
EXPERIMENTS WITH AUTONOMOUS SOFTWARE FOR PLANETARY ROBOTS:
A SIMULATION SUCCESS STORY

Lorenzo Flückiger(1), Christian Neukom(2), Greg Pisanich(3), Eric Buchanan(4), Michael Wagner(5), Laura Plice(6)

(1), (2), (3) QSS Group, Inc., NASA Ames Research Center, Moffett Field, CA-94035, USA
Email: {lorenzo, cneukom, gp}@email.arc.nasa.gov

(4) MCT, NASA Ames Research Center, Email: buchanan@email.arc.nasa.gov
 (5) Jet Propulsion Laboratory (JPL), Pasadena, CA-91109, Email: Michael.D.Wagner@jpl.nasa.gov

(6) Formerly QSS Group, Inc., Email: plice@ix.netcom.com

ABSTRACT

Autonomy is a key enabling factor for robotic exploration.
There continues to be a large gap between autonomy
software (at the research level) and software that is ready for
insertion into near-term space missions. The Mission
Simulation Facility (MSF) project attempts to bridge this
gap by providing a simulation framework and a suite of
tools to support research and maturation of autonomy. The
MSF has a proven basis in applications for surface planetary
missions. Moreover, the innovative framework is readily
adaptable to a large range of missions by providing
component insertion and a mixed-fidelity simulation.
This paper first describes the requirements for effective
autonomy software development and then presents
technology developed to this model that resulted in the
Mission Simulation Toolkit (MST). It further shows how
this toolkit was applied to several projects and the lessons
learned during the process. Finally, future directions and
applications are presented.

1. INTRODUCTION

NASA Ames’ Mission Simulation Facility (MSF) is
designed to address a problem often encountered by
researchers in autonomy: how to carry out meaningful
testing of autonomy software without real-world robotic
platforms (costly in budget and time). The Mission
Simulation Facility offers a simulated testing environment
including robotic vehicles, terrains, sensors, and vehicle
subsystems. The initial MSF release targets users
researching autonomy for Mars rovers; however, the MSF
technology solution is applicable to many other robotic
domains. The MSF project has had four major releases of its
software since it’s beginning in early 2001. The latest
release is an Open Source release. The core technology
supporting the MSF has been presented in [1], and the
identification of the needs for a mission simulation
environment supporting autonomy has been described in
[2]. This paper describes how the MSF has successfully
supported several research projects in robotic autonomy.

The requirements for a simulator that supports autonomy
are significantly different than those of conventional robot
simulators. First, since high-level autonomy software is

intended to control a complete robotic system, a variety of
models (terrain, kinematics, dynamics, sensors, power,
electromechanical subsystems, etc.) are required. Second, in
order to test autonomy software in a range of situations, it is
necessary to provide controllable variability and failure
injection into these models. Third, because autonomy
software is generally developed on a wide variety of
platforms and may target robotic systems that are still under
development, support for mixed operating system and
flexible interfaces are also needed.

The MSF addresses this particular set of requirements
through the use of a distributed framework based on the
High Level Architecture (HLA) standard [3]. A key feature
of the MSF framework is the ability to plug in new models
to replace existing ones with the same services. This enables
significant simulation flexibility, particularly the mixing and
control of fidelity level. The MSF toolset also provides:
automatic code generation from robot interfaces defined
with the Unified Modeling Language (UML), methods for
maintaining synchronization across distributed simulation
systems, XML-based robot description, and an environment
server. Finally, the MSF supports a number of third-party
products including dynamic models and terrain databases.

To fully illustrate the capabilities and flexibility of the MSF,
several experiments that involved testing of autonomous
software using MSF simulators are presented. Results and
lessons learned from these applications of MSF are then
discussed.

2. REQUIREMENTS ANALYSIS

The MSF requires specific features to support robot
autonomy in addition to typical requirements of
conventional mechanical systems simulators, like response
time, model accuracy or data logging.

