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Abstract

We report on progress made during the first year of this grant. Work in this first year has
been in four categories, and will provide the foundation for work in the second year.

The first category has been the extensive revision of a paper submitted to the IEEE Trans-
actions on Geoscience and Remote Sensing. This interaction with the reviewers from the remote
sensing community was very fruitful, resulting in a significantly improved paper, and a deeper
understanding of some of the key issues within the remote sensing community.

One of these key issues is the inversion of models to produce data products. We have
identified data sets which we will use in future work to produce validated inverse estimates from
the LCM model.

Another key issue is the use of bi-directional reflection coefficients, as opposed to the hemi-
spherically integrated reflection coefficient produced by the current version of the LCM algo-
rithm. This has spurred two parallel efforts, the further development of the LCM algorithm to
enable the computation of bi-directional reflection coefficients, and the study of the sensitivity
of the LCM for nadir observations, which can be simulated with the current version of the LCM.

We conclude with plans for year two, and a list of presentations and publications.

1 Revision of paper submitted to IEEE Transactions on Geo-

science and Remote Sensing – now accepted for publication

One major work item this year has been the extensive revisions of the paper “A Statistical Frame-
work for the Sensitivity Analysis of Radiative Transfer Models” which has now been accepted for
publication in IEEE Transactions on Geoscience and Remote Sensing. A final camera-ready version
of this paper is attached to this report.

The reviewers made a number of comments on the initial manuscript, which have provided us
with valuable and useful feedback from the remote sensing community on our work and how our
work fits in with the ways of thinking of the remote sensing community.

The main issue was due to a very strong focus in the community on the production of data
products, and the associated model inversion, and hence an assumption that our paper was going
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to address model inversion. While that is a goal of the research funded under this grant, the current
paper describes preliminary work towards that goal, namely the detailed analysis of the behaviour
of the forward model, in terms of the importance of each input to the response of the model. This
gives information as to which of the inputs are likely to be able to be accurately estimated when
inverting the model. A related issue was that, because of the focus on inversion, the reviewers did
not immedidately understand the usefulness of a global sensitivity analysis (looking at the properties
of the model as all the inputs vary over their valid ranges), rather than a local sensitivity analysis
about a fixed point (the fixed point being the result of the inversion for a given data set). Global
sensitivity is useful for model analysis, and also because the model will be used for inversion over
a wide range of inputs, and so the actual fixed points about which local sensitivity should be
computed are unknown.

A second issue was the use of directional-hemispherical reflectances (as produced by the current
version of the LCM). The reviewers pointed out that in current practice, bi-directional reflection
coefficient are used. As described in section 4 below, we are now developing further the LCM model
to allow for the computation of bi-directional reflection coefficients.

The reviewers made a further suggestion that by coupling the LCM to an atmosphere model
(such as MODTRAN), and performing the sensitivity analysis at a very large set of closely spaced
wavelengths, it would be possible to determine the spectral regions where the detection of leaf
biochemistry is most successful, and where atmospheric water vapor does not interfere with leaf
water. We regard this as a very interesting suggestion, and will address it in future work.

2 Identification of satellite data corresponding to a particular

BIGFOOT site

As discussed above, the primary goal of this research project is to develop methodology for the
estimation of biospherical parameters, particularly LAI, that are well-characterized in terms of the
uncertainties on these estimates. It is important, therefore, to identify data sets that will allow us
to both perform the model inversion to generate LAI estimates with their uncertainties, and also
to identify data sets where corresponding ground-truth data is available.

We have identified the Harvard Forest BIGFOOT site as a suitable test region. The Harvard
Forest is located at 42.37N and 72.25W. It is a mixed temperate forest. Detailed field data for a
7km × 7km region around the flux tower site is available from http://daac.ornl.gov. We have also
identified the most suitable MODIS data set for use for our model inversion research. This is the
MOD09 data set, which are atmospherically corrected surface reflectances.

The data considered are Level 3 products in which every pixel is geolocated and arranged in
non-overlapping tiles. For this specific exercise, we considered MOD09A1 data which provides
MODIS band 1-7 surface reflectance at 500m resolution. It is a Level 3 product and it is the
best possible L2G observation over the course of a 8-day period as selected on the basis of high
observation coverage, low view angle, absence of clouds or cloud shadow, and aerosol loading.

The MODIS product extracted from the database and containing the Harvard forest as subset
has the following ID: MOD09A1.A2008185.h12v04.005.2008195045601.hdf

The MATLAB HDF-EOS tool has been used to extract the surface reflectance from the down-
loaded data. Figure 1 shows the RGB composite image of the surface reflectance.

In figure 2 we show the section of the data which lies within 1 degree of latitude and longitude
of the location of the Harvard Forest. We have also extracted a subset of 10×19 pixels which are
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Figure 1: RGB composite image from the se-
lected MODIS data. (band 1→red, band 2→
green, band 3 → blue)

Figure 2: Subsection of the MODIS data corre-
sponding to a 1 degree by 1 degree area around
the Harvard Forest.

given by the biome map to be broadleaf conifers.

3 Study of the “main effects” and “sensitivity indices” of the LCM

for sun angles corresponding to the data identified above, and

nadir observations

As discussed, when inverting a radiative transfer model using MODIS data to produce an estimate
of LAI, the MODIS data typically provides bi-directional reflection distribution coefficients. In
preparation for the completion of the extensions to the LCM to allow the computation of these
coefficients (see section 4), we performed a sensitivity analysis of the current version of the LCM
for the special case of a BRDF that it can compute – the case of nadir observations, which are a
common observation mode for MODIS.

The LCM was run using the illumination angles corresponding to the Harvard Forest data
discussed above, for the seven MODIS bands included in the data set. (Note that this is one band
less than the case considered in the IEEE paper; the 748nm band is not included in the MODIS
data discussed above.) Figure 3 shows the main effects for the LCM in each of these seven bands,
and table 1 gives the sensitivity indices.

Comparing these with figure 2 and table III in the IEEE paper (see appendix A) we see that
the main effects are for the most part indistinguishable, there being some slight differences in band
3 for LAI and Lignin. The sensitivity indices are also very similar between the two cases, with
small differences in band 6, where the LCM is now more sensitive to chlorophyll and less sensitive
to LAI.
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Figure 3: Main effects for the LCM for nadir reflection for the 7 spectral bands given in table 1

band; wavelength (nm)

1 2 3 4 5 6 7 8
input 469 555 1240 1640 2130 667 748 870

LAI 0.05 0.01 0.43 0.17 0.04 0.23 0.48
CHL 0.80 0.83 0.00 0.00 0.00 0.62 0.00
Water 0.00 0.00 0.00 0.12 0.14 0.00 0.00
Protein 0.00 0.00 0.01 0.02 0.02 0.00 0.02
Lignin 0.00 0.00 0.18 0.36 0.54 0.00 0.16

Thickness 0.02 0.05 0.14 0.07 0.05 0.02 0.18
Soil 0.00 0.00 0.07 0.06 0.03 0.01 0.05

Total 0.88 0.90 0.83 0.80 0.81 0.88 0.90

Table 1: Sensitivity indices for the LCM for nadir reflection for the 7 spectral bands
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4 Developments of the LCM model to enable the computation of

Bi-directional Reflection Distribution Functions

As discussed above, inversion of MODIS data for the production of data products (e.g. LAI) is typ-
ically performed using a model that allows for the prediction of bi-directional reflection coefficients.
This allows for the more effective use of the data, which is recorded from different observation
angles. To this end, we are developing an extension to the LCM radiative transfer model that
computes the two-angle reflection coefficients.

At the canopy level, the equation describing the radiative regime inside the vegetation is derived
by applying the conservation of photons to the differential element in the phase space. The canopy
is assumed to be a “turbid” medium with leaves as scattering elements having a defined normal
probability distribution function. The leaf normal orientation influences the scattering type which
cannot be considered isotropic. In the current version, one spatial coordinate (canopy depth) and
one angle (inclination) are defined as independent variables. We improve the model by implementing
a two angle formulation. The two-angle CANMOD equation can be written as following:

[

µ
∂

∂τ
+G(µ)

]

I(τ,Ω) =
1

π

∫

4π
dΩΓ(Ω′,Ω)I(τ,Ω′) (1)

where τ is the depth within the canopy in LAI units, and Ω = (θ, φ) is the solid angle. The
boundary conditions are

I(0,Ω) = FL(Ω), µ > 0 (2)

I(∆,Ω) = FR(Ω)

=
rs

π

∫

2π
dΩ′|µ′|I(τ,Ω′), µ < 0

The first line in equation 2 describes the condition at the top of the canopy and usually has
two contributions coming from direct sunlight and diffuse sunlight. The second line represents
the reflected radiance from the bottom surface at τ = ∆ resulting from a partially Lambertian
reflecting soil.

