2.0 Closed-Domain Hydrate Dissociation (Base Case w/ Hydrate)

2.1 Problem Description

One half of a 20-m, one-dimensional horizontal domain, discretized using uniformly spaced 1-m grid cells (optionally 0.1-m grid cells) is initialized with aqueous-hydrate conditions; whereas, the other half of the domain is initialized with gas-aqueous conditions. As with the Base Case problem, a closed horizontal domain is used to eliminate gravitational body forces and boundary condition effects. The initial conditions are specified to yield complete dissociation of the hydrate, via the thermal capacitance of the domain-half initialized with gas-aqueous conditions. To initialize the aqueous-hydrate half of the domain, temperature, pressure, and hydrate saturation are specified. For reference purpose hydrate equilibrium pressure, hydration number, and cage occupancies will also be specified for this half of the domain. To initialize the gasaqueous half of the domain temperature, aqueous pressure and gas pressure are specified. All active phases (i.e., aqueous, gas, and hydrate) are assumed to comprise water and CH₄, and capillarity is assumed between the active phases. Hydrate dissociation is assumed to occur using equilibrium kinetics (i.e., infinitely fast dissociation rates). From the specified initial conditions, the simulations proceeds to equilibrium conditions in temperature and pressure, dissociating the hydrate during the transition process and leaving gas-aqueous conditions. Variable time stepping should be used to capture the flow and transport processes at early and late times during simulation. A schematic of the initial conditions for the problem are shown in Figure 2.1 and problem parameters and specifications are provided in Table 2.1. In Figure 2.1 the specified initial condition parameters are listed above the domain region and the computed initial condition parameters are listed for reference inside the domain region. The computed initial condition parameters are computable from the specified initial condition parameters.

The list of processes simulated in this problem include:

- 5. multifluid flow for an aqueous-gas-hydrate system in geological media, subject to relative permeability and capillarity effects and phase transitions
- 6. dissociation of CH₄ hydrate in response to thermal stimulation and depressurization
- 7. heat transport across multifluid geological media with phase advection and component diffusion
- 8. change in CH_4 solubility in water with pressure and temperature
- 9. change in thermodynamic and transport properties with pressure and temperature

2.2 Simulation Results

Profiles of temperature, aqueous saturation, hydrate saturation, gas saturation, aqueous pressure, and CH_4 mass fractions in the active phases at selected times (0, 1, 10, 100, 1,000, and 10,000 days) are shown in Figures 2.2 through 2.9, respectively. Each figure shows results from the 20- and 200-node discretizations. The profile plots show equilibrium conditions are achieved by 10,000 days. Complete hydrate dissociation

Parameter	Value	
Porosity	0.3	
Bulk Density	1855 kg/m^3	
Grain Density	2650 kg/m^3	
Bulk Specific Heat	525 J/kg K	
Grain Specific Heat	750 J/kg K	
Hydraulic Conductivity	0.1 Darcy	
Dry Thermal Conductivity	2.0 W/m K	
Water-Saturated Thermal Conductivity	2.18 W/m K	
Pore Compressibility	$5.0 \ge 10^{-10} \text{ Pa}^{-1}$	
Capillary Pressure Model	van Genuchten, see Equation (1.1)	
α parameter	0.132 m ⁻¹	
<i>n</i> parameter	2.823	
eta_{gl} parameter	1.0	
<i>s_{lr}</i> parameter	0.0	
Aqueous Relative Permeability Model	Mualem, see Equation (1.2)	
<i>m</i> parameter	0.6458	
Gas Relative Permeability Model	Mualem, see Equation (1.3)	
<i>m</i> parameter	0.6458	
$P_l = 3.8 MPa$	$P_l = 2.7 MPa$	
T = 3.0 C	$P_g = 2.8 MPa$	
<i>s_h</i> = 0.4	T = 60.0 C	
P_h^{eq} = 3.420 <i>MPa</i>	$s_l = 0.460526$	
$N_{h}^{w} = 6.176$	$\rho_l = 983.889 kg / m^3$	
$y_{lc}^{CH_4} = 0.9650$	$\mu_l = 4.6642 \ x \ 10^{-4} \ Pa \ s$	
$y_{ca}^{CH_4} = 0.8392$	$ \rho_g = 16.7376 kg / m^3 $	
$\rho_{h} = 911.04 \ kg / m^{3}$	$\mu_g = 1.2198 x 10^{-5} Pa s$	