To illustrate the requirements analysis, a simple scenario
depicted in Fig. 1 will be considered. In this scenario a rover
is controlled by a Conditional Executive (CE) that is
capable of executing plans containing floating branches
triggered under specific conditions. The rover has been
given a path for a long traverse, and during its drive it will
acquire images of the environment. An on-board science
processing software analyzes the images, identifies and

mailto:}@email.arc.nasa.gov

classifies rocks for scientific priorities. If interesting rocks
("layered" in our example) are detected by the Image
Analysis (IA) module, the rover will perform a detour to
analyze the rock in more detail. The CE maximizes science
return while trying to minimize the use of resources such as
battery power and time.

2.1. Multi-model with variable fidelity

Autonomous software is intended to control complex
systems comprising multiple resources in unstructured
environments. Thus, a simulator replacing some robotic
hardware interacting with its environments needs to model a
range of behaviors. In engineering, most simulators focus
on a specific domain such as multi-body dynamics or
modeling a camera with sophisticated algorithms and
detailed models. In the MSF context, the models can often
be simplified because the model outputs will be interpreted
by autonomous software that reasons at a fairly high level of
abstraction.

In this example scenario where only the Conditional
Executive is tested against the simulator, there is no need to
generate photorealistic images of the terrain. The CE only
uses the high level information produced by the IA: does the
rock contain layers or not? Another aspect of the level of
fidelity of the simulation comes from how much of the real
rover’s control software is tested. Fig. 1 shows an
application where the real RC is sending commands to the
simulator. Often, to test autonomy, the rover control
software is not needed or not available. For this reason,
MSF provides some common modules like a “locomotor”
(see Section 3.3) to emulate some robot functions. In this
scenario, the simulator boundaries will extend to the dashed
line in Fig. 1.

The principal models required to support a full mission
simulation fall in the following categories:

Environment models for planetary simulation consist
essentially of terrain data. However, terrain shape, which is
usually represented in the form of an elevation map, is not

sufficient and additional layers of information like rock
properties need to be included. Various sources of terrain
environments have been used in MSF. A common database
interface to access the various types of environments has
been created jointly with the Jet Propulsion Laboratory
(JPL). Real terrain data is useful when the simulator is used
during a field test for validation purpose (see Fig. 7).
However, such data are often incomplete (holes in the 3D
mesh) and lack high level type of information (only terrain
texture is available). Synthetic terrains are therefore more
useful in creating interesting scenarios for autonomy, and
can offer continuous terrain patches over large distances.

Robot movement models compute the robot posture
according to the commands received by the actuators and
the external environment (terrain) the robot interacts with.
The posture is important for analyzing safety constraints
and for locating the position and orientation of the
instruments in the world. For current planetary simulations,
robot kinematics is sufficient because of the very slow
speed of today’s rovers. However, dynamic models are also
useful because failures due to collision with a rock can be
simulated.

Actuator and Sensor models allow control of the simulated
robot and feed the autonomous component with simulated
values. Actuators are only modeled at a high level. Internal
models of the electromechanical system or controller loop
are not implemented because it usually does not affect the
autonomous software. The sensors simulated are mostly
proprioceptive sensors that are required to produce correct
robot control.

Instrument models allow the autonomous software to
respond in mission like situations. However, as mentioned
above, instruments can often be modeled as a combination
of the hardware sensor and the data analysis software that
generates the final, high-level output. Instruments are
mainly exteroceptive sensors used for science analysis and
are therefore modeled as black boxes when science
algorithms are not tested.

Fig. 1. Illustration of a simple scenario and component diagram showing the boundaries of the simulator

Resource models are key components in the simulation, as
one of the critical tasks of the autonomous software is to
compute intelligent resource usage. Common resources are
power and time, but other resources like memory usage,
communication window and bandwidth are also considered
for full mission simulations. It should be noted that unlike
all the other models, the time model is not a component by
itself, but a constraint operating in all the components.

In addition to the multiple models required to simulate a
mission scenario, the MSF framework – by design –
supports mixed fidelity models in a simulation and allows
the replacement of low fidelity models with higher fidelity
models when required for specific scenarios.

