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Abstract

A continental scale dataset was assembled to examine
the drivers of greenness indices. Easily parallelized algo-
rithms for Ordinary Least Squares linear regression and a
binary regression tree were implemented and used for the
analysis. The most important drivers were found to be long
and shortwave radiation, precipitation, elevation, and soil
pH. This analysis shows that it is possible to perform em-
pirical modeling with large datasets and thus the archives
of remotely sensed data can and should be analyzed to shed
light on models of large scale natural processes.

1. Introduction

Ever since the advent of earth observing satellites, an ex-
tremely large amount of data has been available for scien-
tific purposes. However, the sheer volume of the data has in
practice tended to limit its use to descriptive methods. Now,
there are sufficient computational resources ranging from
personal computers to supercomputers able to tackle these
large datasets.

This analysis demonstrates a way of considering the pre-
diction of greenness indices at the continental scale. Our
dataset was constructed for the continental United States at
1km resolution providing about 6 million pixels for analy-
sis and occupying about 1.3GB of storage. This is about the
practical limit that can be analyzed on a single computer
in an “on demand” way, i.e., the results are available in a
matter of minutes or hours without resorting to high perfor-
mance computation resources that are typically shared with
other users which increases the wait-time before the job is
executed. While the results reported here were compiled

using a laptop, the algorithms were constructed as single
machine simplifications of parallelized code.

2. Methods

We employ two standard approaches for predictive em-
pirical modeling of a single continuous output based on a
collection of explanatory variables.

2.1. Linear ordinary least squares

The first is Ordinary Least Squares (OLS) linear re-
gression. In this case, we use the standard classical as-
sumptions of homoskedasticity and normality for the er-
rors. The systematic portion of the model is taken to be
linear. That is, letting Y be the dependent variable to be
modeled/predicted, X be the explanatory variables with an
initial column of ones, β be the collection of coefficients
and a constant, and ε the error terms:

Y = Xβ + ε (1)

Under the classical assumptions (which may not, in fact,
hold), the OLS estimator is the Maximum Likelihood Esti-
mator and is computed by

β̂OLS = (X ′X)−1
X ′Y (2)

Obviously, using a linear model to approximate the phe-
nomenon under consideration is quite simple and can be im-
proved upon. We include it because it is a standard approach
that is useful for comparison.
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2.2. Regression trees

The second technique is a kind of binary regression
tree. The basic idea is to devise a set of nested conditional
statements, each based on a single variable, that subdivide
the characteristic space. Each resulting region is assigned
a value corresponding to the prediction of the dependent
variable. The combination of the rules and values defines
a piecewise constant function that approximates the phe-
nomenon being modeled.

The rules can be thought of as a tree diagram starting
with a single decision based on a single variable and a
threshold as is shown in Figure 1. If the variable is less
than the threshold, we consider the “left branch,” otherwise
we proceed down the right branch. The simplest possible
tree would be to stop after the first decision resulting in one
of two possible predictions. Here we will refer to such a
tree as having two levels: the first is the decision while the
second has the predictions in its “leaves.”

node #0
variable = ___
threshold = ___

node #2
variable = ___
threshold = ___
prediction if leaf = ___

node #1
variable = ___
threshold = ___
prediction if leaf = ___

node #3

prediction if leaf = ___

node #4

prediction if leaf = ___

node #6

prediction if leaf = ___

node #5

prediction if leaf = ___

Figure 1. Diagram for a three level tree.
Within a decision, if the variable is less than
the threshold, the left branch is followed, oth-
erwise, the right branch.

The predicted values are assigned by applying the rule
(assume for the moment we have already determined a good
rule) to all of the data we are using to estimate the model
and finding which examples end up in each leaf. In our
particular specification, we compute the sample mean of the

dependent variable over the examples that end up in each
leaf and record the value as the prediction for that leaf.

The rules are chosen by searching among a restricted set
of alternatives. Here, all of the rules have the form Xk < µk

where Xk is the value of the kth explanatory variable and
µk is the associated threshold. We used the sample means
of the examples being fed into a particular decision as the
candidate thresholds for that decision. The rule chosen is
the one which results in the lowest total error for the ex-
amples fed into the decision. We used the summed squared
error function:

Error =
∑

all pixels

(Yactual − Ypredicted)2 (3)

Clearly, different flavors of the same approach could be
obtained by using different thresholds and predictions (e.g.,
the median) and error functions (e.g., absolute deviations).

The trees can be expanded to multiple levels by split-
ting each branch of a level into two new branches leading
to leaves on a new level. The decision rules and predic-
tions are similarly assigned based on the examples that filter
down each individual path. Notice that the total number of
paths and hence predictions grows exponentially with the
number of levels employed. For example, using only the
first two levels results in two unique predictions based on
one decision while using three levels provides four predic-
tions based on three decision rules (one in the first level and
two in the second). In general, using n levels will result in
a total of 2(n−1) uniquely predicted values based on 2n − 1
decision rules.