Table 2.1. Problem Parameters and Specifications

Figure 2.1. Problem Schematic

10 m

10 m

occurs by 1,924 days, after which time the thermal, thermodynamic, and hydrologic systems transition smoothly toward the equilibrium conditions shown in Table 2.1; where simulation results are shown for both the 20- and 200-node discretizations. Hydrate dissociation occurs initially in response to both thermal stimulation and depressurization; however, later in time dissociation is principally due to thermal stimulation as the released CH₄ gas increases the system pressure above the initial conditions. Initially hydrate dissociation occurs without hydrate creation. After 10 days, however, hydrate dissociation occurs in conjunction with hydrate creation on the hydrate-side of the dissociation front (Figure 2.4). Hydrate creation is caused by the released CH_4 gas migrating away from the dissociation region in both directions. CH_4 gas migrating toward the hydrate-side of the domain forms new hydrate, which eventually dissociates as the dissociation front proceeds toward the hydrate side of the domain. The total CH₄ mass remains unchanged during the simulation at 167.025 kg, indicating mass conservation of CH_4 . The aqueous CH_4 concentration is generally dependent on CH_4 gas partial pressure, which increase over time with the increasing system pressure, as shown by the profiles in Figures 2.7 and 2.8. Integral and rates of CH₄ released from the hydrate are shown in Figure 2.9 as volumes at STP; where, the conversion from kg to m^3 STP was taken as 1.4706. Volumetric release rates were calculated by differentiating the released volumes.

To further illustrate the transition to equilibrium and dissociation of hydrate, history plots of temperature, aqueous saturation and hydrate saturation are shown at four domain locations (i.e., 0.5, 9.5, 11.5 and 19.5 m) in Figures 2.10 through 2.12, respectively. It should be noted that the temperature near the hydrate interface (i.e., x = 9.5 m) shows a drop below the initial condition (i.e., 3 C) early in the dissociation process for that node location (see Figure 2.10). This drop in temperature occurs in response to the dissociation of hydrate via depressurization, that leads the thermal stimulation dissociation. The complex history profiles for aqueous saturation, shown in Figure 2.11, occur in response to advective migration of the aqueous phase due to pressure gradients and the liberation of water with the dissociation of hydrate. The creation of hydrate on the hydrate-side of the domain, prior to dissociation is shown in Figure 2.12, at the domain location x = 0.5 m.

Parameter	20-Node Discretization	200-Node Discretization
Temperature	18.063 C	18.054 C
Aqueous Pressure	10.1736 MPa	10.1926 MPa
Gas Pressure	10.2428 MPa	10.2617 MPa
Aqueous Saturation	0.679	0.680
Hydrate Saturation	0.0	0.0
Aqueous Relative Permeability	0.1333	0.1338
Aqueous CH ₄ Mass Fraction	2.162 x 10 ⁻³	2.166 x 10 ⁻³
Gas CH_4 Mass Fraction	0.99981	0.99981

Table 2.2	Equilibrium	Conditions
-----------	-------------	------------

Figure 2.2a. Simulated Temperature Profiles (20-Node Discretization)

Figure 2.2b. Simulated Temperature Profiles (200-Node Discretization)

Figure 2.3a. Simulated Aqueous Saturation Profiles (20-Node Discretization)

Figure 2.3b. Simulated Aqueous Saturation Profiles (200-Node Discretization)

Figure 2.4a. Simulated Hydrate Saturation Profiles (20-Node Discretization)

Figure 2.4b. Simulated Hydrate Saturation Profiles (200-Node Discretization)

Figure 2.5a. Simulated Gas Saturation Profiles (20-Node Discretization)