Equation 1 is an integro-differential equation. I(τ,Ω) is the radiance which is defined as the
energy per unit area per unit time per unit solid angle transported by photons traveling within
the canopy. The inputs of this model are the leaf reflectance and transmittance (optical properties
coming from LEAFMOD) as well as LAI, LAD, soil reflectance, sun inclination and azimuthal
angle.

Equations 1 and 2 can be numerically solved to determine the radiance exiting the top of the
canopy. One of the most important quantities for remote sensing application is the Bidirectional
Reflectance Distribution Function (BRDF), defined as:

Rf (−µ, ψ) =
I(0,−µ, ψ)

FL(µi, ψi)

This quantity is one of the products of MODIS algorithms processing by the sensing devices. It
is also important to note that equation 1 can be solved for different wavelengths to compute the
spectral response of the canopy.
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A variation of the Discrete Ordinate Method commonly employed to numerically solved trans-
port of neutrons in nuclear devices has been devised to compute the radiant intensity Top-Of-the-
Canopy (TOC) as function of the viewing geometry. The discrete equations can be written as
follows:

Case µ > 0

Ii
n,m =

(

1 +
G(µn)∆τ

2|µn|

)

−1(

Ii−1/2
n,m +

∆τ

2|µn,m|
Qi

n,m

)

Ii+1/2
n,m = 2I i

n,m − Ii−1/2
n,m (3)

Case µ < 0

Ii
n,m =

(

1 +
G(µn)∆τ

2|µn|

)

−1(

Ii+1/2
n,m +

∆τ

2|µn,m|
Qi

n,m

)

Ii−1/2
n,m = 2I i

n,m − Ii+1/2
n,m (4)

Here

Q(τ,Ωij) =
1

π

M
∑

m=1

wm

N
∑

n=1

w̄nΓ(Ωnm,Ωij)I(τ,Ωij) (5)

.
Q(τi,Ωij) = Qi

n,m is the inscattering source which has been discretized using the Gauss-Legendre
integration scheme for the inclination angle and the Gauss-Chebyshev integration scheme for the
azimuthal angle.

Equations 3 to 5 are the discrete equations for CANMOD two-angle formulation. They are
solved according to the conventional “sweeping technique”. We are in the process of completing
the implementation of the numerical scheme in MATLAB. Evaluation of the computational speed
is a critical parameter for selecting the appropriate language. MATLAB is initially used for rapid
development and testing. Fortran 95 or C/C++ will be employed for improving the computational
speed.

5 Progress on computing the full distribution of the sensitivity

indices using Bayesian methods

The approach to global sensitivity analysis developed in the IEEE paper (discussed in Section 1)
is based on a Gaussian process (GP) approximation to the LCM output y = f(v), where v =
(v1, ..., v7) is the vector of the 7 LCM inputs considered in the sensitivity analysis, i.e., LAI, chloro-
phyll, water fraction, protein, lignin/cellulose, thickness, and soil. The LCM approximation was
based on maximum likelihood estimates for the parameters of the isotropic GP model, specifi-
cally, the mean E(f(v)) = µ, variance Var(f(v)) = σ2, and the scale parameters of the product
correlation form

Corr(f(v), f(v′)) = exp

(

−
7
∑

`=1

(v` − v′`)
2

γ`

)

where v
′ = (v′1, ..., v

′

7).
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Sensitivity analysis focuses on the main effects

E(Y | vj) − E(Y ) =

∫

v
−j

f(v)dH(v−j | vj) − E(Y ), j = 1, ..., 7,

and the sensitivity indices

Sj =
Var(E(Y | vj))

Var(Y )
, j = 1, ..., 7.

Here, v−j denotes all the elements of v excluding vj , and H(v) is the uncertainty distribution
consisting of independent uniform components for each input over specified ranges.

The likelihood-based approach enables relatively straightforward computation of point esti-
mates for the main effects, including a measure of the uncertainty associated with these estimates.
However, using point estimates for the GP parameters, (µ, σ2,θ = (γ1, ..., γ7)), results in an un-
derestimation of the uncertainty of the main effects. More importantly, the inferential scope for
the sensitivity indices is rather limited. Under either a likelihood or empirical Bayes approach,
estimation of the Sj is only possible in the form of a ratio of expectations for Var(E(Y | vj)) and
Var(Y ), hence, as a biased point estimate of the expectation of Sj. Indeed, the literature on GP
approximation to computer model output appears to be lacking methods for measuring the uncer-
tainty associated with the Sj , which is key for accurate quantification of the relative importance of
each input.

We are currently developing fully Bayesian methodology for sensitivity analysis that will address
the above issues. In particular, the method will provide full inference for the main effects that
incorporates the uncertainty resulting from the use of the GP model as an emulator for the LCM,
but also the uncertainty associated with the GP parameters. Moreover, the Bayesian approach will
provide proper point estimates for the sensitivity indices, in fact, an entire distribution for the Sj .

The first stage of this work involves obtaining the posterior distribution of the GP parameters
through Markov chain Monte Carlo simulation methods. We have designed a Metropolis-Hastings
algorithm to obtain posterior samples for (µ, σ2,θ), and we are in the process of implementing it.
The next step involves obtaining posterior realizations for the LCM output function f(·) under the
GP approximation (and up to a grid of desired detail over the input space). This will be accom-
plished using the posterior samples for the GP parameters and the predictive distributions under
the GP model. Finally, conditional on each predicted output realization, posterior realizations
for the main effects and posterior samples for the sensitivity indices can be obtained using their
definition and applying standard numerical or MC integration techniques. By conditioning on the
predicted output function (i.e., by working with the posterior realizations for f(·)), we can obtain
the full posterior distribution of the sensitivity indices.

When complete, this work will be described in a paper to be submitted to an applied statistics
journal.

6 Plans for Year Two

Work in year two will build on the foundation outlined above, and will cover the following areas.

• Completion of the extensions to the LCM to allow for the computation of BRDF coefficients.

• Completion of the code to compute the full distribution of the sensitivity indices.
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• Investigation of the hierarchical GP model for different LAD values.

• Refinement of the priors used on the LCM inputs.

• Initial work on developing GP priors for the bias function for inversion.

• Initial work on validation of the model using BIGFOOT data.

We will also further consider the Dirichlet Process Mixture Model as an alternative nonparamet-
ric model for certain aspects of the analysis. We will also prepare papers describing the extensions
to the LCM and model validation.

7 Presentations and Publications

• “Global Sensitivity Analysis of Leaf-Canopy Radiative Transfer Models for Analysis and
Quantification of Uncertainties in Remote Sensed Data Product Generation” Presented at
the AGU Fall Meeting, San Francisco, 2007.

• “A Statistical Framework for the Sensitivity Analysis of Radiative Transfer Models” Accepted
for publication in IEEE Transactions on Geoscience and Remote Sensing, April 2008.

A Paper accepted for publication in IEEE Transactions on Geo-

science and Remote Sensing
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A Statistical Framework for the Sensitivity Analysis
of Radiative Transfer Models

Robin D. Morris, Member, IEEE, Athanasios Kottas, Matt Taddy, Roberto Furfaro and Barry D. Ganapol

Abstract— Process models are widely used tools, both for
studying fundamental processes themselves, and as elements of
larger system studies. A Radiative Transfer Model (RTM) sim-
ulates the interaction of light with a medium. We are interested
in RTMs that model light reflected from a vegetated region.
Such an RTM takes as input various biospheric and illumination
parameters and computes the upwelling radiation at the top of
the canopy. The question we address is: which of the inputs to
the RTM has the greatest impact on the computed observation?

We study the Leaf Canopy Model (LCM) RTM, which was
designed to study the feasibility of observing leaf chemistry
remotely. It’s inputs are leaf chemistry variables (chlorophyll,
water, lignin, cellulose) and canopy structural parameters (LAI,
LAD, soil reflectance, sun angle). We present a statistical ap-
proach to sensitivity analysis of RTMs, to answer the question
posed above. The focus is on global sensitivity analysis, studying
how the RTM output changes as the inputs vary continuously
according to a probability distribution over the input space. The
influence of each input variable is captured through the “main
effects” and “sensitivity indices”. Direct computation requires
extensive, computationally expensive, runs of the RTM. We
develop a Gaussian Process approximation to the RTM output
to enable efficient computation. We illustrate how the approach
can effectively determine the inputs that are vital for accurate
prediction. The methods are applied to the LCM with 7 inputs
and output obtained at 8 wavelengths associated with MODIS
bands that are sensitive to vegetation.