3. Data

We assembled 29 explanatory variables and the En-
hanced Vegetation Index (EVI) on a common projection and
resampled them to a common 1km grid.

The vegetation index data is taken from MODIS Terra
EVI (MOD13Q1 version 4). These datasets are available
at 250m spatial resolution and a temporal scale of 16 day
maximum value composite (MVC) in order to reduce the
effect of clouds and aerosols. All the water and bad quality
pixels from the datasets were removed using the MODIS
EVI QA/QC (quality assurance and quality control) mask
available with the EVI datasets. This MVC EVI data was
averaged on pixel by pixel basis for the month of April and a
minimum threshold of 0.1 was applied to remove the pixels
with very low vegetation or no vegetation.

Several topographic variables from the HYDRO1k suite
of datasets based on the GTOPO30 DEM were included: el-
evation, slope, northern and eastern components of aspect,
and the compound topographic index (CTI). Elevation data
is in meters. Slope is expressed in degrees time one hundred
varying from 0 to 9000. Aspect varies from 0 to 360 and is



the direction in which the slope is facing. This was con-
verted to northern and eastern components by taking sine
and cosine. Additionally, we included a variable reflecting
the distance to the nearest stream.

Various soil properties were included and were taken
from the State Soil Geographic (STATSGO) database,
which is at a 1km spatial scale. The variables were pH,
available water capacity (cm), bed rock depth (cm), bulk
density (g/cm3), permeability (cm/hr), and percentage sand,
silt and clay. Most of the soil properties are averaged over
the 11 vertical soil layers to obtain a single value per pixel.

Meteorological variables such as precipitation (mm), day
and nighttime surface temperatures (°C) and long and short-
wave radiation (W/m2) were obtained from National Land
Data Assimilation (NLDAS) project. Data is available on
an hourly basis that is averaged over a month with a spatial
scale of 12 km. The datasets from NLDAS are model out-
puts of the Land Data Assimilation System (LDAS) with
an operational numerical weather prediction (NWP) sys-
tem. The model integrates past forecasts with observations
from various data sources to improve the performance, e.g.,
it uses radar measurement as well as rain gauge observa-
tions to improve the model output for precipitation.

The 1 Km Global Land Cover Product from the Univer-
sity of Maryland provided land use/land cover variables. Of
the 15 designations in the dataset, we kept pixels for 11 and
constructed indicator variables for 10 to avoid identification
problems in the regression model. The retained categories
were Evergreen Needleleaf Forests, Evergreen Broadleaf
Forests, Deciduous Broadleaf Forests, Mixed Forests,
Woodlands, Wooded Grasslands/Shrublands, Closed Bush-
lands or Shrublands, Open Shrubland, Grasslands, Crop-
lands, and Barren (omitted indicator variable).

After dropping missing values and inappropriate land
use categories (e.g., water, urban areas), there were a total of
6,252,945 examples composed of 29 explanatory variables
and the EVI.

4. Results

The first step in the analysis was to divide the data into
three parts. The first pseudo-randomly selected part was
48% of the original data to be used for estimating the mod-
els. This is referred to as the “Training Set.” Another 32%
was set aside as a “Validation Set” to be used in determin-
ing a good specification and to assess overfitting. The final
20% of the data was set aside as a “Testing Set” to provide
an unbiased assessment of the final models performances
since the Validation Set is used to choose the specifications.

4.1. All variables

We began by using all the variables for both the linear
model and the regression tree. We trained the tree to 20 lev-
els. Using the estimated models, we computed the summed
squared error for all three subsets of our data. For compar-
ison, we transformed this into the root mean squared error.
This quantity represents the typical error standard deviation
around the predicted values and provides a summary mea-
sure of the models performance. These values are shown in
Figure 2 with the OLS results plotted as horizontal lines for
comparison with the tree results.
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Figure 2. Summary performance, models es-
timated using all variables.

The summary statistics reveal a few interesting things.
The OLS training and validation results are virtually identi-
cal and are roughly equivalent to a tree of depth 6 (based on
5 decisions for any particular example). The tree performs
better than the linear model and begins to overfit at about
depth 14 with the validation error bottoming out at about 17
levels. The OLS error is about 0.085 while the trees uncer-
tainty is about 0.065 . The EVIs in the dataset range from
about 0.1 to 1.0 with a mean of about 0.289 and standard
deviation of about 0.146.

We next examined each model for evidence concerning
which variables were most important.

For the OLS model, two criteria were considered. First
was the magnitude of the effect on the predicted EVI of a
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change in the explanatory variable. Since the model is lin-
ear, this is accomplished by inspection of the coefficients.
We rescaled each coefficient by dividing by the sample stan-
dard deviation of the corresponding variables. This rescaled
coefficient represents the expected change in the predicted
EVI when the explanatory variable changes by one standard
deviation of the observed distribution of values for that vari-
able.