Figure 2.5b. Simulated Gas Saturation Profiles (200-Node Discretization)

Figure 2.6a. Simulated Aqueous Pressure Profiles (20-Node Discretization)

Figure 2.6b. Simulated Aqueous Pressure Profiles (200-Node Discretization)

Figure 2.7a. Simulated Aqueous CH₄ Mass Fraction Profiles (20-Node Discretization)

Figure 2.7b. Simulated Aqueous CH₄ Mass Fraction Profiles (200-Node Discretization)

Figure 2.8a. Simulated Gas CH₄ Mass Fraction Profiles (20-Node Discretization)

Figure 2.8b. Simulated Gas CH₄ Mass Fraction Profiles (200-Node Discretization)

Figure 2.9a. Simulated CH₄ Release from Hydrate (20-Node Discretization)

Figure 2.9b. Simulated CH₄ Release from Hydrate (200-Node Discretization)

Figure 2.10a. Simulated Temperature History Profiles (20-Node Discretization)

Figure 2.10b. Simulated Temperature History Profiles (200-Node Discretization)

Figure 2.11a. Simulated Aqueous Saturation History Profiles (20-Node Discretization)

Figure 2.11b. Simulated Aqueous Saturation History Profiles (200-Node Discretization)

Figure 2.12a. Simulated Hydrate Saturation History Profiles (20-Node Discretization)

Figure 2.12b. Simulated Hydrate Saturation History Profiles (200-Node Discretization)

3.0 References

Mualem, Y. 1976. "A new model for predicting the hydraulic conductivity of unsaturated porous media." *Water Resources Research*. 12:513-522.

van Genuchten, M. T. A. 1980. "A closed-form equation for predicting the hydraulic conductivity of unsaturated soils." *Soil Sci. Soc. Am. J.* 44:892-898.

Appendix

Figure A.1. van Genuchten and Mualem Functions

Aqueous Saturation	Capillary Head, m	Aqu. Rel. Perm.	Gas Rel. Perm.
1	0	1	0
0.99777	1.01822	0.948178	3.12211e-05
0.997653	1.03678	0.946455	3.41961e-05
0.997531	1.05567	0.944675	3.74549e-05
0.997402	1.07491	0.942837	4.10224e-05
0.997267	1.0945	0.940938	4.49304e-05
0.997125	1.11445	0.938979	4.9208e-05
0.996975	1.13475	0.936955	5.38936e-05
0.996817	1.15543	0.934865	5.90233e-05
0.996651	1.17649	0.932708	6.46395e-05
0.996477	1.19793	0.93048	7.07881e-05
0.996294	1.21976	0.928181	7.75207e-05
0.996101	1.24199	0.925807	8.48929e-05
0.995898	1.26462	0.923357	9.29598e-05
0.995684	1.28767	0.920828	0.000101793
0.99546	1.31113	0.918218	0.000111461
0.995224	1.33503	0.915524	0.000122046
0.994976	1.35936	0.912745	0.000133629
0.994715	1.38413	0.909877	0.000146308
0.99444	1.40935	0.906917	0.000160183