Index Terms— radiative transfer model, MODIS, sensitivity
analysis, main effects, sensitivity index, Gaussian Process

I. INTRODUCTION

The accurate estimation of properties of the biosphere is
critical for our understanding of the Earth’s coupled sys-
tem. The atmosphere, oceans and land comprise a complex,
coupled dynamical system, and valid statistical prediction of
the properties of this system, and its changes, require inputs
that are both accurate and have their uncertainties accurately
quantified.

The study of the biosphere is dependent on models –
mathematical abstractions of the systems themselves, which
are sufficiently simplified to allow for mathematical or com-
putational analysis in reasonable amounts of time. Study of
these models can give important information about the systems
being modeled, but shortcomings in the models, where they

R. D. Morris is with USRA-RIACS, 444 Castro St, Suite 320, Mountain
View, CA 94041. rdm@riacs.edu. Tel (650) 966 5035; fax (650) 966 5021.
Corresponding author.

A. Kottas is with the Department of Applied Mathematics and Statistics,
University of California, Santa Cruz.

M. Taddy is with the University of Chicago Graduate School of Business.
R. Furfaro and B.D. Ganapol are with the Department of Aerospace and

Mechanical Engineering, University of Arizona.

differ from reality, must not be overlooked. Models will have
limitations due to the modeling philosophy chosen – the set
of simplifying assumptions used by the scientist. Indeed, mod-
eling uncertainty comes from a combination of ignorance of
natural variability and the impossibility of precisely modeling
the physical phenomena being studied.

The behavior of these models with respect to their inputs
is the subject of this paper. Analyzing the uncertainty char-
acteristics of a model is a crucial first step in the use of the
model for prediction and inversion. It gives information about
the influence of the inputs, both individually and in groups, on
the model output, and can give information as to the potential
of successfully performing model inversion.

In many cases the model inputs are not easily observable.
Instead, the model outputs are measured, and the model inputs
must be inferred. Global models require global inputs, and the
only effective method for making routine global measurements
is via sensors mounted on orbiting satellites. Passive visi-
ble/near infra-red sensors measure upwelling radiation, and it
is from these measurements that the biospherical parameters
of interest must be inferred.

This inference process is complex. It is the inversion of
the process of sunlight passing through the atmosphere, being
reflected off vegetation on the ground, and then passing again
through the atmosphere before being detected by the satellite
mounted sensor. The dominant sources of uncertainty in
this scenario are the uncertain process models that enter the
estimation. The uncertainty due to the process models will
almost certainly be much larger than the uncertainty due to
noise in the sensor [1]. MODIS [2] has an SNR of between 74
and 910 in the near infra-red bands [3] and is radiometrically
very well calibrated in other bands [4], [5]. In the brief outline
above we have two models, one for the propagation of light
through the atmosphere, and the second for the reflection of
light by the vegetation on the ground. It is the uncertainty
characteristics of the second of these process models that we
will analyze in this paper.

Analyzing, quantifying and reporting the uncertainty in re-
mote sensed data products is of great importance. It is the only
way in which the uncertainty of further analyses using these
data products as inputs can be quantified. Analyzing the source
of the data product uncertainties can identify where the models
must be improved, or where better input information must be
obtained. Both of these aspects are known; the editorial for the
Special Issue on Global Land Product Validation [6] wrote

users need access to quantitative information on
product uncertainties

0000–0000/00$00.00 c© 2008 IEEE
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and that
[m]aking quantified accuracy information available
to the user can ultimately provide developers the
necessary feedback for improving the products.

The work in this paper is intended to contribute to this
larger goal. We provide tools to allow model builders to better
analyse the characteristics of the models that will subsequently
be used for inversion. Developments of the tools we provide
here will also allow for the characterisation of the uncertainties
in the inverse process.

There has been significant work towards the goals outlined
above, but there is still much to be done. For example, the
current MODIS LAI/fPAR (Leaf Area Index/fraction of Pho-
tosynthetically Active Radiation) algorithm has been improved
continuously since the satellite’s launch. The main improve-
ments have been in the use of a better biome map (reducing
the uncertainty in that input); improvements in atmospheric
correction; and improved models of surface reflectance from
different biomes [7].

These improvements have reduced the uncertainty in the
resulting data product, but have not necessarily improved the
quantification of the uncertainties, and have not specifically
addressed the statistical identification of the sources of the
uncertainties. Here we will address one aspect of this overall
process. Models of surface reflectance are typically Radiative
Transfer Models (RTMs). We analyze in detail the effects of
the inputs to an RTM in terms of the sensitivity of the RTM’s
output to each of the inputs. Specifically we analyze the Leaf
Canopy Model (LCM) RTM [8], used as a surrogate for the
RTM used as the basis for the MODIS production algorithm
[9]. See section II for a discussion of the LCM. In section III,
we use and develop methods from the statistical literature on
sensitivity analysis [10] to compute the main effects, which
graphically show the relative importance of each input on the
RTM output, and the sensitivity indices, which give a measure
of the expected amount by which the uncertainty in the output
would be reduced if the true value of the input was known.

A 1999 paper, [11], discussed the state of sensitivity analysis
in the remote sensing and geoscience domains. At that time the
analyses were typically very basic, looking only at one variable
at a time, and based around a fixed operating point. A number
of suggestions as to better methods were made, principally the
Fourier Amplitude Sensitivity Test [10]. This suggestion does
not seem to have been adopted – the number of papers that
cite [11] is small, and the number that adopt the suggestions,
smaller still. For example, [12] uses ideas from the design of
experiments, but does not compute sensitivity indices. While
discussing sensitivity indices, the analysis in [13] is based on
local sensitivity computations. In [14] sensitivity indices are
computed, but the methods used required large numbers of
model runs. In this paper we give explicit, computationally
efficient methods for computing the main effects and sensitiv-
ity indices, as part of a global sensitivity analysis.

Computing the main effects and sensitivity indices requires
the evaluation of multidimensional integrals over the input
space of the model. Evaluating RTMs can be computationally
expensive, and so standard numerical integration methods
(e.g. multidimensional quadrature or Monte Carlo integration)

would be computationally prohibitive in terms of the num-
ber of times the RTM would have to be run. Instead, we
adopt the approach of approximating the RTM by a Gaussian
Process (GP) model [15]–[17], a technique known in the
statistical literature as emulation. A GP provides a flexible
nonparametric function approximation that has found wide
application as a replacement for neural networks [15]. Early
work involving GP response-surface approximations for the
analysis of computer experiments includes [18]–[20]. We refer
to [21] for background and further references. The GP model
approximation can be constructed using a comparatively small
number of carefully chosen RTM evaluations. See section IV.
Using the GP approximation instead of the actual RTM will
introduce uncertainty into the evaluation of the main effects,
and the sensitivity indices, but this can also be quantified [22].
See section V. The GP emulator, being a fully specified statis-
tical model, is amenable to further analysis in ways that a set
of sample responses of an RTM, or even the implementation of
the RTM as a piece of software, is not. It allows for calibration
and validation of the model in a principled statistical manner,
and as the likelihood in a statistical treatment of the model
inversion. See [23], [24] and section VII. The GP emulator
provides a unifying framework for this and other problems.

Finally, in section VI we present the main effects and
sensitivity indices for the LCM RTM, and show how they
enable the identification of the relative importance of each
input to the model output. This also gives information as to
how well these inputs can be predicted from observations of
the model output at different wavelengths.

II. A COUPLED LEAF-CANOPY RADIATIVE TRANSFER
MODEL

Over the past decade, in collaboration with the Ecosystem
science and technology branch at NASA Ames, the Vegeta-
tion Modeling Transport Group (University of Arizona) has
developed a coupled Leaf-Canopy Model (LCM) in order to
capture the essential biophysical processes associated with
the interaction between light and vegetation [8]. LCM was
developed to provide a tool to aid in remote sensing as applied
to ecosystem dynamics in support of the TERRA platform and
it is specifically used to investigate the feasibility of observing
chemistry remotely. The model combines two different radia-
tive transfer models, one at leaf level (LEAFMOD) and one
at canopy level (CANMOD) to predict the radiative regime
inside the vegetation canopy under consideration.