2.2. Variability and uncertainty injection

To harness the power of the autonomous software being
tested, the simulator needs to be able to generate variations
in the scenario. In our example, it could be variable time
and energy resources that influence the drive to a given
point. The capability to inject failures is important for
evaluating how the autonomous software will respond to
them. A failure condition, in the example scenario, could
involve the imager not being able to return data about the
presence of a rock, or a stuck wheel.

2.3. Multi-platform and flexible interfaces

Another requirement that is specific to the MSF is to
provide a tool that can be used in a research environment.
Unlike a simulator that would be developed for testing a
specific subsystem before the flight phase, the MSF
supports research in autonomy where no computing
platform requirements can be imposed. In addition, the
scenarios needed for the simulator are often not well
defined, thus requiring the MSF to adapt quickly to
changing needs through easily reconfigurable interfaces.

3. TECHNOLOGY DEVELOPED

The MSF addresses this unique set of requirements through
the use of a distributed framework composed of three
elements: the communication layer, a set of interfaces, and a
suite of components implementing the basic models
required for a typical simulation scenario.

3.1. Communication Layer

The MSF is based on the High Level Architecture (HLA)
standard designed for simulations reuse and interoperability.
The HLA implementation provides a publish-subscribe
scheme with services to time-synchronize components. The
MSF has developed a layer on top of HLA, which abstracts
several HLA services and automatically ensures the
enforcement of HLA rules. This additional layer simplifies
the integration of new components into MSF simulations
while helping component developers to observe all the HLA

conventions without having to master all the HLA
intrinsics. This approach allows new models to be plugged
in to replace existing ones with the same services, thus
providing significant simulation flexibility, particularly in
the mixing and control of fidelity level.

3.2. Interfaces

The HLA methods of describing interfaces were insufficient
(for fully object oriented paradigms or strong variable
typing needs) for supporting the MSF requirements,
therefore a process to generate component interfaces has
been put in place. The components composing a simulator
are using MSF’s Communication Objects (CO) to interact
with each other. Components see CO’s as if they were local
objects, and can set their variables or call methods on them.
CO’s are defined using the Unified Model Language
(UML). From the UML model, implementation classes are
generated, that internally use HLA objects and interactions.
The use of automatic code generation reduces the risk of
coding errors, offers great flexibility, and allows rapid
creation of a new set of communication objects or extension
of an existing one.

3.3. Components

The charter of the MSF was not to develop high fidelity
models, but rather to integrate existing ones in its
framework. However, the MSF does include a suite of basic
components that are essential for creating a simulator. These
components are interchangeable with high fidelity models
when needed. Below is a description of the core models
used in most simulations.

The Simulation Controller manages the startup of all the
participating components of a simulation and gives the user
control of the simulation (start, pause, stop, reset, quit).

The Mission Simulation Dynamics Engine (MSDE) is a
dynamic simulator based on the Open Dynamics Engine
(ODE) software. MSDE simulates the interaction of the
rover with the terrain during rover movements.

The Locomotor is a generic model that translates high-level
robot movement commands into wheel motor speed. The
Locomotor works for all wheeled rovers that are supported
by the XML robot description file (e.g. no steered wheels,
all wheel steering).

A generic power model computes the load put on the
battery by the various motors, sensors, and instruments. The
model includes a GUI that allows a user to set the battery
capacity and obtain readings of the load and battery charge.

HLAB is both a debugging/analysis tool and a command
logger. Users can display state variables of all
Communication Objects in the simulation and execute
available methods on them. During simulation, HLAB acts
as the command logger, saving each time-stamped
interaction.

Viz is a powerful real-time 3D visualization software
developed at Ames by the Intelligent Robotics Group [4].
Viz provides scene graph management, realistic 3D
rendering with lighting model and shadow casting using real
ephemerides. The MSF has created a plug-in for Viz,
allowing it to connect to the simulation, and display any 3D
object participating in the simulation.

Most MSF components are generic simulators that can be
configured through parameters. For this purpose a robot
descriptor has been designed using an XML file format.
MSF XML robot files contain information about the various
subsystems of the robot (battery, instruments, etc.), its
physical configuration (kinematics) and properties (like
maximum speed). Thus, every component can extract the
required information for the simulated robot from the same
common file description.

