
Symposium on Optical Fiber Measurements (SOFM 2002), Sep 24-26, 2002, Boulder, CO, NIST Special Publication 988, pp. 173-176 

Measurement and mitigation of multiple reflection effects on the Differential 
Group Delay spectrum of optical components 

 
P.A. Williams and J.D. Kofler 

National Institute of Standards and Technology - Boulder, Colorado, USA 
 

Abstract: Ripple in the Differential Group Delay 
(DGD) spectrum due to multiple reflections is 
described theoretically and demonstrated ex-
perimentally. A technique of tilting the cavity 
element to reduce these multiple reflection ef-
fects is discussed and is demonstrated to remove 
the ripples in the DGD spectrum. 
 
I. Introduction 
In the field of optical fiber metrology, it seems 
that you can’t measure anything without the re-
sult being affected by multiple reflections com-
ing from a cavity somewhere in the optical path. 
Polarization-Mode Dispersion (PMD) or, more 
specifically, Differential Group Delay (DGD) is 
also affected by multiple reflections. The result 
is a ripple in the DGD spectrum with a surpris-
ingly large amplitude [1]. 
  
In this paper, we derive the spectral DGD behav-
ior in the presence of multiple reflections, and 
demonstrate how these effects can be signifi-
cantly reduced by tilting the cavity component 
with respect to the optical path. 

II. Theory 
We derive the DGD spectrum of a cavity com-
posed of a simple birefringent material whose 
eigenaxes are independent of wavelength (“non-

mode-coupled”). The physical length of the cav-
ity is L, and its birefringence is ∆n=(n// - n⊥). For 
simplicity, we assume the transmission and re-
flection coefficients (t and r) at the input inter-
face are equal to those at the output interface. 
Figure 1 illustrates the geometry. Note: this 
derivation assumes that the cavity is not tilted 
with respect to the light beam (ie. normal inci-
dence). The tilted light beam in Figure 1 is only 
shown to schematically to illustrate the features.  
 
We calculate the transmitted electric field for the 
two orthogonal polarization components aligned 
with the birefringence axes of the cavity. The 
electric field of the light that is transmitted 
through the cavity without experiencing any re-
flections (“single-pass”) is given by 
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E//0 and E⊥0 are the input electric fields, and δ// 
and δ⊥ are the phase delays accumulated by a 
single pass through the cavity for light polarized 
along each birefringent axis of the cavity. The 
phase delays are given as 
 ,/ cLnaa ωδ =  ( 2 ) 
where ω is the (radian) optical frequency, c is 
the speed of light, n is the index of refraction 
with the subscript a denoting the corresponding 
polarization state (// or ⊥).  
 
Group delay is given by the radian-frequency 
derivative of transmitted phase. So, we can find 
the DGD of the single-pass transmission as the 
difference in group delay for the two orthogonal 
components, 
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where ∆n is the phase birefringence and 
∆ng = n//,g – n⊥,g is the group birefringence, with 
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Figure 1. Schematic of Fabry-Perot cavity with trans-
mission and reflection coefficients t and r, containing 
birefringent material with indices of refraction n// and n⊥.
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So we find that the DGD seen by the single-pass 
light is 
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This is the DGD that would be measured in this 
device if there were no reflections. 
 
In order to find how the DGD is modified by 
multiple reflections, we use a standard Fabry-
Perot approach [2] to write the vector compo-
nents of the total electric fields transmitted 
through the cavity as 
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where a term containing the time dependence is 
common to both and omitted. The phases of E//t 
and E⊥t do not include the phase accumulated by 
the first pass through the device. In other words, 
the phase in Equations (6) and (7) is the pertur-
bation to the transmitted phase caused by multi-
ple reflections.  
 
Writing the expressions for E//t and E⊥t in phasor 
notation, we find the phases of each component:  
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where R, the intensity reflection coefficient, has 
been substituted for r2. 
 
We find the perturbation to the DGD caused by 
multiple reflections as 
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Since the complicated nature of Equation (11) 
clouds intuition about its behavior, we approxi-
mate ∆τFR as 
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where 
 cLng /0 =τ  ( 13 ) 
is the group delay for a single-pass through the 
cavity. Equation (12) requires the assumptions 
R<0.1, and ∆τ0/τ0<1. 
 
The total DGD measured for transmission 
through the Fabry-Perot cavity of Figure 1 is the 
sum of the single-pass DGD plus the perturba-
tion DGD 
 .0 FRτττ ∆+∆=∆  ( 14 ) 
 
Equations (11) and (12) predict some important 
features of the perturbation to the DGD spec-
trum. Equation (11) has two obvious peri-
odicities due to the cos(2δ//) and cos(2δ⊥) terms. 
Since δ// and δ⊥ are functions of ω, we expect the 
first term of Equation (11) to repeat over a fre-
quency spacing or Free Spectral Range (FSR) of 
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Likewise, the second term repeats over a FSR 
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Note that the refractive indices in Equations (15) 
and (18) are group (rather than phase) due to the 
frequency dependence of n. When combined, 
these two ripple “periods” will result in a fast 
ripple on ∆τFR that repeats over a frequency 
spacing of 
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and in a “beat note” in the spectrum with a fre-
quency spacing of 
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This behavior is more obvious in Equation (12) 
where the sine function at the left gives the fast 
ripples and the one at the right gives the enve-
lope. Plots of the spectral behavior of Equation 



 

(11) are shown Figures 2 and 3. The parameters 
used to generate these plots were: L = 9.97 mm, 
R = 0.0014, n = 1.532, ∆n = 0.00847, ng = 1.554, 
and ∆ng = 0.0094. These values were chosen to 
emulate the pigtailed quartz plate we measure in 
Section III. 