LEAFMOD [25] is the model that simulates the radiative
regime inside the single leaf. From a morphological point of
view, the leaf element is an extremely complex and rich object.
Any model that attempts to describe each single interaction
process for the light moving in such a medium will face
this enormous complexity. The strength of the LEAFMOD
algorithm is its simplicity through natural averaging. The
model relies on the fact that while light is moving in a
complicated medium, natural averaging occurs in such way
that the simpler assumption of isotropic scattering and uniform
absorption seems to capture the transport effects. Moreover,
the model has the ability to include chemistry as a key element
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dominating the absorption process. Different concentrations of
chlorophyll, water, lignin and cellulose can be specified to
model the optical properties of the single leaf species. The
model is calibrated over the LOPEX leaf species archive [26],
where experimental leaf property data are stored. The calibra-
tion occurs in the sense that the optical properties required by
the canopy model are retrieved through a procedure that uses
the LOPEX archive as input data.

While LEAFMOD has been specifically designed and im-
plemented to be coupled with the canopy model (CANMOD,
see below), it can also be used as a stand-alone module to
describe the radiative transfer of photons within leaf media
as functions of their morphological structure and biochemical
signature. In early deterministic models, two-stream models
were used to determine the radiative transfer within leaf
structures. The so-called Kubelka-Munk (KM) theories [27]
treat the leaf as a plane parallel medium, tacitly assume the
scattering to be nearly isotropic and assume weak volume
absorption within leaves. By modeling the transport of photons
as a diffusion process the computed radiance is subject to
large errors in optically thin media and/or in highly absorbing
regions [28]. To overcome some of the difficulties associated
with KM theories, PROSPECT [29] was established. Within
the PROSPECT framework, the leaf is assumed to be modeled
as a sequence of transparent plates, each assumed to be rough
Lambertian reflectors. Each plate defines the optical properties
of the interior of the leaves. Scattering is described by a
spectral index of refraction and a parameter describing the leaf
mesophyll structure. The absorption coefficients for leaf water
and pigments are generally fitted using experimental data, i.e.
leaf reflectance and transmittance. By contrast, LEAFMOD
relies on rigorous first principles, i.e. the balance of photons.
LEAFMOD’s advantage stems from the fact that the overall
leaf biochemistry can be easily specified and the scattering
coefficient calibrated via experimental data and direct model
inversion [30].

The CANMOD (CANopy Model) algorithm [8], [31] takes
the information coming from LEAFMOD regarding the single
leaf characteristic (transmittance and reflectance) and together
with canopy structural parameters, (LAI and Leaf Angle Dis-
tribution), soil reflectance and sun angle inclination, computes,
at any given wavelength, the radiative regime within and at the
top of the canopy by solving a radiative transfer equation. The
strengths of the model are simplicity and the ability to take
into account leaf chemistry, which is important to properly
describe the light absorption environment.

Figure 1 shows a flowchart that demonstrates the operation
of the coupled algorithm. The algorithm can be explained as
follows. The first module uses LEAFMOD in the forward
and inverse mode to compute the leaf optical properties (i.e.
leaf reflectance and transmittance). The second module uses
the CANMOD forward mode to compute the spectral canopy
hemispherical reflectance factor. The code requires the speci-
fication of the input parameters. In addition to the parameters
listed in table I, the model also takes as input wavelength
(between 400nm and 2100nm), canopy architecture (LAD
- leaf angle distribution) and the sun angle. CANMOD is
able to handle four discrete typologies of leaf angle distribu-
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LOPEX
Archive

Measurements

Fig. 1. LCM Flow Chart

input min max
LAI 0 8
chlorophyll (µg/cm2) 0 100
water fraction 0.1 0.8
protein (g/cm2) 0.0001 0.001
lignin/cellulose (g/cm2) 0.0001 0.006
thickness (cm) 0.001 0.01
soil 0.3 1.3

TABLE I
RANGES OF VALUES OF THE INPUTS TO THE LCM. LAI AND WATER

FRACTION ARE DIMENSIONLESS. THE SOIL PARAMETER IS MULTIPLIED

BY A STANDARD SOIL SPECTRUM. SEE TEXT.

tion, namely planophile (leaves mainly horizontal), erectophile
(leaves mainly vertical), plagiophile (leaves mainly at 45
degrees), and extremophile (leaves mainly both horizontal and
vertical). LAD is determined largely by knowledge of the
biome. Its inference from observational data is difficult [32].

Note that the soil reflectance depends on the wavelength.
Indeed, usually the spectral soil reflectance is specified de-
pending on the type of soil of interest. We assumed a typical
visible/near infra-red spectrum for a dry soil, and we con-
sidered a multiplicative brightness parameter varying between
0.3-1.3 (see table I) to account for the possible variations of
the background (soil) reflectance level [33]. This multiplicative
parameter is assumed to be wavelength independent.

Once the leaf type is specified, the LOPEX database con-
tains the measured leaf optical properties for the leaf of
interest. Nevertheless, we can tune the canopy by considering
leaves that are of the same type but with different biochemistry
and thickness. This gives the code great flexibility in modeling
the effect of biochemistry on the overall canopy reflectance.
The algorithm begins by analyzing the leaf under consider-
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ation. Assume, for example that the canopy of interest is a
maple canopy. The LOPEX database is accessed to retrieve the
measured spectral reflectance and transmittance for a nominal
maple leaf. Note that, as before, since the wavelength is set,
reflectance and transmittance for the nominal leaf are selected
for the specific wavelength of interest. The LEAFMOD inverse
mode accepts the reflectance and transmittance and retrieves
scattering and absorption coefficients. It is assumed that, to
first order, the scattering depends on the anatomical structure
of the leaf, while the absorption depends only on the bio-
chemical components [25]. Thus, the scattering coefficient for
maple leaves is assumed to be the same and it is retained.
A new maple leaf having the biochemical components and
thickness specified by the inputs is constructed retaining the
same scattering coefficient and constructing the new absorp-
tion coefficient for the wavelength of interest. Both absorption
and scattering coefficient are fed to the LEAFMOD forward
mode to compute the reflectance and transmittance of the
desired leaf, i.e., the leaf with thickness, water, chlorophyll,
lignin and protein specified by the inputs. Reflectance and
transmittance are fed to the second module together with
LAI, LAD, soil reflectance and sun angle to compute the
hemispherical reflectance.

III. SENSITIVITY ANALYSIS

Sensitivity analysis aims to determine how the variation in
the output of a model can be apportioned amongst the inputs
[21, ch 7]. That is, it attempts to determine how much of
the variation seen in the output is due to variation in each of
the inputs. The type of sensitivity analysis we are interested in
here is global statistical sensitivity analysis, looking at how the
output changes as all the inputs vary continuously, rather than
the more common local derivative-based sensitivity analyses,
which look at how the output changes as the inputs are each
varied about a fixed point [34]. Clearly this latter type of
analysis will give limited information about how the output
varies for substantial changes in the inputs.

How the inputs vary is determined by a probability distri-
bution that defines the expected distributions of the inputs.
Using v to denote the vector of model inputs, this distribution
is H(v). The actual form of this distribution is problem de-
pendent, and dependent on the amount of knowledge available
about each input variable. It may be that for some inputs all
that can be given is a physically plausible range (e.g. water
fraction is limited to the range 0-1), whereas for others a
more precise distribution may be known (e.g. the distribution
of leaf thickness for a particular tree type may be known
from field measurements). The distribution H(v) also encodes
correlations between variables that are known to vary together.
The authors in [33] give truncated Gaussian distributions for
the variables in table I. In this work we use the simpler
formulation of independent uniform distributions over the
ranges given in table I for each input variable.

A. Main Effects

Denote the response of the model to input v as y = f(v).
The function f(v) can be decomposed as

y = f(v) = E(Y ) +

d
∑

i=1

zi(vi) +
∑

i<j

zi,j(vi, vj) + . . .

+ z1,2,...,d(v1, v2, . . . , vd) (1)

where v = (v1, ..., vd) is d−dimensional (with d = 7 in our
sensitivity analysis of the LCM). The first term is the expected
value of f(v), i.e.,

E(Y ) =

∫

vj ,j=1...d

f(v)dH(v)

and the next d terms are the main effects, given by

zi(vi) = E(Y |vi) − E(Y )

=

∫

v−i

f(v)dH(v−i|vi) − E(Y ) (2)

where v−i denotes all the elements of v except vi. The later
terms of the decomposition are the interactions. They give
information about the combined influence of two or more
inputs taken together. We will not consider them further here.