0.994152	1.43504	0.903864	0.000175371
0.993848	1.46119	0.900714	0.000191988
0.993529	1.48782	0.897466	0.000210172
0.993194	1.51493	0.894115	0.000230066
0.992841	1.54254	0.89066	0.000251832
0.99247	1.57065	0.887097	0.000275644
0.99208	1.59927	0.883423	0.000301692
0.99167	1.62841	0.879635	0.000330188
0.991239	1.65809	0.875731	0.000361352
0.990786	1.68831	0.871707	0.000395431
0.99031	1.71907	0.86756	0.000432703
0.98981	1.7504	0.863287	0.000473452
0.989285	1.7823	0.858885	0.000518006
0.988732	1.81478	0.854351	0.00056671
0.988152	1.84785	0.84968	0.000619949
0.987542	1.88152	0.844871	0.000678132
0.986901	1.91581	0.83992	0.000741714
0.986228	1.95073	0.834823	0.000811186
0.985521	1.98627	0.829578	0.000887087
0.984778	2.02247	0.82418	0.000969995
0.983998	2.05933	0.818628	0.00106054
0.983179	2.09686	0.812916	0.00115942
0.982319	2.13507	0.807044	0.00126738
0.981416	2.17398	0.801006	0.00138522
0.980468	2.21359	0.794801	0.00151383
0.979473	2.25393	0.788425	0.00165418
0.978429	2.29501	0.781875	0.00180728
0.977333	2.33683	0.775149	0.00197428
0.976183	2.37942	0.768243	0.00215639
0.974977	2.42278	0.761156	0.00235492
0.973712	2.46693	0.753885	0.00257131
0.972385	2.51189	0.746427	0.0028071
0.970994	2.55766	0.73878	0.00306398
0.969536	2.60427	0.730943	0.00334371
0.968007	2.65173	0.722914	0.00364826
0.966405	2.70005	0.714691	0.00397974
0.964726	2.74926	0.706274	0.00434039
0.962967	2.79936	0.697661	0.00473264
0.961126	2.85037	0.688853	0.00515913
0.959197	2.90232	0.679848	0.00562264
0.957179	2.95521	0.670646	0.00612621
0.955066	3.00906	0.66125	0.00667307
0.952856	3.0639	0.651658	0.0072667
0.950544	3.11973	0.641874	0.00791076
0.948127	3.17659	0.631899	0.00860925
0.9456	3.23448	0.621735	0.00936638
0.942959	3.29342	0.611385	0.0101866
0.940201	3.35344	0.600852	0.0110749

0.93732	3.41455	0.590141	0.0120361
0.934313	3.47677	0.579257	0.0130757
0.931175	3.54013	0.568204	0.0141995
0.927902	3.60465	0.556989	0.0154135
0.924488	3.67034	0.545618	0.016724
0.920931	3.73722	0.534098	0.0181378
0.917225	3.80533	0.522437	0.0196618
0.913366	3.87468	0.510645	0.0213035
0.90935	3.94529	0.49873	0.0230707
0.905172	4.01718	0.486702	0.0249713
0.900827	4.09039	0.474573	0.0270138
0.896313	4.16493	0.462353	0.0292069
0.891623	4.24083	0.450055	0.0315595
0.886756	4.31811	0.437691	0.0340809
0.881707	4.39681	0.425276	0.0367806
0.876472	4.47693	0.412823	0.0396685
0.871047	4.55852	0.400346	0.0427545
0.865431	4.64159	0.387862	0.0460486
0.859619	4.72617	0.375385	0.0495611
0.85361	4.8123	0.362931	0.0533023
0.847401	4.9	0.350517	0.0572824
0.84099	4.9893	0.33816	0.0615117
0.834375	5.08022	0.325876	0.0660002
0.827556	5.1728	0.313683	0.0707578
0.820531	5.26706	0.301597	0.0757943
0.813301	5.36305	0.289636	0.0811188
0.805866	5.46078	0.277816	0.0867402
0.798226	5.5603	0.266154	0.0926668
0.790382	5.66163	0.254665	0.0989064
0.782338	5.7648	0.243367	0.105466
0.774094	5.86986	0.232273	0.112352
0.765654	5.97683	0.221399	0.119569
0.757021	6.08574	0.210758	0.127122
0.7482	6.19665	0.200364	0.135014
0.739195	6.30957	0.190228	0.143248
0.730012	6.42456	0.180362	0.151824
0.720656	6.54163	0.170776	0.160742
0.711135	6.66085	0.161478	0.170001
0.701454	6.78223	0.152477	0.179598
0.691621	6.90583	0.143778	0.189527
0.681646	7.03168	0.135389	0.199784
0.671535	7.15982	0.127312	0.210362
0.661298	7.2903	0.119551	0.221251
0.650946	7.42315	0.112107	0.232441
0.640487	7.55843	0.104981	0.243922
0.629931	7.69617	0.0981714	0.25568
0.61929	7.83642	0.0916774	0.267701
0.608573	7.97923	0.0854956	0.279971