4. APPLICATIONS

The MST has been continuously utilized by several projects
inside NASA Ames since its first release. Three factors
have influenced the maturation of MSF: 1) the MSF
roadmap to develop a functional simulator for autonomy
support, 2) the feedback from the users using the MSF to
test their applications and 3) the integration of additional
components (internally developed or externally provided).
Due to the frequent interaction with its users, and the
dynamics of the research environment, the MSF software
continuously evolved to support new problems. The MSF
software is not a single simulator, but a framework
permitting the construction of a variety of simulators. The
MSF communication layer remains the same for any
application. The MSF interfaces do not require
modifications if the application domain does not change
(planetary rover), but the interfaces could be extended for a
specific application. MSF simulators are tailored for a

particular application by combining a set of components
that implement the required models. Some of the
components are common to most simulations, while others
have been developed for a specific purpose. This section
presents three different configurations representative of
MSF evolution, with an increasing number of components
providing more complex mission simulation.

Fig. 2. Simulator configuration for VIPER

4.1. VIPER

The goal of the Virtual Intelligent Planetary Rover
Exploration (VIPER) project was to provide users with a
virtual environment in which they could visualize rover
behavior and possible execution outcomes of a plan under
construction. The initial VIPER system presented in [5]
used ad-hoc communication between the components.
VIPER was later updated to use the first release of the MSF
framework. The system was composed from three
components shown in Fig. 2, linked by the MSF framework
with minimum customization: conditional plan execution,
rover behavior simulation, and 3D visualization.

Plan execution occurred through a Conditional Executive
that made decisions based on rules expressed in the
Contingent Rover Language (CRL) [6]. The VirtualRobot
kinematics model can generate inverse and direct
kinematics for any robot structure (described in a
configuration file), and was used to compute the rover
behavior on a synthetic terrain. Visualization of the rover
interacting with the terrain occurred in Viz. Due to the
flexibility of MSF, integration of the three components to
create VIPER was achieved in a very short time. Fig. 3
shows a scenario where the Conditional Executive was
executing floating branches regarding the conditions
encountered by the rover.

Fig. 3. Simulated K9 rover in a limit configuration driving

on a synthetic terrain.

4.2. REEF

Apex, developed at Ames, is a reactive, procedure-based
planner/scheduler used for mission level task execution [7].
The Apex group has used the MSF to create a prototype of
the Requirements Elicitation and Evaluation Facility
(REEF) software for a proof of concept demonstration. The
objective of this software was to elicit the Mission Planning
and Execution system (MPE) behavior requirements from
diverse mission experts and then to evaluate the MPE
behavior specifications in diverse scenarios. Fig. 4 depicts
the combined software architecture. The box labeled “MPE
Proxy” is Apex running a simulation of the MPE. The user
enters rover behavior through the Apex GUI called Sherpa,
and defines the scenario via the scenario manager. The
rover proxy is the interface through which Apex and the
Scenario Manager execute commands to the rover via the
MSF framework. Viz, the 3-D visualization tool, and
ROAMS (dynamic rover model, more details in section 4.3)
are tools that were already integrated with MSF.

In one of the scenarios the rover had the task to take contact
measurement at three science targets and to take a
panoramic picture. Unexpected battery loss was one of the
anomalies that were injected during the simulation. The
programmed response of the rover was to abort all
scheduled tasks other than direct communication to Earth.
An expert observer using the REEF software noticed that
aborting the measurement with the arm extended
automatically invokes an arm stow task. As a consequence,
the observer changed the requirements to forbid the arm
stow to prevent any tasks requiring power.

The team developing REEF attested to the effectiveness of
the MSF since they were able to integrate the robot
simulation environment in a matter of days. Because Apex

is written in Lisp, they created a Rover Proxy on the Lisp
side, which made foreign function calls to objects of the
C++ MSF library. Although MSF is capable of running
simulations distributed on several computers, the team was
able to demonstrate REEF running on a single laptop. Fig. 5
shows the 3D display during this experiment (other REEF
components not shown).

Fig. 4. Software architecture in the REEF-MSF experiment.

