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Abstract

We report on work performed under the start-up grant awarded under the 2005 ROSES NRA.
This work was focused on addressing the concerns of the reviewers regarding the foundations
and feasibility of the proposed methodology, in particular the sensitivity of the conclusions to
particular modeling choices. We report on an extensive cross-validation study of the effects of
choices of the mean and correlation function of the Gaussian Process (GP) used to emulate the
Leaf-Canopy Model (LCM) Radiative Transfer Model, and some preliminary results on the use
of the Dirichlet Process Mixture Model emulator.

We also completed the derivation of the main effects and sensitivity indices of the LCM using
the GP model. These latter results have been submitted to IEEE Transactions on Geoscience
and Remote Sensing, and the paper is attached to this report.

1 Verifying the Applicability of the Models Chosen, and the In-

sensitivity of the Results to Details of the Models

The main aim of the investigation was to verify the applicability of the nonparametric Bayesian
methodology proposed, and, further, the impact of specific methodology choices on the results
of the investigation – if the uncertainty characterization depends strongly on the details of the
nonparametric model chosen, then clearly it would be difficult for the domain scientists to accept
the results.

Figure 1 shows the reflectance spectrum generated by the LCM for wavelengths from 400-
2500nm, for various LAI values1. A serious concern when modeling spectra of this type is the
dependence of spectral features on the model input parameters. If, for example, the position of the
sharp fall-off that is shown at 1400nm is a function of one of the LCM inputs, then the definition of
a suitable mean function for the GP model would be extremely difficult. MODIS does not, however,

1The other inputs to the LCM are Sun angle - 0; LAD - planophile; Leaf thickness - 0.0134cm; soil reflectance - 0.3;
water concentration - 72.3%; protein concentration - 6.46e-4 g/cm2; lignin concentration - 1.21e-3 g/cm2; chlorophyll
concentration - 37.8 µg/cm2
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Figure 1: The spectral response of the LCM for
various LAI values.

Power in correlation function
2.0 1.9 1.7 1.0

linear 4.092 4.089 4.089 4.091
log 3.893 3.893 3.893 3.893

log-lin 4.176 4.179 4.179 4.178

Table 1: Mean log-posterior predictive proba-
bility. (Averaged over 90 design points and 8
spectral bands)

record a continuous spectrum. Rather, it makes measurements only in a number of discrete spectral
bands. Further, only a subset of these bands are sensitive to vegetation, and are thus used for LAI
estimation – the current production algorithm, MOD15, uses seven spectral bands as input. Thus,
the interest is not in modeling continuous spectra, but, rather, modeling reflectance as a function
of LAI, chlorophyll, etc., at a small number of distinct wavelengths.

Figure 2 shows, rather than a spectrum, the response of the LCM in MODIS band 4 (centered
at 550nm), which corresponds to the small peak to the left of figure 1. The response is plotted as
function of LAI and chlorophyll (the other model inputs being held constant) and can be seen to
be a smooth function. This was also the case for the other MODIS bands. Finding a suitable mean
function, E(f(LAI,CHL)), for the GP model is therefore the search for a basis that adequately
represents this smooth function. From study of figure 1 (and the corresponding plots for the other
spectral bands), the choice of basis function was narrowed to

• linear (A + B×LAI + C×CHL)

• logarithmic (A + B×log(LAI) + C×log(CHL))

• log-lin (A + B×LAI + C×CHL + D×log(LAI) + E×log(CHL)).

The GP model also has as a parameter the power in the exponential covariance function. This was
chosen to be from the set {1, 1.7, 1.9, 2}, varying the function space from nowhere differentiable
to infinitely differentiable.

To compare the space of models (3 bases × 4 powers), an extensive cross-validation study was
performed. A 90 point d-optimal design was constructed over the LAI×CHL range, and leave-one-
out cross validation was performed, consisting of 90 repetitions of training the GP model over the
89 included points, and predicting the 90-th point. The log-posterior predictive probability of the
90-th point was computed, and averaged over the 8 spectral bands considered. Figure 2 shows the
result of one of the bands. The circles are the values computed from the LCM, and the lines are
the 5%-95% predictive probability intervals. Table 1 shows that the modeling is insensitive to the
power in the correlation function, and that the log-lin basis succeeds in modeling very well the shape

2



0
10

20
30

40
50

60

0

2

4

6

8

10

12
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

CHL

band 2  power 2

LAI

re
fle

ct
an

ce

Figure 2: Response of the LCM at MODIS
band 4 (circles) and GP prediction (lines). See
text for details.
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Figure 3: Fit of the GP Model to the 90 points
from the LCM and 5%-95% interval (colored
plot at reflectance=0)

of the response surface. Figure 3 shows the predicted mean surface, with the 5%-95% probability
interval plotted as the coloured surface. The size of these intervals is quite small compared with
the function values.

To further ensure that the conclusions of our investigation are not strongly dependent on the
choice of nonparametric model, we also obtained some initial results from the DP mixture model.
For comparison with table 1, the mean log-posterior predictive probability over the 90 point leave-
one-out cross validation was 3.794. This compares well, and is a good indication that we can model
the output of the LCM in a manner that is insensitive to the details of the Bayesian nonparametric
model chosen.

Some of these results were presented at the 2006 AGU Fall Meeting.

2 Main Effects and Sensitivity Indices

We also completed an initial study of the Main Effects and Sensitivity Indices of the LCM model,
using only the GP approximation. This study used maximum-likelihood estimation of the parame-
ters of the GP model, and as such underestimates the uncertainties associated with the Main Effects
and Sensitivity Indices. However, this is expected to be a small effect, as the GP model is rela-
tively insensitive to the exact parameter values in the region of parameter space that the maximum
likelihood estimate produced. This initial study is also incapable of estimating the uncertainty of
the Sensitivity Indices. Computation of these uncertainties will follow from the development of the
fully inferential approach to sensitivity analysis that we will develop in future research.