0.597793	8.12464	0.0796219	0.292472
0.586959	8.2727	0.0740515	0.305187
0.576084	8.42345	0.0687784	0.318098
0.565179	8.57696	0.0637958	0.331187
0.554254	8.73326	0.0590965	0.344432
0.543321	8.89241	0.0546722	0.357814
0.532392	9.05446	0.0505143	0.371311
0.521477	9.21947	0.0466136	0.384903
0.510587	9.38748	0.0429606	0.398569
0.499733	9.55855	0.0395454	0.412286
0.488925	9.73274	0.036358	0.426035
0.478173	9.91011	0.033388	0.439793
0 467487	10 0907	0.0306251	0 453539
0 456877	10.0746	0.028059	0.467255
0.446351	10.4618	0.0256794	0.480919
0.435917	10.6525	0.0234761	0.494514
0.425585	10.8466	0.0201701	0.508019
0.415361	11 0443	0.0211092	0.500019
0.405253	11.0115	0.0178254	0.521117
0.395268	11.2400	0.0170234	0.504075
0.385/12	11.4505	0.0102277	0.547055
0.37569	11.8716	0.0134159	0.573634
0.366108	12 088	0.0104107	0.575034
0.356671	12.000	0.012101	0.50027
0.347383	12.5002	0.0110301	0.570714
0.338248	12.0020	0.0100130	0.010700
0.329269	12.7005	0.0090700	0.634791
0.320449	13 2303	0.00020040	0.004771
0.311791	13 4714	0.00742241	0.657713
0.303298	13 7169	0.00070003	0.668814
0.294969	13 9668	0.0000000000000000000000000000000000000	0.000014
0.286808	14 2214	0.00010090	0.690275
0.278815	14 4805	0.0019200	0.090273
0.270013	14.7005	0.00110001	0.700020
0.263334	15 0131	0.0035984	0.720566
0.255847	15 2867	0.00323677	0.720000
0.233047	15.2007	0.00323077	0.739476
0.240320	15.8/89	0.00290909	0.748546
0.241377	16 1378	0.00201402	0.75736
0.204070	16 / 318	0.00234012	0.765921
0.227370	16 7313	0.00210775	0.703721
0.214432	17 0362	0.00169596	0.782292
0.214402	17 3467	0.00107070	0.702272
0.200104	17.0407	0.00132029	0.790107
0.201704	17.0020	0.00100220	0.805015
0.190920	18 317/	0.00122010	0.000010
0.190007	18.6461	0.00109247	0.012110
0.1010101	10.0401	0.000977795	0.010907
0.170012	10.2002	0.000074040	0.020000

0.173408	19.3319	0.000782477	0.832058
0.16815	19.6842	0.000699636	0.838267
0.163035	20.0429	0.000625376	0.844266
0.158061	20.4082	0.000558834	0.850059
0.153225	20.7801	0.000499233	0.855652
0.148524	21.1588	0.00044587	0.861049
0.143955	21.5443	0.00039811	0.866257
0.139515	21.937	0.000355379	0.87128
0.135203	22.3367	0.000317162	0.876123
0.131014	22.7438	0.000282991	0.880792
0.126946	23.1583	0.000252449	0.885293
0.122996	23.5803	0.000225157	0.889629
0 119162	24.01	0.000200777	0.893807
0 11544	24 4475	0.000179005	0.897831
0 111828	24 8931	0.000159565	0.901706
0.108323	25.3467	0.000142213	0.905437
0 104923	25.8086	0.000126727	0.909029
0.101624	26.0000	0.000120727	0.909029
0.0984246	26.2709	0.000112511	0.912100
0.0953214	20.7570	8 95950-05	0.919014
0.0923121	27.2400	7 97940-05	0.919010
0.0923121	27.742	7.105630-05	0.922097
0.0865651	20.2473	6 326790-05	0.923002
0.0838224	20.7025	5 632670-05	0.927915
0.0030224	29.2004	5.052076-05	0.930030
0.0785868	29.0201	1 463120 05	0.935832
0.0760892	30.0000	3 972240 05	0.955652
0.0736688	31 4803	3 535030 05	0.930272
0.0730000	31.4005	3.145650.05	0.940010
0.0713232	22.004	2 708020 05	0.942075
0.0668484	32.0001	2.790936-03	0.943044
0.0647149	33 8386	2.490238-03	0.94713
0.0047149	24 4552	2.21340-05	0.949130
0.002040	25 0821	1.970708-05	0.951004
0.0587062	25 7224	1.755020-05	0.952917
0.0568275	26 2724	1.339230-03	0.934099
0.0508275	27 0262	1.300770-05	0.930413
0.0530079	37.0303	1.23332e-03	0.93000
0.0532456	37.711Z	1.090/80-05	0.939043
0.0515587	20.0902	9.755090-00	0.901105
0.0498838	39.098Z	8.07243e-00	0.902020
0.0482851	39.8107	7.71116e-06	0.964035
0.040/001	40.0002	0.000110-00	0.900007
0.0452541	41.2/49	0.090010-00	
0.0437808	42.02/1	3.419230-06	0.96/937
0.0423/36	42.793	4.81//10-06	0.969138
0.0410111	43.5728	4.28286-06	0.970294
0.039692	44.3669	3.80714e-06	0.971404
0.0384148	45.1754	3.38419e-06	0.972472