4.3. SCIP

While developing MSF, our group closely collaborated with
researchers in the Autonomous Systems and Robotics
(ASR) at NASA Ames Research Center. During the last
couple of years, a major effort has been the development of
Single Cycle Instrument Placement (SCIP) capabilities [8].
The demonstration was executed using Ames’s six wheeled
rover with rocker-bogey suspension named K9 (see model
in Fig. 3). The Mission Simulation Facility (MSF) provided
the developers of the Planner and the Conditional Executive
with a simulation environment to test their plans and
software algorithms. Fig. 6 shows the components that
were involved in the simulations, and a description of the
components specific to this application is given below:

The robot simulation was provided through a high fidelity
dynamics model, ROAMS [9], developed at the NASA
JPL. ROAMS can compute the kinematics and/or dynamics
of planetary type rovers driving on terrains. In addition, the
ROAMS library includes several rover software modules
that are used in real missions. For this application, ROAMS
provided a model of a K9 rover with obstacle avoidance.
As with most MSF simulators, Viz represented a view of
the rover interacting with the terrain and the science targets.
However in this scenario, Viz was also used to define high
level plans by selecting targets in the environment. In
addition, a camera model simulated the time to take the

Fig. 5. Rover driving on a synthetic terrain while showing

its detector range during the APEX experiment.

Fig. 6. Simulator configuration to support the SCIP application

(note that the MSF Transport Layer only carries the references to the databases content, not the actual database data).

picture and created a view cone displayed in Viz when a
picture was taken.

A model representing the target tracking capabilities was
developed as an MSF model. Target tracking was
represented as a function of the distance between the rover
and the target and the rover’s view of the target relative to
its stored image. The Conditional Executive switched
between branches in response to the current confidence in
the tracking system. The “Blue Rock Detector” model was
developed to simulate serendipitous detection of special
rock formation (e.g. layered). This model “detected” rocks,
which exhibited certain attributes and utilities defined in a
file, and that fell into the detectors range. The Conditional
Executive triggered floating branches based on the status of
the detector.

The K9 subsystems that were modeled included power
resources and a statistical representation of instrument
placement failure. Instrument placement is a complex series
of processes that involve navigating the rover to its optimal
position, taking an image of the target, finding possible
target areas for instrument placement, and finally deploying
the arm to place the instrument. Failure may occur during
any of these steps. The instrument placement failure
statistical model could also be overridden by manually
selecting the outcome of the instrument placement.

The MSF simulator was used during several phases of the
project. First the advanced features of the Conditional
Executive were tested. Then the consistency of plans
generated by the planner was evaluated. And finally, during
the real demonstration, actual plans were validated in
simulation before being sent to the K9 rover.

5. RESULTS AND LESSONS LEARNED

The experiments conducted with MSF based simulators
generated two types of benefits for the autonomous software

developers: evaluation of the algorithms’ behaviors and
verification of the software.

First, MSF is used as a platform enabling the rapid test of
autonomous behaviors without requiring the hardware
platform to be available. This usage ranges from simple
runs testing that specific algorithms respond correctly to the
situation, to simulation of a full system. For example, during
an autonomy technology demonstration at Ames, MSF was
used during the field test to validate plans generated by the
planner. A precise model of the terrain for the simulation
was obtained by using data collected by the actual rover
from the Marscape (Ames outdoor Mars analog). This
ensured that the simulated rover would encounter the same
situations as the actual rover on the real terrain. Before
sending a plan to the rover, it was executed in simulation by
the same Conditional Executive that ran on-board the rover.
The simulation’s main advantage is the possibility of testing
various branches of the plan by modifying some variables
(like available power) or changing the result of some actions
(like failure during the arm placement).

Second, MSF was used to test the correctness of the
autonomous software (basically discover bugs in the code).
MSF simulations of course do not replace formal software
validation or testing, but have shown to help discovering
problems that often only appear in real situations. For
example, a race condition in the Conditional Executive –
that had never been seen before on the rover because of the
limited number of runs one can actually perform on the real
rover– was encountered in simulation. By putting the
autonomous software into a number of simulation
configurations, it was possible to identify the problem
correctly. Another problem at a higher level was discovered
in the planner in a similar way. Observing the simulated
rover executing a plan with complex branches pointed to
some inconsistencies in the plan that led to the identification
of a bug (in the plan generation process) that was quickly
fixed.