A paper describing the Main Effects and Sensitivity Indices for the LCM model, and their
implications for researchers in radiative transfer modeling and remote sensing has been submitted
to IEEE Transactions on Geoscience and Remote Sensing. It is attached as an appendix to this
report.
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3 Presentations and Publications

• “A Gaussian Process Approach to Quantifying the Uncertainty of Biospheric Parameters from
Remote Sensing Observations”. Presented at the AGU Fall Meeting, San Francisco, 2006

• “An Analysis of the Uncertainties in Radiative Transfer Models Used in Remote Sensed Data
Product Generation”. NASA Science Technology Conference, Adelphi, MD, 2007.

• “A Statistical Framework for the Sensitivity Analysis of Radiative Transfer Models Used in
Remote Sensed Data Product Generation”, Submitted to IEEE Transactions on Geoscience

and Remote Sensing, June 2007

A Paper submitted to IEEE Transactions on Geoscience and Re-

mote Sensing
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A Statistical Framework for the Sensitivity

Analysis of Radiative Transfer Models Used in

Remote Sensed Data Product Generation
Robin D. Morris, Athanasios Kottas, Matt Taddy, Roberto Furfaro and Barry D. Ganapol

Abstract

The process of predicting a satellite observation of a vegetated region (e.g. a MODIS scene) involves running
a Radiative Transfer Model (RTM). The RTM takes as input various biospheric and illumination parameters and
computes the upwelling radiation at the top of the canopy that is ultimately observed by the satellite mounted sensor.
The question we address is: which of the inputs to the RTM has the greatest impact on the computed observation?

We study the Leaf Canopy Model (LCM) RTM. The LCM was designed to study the feasibility of observing
leaf chemistry remotely. It takes as input leaf chemistry variables (chlorophyll, water, lignin, cellulose) and canopy
structural parameters (leaf area index, leaf angle distribution, soil reflectance, sun angle). We present a statistical
approach to sensitivity analysis of RTMs, to answer the question posed above. The focus is on global sensitivity
analysis, which studies how the RTM output changes as the inputs vary continuously according to a probability
distribution over the input space. The influence of each input variable is captured through the determination of
the “main effects” and “sensitivity indices”. Direct computation requires extensive runs of the RTM, which is
computationally expensive. We develop a Gaussian Process approximation to the RTM output to enable efficient
computation. We illustrate how the approach can effectively determine the input variables that are vital for accurate
prediction. The methods are applied to the LCM with 7 inputs and output obtained at 8 wavelengths associated with
specific MODIS bands that are sensitive to vegetation.

Index Terms

radiative transfer model, MODIS, sensitivity analysis, main effects, sensitivity index, Gaussian Process

R. D. Morris is with USRA-RIACS, 444 Castro St, Suite 320, Mountain View, CA 94041. rdm@riacs.edu. Tel (650) 966 5035; fax (650)
966 5021. Corresponding author.

A. Kottas and M. Taddy are with the Department of Applied Mathematics and Statistics, University of California, Santa Cruz.
R. Furfaro and B.D. Ganapol are with the Department of Aerospace and Mechanical Engineering, University of Arizona.
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A Statistical Framework for the Sensitivity

Analysis of Radiative Transfer Models Used in

Remote Sensed Data Product Generation

I. INTRODUCTION

The accurate estimation of properties of the biosphere is critical for our understanding of the Earth’s coupled

system. The atmosphere, oceans and land comprise a complex, coupled dynamical system, and valid statistical

prediction of the properties of this system, and its changes, require inputs that are both accurate and have their

uncertainties accurately quantified.

Global models require global observations, and the only effective method for making routine global measurements

is via sensors mounted on orbiting satellites. Typically, however, satellite mounted sensors do not measure directly

the quantity of interest. Passive visible/near infra-red sensors measure upwelling radiation, and it is from these

measurements that the biospherical parameters of interest must be inferred.

This inference process is complex. It is the inversion of the process of sunlight passing through the atmosphere,

being reflected off vegetation on the ground, and then passing again through the atmosphere before being detected

by the satellite mounted sensor. Clearly in this scenario the uncertainty introduced by traditional “noise” in the

actual sensor will be swamped by the number of places at which uncertain process models enter the estimation. In

the brief outline above we have two, one for the propagation of light through the atmosphere, and the second for

the reflection of light by the vegetation on the ground. It is the uncertainty characteristics of the second of these

process models that we will analyze in this paper.

Analyzing, quantifying and reporting the uncertainty in remote sensed data products is of great importance. It

is the only way in which the uncertainty of further analyses using these data products as inputs can be quantified.

Analyzing the source of the data product uncertainties can identify where the models must be improved, or where

better input information must be obtained. Both of these aspects are known; the editorial for the Special Issue on

Global Land Product Validation [1] wrote

users need access to quantitative information on product uncertainties

and that

[m]aking quantified accuracy information available to the user can ultimately provide developers the

necessary feedback for improving the products.

In terms of actually implementing these ideas, there is still work to be done. For example, the current MODIS

LAI/fPAR (Leaf Area Index/fraction of Photosynthetically Active Radiation) algorithm has been improved contin-

uously since the satellite’s launch. The main improvements have been in the use of a better biome map (reducing
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the uncertainty in that input); improvements in atmospheric correction; and improved models of surface reflectance

from different biomes [2].

These improvements have reduced the uncertainty in the resulting data product, but have not necessarily improved

the quantification of the uncertainties, and have not specifically addressed the statistical identification of the sources

of the uncertainties. Here we will address one aspect of this overall process. Models of surface reflectance are

typically Radiative Transfer Models (RTMs). We analyze in detail the effects of the inputs to an RTM in terms of

the sensitivity of the RTM’s output to each of the inputs. Specifically we analyze the Leaf Canopy Model (LCM)

RTM [3], used as a surrogate for the RTM used as the basis for the MODIS production algorithm [4]. See section II

for a discussion of the LCM. In section III, we use and develop methods from the statistical literature on sensitivity

analysis [5] to compute the main effects, which graphically show the relative importance of each input on the RTM

output, and the sensitivity indices, which give a measure of the expected amount by which the uncertainty in the

output would be reduced if the true value of the input was known. See section III.