However, it is not enough to look for large values for the
rescaled coefficients because the data may not support the
estimate very well. Due to the statistical assumptions be-
hind the model, we can compute the t-statistic for each co-
efficient in order to test the null hypothesis that it is equal to
zero. Both the standardized coefficients and the t-statistics
are plotted in Figure 3. Of course, due to the large amount
of data, almost all of the parameter estimates were “statisti-
cally significant.” However, some were more so than others.
One additional thing to note is that the land use/land cover
was included as a series of indicator variables. The indica-
tor for barren was excluded, and hence the estimated coef-
ficients show the effect of the stated land use as compared
to the omitted category: barren. Hence, the land use coef-
ficients are, for the most part, quite different from zero (in-
dicating they are different from “barren”), but quite similar
to each other (indicating they have similar effects). Consid-
ering this combination of magnitude and testing for magni-
tude illuminates the following variables as most important:
longwave radiation, shortwave radiation, precipitation, day
and nighttime temperatures, elevation, and soil pH. Closer
inspection indicates that the day and nighttime temperature
coefficients look similar but with opposite signs. Since it is
reasonable to expect that the two temperatures are related,
this indicates that their effects seem to cancel each other out
and thus only one (or neither) of the variables is actually
necessary.

The tree was examined using the method of White [1].
Her approach was to construct an index based on how often
a variable was used for a decision and rewarded occurrences
higher in the tree more than lower decisions. The result-
ing values for this tree are shown in Figure 4. Employing
this notion of Amandian Relative Global Dominance, we
found that longwave radiation was the most influential. The
other important variables were: precipitation, shortwave ra-
diation, nighttime temperature, elevation, and soil pH.

As a test to see if the identified variables were, in fact,
the most important, we split each of the datasets into two
pieces keeping all the observations in the same order. The
“Good” data contained all the variables identified as impor-
tant, specifically: longwave radiation, shortwave radiation,
precipitation, nighttime surface temperature, elevation, and
soil pH. The “Bad” data contained the remaining explana-
tory variables.
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Figure 3. Standardized coefficients and t-
statistics for linear OLS model (all variables).



0

0.1

0.2

0.3

0.4

0.5

0.6

distance to stream
long wave

precipitation
short wave

daytime temperature
nighttime temperature

elevation
CTI

slope
available water

bulk density
bedrock depth

% clay
permeability

% sand
% silt

pH
Evergreen Needleleaf
Evergreen Broadleaf
Deciduous Broadleaf

Mixed Forests
Woodlands

Wooded Grass/Shrub
Closed Bush or

Open Shrubland
Grasslands

Croplands
east aspect

north aspect

Amandian Relative Global Dominance
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nance for 17 level regression tree (all vari-
ables).

4.2. Good and bad variable results

Again, we estimated a linear model and trees to depth 20
for both sets of explanatory variables. The resulting sum-
mary performance statistics are shown in Figure 5.
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Figure 5. Summary performance, models es-
timated using ”Good” and ”Bad” variables.

The OLS results behave as expected. The restricted
“Good” model performs slightly more poorly than the un-
restricted “All” model. The “Bad” model results in a much
worse fit (about 0.102 for the Bad as opposed to the 0.085
and 0.088 for the All and Good). The testing error is also
much higher than the models based on the “All” and “Good”
variables. Taken together, these results indicate that the
“Good” variables really are important from the perspective
of the linear model and account for almost all of the models
predictive power.

The story is similar with the regression trees. The “All”
tree and the “Good” tree have very similar errors (within
0.003 of each other). For some levels (6, 7, 17-20), the
Good tree actually performs better than the All tree. Ap-
parently, there are a few bad decisions made when all the
variables are available which are avoided with the restricted
model. The “Bad” tree performs much worse indicating that



those variables are not merely variations on the Good vari-
ables.

5. Conclusions

The availability of cheap computational resources en-
ables us to perform empirical modeling exercises on the vast
wealth of remotely sensed data that has been piling up for
decades. In this analysis we considered the factors driv-
ing greenness indices using a continental scale dataset. We
were able to successfully perform the analysis on a laptop
using algorithms that easily parallelize.

We found that the most important drivers are long-and
shortwave radiation, precipitation, nighttime surface tem-
perature, elevation, and soil pH.

Future work should extend this analysis in several direc-
tions. First, finer grained data should be employed: the EVI
is available at 250m resolution and should be used. Sec-
ond, additional variables should be included to reflect hu-
man economic control of parts of the biosphere to gauge
their relative importance. Examples of such variables are
population densities, cost of access indices, protected area
designations, and site specific prices. Third, more varieties
of models should be employed such as neural networks,
composite “forests” of trees, or polynomially interacted re-
gression models.

Computational power is now cheap and algorithms capa-
ble of handling large datasets are available so we should not
fail to sift through the mounds of existing data for evidence
to support or undermine our models of large scale natural
processes and their interactions with human activity.
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