Plotting the main effects, zi(vi) for each i gives a visual
impression of the relative importance of each input to the
variation in the output. This visual impression is heightened if
the inputs are normalized (to the range 0-1, for example, for
uniformly distributed inputs), allowing all the main effects to
be plotted together on the same plot. See section VI where we
present main effects plots for the LCM RTM.

To compute the main effects requires the evaluation of a
(d − 1)−dimensional integral. For even moderately complex
functions f(v) it will be impossible to evaluate this integral
analytically; indeed, for most cases of interest an analytic
form for f(v) does not exist, rather, f(v) only exists as a
computer program. In these cases the zi(vi) must be computed
numerically. If evaluating f(v) for a given v requires appre-
ciable computation then the standard methods of numerical
integration, multidimensional quadrature and Monte Carlo in-
tegration, will be too computationally intensive to be practical.
It is therefore useful to approximate f(v) in such a way
that the integrals required can be evaluated analytically. This
allows the straightforward computation of the main effects of
the approximation, and also the computation of the uncertainty
introduced by the approximation to f(v). This is given in
sections IV and V, in particular, details of the Gaussian Process
approximation we use for f(v) are provided in section IV, and
its application to computing the main effects and sensitivity
indices is developed in section V.

B. Sensitivity Indices

The sensitivity indices are based on the variances of the
terms in the decomposition of f(v) given in equation 1.
Specifically, consider

Vi = Var{E(Y | vi)} = E
[

(E(Y | vi))
2
]

− (E(Y ))2.
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This is the expected amount by which the uncertainty in y will
be reduced if we learn the true value of vi [22]. It thus gives
a measure of how much of the variance of y is due to input
vi. The Vi’s can be normalized to

Si = Vi/Var(Y )

so that the sum of all the Si’s and higher-order terms
(Si,j , Si,j,k, etc.) is unity. Thus the value of Si gives the
relative importance of input vi. The Si’s can also be used to
direct improvements – reducing the uncertainty on the input
with the largest Si will have the greatest effect in reducing the
uncertainty of the model output. This can be used to direct data
collection work.

Computing the Vi’s and Si’s can be complex, even under
the Gaussian Process approximation to f(v). See section V
for details.

IV. APPROXIMATING THE LCM USING A GAUSSIAN
PROCESS

As discussed in the previous section, computing the main
effects and sensitivity indices requires evaluating multidimen-
sional integrals over arguments that include the RTM response
f(v). There are two approaches available, either evaluating
a numerical approximation of the integral itself, or forming
an approximation to the argument of the integral, where the
approximation enables the integrals to be evaluated analyti-
cally. The choice between these two approaches depends on a
number of factors. In terms of the required computation, the
trade-off is between the numerical evaluation of the integral
(typically via Monte Carlo integration), and the computation
required to estimate the parameters of the approximation.

Regarding the main effects, direct numerical approximation
of the integrals in equation 2 requires evaluations of f(v)
over a sufficiently dense grid in v. It will thus typically
be feasible under small to moderate dimensions for the in-
put space and for computationally reasonable functions f(v)
(which is indeed the case for the LCM). However, even for
computationally inexpensive models f(v), the same approach
for the sensitivity indices Vi becomes substantially more
challenging to implement for moderate number of inputs and
is, arguably, not viable for high-dimensional input spaces. This
becomes clear by inspection of the integrals required for the
evaluation of the E

[

(E(Y | vi))
2
]

; see Appendix I and II.
Hence, in general, for global sensitivity analysis there is clear
utility in approximating the model function f(v) even for
computer models that are relatively inexpensive to evaluate. As
a concrete example, in [35] the analysis of a 10-dimensional
fire-propagation model required 106 simulations to perform
global sensitivity analysis. By contrast, a GP emulator can be
built using much fewer samples – only 250 were needed to
emulate the LCM (see section VI).

As importantly, looking beyond sensitivity analysis, the
construction of a statistical model as an emulator for the model
output f(v) provides scope for different types of practically
important probabilistic analyses of the computer model. This
has been discussed briefly in section I and is elaborated in
section VII.

The approximation that we use for the LCM is provided
by a Gaussian Process. Gaussian Processes (GPs) are prob-
ability distributions over functions. Rather than placing a
distribution over a (small) set of parameters, a GP places
a distribution directly over the function of interest. Under a
GP probability model for function f(·), the joint distribution
of (f(v1), ..., f(vk)) is multivariate Gaussian, for any finite
set of input points v1, ..., vk. It is this property that allows
for tractable computation – whilst the GP is defined over an
infinite dimensional quantity (the continuous function f(v)),
any computation is necessarily done over only a finite set of
locations.

A GP is specified by its mean function, E(f(v)), and
its covariance function, Cov(f(v), f(v′)). The flexibility of
choosing and adapting the mean and covariance functions
allows a GP model to be successfully used to approximate
a wide spectrum of functions f(v), based on a set of training
examples, d = {y, x1, ..., xn}, where y = (y1, ..., yn) and yi

is the response f(xi) at observed input point xi, i = 1, ..., n.
The set of training examples is chosen carefully to optimally
sample the input space. Here, we used a Latin Hypercube
design [36] to choose the set of inputs to the LCM. The
other choices made were to use a constant mean function,
E(f(v)) = µ, a constant variance Var(f(v)) = σ2, and the
product Gaussian correlation function

Corr(f(v), f(v′); θ) = exp

(

−

d
∑

`=1

(v` − v′`)
2

γ`

)

where θ = (γ1, ..., γd), and d is the dimension of the input
space. The γ parameters give a measure of the scale over
which the function f(v) varies in each input dimension, and
σ2, the variance of the GP, determines the overall scale of
f(v). Using this mean and correlation function, the GP defines
the joint distribution

p(y|θ, µ, σ2) =
1

(2πσ2)n/2|C(θ)|1/2
× (3)

exp

(

−
1

2σ2
(y − µ1n)T C−1(θ)(y − µ1n)

)

where C(θ) is the correlation matrix with (i, j)-th element
Corr(f(xi), f(xj); θ), and 1n denotes an n-dimensional vec-
tor with all elements equal to 1.

We use the set of training examples, d, to estimate the
parameters {θ, µ, σ2} of the GP model using maximum like-
lihood estimation. From equation 3 the log-likelihood is

L = −
1

2σ2
(y − µ1n)T C−1(θ)(y − µ1n)

−
1

2
log |C(θ)| −

n

2
log(2πσ2). (4)

The derivatives of L with respect to each of the parameters
can be straightforwardly derived [16]. Maximizing L results
in a point estimate for the parameters, denoted by {θ̂, µ̂, σ̂2},
that we use when evaluating the main effects. Note that using
point estimates for these parameters will cause the uncertainty
of the main effects to be underestimated. In future work
we will consider a fully inferential Bayesian approach where
expectations are also taken with respect to these parameters.
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Once the GP model parameters are estimated, the first
quantities of interest are the predictive distributions for sets
of new inputs, conditioned on the training examples. From
the definition of the GP, these distributions will be Gaussian.
For a single new input v the predictive distribution for f(v)
has mean

m ≡ m(v; µ̂, θ̂, d) = µ̂ + rT (v)C−1(y − µ̂1n)

and variance
S ≡ S(v; µ̂, σ̂2, θ̂, d) = σ̂2

(

1 − rT (v)C−1r(v)
)

.

Here, r(v) is the n × 1 vector with i-th element given by
Corr(f(v), f(xi)) = exp(−

∑d
`=1(v` − xi`)

2/γ̂`), and C ≡

C(θ̂) is the observed n × n correlation matrix with (i, j)-th
element given by exp(−

∑d
`=1(xi` − xj`)

2/γ̂`). Recall that
the xi are the input values of the training examples.

The joint predictive distribution for (f(v), f(v′)) corre-
sponding to generic inputs v = (v1, ..., vd) and v′ =
(v′1, ..., v

′
d) is bivariate normal with (2× 1) mean vector

w = µ̂12 + RT (v, v′)C−1(y − µ̂1n) (5)
and (2 × 2) covariance matrix

W = σ̂2
(

B(v, v′) − RT (v, v′)C−1R(v, v′)
)

, (6)
where B(v, v′) is the (2 × 2) observed correlation ma-
trix for (f(v), f(v′)) with off-diagonal element given by
exp(−

∑d
`=1(v`−v′`)

2/γ̂`), and R(v, v′) is the (n×2) matrix
with first column elements exp(−

∑d
`=1(v` − xi`)

2/γ̂`),
i = 1, ..., n, and analogously for the second column elements
replacing v` with v′`.