A 1999 paper, [6], discussed the state of sensitivity analysis in the remote sensing and geoscience domains. A

that time the analyses were typically very basic, looking only at one variable at a time, and based around a fixed

operating point. A number of suggestions as to better methods were suggested, principally the Fourier Amplitude

Sensitivity Test [5]. This suggestion does not seem to have been adopted – the number of papers that cite [6] is

small, and the number that adopt the suggestions, smaller still. For example, [7] uses ideas from the design of

experiments, but does not compute sensitivity indices. While discussing sensitivity indices, the analysis in [8] is

based on local sensitivity computations. In [9] sensitivity indices are computed, but the methods used required large

numbers of model runs. In this paper we give explicit, computationally efficient methods for computing the main

effects and sensitivity indices, as part of a global sensitivity analysis.

Computing the main effects and sensitivity indices requires the evaluation of multidimensional integrals over the

input space of the model. Evaluating RTMs is typically computationally expensive, and so standard numerical inte-

gration methods (e.g. multidimensional quadrature or Monte Carlo integration) would be computationally prohibitive

in terms of the number of times the RTM would have to be run. Instead, we adopt the approach of approximating

the RTM by a Gaussian Process (GP) model [10], [11], [12]. A GP provides a very flexible nonparametric function

approximation that has found wide application as a replacement for neural networks [10]. Early work involving

GP response-surface approximations for the analysis of computer experiments includes [13], [14], [15]. We refer to

[16] for background and further references. The GP model approximation can be constructed using a comparatively

small number of carefully chosen RTM evaluations. See section IV. Using the GP approximation instead of the

actual RTM will introduce uncertainty into the evaluation of the main effects, and the sensitivity indices, but this

can also be quantified [17]. See section V.

Finally, in section VI we present the main effects and sensitivity indices for the LCM RTM, and show how they

enable the identification of the relative importance of each input to the model output. This also gives information

as to how well these inputs can be predicted from observations of the model output at different wavelengths.
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II. A COUPLED LEAF-CANOPY RADIATIVE TRANSFER MODEL

Over the past decade, in collaboration with the Ecosystem science and technology branch at NASA Ames, the

Vegetation Modeling Transport Group (University of Arizona) has developed a coupled Leaf-Canopy Model (LCM)

in order to capture the essential biophysical processes associated with the interaction between light and vegetation

[3]. LCM was developed to provide a tool to aid in remote sensing as applied to ecosystem dynamics in support of

the TERRA platform and it is specifically used to investigate the feasibility of observing chemistry remotely. The

model combines two different radiative transfer models, one at leaf level (LEAFMOD) and one at canopy level

(CANMOD) to predict the radiative regime inside the vegetation canopy under consideration.

LEAFMOD [18] is the model that simulates the radiative regime inside the single leaf. From a morphological

point of view, the leaf element is an extremely complex and rich object. Any model that attempts to describe each

single interaction process for the light moving in such a medium will face this enormous complexity. The strength

of the LEAFMOD algorithm is its simplicity through natural averaging. The model relies on the fact that while light

is moving in a complicated medium, natural averaging occurs in such way that the simpler assumption of isotropic

scattering and uniform absorption seems to capture the transport effects. Moreover, the model has the ability to

include chemistry as a key element dominating the absorption process. Different concentrations of chlorophyll,

water, lignin and cellulose can be specified to model the optical properties of the single leaf species. The model

is calibrated over the LOPEX leaf species archive [19], where experimental leaf property data are stored. The

calibration occurs in the sense that the optical properties required by the canopy model are retrieved through a

procedure that uses the LOPEX archive as input data.

The CANMOD (CANopy Model) algorithm [20], [3] takes the information coming from LEAFMOD regarding

the single leaf characteristic (transmittance and reflectance) and together with canopy structural parameters, (LAI

and Leaf Angle Distribution), soil reflectance and sun angle inclination, computes, at any given wavelength, the

radiative regime within and at the top of the canopy by solving a radiative transfer equation. The strengths of the

model are simplicity and the ability to take into account leaf chemistry, which is important to properly describe the

light absorption environment.

Figure 1 shows a flowchart that demonstrates the operation of the coupled algorithm. The algorithm can be

explained as follows. The first module uses LEAFMOD in the forward and inverse mode to compute the leaf

optical properties (i.e. leaf reflectance and transmittance). The second module uses the CANMOD forward mode

to compute the spectral canopy hemispherical reflectance factor. The code requires the specification of the input

parameters. In addition to the parameters listed in table I, the model also takes as input wavelength (between 400nm

and 2100nm), canopy architecture (LAD - leaf angle distribution, which takes one of 5 discrete values) and the sun

angle.

Note that the soil reflectance depends on the wavelength. Indeed, usually the spectral soil reflectance is specified

depending on the type of soil of interest but once the wavelength is set, the algorithm will work with the value of

soil reflectance relative to the specified wavelength. We assumed a typical visible/near infra-red spectrum for a dry
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Fig. 1. LCM2 Flow Chart

input min max

LAI 0 8
chlorophyll (µg/cm2) 0 100
water fraction 0.1 0.8
protein (g/cm2) 0.0001 0.001
lignin/cellulose (g/cm2) 0.0001 0.006
thickness (cm) 0.001 0.01
soil 0.3 1.3

TABLE I

RANGES OF VALUES OF THE INPUTS TO THE LCM. LAI AND WATER FRACTION ARE DIMENSIONLESS. THE SOIL PARAMETER IS

MULTIPLIED BY A STANDARD SOIL SPECTRUM. SEE TEXT.

soil, and we considered a multiplicative brightness parameter varying between 0.3-1.3 (see table I) to account for

the possible variations of the background (soil) reflectance level [21]. This multiplicative parameter is assumed to

be wavelength independent.