Over four years of simulator development for autonomous
rovers, in direct collaboration with users, allowed the MSF
team to collect some useful lessons summarized below:
• Simulators at the mission level are definitely missing and

researchers in autonomy are eager to use them.
• Simulators supporting research (vs. engineering) require

more flexibility to adapt to moving design targets.
• Good analysis of required level of fidelity of the models

is critical to avoid wasting time on developing
unnecessary high quality components.

• Users most often requested a GUI for setting
failure/status on models (tracking, IP, Power model,
rover placement) instead of probabilistic models

• The MSF dependency on initially freely available
implementation of HLA from DMSO, led to additional
work when this middle-ware later became only
commercially available.

• Adopting a standard like HLA is good practice, but not
necessary if interoperability with multiple simulators is
not required.

• Multi-platform support is not enough, multi-language
bindings are required. Initially all MSF users were using
C++, but recently new projects considering to use MSF
are also using Java and C#.

6. FUTURE DIRECTIONS

6.1. Mission Simulation Toolkit

The Mission Simulation Toolkit (MST) is the software

package that the MSF has released to the Ames Open
Source repository in Spring 2005 [10]. The toolkit includes
the HLA-based simulation framework, a library of
Communication Objects for the domain of terrestrial surface
robot missions, and a number of simulation components. In
addition to the components described in Section 3.3
(simulation controller, dynamic engine, locomotor, power
model, data analysis/logger), the MST also includes the two
other components: 1) an in-house C-Executive that allows
scripting simple scenarios in a C like language, and 2) a
generic Range Sensor which provides point, line or 2D
(depth map) distance information from the sensor to the
terrain.

These components provide a MSF user with the basic tools
necessary to simulate science mission scenarios involving
rovers. Any of these basic modules can be exchanged with
higher fidelity models that conform to the same interface or
additional models can be connected to extend the simulation
capability. For the current release of MST, users need to
have access to a HLA Runtime Interface (RTI)
implementation. Work is in progress to remove this
dependency by integrating MST with the Federated
Simulations Development Kit (FDK) [11], freely available
from the PADS research group at Georgia Tech.

6.2. End-To-End Mission Modeling and Simulation
Environment

End-To-End Mission Modeling and Simulation
Environment (EMMSE) is a new project at the Ames

Fig. 7. Displays of several components during a simulation showing a rover taking an image while executing an actual plan.
The virtual rover drives on a terrain model generated from data collected by the real rover during the SCIP field experiment.

Research Center that is focused on developing a mixed
fidelity end-to-end mission simulation capability to
baseline, verify and validate human and robot mission
operations. MST will also serve as the simulation
framework for integrating a number of new and existing
simulators into an environment that we call Mission
Operations Design and Analysis Tool (MODAT). MODAT
will support modeling and simulation of end-to-end human-
robot missions including ground and surface operations
(work process and procedures), mission systems, vehicles,
robots, space telecommunications and telemetry data.

While analyzing the requirements of the system and of the
individual components, several challenges have been
identified including support for simulators written in
different languages, multiple platforms, event and discrete
time-step based time synchronization, mixing high and low
fidelity models, and running simulators at different
granularity. One of the more potent challenges will be to
identify a time synchronization scheme that will support all
of the following features: 1) rapid high-level simulation of a
days worth of mission activity in minutes; 2) simulation of
rover behavior in approximately real time speed for
viewing; and 3) simulation of complex processes (e.g. a
Moessbauer instrument interacting with an environment
feature to create a spectrum) that have high computational
demands and that are much slower than the actual
measurements. These and other challenges that will
undoubtedly be uncovered as the project progresses will
provide a critical test for MST. Judging from our experience
with tackling other difficult challenges, we are confident
that our software will prove itself against these demands and
grow while overcoming these obstacles.