Equation (12) gives the amplitude of the ripple 
envelope as 4Rτ0. This result is somewhat sur-
prising in that the ripple amplitude depends on 
the group delay of the cavity τ0 and not the DGD 
∆τ0. Since typical sources of birefringence in 
components have τ0/∆τ0>>1, the amplitude of 
the DGD spectral ripple can easily be larger than 
the DGD itself. 
 
III. Experimental Verification 
These predictions are experimentally verified by 
measuring the DGD spectrum of a pigtailed 
quartz plate using a Modulation-Phase-Shift 
(MPS) technique [3] with a spectral resolution of 
∆ω=4.92 GHz and a temporal resolution of 30 fs 
(yielding a bandwidth efficiency factor [4] of 
over 6700). The length and indices of refraction 
of the quartz plate are expected to be equal to 
those used in the above simulation. Both faces of 
the plate have a broadband anti-reflection coat-

ing expected to yield an R of 0.01-0.02, but this 
was not measured directly. 
 
Figures 4 and 5 show the measured DGD spec-
trum for this device. We see qualitative agree-
ment with the theoretical predictions of Figures 
2 and 3 when an R of 0.0014 is used. This unex-
pectedly low R value was estimated by using R 
as a fitting parameter in Equation (12) to match 
the size of the ripple envelope in Figure 4. We 
attribute this low R value to a possible tilt of the 
waveplate, preventing some of the forward re-
flected light from being captured. 

 
By counting cycles in Figures 4 and 5, we meas-
ured the frequency spacings ∆ω0 and ∆ωB to be 
6.16×1010s-1 and 1.00×1013s-1, respectively. In-
serting ∆ω0, ∆ωB and our estimate of the quartz 
plate thickness L=9.97 mm into Equations (17) 
and (18) yields estimates for ng and ∆ng of 1.53 
and 0.0094 respectively. These predicted values 
are in good agreement (1.5 %) with the expected 
values of 1.554 and 0.0094.  
 
IV. Mitigation 
An efficient means for reducing multiple reflec-
tions in the backward direction (return loss) is to 
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Figure 2. Simulated DGD spectrum showing Fre-
quency beat notes due to multiple reflections in a bire-
fringent cavity (from Equations (5), (11), and (14)). 

Figure 3. Close-up of DGD spectrum in Figure 2.
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Figure 5. Close-up of DGD spectrum in Figure 4.
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Figure 4. Measured DGD spectrum for pigtailed quartz 
plate with envelope portion of Equation (12) overlaid to 
estimate R. 
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tilt the cavity element so that the backward-
reflected beam reflects at an angle and misses 
the launch optics. However, in order to reduce 
the multiple reflection effect on DGD, we must 
suppress the multiple reflections that propagate 
in the forward direction. In general, this requires 
a larger tilt angle, since the forward-reflected 
beams experience only a transverse offset with 
tilt. Figure 6 illustrates how tilting the cavity lets 
the single-pass beam enter the collection optics, 
but causes a forward-reflected beam to miss. 

 
From Figure 6, we see that the transverse offset 
ρ between the single-pass and the first forward-
reflected beams will be 
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where L is the cavity thickness, θ is the tilt angle 
of the cavity, and n is the mean refractive index 
in the cavity. With the collection lens and fiber 
arranged to efficiently collect the single-pass 
light (intensity I1), the fractional power in the 
first reflected beam (intensity IFR1) that will be 
collected is given by (assuming Gaussian beam 
profiles) 
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where R is the intensity reflection coefficient 
and w is the beam radius (defined by the 1/e2 
point). Combining Equations (19) and (20) gives 
the fractional power ratio between the first re-
flected beam and the single-pass beam. 
 
In order to minimize ripple in the DGD spec-
trum, the ratio of Equation (20) should be mini-
mized. To demonstrate the effectiveness of tilt-
ing the cavity, we used the same pigtailed wave-

plate geometry measured in Figures 4 and 5 ex-
cept with the quartz plate tilted by approxi-
mately 4-5° with respect to the incoming beam. 
For our collimating lenses, w = 0.25 mm, 
L = 9.97 mm, and n = 1.532, and we estimate 
R ≈ 0.02. Equations (19) and (20) indicate that 
for the given parameters, the first reflected beam 
will be severely attenuated (~150 dB) from the 
single-pass beam. Therefore, we expect to see no 
spectral ripple on the DGD of this device. Figure 
7 shows the measured spectrum for the tilted-
plate device. Indeed, within the noise of the 
measurement, no spectral ripple can be seen.  

 
V. Conclusion 
We have characterized the effects on the DGD 
of a component with multiple reflections pre-
sent. The resulting DGD spectral ripple has an 
amplitude proportional to the product of the in-
tensity reflection coefficient and the single-pass 
group delay of the cavity. We have also shown 
that tilting a reflective cavity can successfully 
eliminate the multiple reflection effects on the 
measured DGD. 
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Figure 6. Schematic of launching light into tilted cavity 
element at angle θ to prevent the reflected beams from 
being captured. 
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Figure 7. Measured DGD spectrum for pigtailed 
quartz plate with 4-5° tilt of plate with respect to beam 
path. 


