' PROGRAM: FirstDef.bsx Example Program ' Written by: Innovation First, Inc. and ' Parallax, Inc. ' Date: 12/28/99 ' Modified: 01/24/00 ' ' Define BS2-SX Project Files ' {$STAMP BS2SX,PGM1.bsx,PGM2.bsx,PGM3.bsx,PGM4.bsx} ' ' Note! By defining all of the consituent programs as above, merely opening ' this file will invoke the stamp editor to open the constituent files ' too. ' Note! This example code assumes that you have a joystick connected to P1 of ' the operator interface, the operator interface, radio link, and the ' Robot controller are up and running, and you have a servo plugged in ' to PWM1 ' '========== Declare Variables ================================================ ' Below is a list of declared input and output variables. Comment or un-comment ' the variables as needed. Declare any additional variables required in ' your main program loop. Note that you may only use 26 total variables. '---------- Operator Interface (OI) - Analog Inputs -------------------------- p1_x VAR byte 'Port 1, X-axis on Joystick p2_x VAR byte 'Port 2, X-axis on Joystick p3_x VAR byte 'Port 3, X-axis on Joystick p4_x VAR byte 'Port 4, X-axis on Joystick p1_y VAR byte 'Port 1, Y-axis on Joystick p2_y VAR byte 'Port 2, Y-axis on Joystick p3_y VAR byte 'Port 3, Y-axis on Joystick p4_y VAR byte 'Port 4, Y-axis on Joystick p1_wheel VAR byte 'Port 1, Wheel on Joystick p2_wheel VAR byte 'Port 2, Wheel on Joystick p3_wheel VAR byte 'Port 3, Wheel on Joystick p4_wheel VAR byte 'Port 4, Wheel on Joystick 'p1_aux VAR byte 'Port 1, Aux on Joystick 'p2_aux VAR byte 'Port 2, Aux on Joystick 'p3_aux VAR byte 'Port 3, Aux on Joystick 'p4_aux VAR byte 'Port 4, Aux on Joystick '---------- Operator Interface - Digital Inputs ------------------------------ oi_swA VAR byte 'OI Digital Switch Inputs 1 thru 8 oi_swB VAR byte 'OI Digital Switch Inputs 9 thru 16 '---------- Robot Controller (RC) - Analog Inputs ---------------------------- 'sensor1 VAR byte 'RC Analog Input 1, connector pin 2 'sensor2 VAR byte 'RC Analog Input 2, connector pin 16 'sensor3 VAR byte 'RC Analog Input 3, connector pin 5 'sensor4 VAR byte 'RC Analog Input 4, connector pin 19 'sensor5 VAR byte 'RC Analog Input 5, connector pin 8 'sensor6 VAR byte 'RC Analog Input 6, connector pin 22 'sensor7 VAR byte 'RC Analog Input 7, connector pin 11 'bat_volt VAR byte 'RC Analog Input 8, hardwired to the Battery 'Vin = ((4.7/14.7)* Battery voltage)-0.4 'Binary Battery Voltage = (Vin/5.0 V)*255 '---------- Robot Controller - Digital Inputs -------------------------------- rc_swA VAR byte 'RC Digital Inputs 1 thru 8 rc_swB VAR byte 'RC Digital Inputs 9 thru 16 '---------- Robot Controller - Digital Outputs ------------------------------- relayA VAR byte relayB VAR byte '---------- Misc. ------------------------------------------------------------ PB_mode VAR byte 'packet_num VAR byte 'delta_t VAR byte Temp VAR byte '========== Define Aliases =================================================== ' Aliases are variables which are sub-divisions of variables defined ' above. Aliases don't require any additional RAM. '---------- Aliases for each OI switch input --------------------------------- ' Below are aliases for the digital inputs located on the Operator Interface. ' Ports 1 & 3 have their inputs duplicated in ports 4 & 2 respectively. The ' inputs from ports 1 & 3 may be disabled via the 'Disable' dip switch ' located on the Operator Interface. See Users Manual for details. p1_sw_trig VAR oi_swA.bit0 'Joystick Trigger Button, same as Port4 