Once the leaf type is specified, the LOPEX database contains the measured leaf optical properties for the leaf of

interest. Nevertheless, we can tune the canopy by considering leaves that are of the same type but with different

biochemistry and thickness. This gives the code great flexibility in modeling the effect of biochemistry on the

overall canopy reflectance. The algorithm begins by analyzing the leaf under consideration. Assume, for example
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that the canopy of interest is a maple canopy. The LOPEX database is accessed to retrieve the measured spectral

reflectance and transmittance for a nominal maple leaf. Note that, as before, since the wavelength is set, reflectance

and transmittance for the nominal leaf are selected for the specific wavelength of interest. The LEAFMOD inverse

mode accepts the reflectance and transmittance and retrieves scattering and absorption coefficients. It is assumed

that, to first order, the scattering depends on the anatomical structure of the leaf, while the absorption depends

only on the biochemical components [18]. Thus, the scattering coefficient for maple leaves is assumed to be the

same and it is retained. A new maple leaf having the biochemical components and thickness specified by the

inputs is constructed retaining the same scattering coefficient and constructing the new absorption coefficient for

the wavelength of interest. Both absorption and scattering coefficient are fed to the LEAFMOD forward mode to

compute the reflectance and transmittance of the desired leaf, i.e. the leaf with thickness, water, chlorophyll, lignin

and protein specified by the inputs. Reflectance and transmittance are fed to the second module together with LAI,

LAD, soil reflectance and sun angle to compute the hemispherical reflectance.

III. SENSITIVITY ANALYSIS

Sensitivity analysis aims to determine how the variation in the output of a model can be apportioned amongst the

inputs [16, ch 7]. That is, it attempts to determine how much of the variation seen in the output is due to variation in

each of the inputs. The type of sensitivity analysis we are interested in here is global sensitivity analysis, looking at

how the output changes as all the inputs vary continuously, rather than the more common local sensitivity analyzes,

which look at how the output changes as the inputs are each varied about a fixed point. Clearly this latter type of

analysis will give limited information about how the output varies for substantial changes in the inputs.

How the inputs vary is determined by a probability distribution that defines the expected distributions of the

inputs. Using v to denote the vector of model inputs, this distribution is H(v). The actual form of this distribution

is problem dependent, and dependent on the amount of knowledge available about each input variable. It may

be that for some inputs all that can be given is a physically plausible range (e.g. water fraction is limited to the

range 0-1), whereas for others a more precise distribution may be known (e.g. the distribution of leaf thickness for

a particular tree type may be known from field measurements). The distribution H(v) also encodes correlations

between variables that are known to vary together. The authors in [21] give truncated Gaussian distributions for

the variables in table I. In this work we use the simpler formulation of independent uniform distributions over the

ranges given in table I for each input variable.

A. Main Effects

Denote the response of the model to input v as y = f(v). The function f(v) can be decomposed as

y = f(v) = E(Y ) +

d
∑

i=1

zi(vi) +
∑

i<j

zi,j(vi, vj) + . . .

+ z1,2,...,d(v1, v2, . . . , vd) (1)



6

where v = (v1, ..., vd) is d−dimensional (with d = 7 in our sensitivity analysis of the LCM). The first term is the

expected value of f(v), i.e.,

E(Y ) =

∫

vj ,j=1...d

f(v)dH(v)

and the next d terms are the main effects, given by

zi(vi) = E(Y |vi) − E(Y )

=

∫

v−i

f(v)dH(v−i|vi) − E(Y ) (2)

where v−i denotes all the elements of v except vi. The later terms of the decomposition are the interactions. They

give information about the combined influence of two or more inputs taken together. We will not consider them

further here.

Plotting the main effects, zi(vi) for each i gives a visual impression of the relative importance of each input to

the variation in the output. This visual impression is heightened if the inputs are normalized (to the range 0-1, for

example, for uniformly distributed inputs), allowing all the main effects to be plotted together on the same plot.

See section VI where we present main effects plots for the LCM RTM.

To compute the main effects requires the evaluation of a (d − 1)−dimensional integral. For even moderately

complex functions f(v) it will be impossible to evaluate this integral analytically; indeed, for most cases of interest

an analytic form for f(v) does not exist, rather, f(v) only exists as a computer program. In these cases the

zi(vi) must be computed numerically. If evaluating f(v) for a given v requires appreciable computation then the

standard methods of numerical integration, multidimensional quadrature and Monte Carlo integration, will be too

computationally intensive to be practical. In these cases we can approximate f(v) and compute the main effects

of the approximation, and also compute the uncertainty introduced by the approximation to f(v). This is given in

sections IV and V. Details of the Gaussian Process approximation we use for f(v) is given in section IV, and its

application to computing the main effects and sensitivity indices in section V.

B. Sensitivity Indices

The sensitivity indices are based on the variances of the terms in the decomposition of f(v) given in equation

1. Consider

Vi = Var{E(Y |vi)}.

This is the expected amount by which the uncertainty in y will be reduced if we learn the true value of vi [17]. It

thus gives a measure of how much of the variance of y is due to input vi. The Vi’s can be normalized to

Si = Vi/Var(Y )

and the sum of all the Si’s and higher-order terms (Si,j , Si,j,k, etc.) is unity. Thus the value of Si gives the relative

importance of input xi. The Si’s can also be used to direct improvements – reducing the uncertainty on the input

with the largest Si will have the greatest effect in reducing the uncertainty of the model output. This can be used

to direct data collection work.
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Computing the Si’s and Vi’s can be complex, even under the Gaussian Process approximation to f(v). See

section V for details.

IV. APPROXIMATING THE LCM USING A GAUSSIAN PROCESS

Gaussian Processes (GPs) are probability distributions over functions. Rather than placing a distribution over a

(small) set of parameters, a GP places a distribution directly over the function of interest. Under a GP probability

model for function f(·), the joint distribution of (f(v1), ..., f(vk)) is multivariate Gaussian, for any finite set of

input points v1, ..., vk. It is this property that allows for tractable computation – whilst the GP is defined over an

infinite dimensional quantity (the continuous function, f(v)), any computation is necessarily done over only a finite

set of locations.