V. APPROXIMATING THE MAIN EFFECTS AND
SENSITIVITY INDICES USING THE GAUSSIAN PROCESS

APPROXIMATION TO THE LCM
To compute the main effects requires evaluating E(Y | vj),

for j = 1, ..., d, and E(Y ), as indicated in equation 2. However,
we recall that we are approximating the function y = f(v)
by a GP model, and we must account for this approximation
by computing E∗ {E(Y | vj)} and E∗ {E(Y )}, where we use
E∗{ }, Var∗{ } and Cov∗{ } to indicate expectation, variance
and covariance, respectively, with respect to the GP predictive
distributions. We give details of these quantities here.

For the global mean, we have

E(Y ) =

∫

v

f(v)

d
∏

`=1

dH`(v`)

where H(v) =
∏d

`=1 H`(v`) is the input distribution, com-
prising independent components H`(v`), which are uniform
distributions over ranges (a`, b`), ` = 1, ..., d. Therefore,

E∗ {E(Y )} =

∫

E(Y )dN(f(v); m, S)

=

∫

v

m(v)

d
∏

`=1

dH`(v`)

=

∫

v

{µ̂ + rT (v)C−1(y − µ̂1n)}

d
∏

`=1

dH`(v`)

= µ̂ + T T C−1(y − µ̂1n), (7)

where T is the n × 1 vector with i-th element given by
∏d

`=1

{

∫ b`

a`
exp(−(v` − xi`)

2/γ̂`)(b` − a`)
−1dv`

}

.
Regarding the conditional expectation E(Y | vj), for each

value uj of the j−th input, we have

E(Y | uj) =

∫

{v`:`6=j}

f(v1, ..., uj , ..., vd)
∏

{`: 6̀=j}

dH`(v`)

and thus

E∗ {E(Y | uj)}

=

∫

E(Y | uj)dN(f(v1, ..., uj , ..., vd); m, S)

=

∫

{v`:`6=j}

m(v1, ..., uj , ..., vd)
∏

{`: 6̀=j}

dH`(v`)

= µ̂ + T T
j (uj)C

−1(y − µ̂1n), (8)

where Tj(uj) is the (n×1) vector with i-th element given by
the following expression

exp

(

−
(uj − xij)

2

γ̂j

)

×

∏

{`:`6=j}

{

∫ b`

a`

exp

(

−
(v` − xi`)

2

γ̂`

)

1

b` − a`
dv`

}

. (9)

The previous expressions provide point estimates for all
main effects associated with the d inputs. In particular, for
each input j = 1, ..., d, E∗ {E(Y | uj)} can be computed
over a grid of uj values to obtain point estimates for the
functions E(Y | uj) (or for E(Y | uj) − E(Y ) using also
E∗ {E(Y )}). These estimates can be compared graphically
(linear transformations can be applied so that all inputs are
on the same scale).

For a measure of the uncertainty associated with these
estimates, we use

Var∗ {E(Y | uj)} = E∗
{

(E(Y | uj))
2
}

− (E∗ {E(Y | uj)})
2.

Because we already have the expression for E∗ {E(Y | uj)}
from the derivation above, what is needed is an expression
for E∗

{

(E(Y | uj))
2
}

. This derivation is given in Appendix
I, resulting in

Var∗ {E(Y | uj)} = σ̂2
(

e − T T
j (uj)C

−1Tj(uj)
)

where e is given by 15 of Appendix I.
The sensitivity indices are defined by

Sj =
Var(E(Y | uj))

Var(Y )
, j = 1, ..., d.

Computing E∗{Sj} cannot be done analytically, even under
the GP approximation, so we approximate it by computing the
ratio of E∗{Var(E(Y | uj))} and E∗{Var(Y )}. (In future work
we will use a Bayesian approach implemented via Markov
chain Monte Carlo (MCMC) methods [37] to estimate the
entire distribution of Sj under the GP approximation, allowing
the uncertainty of the sensitivity indices to also be determined.)
We have that

E∗{Var(E(Y | uj))} = E∗
{

E
[

(E(Y | uj))
2
]}

−E∗{(E(Y ))2}
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Fig. 2. The main effects for the LCM RTM
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Fig. 3. The uncertainty in the main effects due to using the GP approximation
to the LCM RTM. Band 4. Line colours as in figure 2.

and
E∗{Var(Y )} = E∗{E(Y 2)} − E∗{(E(Y ))2}.

The expressions for these terms are not difficult to derive,
though care is needed. They are given in Appendix II.

VI. RESULTS

The proposed methodology has been applied to execute a
global sensitivity analysis and to analyze both the sensitivity
of the spectral hemispherical reflectance to the defined input
parameters and the relative contribution of each of the param-
eters to the model output.

To obtain the training data for the GP model we generated
a 250 point Latin Hypercube design over the 7-dimensional
space of inputs given in table I. The Leaf Angle Distribution
(LAD) variable was set to planophile (leaves mostly horizon-
tal) and the sun angle was set to zenith. While the sun angle
will vary, for any given satellite scene it will be known, and so
we do not consider it as one of the inputs for this analysis. The
LAD will be determined largely by knowledge of the biome of

TABLE II
THE WAVELENGTH FOR EACH BAND USED, AND THE CORRESPONDING

MODIS BAND NUMBER.

band number wavelength (nm) MODIS band
1 469 ref3
2 555 ref4
3 1240 ref5
4 1640 ref6
5 2130 ref7
6 667 ref13
7 748 ref15
8 870 ref16

the area being observed. The LCM was run at 8 wavelengths,
given in table II, corresponding to eight of the MODIS bands
that are sensitive to vegetation. The corresponding MODIS
band is also given in table II. Note that the bands are in
MODIS band order, not in wavelength order.

Figure 2 shows plots of the main effects for the 7 input
variables for each of the 8 bands. The larger the variation of the
main effect plot, the greater the influence of that input on the
LCM response. To display the main effects for all parameters
on a single plot, the range of each input (given in table I) has
been normalized to 0-1. The slope of each main effect plot
gives information as to whether the output is an increasing
or decreasing function of that input. The relative scale of the
main effects can be easily compared visually. The absolute
scale depends on the absolute magnitude of the model output.
Figure 3 shows the main effects for band 4 and includes the
uncertainty bounds due to approximating the LCM by the GP.
The uncertainties are extremely small.

To correctly interpret the results and to put them in the right
perspective, we divide the input parameters in two categories,
i.e., absorption and scattering driven. Biochemical inputs, i.e.,
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chlorophyll, water, lignin and protein are absorption driven
since their effect heavily depends on wavelength, and mainly
affect the absorption characteristic of vegetation canopies [25].
Conversely, LAI, leaf thickness and soil brightness can be
categorized as scattering driven since they directly influence
the transport of photons in the medium. The main effects and
sensitivity indices are analyzed next.

The LCM is most sensitive to LAI in the near-infrared (NIR)
region of the spectrum (bands 7 and 8). It is shown in figure
2 that the LAI effect is highly non-linear and the behavior is
such that in bands 7, 8 and 3 an increase in LAI produces
an increase in reflectance. Conversely, the effect is opposite
in the visible, i.e., increases in LAI produces a decrease in
the hemispherical reflectance. This trend is known. [38], [39].
The sensitivity indices (table III) show that LAI is the major
contributor in the bands which are most sensitive.

Chlorophyll, on the other end, is expected to be extremely
influential in the visible – it is the prevailing factor that
dominates the reflectance. Its effect is strong in the visible
(bands 1, 2 and 6) while it dramatically decreases at the
red-edge (band 7) to eventually disappear in the rest of the
spectrum. The decrease of sensitivity to chlorophyll at the red
edge is only found because the MODIS bands do not cover the
actual red edge which is located around 730nm. Conversely,
chlorophyll does not absorb light after 760nm. As shown in
figure 3, band 4 shows basically no sensitivity for chlorophyll
with small quantified uncertainty in the result.

Water contribution occurs mainly in the short-wave infrared
since it exhibits higher absorption which peaks around 1445nm
and 1950nm. Indeed, water is ranked as the second and third
major contributor to the reflectance in bands 5 and 4, respec-
tively. Nevertheless, such bands are outside the atmospheric
window. Conversely the reflectance is weakly sensitive in the
visible.

Protein is shown to be insensitive to most of the spectrum.
Its effect as well as contribution are extremely small and can
be only detected with difficulties in the NIR (e.g. band 8).

Lignin is one of the major surprising results. It is extremely
sensitive in the short-wave infrared (bands 4 and 5) where it
is also the major contributor to the hemispherical reflectance.
This is mainly due to the strong absorption features in this part
of the spectrum where lignin absorption coefficient features a
peak around 2110nm.