7. CONCLUSION

We have evaluated the requirements that are specific to
simulations of terrestrial rover missions. We pointed out
that low-fidelity models of robotic systems are often
sufficient to test autonomy algorithms that make decisions
at a high level. We showed that there is a need for being
able to replace low-fidelity models with high fidelity
models to allow modeling certain processes in more detail.
MSF has been presented as a flexible simulation
environment that fosters to the needs of researchers who
want to test their autonomy software in a mission
simulation. The description of the applications of MSF to
three specific research problems, each with unique
requirements, demonstrates the ability of MSF to adapt to a
variety of different systems and demands. We hope in this
paper we have demonstrated the convenience, flexibility,
and ease with which complex simulations can be created
using MSF and how it facilitates integrating existing
simulators into a mission simulation.

8. REFERENCES

1. Flückiger, L. and C. Neukom. A new simulation
framework for autonomy in robotic missions. in IEEE
International Conference on Intelligent Robots and Systems
(IROS 2002). 2002. Lausanne, Switzerland.
2. Pisanich, G., et al. Mission simulation facility:
Simulation support for autonomy development. in 42nd
AIAA Aerospace Sciences Meeting and Exhibit 2004. 2004.
Reno, NV, United States.
3. Kühl, F., R. Weatherly, and J. Dahmann, Creating
Computer Simulation Systems: An Introduction to the High
Level Architecture. 2000: Prentice Hall.
4. Nguyen, L.A., et al., Virtual reality interfaces for
visualization and control of remote vehicles. Autonomous
Robots, 2001. 11: p. 59--68.
5. Edwards, L., et al. VIPER: Virtual Intelligent Planetary
Exploration Rover. in Proceedings of the 6th International
Symposium on Artificial Intelligence and Robotics &
Automation in Space (i-SAIRAS 2001). 2001. Quebec
(Canada).
6. Washington, R., et al. Autonomous rovers for Mars
exploration. in Proceedings of The 1999 IEEE Aerospace
Conference. 1999. Aspen, CO.
7. Freed, M.S., M. Remington, R., Using Simulation to
Evaluate Designs: The APEX Approach, in Engineering for
Human-Computer Interaction, S.D. Chatty, P., Editor.
1998, Kluwer Academic. chapter 12.
8. Pedersen, L., et al. Mission Planning and Target
Tracking for Autonomous Instrument Placement. in IEEE
Aerospace 2005. 2005. Big Sky, Montana, USA.
9. Yen, J., A. Jain, and J. Balaram. ROAMS: Rover
Analysis, Modeling and Simulation. in Proceedings of i-
SAIRAS 1999. 1999.
10. NASA Ames Open Source Software, Mission
Simulation Tookit (MST), http://ic.arc.nasa.gov/msf/.
11. Fujimoto, R.M., et al. Design of High Performance RTI
Software. in Proceedings of the Fourth IEEE International
Workshop on Distributed Simulation and Real-Time
Applications. 2000.

 ACKNOWLEDGEMENTS
None of this work would have been possible without the
support of Dr. Butler Hine and the IS program. We would
also like to acknowledge the collaborative contributions of
several researchers: Dr. Abhinandan Jain and his staff at the
DARTS lab, Jet Propulsion Laboratory; Dr. Michael Freed
and his APEX team at NASA Ames; and Dr. Rich
Washington, Dr. Dave Smith, Dr. Larry Edwards, Dr.
Emmanuel Benazera working in the Autonomous Systems
and Robotics group at NASA Ames.

http://ic.arc.nasa.gov/msf/

	INTRODUCTION
	REQUIREMENTS ANALYSIS
	Multi-model with variable fidelity
	Variability and uncertainty injection
	Multi-platform and flexible interfaces

	TECHNOLOGY DEVELOPED
	Communication Layer
	Interfaces
	Components

	APPLICATIONS
	VIPER
	REEF
	SCIP

	RESULTS AND LESSONS LEARNED
	FUTURE DIRECTIONS
	Mission Simulation Toolkit
	End-To-End Mission Modeling and Simulation Environment

	CONCLUSION
	REFERENCES