A GP is specified by its mean function, E(f(v)), and its covariance function Cov(f(v), f(v ′)). The flexibility of

choosing and adapting the mean and covariance functions allows a GP model to be successfully used to approximate

a wide spectrum of functions f(v), based on a set of training examples, d = {y, x1, ..., xn}, where y = (y1, ..., yn)

and yi is the response f(xi) at observed input point xi, i = 1, ..., n. The set of training examples is chosen carefully

to optimally sample the input space. Here we used a Latin Hypercube design [22] to choose the set of inputs to the

LCM. The other choices made were to use a constant mean function, E(f(v)) = µ, a constant variance Var(f(v)) =

σ2, and the product Gaussian correlation function

Corr(f(v), f(v′); θ) = exp

(

−

d
∑

`=1

(v` − v′`)
2

γ`

)

where θ = (γ1, ..., γd), and d is the number of dimensions in the inputs, v. The γ parameters give a measure of

the scale over which the function f(v) varies in each input dimension, and σ2, the variance of the GP, determines

the overall scale of f(v). Using this mean and correlation function, the GP defines the joint distribution

p(y|θ, µ, σ2) =
1

(2πσ2)n/2|C|1/2
exp

(

−
1

2σ2
(y − µ1n)T C−1(y − µ1n)

)

where C is the correlation matrix with (i, j)-th element Corr(f(xi), f(xj)), and 1n denotes an n-dimensional

vector with all elements equal to 1.

We use the set of training examples, d, to estimate the parameters {θ, µ, σ2} of the GP model using maximum

likelihood estimation. From equation 3 the log-likelihood is

L = −
1

2σ2
(y − µ1n)T C−1(y − µ1n) −

1

2
log |C| −

n

2
log(2πσ2) (3)

where C depends on the parameters θ. The derivatives of L with respect to each of the parameters can be

straightforwardly derived [11]. Maximizing L results in a point estimate for the parameters, denoted by {θ̂, µ̂, σ̂2},

that we use when evaluating the main effects. Note that using point estimates for these parameters will cause the

uncertainty of the main effects to be underestimated. In future work we will consider a fully inferential Bayesian

approach where expectations are also taken with respect to these parameters.
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Once the GP model parameters are estimated, the first quantities of interest are the predictive distributions for

sets of new inputs, conditioned on the training examples. From the definition of the GP, these distributions will be

Gaussian. For a single new input v the predictive distribution for f(v) has mean

m ≡ m(v; µ̂, θ̂, d) = µ̂ + rT (v)C−1(y − µ̂1n)

and variance

S ≡ S(v; µ̂, σ̂2, θ̂, d) = σ̂2
(

1 − rT (v)C−1r(v)
)

.

Here r(v) is the n × 1 vector with i-th element given by Corr(f(v), f(xi)) = exp(−
∑d

`=1(v` − xi`)
2/γ̂`), and

C is the observed n × n correlation matrix with (i, j)-th element given by exp(−
∑d

`=1(xi` − xj`)
2/γ̂`). Recall

that the xi are the input values of the training examples.

The joint predictive distribution for (f(v), f(v′)) corresponding to generic inputs v = (v1, ..., vd) and v′ =

(v′1, ..., v
′
d) is bivariate normal with (2× 1) mean vector

w = µ̂12 + RT (v, v′)C−1(y − µ̂1n) (4)

and (2 × 2) covariance matrix

W = σ̂2
(

B(v, v′) − RT (v, v′)C−1R(v, v′)
)

, (5)

where B(v, v′) is the (2×2) correlation matrix for (f(v), f(v′)) with off-diagonal element given by exp(−
∑d

`=1(v`−

v′`)
2/γ̂`), and R(v, v′) is the (n× 2) matrix with first row elements exp(−

∑d
`=1(v` − xi`)

2/γ̂`), i = 1, ..., n, and

analogously for the second row elements replacing v` with v′`.

V. APPROXIMATING THE MAIN EFFECTS AND SENSITIVITY INDICES USING THE GAUSSIAN PROCESS

APPROXIMATION TO THE LCM

To compute the main effects requires evaluating E(Y | vj) and E(Y ), as indicated in equation 2. However, we

recall that we are approximating the function y = f(v) by a GP model, and we must account for this approximation

by computing E∗ {E(Y | vj)} and E∗ {E(Y )}, where we use E∗{ }, Var∗{ } and Cov∗{ } to indicate expectation,

variance and covariance, respectively, with respect to the GP predictive distributions. We give details of these

quantities here.

For the global mean, we have

E(Y ) =

∫

v

f(v)

d
∏

`=1

dH`(v`)

where H(v) =
∏d

`=1 H`(v`) is the input distribution, comprising independent components H`(v`), which are
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uniform distributions over ranges (a`, b`), ` = 1, ..., d. Therefore,

E∗ {E(Y )} =

∫

E(Y )dN(f(v); m, S)

=

∫

v

m(v)

d
∏

`=1

dH`(v`)

=

∫

v

{µ̂ + rT (v)C−1(y − µ̂1n)}

d
∏

`=1

dH`(v`)

= µ̂ + T T C−1(y − µ̂1n), (6)

where T is the n × 1 vector with i-th element given by
∏d

`=1

{

∫ b`

a`
exp(−(v` − xi`)

2/γ̂`)(b` − a`)
−1dv`

}

.

For E(Y | vj), for each value uj of the j−th input, we have

E(Y | uj) =

∫

{v`:`6=j}

f(v1, ..., uj , ..., vd)
∏

{`:`6=j}

dH`(v`)

and thus

E∗ {E(Y | uj)} =

∫

E(Y | uj)dN(f(v1, ..., uj , ..., vd); m, S)

=

∫

{v`:`6=j}

m(v1, ..., uj , ..., vd)
∏

{`:`6=j}

dH`(v`)

= µ̂ + T T
j (uj)C

−1(y − µ̂1n),

where Tj(uj) is the (n × 1) vector with i-th element given by the following expression

exp

(

−
(uj − xij)

2

γ̂j

)

∏

{`:`6=j}

{

∫ b`

a`

exp

(

−
(v` − xi`)

2

γ̂`

)

1

b` − a`
dv`

}

. (7)

The previous expressions provide point estimates for all main effects associated with the d inputs. In particular,

for each input j = 1, ..., d, E∗ {E(Y | uj)} can be computed over a grid of uj values to obtain point estimates

for the functions E(Y | uj) (or for E(Y | uj) − E(Y ) using also E∗ {E(Y )}). These estimates can be compared

graphically (linear transformations can be applied so that all inputs are on the same scale).