Leaf thickness demonstrates a true scattering effect and its
response shows interesting features. It is mainly sensitive and
has the major contribution in bands 3, 7 and 8. We believe that
what we are seeing is that changing the leaf thickness has more
influence on scattering than on absorption. Specifically, as we
change the leaf thickness the model assumes that the leaf mass
is unchanged, meaning that the absorption has little effect as
can be seen specifically in the NIR part of the spectrum.

The soil brightness has generally little effect. The spectrum
for a typical soil was spectrally defined and the brightness
parameter is responsible for increasing the soil hemispherical
reflectance therefore simulating the dry-wet effect.

That the sensitivity indices do not sum to one indicates that
interaction effects between two or more inputs are important
in some bands, particularly bands 4 and 5. In future work we

TABLE III
THE SENSITIVITY INDICES FOR EACH INPUT FOR EACH SPECTRAL BAND.

band; wavelength (nm)
1 2 3 4 5 6 7 8

input 469 555 1240 1640 2130 667 748 870
LAI 0.05 0.01 0.43 0.16 0.04 0.28 0.41 0.48
CHL 0.80 0.83 0.00 0.00 0.00 0.56 0.08 0.00
Water 0.00 0.00 0.01 0.12 0.14 0.00 0.00 0.00

Protein 0.00 0.00 0.01 0.02 0.02 0.00 0.02 0.02
Lignin 0.00 0.00 0.19 0.36 0.53 0.00 0.13 0.16
Thick. 0.02 0.05 0.14 0.07 0.05 0.02 0.24 0.18
Soil 0.00 0.00 0.08 0.06 0.03 0.01 0.03 0.06
Total 0.88 0.90 0.86 0.80 0.81 0.87 0.90 0.90

will compute the second order sensitivity indices that quantify
which interactions are important.

The results described so far are are for planophile LAD. We
performed the same analysis for the other LAD values, namely
erectophile, extremophile and plagiophile. The results for the
main effects were largely similar, with the main effect for LAI
being less pronounced for erectophile compared to planophile
in bands 4 and 5, and thickness showing less effect in band 7.
That the effect of changing LAD is apparent in the scattering
variables is to be expected.

Tables IV and V show the sensitivity indices for LAI and
thickness for the four LAD values. It is seen that the thickness
input has a larger effect for planophile LAD (especially in
bands 7 and 8). Variation is seen for LAI when comparing
erectophile LAD to the other values.

Our results are consistent with, and extend, previous
statistically-based work. For example, [12] presented a
methodology for sensitivity analysis based on design of nu-
merical experiments aimed at providing a comparison between
four canopy radiative transfer models coupled with a leaf-
based radiative transfer model (PROSPECT, [29]). Their re-
sults are consistent with ours regarding LAI, chlorophyll and
soil brightness sensitivity behavior. That the response in bands
1, 2 and 6 is dominated by LAI and chlorophyll is consistent
with the results of a much more restricted sensitivity analysis
in [40].

These results show that analyzing the uncertainty character-
istics of RTMs used in remote sensed data product generation
is practical and important. It gives information on the level
of accuracy needed in the model’s inputs, can guide data col-
lection efforts to most effectively reduce the uncertainties, and
can guide further development effort for the RTMs themselves.
It also gives information as to which of the model’s inputs
affect the output, and hence which inputs it may be possible
to determine from remotely-sensed observations.

VII. FUTURE WORK

In this paper we have developed a statistical framework
for global sensitivity analysis in RTMs. In doing so we
have introduced tools that have much wider applicability than
the sensitivity analyses presented here. In particular, the GP
emulator approach can be used to address important problems
in model calibration, validation and inversion.
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TABLE IV
THE SENSITIVITY INDICES FOR LAI FOR THE FOUR LAD VALUES.
(PLANOPHILE, ERECTOPHILE, EXTREMOPHILE AND PLAGIOPHILE)

band; wavelength (nm)
1 2 3 4 5 6 7 8

LAD 469 555 1240 1640 2130 667 748 870
Plan. 0.05 0.01 0.43 0.16 0.04 0.28 0.41 0.48
Erect. 0.14 0.06 0.32 0.05 0.16 0.45 0.37 0.42
Extr. 0.08 0.03 0.40 0.12 0.09 0.36 0.40 0.47
Plag. 0.07 0.02 0.43 0.15 0.06 0.32 0.43 0.50

TABLE V
THE SENSITIVITY INDICES FOR THICKNESS FOR THE FOUR LAD VALUES.

band; wavelength (nm)
1 2 3 4 5 6 7 8

Thick. 469 555 1240 1640 2130 667 748 870
Plan. 0.02 0.05 0.14 0.07 0.05 0.02 0.24 0.18
Erect. 0.01 0.02 0.02 0.00 0.00 0.00 0.08 0.05
Extr. 0.02 0.04 0.08 0.02 0.02 0.01 0.18 0.12
Plag. 0.01 0.03 0.07 0.01 0.01 0.01 0.15 0.11

The remote sensing community spends much effort in
collecting field data [41], [42] to calibrate and validate models
– to determine how well a model matches reality, and to inform
model improvements. Using the GP emulator approach, we can
model the field data as

ỹj = f(ṽj) + b(ṽj) + εj (10)

where ỹj are the observed field data corresponding to pa-
rameter values ṽj , and the εj are measurement errors, say,
independent from a N(0, σ2

ε ) distribution. The response is
composed of two terms, f(·), the GP model based on training
data, as described in section IV, and b(·), a bias term, a
second GP which models the difference between the model
approximation and the measured field data. (In practice, f(·)
and b(·) are learned simultaneously based on a likelihood
function that comprises both RTM training data and field data.)
The resulting inference for b(·) for different regions of the
input space can quantify the local performance of the model.

The determination of a calibrated, validated model incorpo-
rating the bias term allows a statistical inversion of the model
to be performed, that respects the field data. In the usual
manner, the error between the predictions and the satellite
observations in a number of bands are taken to have a multi-
variate normal distribution. The inversion is regularized by the
inclusion of a prior over LAI, which may depend on spatial
position and biome type. Using the modeling framework in
equation 10, the tools of statistical inference can be used to
estimate the model inverse and its uncertainties.

The work outlined in this section is in progress, and will
be reported when appropriate.

APPENDIX I
VARIANCE OF THE MAIN EFFECTS

We give here the derivation of E∗
{

(E(Y | uj))
2
}

required
in the expression for Var∗ {E(Y | uj)}, which provides a
measure of the uncertainty associated with estimates of the
main effects.

Note that,

(E(Y | uj))
2 =






∫

{v`:`6=j}

f(v1, ..., uj , ..., vd)
∏

{`: 6̀=j}

dH`(v`)







2

=

∫∫

{v`:`6=j}
{v′

`:`6=j}

f(v1, ..., uj , ..., vd)f(v′1, ..., uj , ..., v
′
d)

×
∏

{`:`6=j}

dH`(v`)
∏

{`:`6=j}

dH`(v
′
`)

and thus we need to take E∗{·} with respect to
the GP-based bivariate predictive distribution for
(f(v1, ..., uj , ..., vd), f(v′1, ..., uj , ..., v

′
d)). Specifically,

E∗
{

(E(Y | uj))
2
}

=
∫∫

{v`:`6=j}
{v′

`:`6=j}

E∗ {f(v1, ..., uj , ..., vd)f(v′1, ..., uj , ..., v
′
d)}

×
∏

{`:`6=j}

dH`(v`)
∏

{`:`6=j}

dH`(v
′
`), (11)

where, using the standard covariance identity,

E∗ {f(v1, ..., uj , ..., vd)f(v′1, ..., uj , ..., v
′
d)} =

Cov∗ {f(v1, ..., uj , ..., vd), f(v′1, ..., uj , ..., v
′
d)}

+ (E∗ {f(v1, ..., uj , ..., vd)}E∗ {f(v′1, ..., uj , ..., v
′
d)}) . (12)

Denote by R1 ≡ R1(v1, ..., uj , ..., vd) and R2 ≡
R2(v

′
1, ..., uj , ..., v

′
d) the first and second columns, respec-

tively, of the (n × 2) matrix R(v, v′) defined in section
IV. Note that here the input vectors we are working with,
(v1, ..., uj , ..., vd) and (v′

1, ..., uj , ..., v
′
d), have common ele-

ment uj . Therefore, R1 is the (n × 1) vector with elements

exp



−
(uj − xij)