	0.0371784	45.9986	3.00813e-06	0.973499
l	0.0359814	46.8369	2.67377e-06	0.974486
	0.0348226	47.6904	2.37651e-06	0.975435
	0.0337008	48.5595	2.11224e-06	0.976348
	0.0326148	49.4445	1.87731e-06	0.977225
	0.0315636	50.3455	1.66846e-06	0.978069
	0.030546	51.263	1.48281e-06	0.978881
	0.029561	52.1972	1.31779e-06	0.979662
	0.0286076	53.1484	1.17111e-06	0.980412
	0.0276847	54.117	1.04073e-06	0.981134
	0.0267914	55.1032	9.24852e-07	0.981829
	0.0259268	56.1073	8.21859e-07	0.982497
	0.0250899	57.1298	7.30322e-07	0.98314
	0.0242799	58.1709	6.4897e-07	0.983758
	0.023496	59.231	5.7667e-07	0.984353
	0.0227372	60.3104	5.12417e-07	0.984925
	0.0220029	61.4095	4.55316e-07	0.985475
	0.0212921	62.5286	4.04573e-07	0.986005
	0.0206043	63.6681	3.5948e-07	0.986514
	0.0199385	64.8283	3.1941e-07	0.987005
	0.0192942	66.0097	2.83802e-07	0.987477
	0.0186707	67.2126	2.52161e-07	0.987931
	0.0180672	68.4375	2.24046e-07	0.988368
	0.0174832	69.6847	1.99063e-07	0.988789
	0.016918	70.9546	1.76864e-07	0.989194
	0.0163711	72.2476	1.57139e-07	0.989584
	0.0158417	73.5642	1.39613e-07	0.989959
	0.0153295	74.9048	1.24041e-07	0.99032
	0.0148338	76.2699	1.10204e-07	0.990668
	0.014354	77.6598	9.79106e-08	0.991003
	0.0138898	79.075	8.69877e-08	0.991325
	0.0134405	80.516	7.72828e-08	0.991636
	0.0130057	81.9833	6.86603e-08	0.991935
	0.012585	83.4773	6.09993e-08	0.992223
	0.0121779	84.9986	5.41929e-08	0.9925
	0.0117839	86.5476	4.81456e-08	0.992767
	0.0114026	88.1248	4.2773e-08	0.993024
	0.0110337	89.7307	3.79997e-08	0.993272
	0.0106767	91.3659	3.37589e-08	0.993511
	0.0103312	93.031	2.99912e-08	0.99374
	0.00999686	94.7263	2.66439e-08	0.993962
	0.00967334	96.4526	2.36702e-08	0.994175
	0.00936029	98.2103	2.10282e-08	0.994381
	0.00905735	100	1.8681e-08	0.994579