For a measure of the uncertainty associated with these estimates, we use

Var∗ {E(Y | uj)} = E∗
{

(E(Y | uj))
2
}

− (E∗ {E(Y | uj)})
2.

Because we already have the expression for E∗ {E(Y | uj)} through (7) and (7), what is needed is an expression

for E∗
{

(E(Y | uj))
2
}

. This derivation is given in Appendix I, resulting in

Var∗ {E(Y | uj)} = σ̂2
(

e − T T
j (uj)C

−1Tj(uj)
)

where e is given by 11 in Appendix I.

The sensitivity indices are defined by

Sj =
Var(E(Y | uj))

Var(Y )
, j = 1, ..., d.
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Fig. 2. The main effects for the LCM RTM

Computing E∗{Sj} cannot be done analytically, even under the GP approximation, so we approximate it by

computing the ratio of E∗{Var(E(Y | uj))} and E∗{Var(Y )}. (In future work we will use a Bayesian approach

implemented via Markov chain Monte Carlo (MCMC) methods [23] to estimate the entire distribution of Sj under

the GP approximation, allowing the uncertainty of the sensitivity indices to also be determined.) We have that

E∗{Var(E(Y | uj))} = E∗
{

E
[

(E(Y | uj))
2
]}

− E∗{(E(Y ))2}

and

E∗{Var(Y )} = E∗{E(Y 2)} − E∗{(E(Y ))2}.

The expressions for these terms are not difficult to derive, though care is needed. They are given in Appendix II.

VI. RESULTS

The proposed methodology has been applied to execute a global sensitivity analysis and to analyze both the

sensitivity of the spectral hemispherical reflectance to the defined input parameters and the relative contribution of

each parameters to the model output

To generate the training data for the GP model we generated a 250 point Latin Hypercube design over the

7-dimensional space of inputs given in table I. The Leaf Angle Distribution (LAD) variable was set to planophile
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Fig. 3. The uncertainty in the main effects due to using the GP approximation to the LCM RTM. Band 1. Line colours as in figure 2.
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Fig. 4. The uncertainty in the main effects due to using the GP approximation to the LCM RTM. Band 4. Line colours as in figure 2.

(leaves mostly horizontal) and the sun angle was set to zenith. While the sun angle will vary, for any given satellite

scene it will be known, and so we do not consider it as one of the inputs for this analysis. The LCM was run

at 8 wavelengths, given in table II, corresponding to eight of the MODIS bands that are sensitive to vegetation.

The corresponding MODIS band is also given in table II. Note that the bands are in MODIS band order, not in

wavelength order.

Figure 2 shows plots of the main effects for the 7 input variables for each of the 8 bands. The larger the variation

of the main effect plot, the greater the influence of that input on the LCM response. To display the main effects

for all parameters on a single plot, the range of each input (given in table I has been normalized to 0-1. The slope

of each main effect plot gives information as to whether the output is an increasing or decreasing function of that

input. The relative scale of the main effects can be easily compared visually. The absolute scale depends on the

absolute magnitude of the model output.

To correctly interpret the results and to put them in the right perspective, we divide the input parameters in two

categories, i.e. spectrally and radiative transfer (RT) driven. Biochemical inputs, i.e. chlorophyll, water, lignin and

protein are spectrally driven since their effect heavily depends on wavelength, and mainly affect the absorption

characteristic of vegetation canopies [18]. Conversely, LAI, leaf thickness and soil brightness can be categorized



12

band number wavelength (nm) MODIS band

1 469 ref3
2 555 ref4
3 1240 ref5
4 1640 ref6
5 2130 ref7
6 667 ref13
7 748 ref15
8 870 ref16

TABLE II

THE WAVELENGTH FOR EACH BAND USED, AND THE CORRESPONDING MODIS BAND NUMBER.

as RT driven since they directly influence the transport of photons in the medium. The main effects and sensitivity

indices are analyzed next.

The LCM is most sensitive to LAI in the near-infrared (NIR) region of the spectrum (bands 7 and 8). It is shown

in the figure that the LAI effect is highly non-linear and the behavior is such that in bands 7, 8 and 3 an increase

in LAI produces an increase in reflectance. Conversely, the effect is opposite in the visible, i.e. increases in LAI

produces a decrease in the hemispherical reflectance. This trend is known. [24], [25]. The sensitivity indices (table

III) show that LAI is the major contributor in the bands which are most sensitive.

Chlorophyll, on the other end, is expected to be extremely influential in the visible, i.e. it is the prevailing factor

that dominates the reflectance. Its effect is strong in the visible (bands 1, 2 and 6) while it dramatically decrease

at the red-edge (band 7) to eventually disappear in the rest of the spectrum. Indeed, chlorophyll does not absorb

light after 760nm. As shown in figure 4, band 4 show basically no sensitivity for chlorophyll with small quantified

uncertainty in the result.

Water contribution occurs mainly in the short-wave infrared where it exhibits resonant phenomenon that increase

the probability of light absorption around the 1445nm wavelength. Indeed, water is ranked as second and third

major contributor to the reflectance in band 5 and 4 respectively. Conversely the reflectance is weakly sensitive in

the visible.

Protein is shown to be insensitive to most of the spectrum. Its effect as well as contribution are extremely small

and can be only detected with difficulties in the NIR (e.g. band 8).

Lignin is one of the major surprising results. It is extremely sensitive in the short-wave infrared (bands 4 and 5)

where it is also the major contributor to the hemispherical reflectance. This is mainly due to the strong absorption

features in this part of the spectrum where lignin absorption coefficient features a peak around 2110nm.