2

γ̂j
−

∑

{`: 6̀=j}

(v` − xi`)
2

γ̂`



 , i = 1, ..., n,

and analogously for R2, replacing v` with v′`. Then, using (5)
and (6), we obtain

E∗ {f(v1, ..., uj , ..., vd)} = µ̂ + RT
1 C−1(y − µ̂1n)

E∗ {f(v′1, ..., uj , ..., v
′
d)} = µ̂ + RT

2 C−1(y − µ̂1n)

Cov∗ {f(v1, ..., uj , ..., vd), f(v′1, ..., uj , ..., v
′
d)} =

σ̂2







exp



−
∑

{`:`6=j}

(v` − v′`)
2

γ̂`



− RT
1 C−1R2







. (13)

Finally, substituting (12) and (13) in (11), we obtain for each
j = 1, ..., d,

E∗
{

(E(Y | uj))
2
}

= σ̂2
(

e − T T
j (uj)C

−1Tj(uj)
)

+
(

µ̂ + T T
j (uj)C

−1(y − µ̂1n)
)2

, (14)
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where Tj(uj) is the (n × 1) vector with elements given in
equation 9 of section V, and

e =
∏

{`:`6=j}

{

∫ b`

a`

∫ b`

a`

exp

(

−
(v` − v′`)

2

γ̂`

)

dv`dv′`
(b` − a`)2

}

.

(15)
Note that the second term in equation 14 is (E∗ {E(Y | uj)})

2,
and so the required variance has the simpler expression

Var∗ {E(Y | uj)} = σ̂2
(

e − T T
j (uj)C

−1Tj(uj)
)

.

APPENDIX II
THE SENSITIVITY INDICES

Here, we present the details for computing the estimates
of the first-order sensitivity indices, Sj = Var(E(Y |
uj))/Var(Y ), which provide a measure of the portion of
variability in the response due to the main effect for each
input. As discussed in section V, our estimates for the Sj , j =
1, ..., d, are based on E∗{Var(E(Y | uj))} and E∗{Var(Y )}.
Regarding the estimate for the unconditional variance, we can
write

E∗{Var(Y )} = E∗{E(Y 2)} − E∗{(E(Y ))2}.

For the first term, we have

E∗{E(Y 2)} = E∗

{

∫

v

f2(v)

d
∏

`=1

dH`(v`)

}

=

∫

v

E∗{f2(v)}
d
∏

`=1

dH`(v`)

=

∫

v

(S + m2)

d
∏

`=1

dH`(v`)

where m and S are the mean and variance, respectively,
of the predictive distribution for f(v) given in section IV.
Substituting their expressions to the above equation, we obtain

E∗{E(Y 2)}

= σ̂2
∫

v

(

1 − rT (v)C−1r(v)
)
∏d

`=1 dH`(v`)
+
∫

v

{

µ̂2 + 2µ̂rT (v)C−1(y − µ̂1n)

+ (rT (v)C−1(y − µ̂1n))2
}
∏d

`=1 dH`(v`)

= σ̂2 − σ̂2
(

∫

v
rT (v)C−1r(v)

∏d
`=1 dH`(v`)

)

+ µ̂2 + 2µ̂T T C−1(y − µ̂1n)

+
(

∫

v
(rT (v)C−1(y − µ̂1n))2

∏d
`=1 dH`(v`)

)

where T is the n×1 vector defined in section V in the expres-
sion for E∗ {E(Y )} after equation 7. Regarding the two inte-
grals above, if we expand the quadratic form rT (v)C−1r(v)
and apply the integral, we obtain

∫

v

rT (v)C−1r(v)

d
∏

`=1

dH`(v`) =

n
∑

i=1

n
∑

j=1

cijqij

where cij is the (i, j)-th element of matrix C−1, and

qij =
d
∏

`=1

{

∫ b`

a`

exp

(

−
(v` − xi`)

2 + (v` − xj`)
2

γ̂`

)

1

b` − a`
dv`

}

,

i, j = 1, ..., n.

(The qij are symmetric in (i, j).) Analogously, expanding the
square (rT (v)C−1(y− µ̂1n))2 and taking the integral, we get
∫

v

(rT (v)C−1(y − µ̂1n))2
d
∏

`=1

dH`(v`)

=

n
∑

i=1

z2
i qii + 2

n
∑

i=1

n
∑

j=i+1

zizjqij

where zi denotes the i-th element of the n×1 vector C−1(y−
µ̂1n).

For the second term, we can write

E∗{(E(Y ))2} =

E∗

{

(

∫

v
f(v)

∏d
`=1 dH`(v`)

)2
}

= E∗
{

∫

v

∫

v
′
f(v)f(v′)

∏d
`=1 dH`(v`)

∏d
`=1 dH`(v

′
`)
}

=
∫

v

∫

v
′
E∗{f(v)f(v′)}

∏d
`=1 dH`(v`)

∏d
`=1 dH`(v

′
`)

and thus E∗{(E(Y ))2} can be expressed as
∫

v

∫

v
′

Cov∗{f(v), f(v′)}
d
∏

`=1

dH`(v`)
d
∏

`=1

dH`(v
′
`)

+

∫

v

∫

v
′

{E∗(f(v))E∗(f(v′))}

d
∏

`=1

dH`(v`)

d
∏

`=1

dH`(v
′
`).

(16)

Let r′(v′) denote the (n × 1) vector with i-th element given
by exp(−

∑d
`=1(v

′
` − xi`)

2/γ̂`). Then, analogously to the
expressions in (13), we have

E∗ {f(v)} = µ̂ + rT (v)C−1(y − µ̂1n)
E∗ {f(v′)} = µ̂ + r′T (v′)C−1(y − µ̂1n)

Cov∗ {f(v), f(v′)} = σ̂2

{

exp

(

−
d
∑

`=1

(v`−v′

`)
2

γ̂`

)

− rT (v)C−1r′(v′)

}

.

(17)
Therefore, substituting (17) in (16), and applying the integra-
tions, we finally obtain

E∗{(E(Y ))2} =

σ̂2
(

e∗ − T T C−1T
)

+
(

µ̂ + T T C−1(y − µ̂1n)
)2

,

where

e∗ =
d
∏

`=1

{

∫ b`

a`

∫ b`

a`

exp

(

−
(v` − v′`)

2

γ̂`

)

1

(b` − a`)2
dv`dv′`

}

,

and, again, T is the (n × 1) vector given after equation 7 in
section V.
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Turning to the estimate for Var(E(Y | uj)), we have

E∗{Var(E(Y | uj))} = E∗
{

E
[

(E(Y | uj))
2
]}

−E∗{(E(Y ))2}

and therefore we only need the expression for
E∗
{

E
[

(E(Y | uj))
2
]}

. In particular,

E∗
{

E
[

(E(Y | uj))
2
]}

= E∗
{∫

(E(Y | uj))
2dHj(uj)

}

=
∫

E∗
{

(E(Y | uj))
2
}

dHj(uj)

=
∫

{

σ̂2
(

e − T T
j (uj)C

−1Tj(uj)
)

+
(

µ̂ + T T
j (uj)C

−1(y − µ̂1n)
)2
}

dHj(uj)

= σ̂2e − σ̂2
{∫

T T
j (uj)C

−1Tj(uj)dHj(uj)
}

+µ̂2 + 2µ̂T T C−1(y − µ̂1n)
+
{∫

(T T
j (uj)C

−1(y − µ̂1n))2dHj(uj)
}

.

The two integrals above can be computed as follows. First,
∫

T T
j (uj)C

−1Tj(uj)dHj(uj) =

n
∑

m=1

n
∑

k=1

AmAkcmkIkm

where

Ikm =
∫ bj

aj

exp

(

−
(uj − xmj)

2 + (uj − xkj)
2

γ̂j

)

1

bj − aj
duj

and where, again, cmk is the (m, k)-th element of matrix C−1,
and

Am =

∏

{`:`6=j}

{

∫ b`

a`

exp

(

−
(v` − xm`)

2

γ̂`

)

1

b` − a`
dv`

}

,

m = 1, ..., n.

Moreover,
∫

(T T
j (uj)C

−1(y − µ̂1n))2dHj(uj)

=
n
∑

m=1
z2

m

{

A2
m

∫ bj

aj
exp

(

−
2(uj−xmj)

2

γ̂j

)

1
bj−aj

duj

}

+2
n
∑

m=1

n
∑

k=m+1

zmzkAmAkIkm

where Ikm is defined above and zm denotes the m-th element
of the vector C−1(y − µ̂1n).
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