pin5 p1_sw_top VAR oi_swA.bit1 'Joystick Top Button, same as Port4 pin8 p1_sw_aux1 VAR oi_swA.bit2 'Aux input, same as Port4 pin9 p1_sw_aux2 VAR oi_swA.bit3 'Aux input, same as Port4 pin15 p3_sw_trig VAR oi_swA.bit4 'Joystick Trigger Button, same as Port2 pin5 p3_sw_top VAR oi_swA.bit5 'Joystick Top Button, same as Port2 pin8 p3_sw_aux1 VAR oi_swA.bit6 'Aux input, same as Port2 pin9 p3_sw_aux2 VAR oi_swA.bit7 'Aux input, same as Port2 pin15 p2_sw_trig VAR oi_swB.bit0 'Joystick Trigger Button p2_sw_top VAR oi_swB.bit1 'Joystick Top Button p2_sw_aux1 VAR oi_swB.bit2 'Aux input p2_sw_aux2 VAR oi_swB.bit3 'Aux input p4_sw_trig VAR oi_swB.bit4 'Joystick Trigger Button p4_sw_top VAR oi_swB.bit5 'Joystick Top Button p4_sw_aux1 VAR oi_swB.bit6 'Aux input p4_sw_aux2 VAR oi_swB.bit7 'Aux input '---------- Aliases for each RC switch input --------------------------------- ' Below are aliases for the digital inputs located on the Robot Controller. rc_sw1 VAR rc_swA.bit0 rc_sw2 VAR rc_swA.bit1 rc_sw3 VAR rc_swA.bit2 rc_sw4 VAR rc_swA.bit3 rc_sw5 VAR rc_swA.bit4 rc_sw6 VAR rc_swA.bit5 rc_sw7 VAR rc_swA.bit6 rc_sw8 VAR rc_swA.bit7 rc_sw9 VAR rc_swB.bit0 rc_sw10 VAR rc_swB.bit1 rc_sw11 VAR rc_swB.bit2 rc_sw12 VAR rc_swB.bit3 rc_sw13 VAR rc_swB.bit4 rc_sw14 VAR rc_swB.bit5 rc_sw15 VAR rc_swB.bit6 rc_sw16 VAR rc_swB.bit7 '---------- Aliases for each RC Relay outputs --------------------------------- ' Below are aliases for the relay outputs located on the Robot Controller. relay1_fwd VAR RelayA.bit0 relay1_rev VAR RelayA.bit1 relay2_fwd VAR RelayA.bit2 relay2_rev VAR RelayA.bit3 relay3_fwd VAR RelayA.bit4 relay3_rev VAR RelayA.bit5 relay4_fwd VAR RelayA.bit6 relay4_rev VAR RelayA.bit7 relay5_fwd VAR RelayB.bit0 relay5_rev VAR RelayB.bit1 relay6_fwd VAR RelayB.bit2 relay6_rev VAR RelayB.bit3 relay7_fwd VAR RelayB.bit4 relay7_rev VAR RelayB.bit5 relay8_fwd VAR RelayB.bit6 relay8_rev VAR RelayB.bit7 '---------- Aliases for the Pbasic Mode Byte (PB_mode) ----------------------- ' The last bit of the PB_mode byte (aliased as comp_mode) indicates the status ' of the Competition Control, either Enabled or Disabled. This indicates the ' start and stop rounds at the competitions. Comp_mode is the same as the ' "Disabled" LED on the Operator Interface. ' Comp_mode = 1 for Enabled, 0 for Disabled comp_mode VAR PB_mode.bit7 InitDone var Temp.bit0 '---------- Bit flags used to manage multiple programs ----------------------- ' Each bit of this register is set when the '========= Define Constants for Initialization =============================== ' The initialization code is used to select the input data used by Pbasic. ' The Master micro-processor (uP) sends the data you select to the BS2SX ' Pbasic uP. You may select up to 26 constants, corresponding ' to 26 variables, from the 32 available to you. Make sure that you have ' variables for all the bytes recieved in the serin command. ' ' The constants below have a "c_" prefix, as compared to the variables that ' they will represent. ' ' Set the Constants below to 1 for each data byte you want to recieve ' Set the Constants below to 0 for the unneeded data bytes '---------- Set the Initialization constants you want to read ---------------- c_p1_y CON 1 c_p2_y CON 1 c_p3_y CON 1 c_p4_y CON 1 c_p1_x CON 1 c_p2_x CON 1 c_p3_x CON 1 c_p4_x CON 1 c_p1_wheel CON 1 c_p2_wheel CON 1 c_p3_wheel CON 1 c_p4_wheel CON 1 c_p1_aux CON 0 c_p2_aux CON 0 c_p3_aux CON 0 c_p4_aux CON 0 c_oi_swA CON 1 c_oi_swB CON 1 c_sensor1 CON 0 c_sensor2 CON 0 c_sensor3 CON 