Leaf thickness demonstrates a true RT effect and its response shows interesting features. It is mainly sensitive and

has the major contribution in bands 3 and 8. We believe that what we are seeing is that changing the leaf thickness

has more influence on scattering than on absorption. Specifically, as we change the leaf thickness the model assumes
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band; wavelength (nm)

1 2 3 4 5 6 7 8
input 469 555 1240 1640 2130 667 748 870

LAI 0.05 0.01 0.43 0.16 0.04 0.28 0.41 0.48
CHL 0.80 0.83 0.00 0.00 0.00 0.56 0.08 0.00
Water 0.00 0.00 0.01 0.12 0.14 0.00 0.00 0.00

Protein 0.00 0.00 0.01 0.02 0.02 0.00 0.02 0.02
Lignin 0.00 0.00 0.19 0.36 0.53 0.00 0.13 0.16

Thickness 0.02 0.05 0.14 0.07 0.05 0.02 0.24 0.18
Soil 0.00 0.00 0.08 0.06 0.03 0.01 0.03 0.06

Total 0.88 0.90 0.86 0.80 0.81 0.87 0.90 0.90

TABLE III

THE SENSITIVITY INDICES FOR EACH INPUT FOR EACH SPECTRAL BAND.

that the leaf mass is unchanged, meaning that the absorption has little effect as can be seen specifically in the NIR

part of the spectrum.

The soil brightness has generally little effect. The spectrum for a typical soil was spectrally defined and the

brightness parameter is responsible for increasing the soil hemispherical reflectance therefore simulating the dry-

wet effect.

That the sensitivity indices do not sum to one indicates that interaction effects between two or more inputs are

important in some bands, particularly band 4. In future work we will compute the second order sensitivity indices

that quantify which interactions are important.

Our results are consistent with, and extend, previous statistically-based work. For example, [7] presented a

methodology for sensitivity analysis based on design of numerical experiments aimed at providing a comparison

between four canopy RT models coupled with a leaf-based RT model (PROSPECT, [26]). Their results are consistent

with ours regarding LAI, chlorophyll and soil brightness sensitivity behavior. That the response in bands 1, 2 and

6 is dominated by LAI and chlorophyll. is consistent with the results of a much more restricted sensitivity analysis

in [27].

These results show that analyzing the uncertainty characteristics of RTMs used in remote sensed data product

generation is practical and important. It gives information on the level of accuracy needed in the model’s inputs,

can guide data collection efforts to most effectively reduce the uncertainties, and can guide further development

effort for the RTMs themselves. It also gives information as to which of the model’s inputs affect the output, and

hence which inputs it may be possible to determine from remotely-sensed observations.
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APPENDIX I

VARIANCE OF THE MAIN EFFECTS

We give here the derivation of E∗
{

(E(Y | uj))
2
}

required in the expression for Var∗ {E(Y | uj)}, the uncertainty

associated with estimates of the main effects

Note that,

(E(Y | uj))
2 =







∫

{v`:`6=j}

f(v1, ..., uj , ..., vd)
∏

{`:`6=j}

dH`(v`)







2

=

∫∫

{v`:`6=j}
{v′

`:`6=j}

f(v1, ..., uj , ..., vd)f(v′1, ..., uj , ..., v
′
d)

∏

{`:`6=j}

dH`(v`)
∏

{`: 6̀=j}

dH`(v
′
`)

and thus we need to take E∗{·} with respect to the bivariate predictive distribution for (f(v1, ..., uj , ..., vd), f(v′1, ..., uj , ..., v
′
d)).

Specifically,

E∗
{

(E(Y | uj))
2
}

=
∫∫

{v`:`6=j}
{v′

`:`6=j}

E∗ {f(v1, ..., uj , ..., vd)f(v′1, ..., uj , ..., v
′
d)} ×

∏

{`:`6=j}

dH`(v`)
∏

{`:`6=j}

dH`(v
′
`), (8)

where

E∗ {f(v1, ..., uj , ..., vd)f(v′1, ..., uj , ..., v
′
d)} =

Cov∗ {f(v1, ..., uj , ..., vd), f(v′1, ..., uj , ..., v
′
d)} + (E∗ {f(v1, ..., uj , ..., vd)}E∗ {f(v′1, ..., uj , ..., v

′
d)}) . (9)

Denote by RT
1 ≡ RT

1 (v1, ..., uj , ..., vd) and RT
2 ≡ RT

2 (v′1, ..., uj , ..., v
′
d) the first and second rows, respectively,

of the (n × 2) matrix R(v, v′) defined in section IV. Note that here the input vectors we are working with,

(v1, ..., uj , ..., vd) and (v′
1, ..., uj , ..., v

′
d), have common element uj . Therefore, R1 is the n×1 vector with elements

exp



−
(uj − xij)

2

γ̂j
−

∑

{`:`6=j}

(v` − xi`)
2

γ̂`



 , i = 1, ..., n,

and analogously for R2, replacing v` with v′`. Then, using (4) and (5), we obtain

E∗ {f(v1, ..., uj , ..., vd)} = µ̂ + RT
1 (C−1(y − µ̂1n)

E∗ {f(v′1, ..., uj , ..., v
′
d)} = µ̂ + RT

2 C−1(y − µ̂1n)

Cov∗ {f(v1, ..., uj , ..., vd), f(v′1, ..., uj , ..., v
′
d)} = σ̂2







exp



−
∑

{`:`6=j}

(v` − v′`)
2

γ̂`



− RT
1 C−1(θ̂)R2







. (10)

Finally, substituting (9) and (10) in (8), we obtain for each j = 1, ..., d,

E∗
{

(E(Y | uj))
2
}

= σ̂2
(

e − T T
j (uj)C

−1Tj(uj)
)

+
(

µ̂ + T T
j (uj)C

−1(y − µ̂1n)
)2

,
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where Tj(uj) is the n × 1 vector with elements given in (7), and

e =
∏

{`:`6=j}

{

∫ b`

a`

∫ b`

a`

exp

(

−
(v` − v′`)

2

γ̂`

)

dv`dv′`
(b` − a`)2

}

. (11)

Note that the second term in equation 11 is (E∗ {E(Y | uj)})
2, and so the required variance has the simpler

expression

Var∗ {E(Y | uj)} = σ̂2
(

e − T T
j (uj)C

−1Tj(uj)
)

APPENDIX II

THE SENSITIVITY INDICES

To compute the sensitivity indices, we must compute E∗{Var(E(Y | uj))} and E∗{Var(Y )}. Regarding the

unconditional variance

E∗{Var(Y )} = E∗{E(Y 2)} − E∗{(E(Y ))2}.

