy leaf
area index and fraction of absorbed photosynthetically active radiation
from MODIS and MISR data. Journal of Geophysical Research,
103:32257–32276, 1998.

[8] D.J.C. Mackay. Introduction to Gaussian process. NATO ASI Series F
Computer and Systems Sciences, 168:133–166, 1998.

[9] M.D. McKay, R.J. Beckman, and W.J. Conover. A comparison of three
methods for selecting values of input variables in the analysis of output
from a computer code. Technometrics, 21:239–245, 1979.

[10] J.T. Morisette, F. Baret, and S. Liang. Special issue on global land
product validation. IEEE Transactions on Geoscience and Remote
Sensing, 44(7):1695–1697, 2006.

[11] R.M. Neal. Regression and classification using Gaussian process priors.
In J.M. Bernardo, J.O. Berger, A.P. Dawid, and A.F.M. Smith, editors,
Bayesian Statistics 6, pages 475–501. Oxford University Press, 1998.

[12] J.E. Oakley and A. O’Hagan. Probabilistic sensitivity analysis of
complex models: a Bayesian approach. Journal of the Royal Statistical
Society, Series B, 66:751–769, 2004.

[13] C.E. Rasmussen and C.K.I. Williams. Gaussian Processes for Machine
Learning. MIT Press, 2006.

[14] A. Saltelli, K. Chan, and E. Scott. Sensitivity Analysis. John Wiley and
Sons, Chichester, 2000.

[15] T.J. Santner, B.J. Williams, and W.I. Notz. The Design and Analysis of
Computer Experiments. Springer Series in Statistics. Springer, 2003.

[16] W. Yang, B. Tan, D. Huang, M. Rautiainen, N.V. Shabanov, Y. Wang,
J.L. Privette, K.F. Huemmrich, R. Fenshold, I. Sandholt, M. Weiss,
D.E. Ahl, S.T. Glower, R.R. Nemani, Y. Knyazikhin, and R.B. My-
neni. MODIS leaf area index products: From validation to algorithm
improvement. IEEE Transactions on Geoscience and Remote Sensing,
44(7):1885–1989, 2006.