0 c_sensor4 CON 0 c_sensor5 CON 0 c_sensor6 CON 0 c_sensor7 CON 0 c_batt_volt CON 0 c_rc_swA CON 1 c_rc_swB CON 1 c_delta_t CON 0 c_PB_mode CON 1 c_packet_num CON 0 c_res01 CON 0 '---------- Initialization Constant VOLTAGE - USER DEFINED ------------------- ' This is the 'Low Battery' detect voltage. The 'Low Battery' LED will ' blink when the voltage drops below this value. ' Basically set VOLTAGE = INT ((DESIRED FLASH VOLTAGE + 0.4) * 16.3) ' Example, for a 10 Volt trigger, set Voltage eq 170. dataInitVolt CON 153 '9.0 Volts '========== Define Constants - DO NOT CHANGE ================================= ' Baud rate for communications with User CPU OUTBAUD CON 20 ' (62500, 8N1, Noninverted) INBAUD CON 20 ' (62500, 8N1, Noninverted) USERCPU CON 4 FPIN CON 1 COMA CON 1 COMB CON 2 COMC CON 3 '========== Scratch pad RAM usage =========================================== '0 used for Power on status in PGM 0 '1 used for Speed RAM logic in PGM 2 '========== PGM 0 ===================================================== '---------- Input & Output Declarations -------------------------------------- Output COMB Input COMA Input COMC Output 7 'define Basic Run LED on RC => out7 Output 8 'define Robot Feedback LED => out8 => PWM1 Green Output 9 'define Robot Feedback LED => out9 => PWM1 Red Output 10 'define Robot Feedback LED => out10 => PWM2 Green Output 11 'define Robot Feedback LED => out11 => PWM2 Red Output 12 'define Robot Feedback LED => out12 => Relay1 Red Output 13 'define Robot Feedback LED => out13 => Relay1 Green Output 14 'define Robot Feedback LED => out14 => Relay2 Red Output 15 'define Robot Feedback LED => out15 => Relay2 Green '---------- Initialize Inputs & Outputs -------------------------------------- Out7 = 1 'Basic Run LED on RC Out8 = 0 'PWM1 LED - Green Out9 = 0 'PWM1 LED - Red Out10 = 0 'PWM2 LED - Green Out11 = 0 'PWM2 LED - Red Out12 = 0 'Relay1 LED - Red Out13 = 0 'Relay1 LED - Green Out14 = 0 'Relay2 LED - Red Out15 = 0 'Relay2 LED - Green p1_x = 127 'Port 1, X-axis on Joystick p2_x = 127 'Port 2, X-axis on Joystick p3_x = 127 'Port 3, X-axis on Joystick p4_x = 127 'Port 4, X-axis on Joystick p1_y = 127 'Port 1, Y-axis on Joystick p2_y = 127 'Port 2, Y-axis on Joystick p3_y = 127 'Port 3, Y-axis on Joystick p4_y = 127 'Port 4, Y-axis on Joystick p1_wheel = 127 'Port 1, Wheel on Joystick p2_wheel = 127 'Port 2, Wheel on Joystick p3_wheel = 127 'Port 3, Wheel on Joystick p4_wheel = 127 'Port 4, Wheel on Joystick 'p1_aux = 127 'Port 1, Aux Analog 'p2_aux = 127 'Port 2, Aux Analog 'p3_aux = 127 'Port 3, Aux Analog 'p4_aux = 127 'Port 4, Aux Analog '========== Pbasic - Master uP Initialization Routine ======================== ' DO NOT CHANGE THIS! DO NOT MOVE THIS! ' The init routine sends 5 bytes to the Master uP, defining which data bytes to receive. ' 1) Collect init ' 2) Lower the COMA line, which is the clk line for the shift out command ' 3) Lower COMB line to tell pic that we are ready to send init data ' 4) Wait for pic to lower the COMC line, signaling pic is ready for data ' 5) Now send out init dat to pic, all 5 bytes ' 6) Now set direction and levels for the COMA and COMB pins tempA CON c_p3_x <<1 + c_p4_x <<1 + c_p1_x <<1 + c_p2_x <<1 + c_rc_swB dataInitA CON tempA <<1 + c_rc_swA <<1 + c_oi_swB <<1 + c_oi_swA tempB CON c_sensor4 <<1 + c_sensor3 <<1 + c_p1_y <<1 + c_p2_y <<1 + c_sensor2 dataInitB CON tempB <<1 + c_sensor1 <<1 + c_packet_num <<1 + c_PB_mode tempC CON c_batt_volt <<1 + c_sensor7 <<1 + c_p1_wheel <<1 + c_p2_wheel <<1 + c_sensor6 dataInitC CON tempC <<1 + c_sensor5 <<1 + c_p3_y <<1 + c_p4_y tempD CON c_res01 <<1 + c_delta_t <<1 + c_p3_aux <<1 + c_p4_aux <<1 + c_p1_aux dataInitD CON tempD <<1 + c_p2_aux <<1 + c_p3_wheel <<1 + c_p4_wheel 'This portion of the program should be exectuted only once after power up, and not thereafter. 