For the first term, we have

E∗{E(Y 2)} = E∗
{

∫

v
f2(v)

∏d
`=1 dH`(v`)

}

=
∫

v
E∗{f2(v)}

∏d
`=1 dH`(v`)

=
∫

v
(S + m2)

∏d
`=1 dH`(v`)

= σ̂2
∫

v

(

1 − rT (v)C−1r(v)
)
∏d

`=1 dH`(v`)

+
∫

v

{

µ̂2 + 2µ̂rT (v)C−1(y − µ̂1n) + (rT (v)C−1(y − µ̂1n))2
}
∏d

`=1 dH`(v`)

= σ̂2 − σ̂2
(

∫

v
rT (v)C−1r(v)

∏d
`=1 dH`(v`)

)

+ µ̂2 + 2µ̂T T C−1(y − µ̂1n)

+
(

∫

v
(rT (v)C−1(y − µ̂1n))2

∏d
`=1 dH`(v`)

)

where T is the n × 1 vector defined earlier in the expression for E∗ {E(Y )} after equation 6. Regarding the two

integrals above, if we expand the quadratic form rT (v)C−1r(v) and apply the integral, we obtain
∫

v

rT (v)C−1r(v)

d
∏

`=1

dH`(v`) =

n
∑

i=1

n
∑

j=1

cijqij

where cij is the (i, j)-th element of matrix C−1, and

qij =
d
∏

`=1

{

∫ b`

a`

exp

(

−
(v` − xi`)

2 + (v` − xj`)
2

γ̂`

)

1

b` − a`
dv`

}

, i, j = 1, ..., n.

(The qij are symmetric in (i, j).) Analogously, expanding the square (rT (v)C−1(y−µ̂1n))2 and taking the integral,

we get
∫

v

(rT (v)C−1(y − µ̂1n))2
d
∏

`=1

dH`(v`) =
n
∑

i=1

z2
i qii + 2

n
∑

i=1

n
∑

j=i+1

zizjqij

where zi denotes the i-th element of the n × 1 vector C−1(y − µ̂1n).
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For the second term, we can write

E∗{(E(Y ))2} = E∗

{

(

∫

v
f(v)

∏d
`=1 dH`(v`)

)2
}

= E∗
{

∫

v

∫

v
′
f(v)f(v′)

∏d
`=1 dH`(v`)

∏d
`=1 dH`(v

′
`)
}

=
∫

v

∫

v
′
E∗{f(v)f(v′)}

∏d
`=1 dH`(v`)

∏d
`=1 dH`(v

′
`)

and thus E∗{(E(Y ))2} can be expressed as
∫

v

∫

v
′

Cov∗{f(v), f(v′)}
d
∏

`=1

dH`(v`)
d
∏

`=1

dH`(v
′
`) +

∫

v

∫

v
′

{E∗(f(v))E∗(f(v′))}
d
∏

`=1

dH`(v`)
d
∏

`=1

dH`(v
′
`). (12)

Let r′(v′) denote the n × 1 vector with i-th element given by exp(−
∑d

`=1(v
′
` − xi`)

2/γ̂`). Then, analogously to

the expressions in (10), we have

E∗ {f(v)} = µ̂ + rT (v)C−1(y − µ̂1n)

E∗ {f(v′)} = µ̂ + r′T (v′)C−1(y − µ̂1n)

Cov∗ {f(v), f(v′)} = σ̂2

{

exp

(

−
d
∑

`=1

(v`−v′

`)
2

γ̂`

)

− rT (v)C−1r′(v′)

}

.

(13)

Therefore, substituting (13) in (12), and applying the integrations, we finally obtain

E∗{(E(Y ))2} = σ̂2
(

e∗ − T T C−1T
)

+
(

µ̂ + T T C−1(y − µ̂1n)
)2

,

where

e∗ =

d
∏

`=1

{

∫ b`

a`

∫ b`

a`

exp

(

−
(v` − v′`)

2

γ̂`

)

1

(b` − a`)2
dv`dv′`

}

.

Turning to the estimate for Var(E(Y | uj)), we have

E∗{Var(E(Y | uj))} = E∗
{

E
[

(E(Y | uj))
2
]}

− E∗{(E(Y ))2}

and therefore we only need the expression for E∗
{

E
[

(E(Y | uj))
2
]}

. In particular,

E∗
{

E
[

(E(Y | uj))
2
]}

= E∗
{∫

(E(Y | uj))
2dHj(uj)

}

=
∫

E∗
{

(E(Y | uj))
2
}

dHj(uj)

=
∫

{

σ̂2
(

e − T T
j (uj)C

−1Tj(uj)
)

+
(

µ̂ + T T
j (uj)C

−1(y − µ̂1n)
)2
}

dHj(uj)

= σ̂2e − σ̂2
{∫

T T
j (uj)C

−1Tj(uj)dHj(uj)
}

+ µ̂2 + 2µ̂T T C−1(y − µ̂1n)

+
{∫

(T T
j (uj)C

−1(y − µ̂1n))2dHj(uj)
}

.

The two integrals above can be computed as follows. First,
∫

T T
j (uj)C

−1Tj(uj)dHj(uj) =

n
∑

m=1

n
∑

k=1

AmAkcmk

{

∫ bj

aj

exp

(

−
(uj − xmj)

2 + (uj − xkj)
2

γ̂j

)

1

bj − aj
duj

}

where, again, cmk is the (m, k)-th element of matrix C−1, and

Am =
∏

{`:`6=j}

{

∫ b`

a`

exp

(

−
(v` − xm`)

2

γ̂`

)

1

b` − a`
dv`

}

, m = 1, ..., n.
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Moreover,
∫

(T T
j (uj)C

−1(y − µ̂1n))2dHj(uj) =
n
∑

m=1
z2

m

{

A2
m

∫ bj

aj
exp

(

−
2(uj−xmj)

2

γ̂j

)

1
bj−aj

duj

}

+2
n
∑

m=1

n
∑

k=m+1

zmzk

{

AmAk

∫ bj

aj
exp

(

−
(uj−xmj)

2+(uj−xkj)
2

γ̂j

)

1
bj−aj

duj

}

where, again, zm denotes the m-th element of the vector C−1(y − µ̂1n).
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