'So, we will set a bitflag when it is done, and before executing, test the bitflag to see if ' it should be executed. get 0,Temp if InitDone = 1 then Mainloop debug "Doing Init code...",cr Output COMA low COMA low COMB put 1,127 ' Init Ramp Variable to 127 Wait_init: if IN3 = 1 then Wait_init: Shiftout COMB,COMA,1, [dataInitA,dataInitB,dataInitC,dataInitD,dataInitVolt] Input COMA high COMB InitDone = 1 put 0,Temp '========== Main Loop ======================================================== MainLoop: '---------- Serin Command - Get Data from Master uP -------------------------- ' Construct the "serin" command using the following rules: ' 1) There must be one variable for every input defined in the "Define Constants for Init" section. ' 2) The order must match the "Define Constants for Init" section. ' 3) The total number of all variables may not exceed 26. ' 4) Only use one "Serin" command. ' 5) The Serin command must occupy one line. ' ' Example of Serin variable order (this example exceed the 26 variable limit and is not on one line): ' ' Serin COMA\COMB, INBAUD, [oi_swA,oi_swB,rc_swA,rc_swB,p2_x,p1_x,p4_x,p3_x,PB_mode,packet_num,sensor1, ' sensor2,p2_y,p1_y,sensor3,sensor4,p4_y,p3_y,sensor5,sensor6,p2_wheel,p1_wheel, ' sensor7,sensor8,p4_wheel,p3_wheel,p2_aux,p1_aux,p4_aux,p3_aux,delta_t,res01] Serin COMA\COMB, INBAUD, [oi_swA,oi_swB,rc_swA,rc_swB,p2_x,p1_x,p4_x,p3_x,PB_mode,p2_y,p1_y,p4_y,p3_y,p2_wheel,p1_wheel,p4_wheel,p3_wheel] '---------- Blink BASIC RUN LED ---------------------------------------------- Toggle 7 'Basic Run LED on the RC is toggled ON/OFF every loop. '========== Perform Operations =============================================== ' Add you custom code here. ' Delete any of the following sections below (except for Output Data in the last program). '---------- Buttons to Relays ------------------------------------------------ ' The & used below is the Pbasic symbol for AND ' The &~ used below is the Pbasic symbol for AND NOT relay1_fwd = p1_sw_trig &~ rc_sw1 'Port 1 Trigger = Relay 1 Forward 'Relay 1 wont go Forward if rc_sw1 is ON relay1_rev = p1_sw_top &~ rc_sw2 'Port 1 Thumb = Relay 1 Reverse 'Relay 1 wont go Reverse if rc_sw2 is ON relay2_fwd = p2_sw_trig &~ rc_sw3 'Port 2 Trigger = Relay 2 Forward 'Relay 2 wont go Forward if rc_sw3 is ON relay2_rev = p2_sw_top &~ rc_sw4 'Port 2 Thumb = Relay 2 Reverse 'Relay 2 wont go Reverse if rc_sw4 is ON relay3_fwd = p3_sw_trig 'Port 3 Trigger = Relay 3 Forward relay3_rev = p3_sw_top 'Port 3 Thumb = Relay 3 Reverse relay4_fwd = p4_sw_trig 'Port 4 Trigger = Relay 4 Forward relay4_rev = p4_sw_top 'Port 4 Thumb = Relay 4 Reverse relay5_fwd = p1_sw_aux1 'Port 1 Aux1 = Relay 5 Forward relay5_rev = p1_sw_aux2 'Port 1 Aux2 = Relay 5 Forward relay6_fwd = p3_sw_aux1 'Port 3 Aux1 = Relay 6 Forward relay6_rev = p3_sw_aux2 'Port 3 Aux2 = Relay 6 Forward relay7_fwd = p4_sw_aux1 'Port 4 Aux1 = Relay 7 Forward relay7_rev = p4_sw_aux2 'Port 4 Aux2 = Relay 7 Reverse relay8_fwd = 1 'Relay 8 always Forward relay8_rev = 0 'Relay 8 always Forward '---------- Feedback LEDs for PWM1, PWM2 ------------------------------------- Out8 = p1_y/216 'LED is ON when Victor883 full forward (default CAL) Out9 = ~(p1_y/56 max 1) 'LED is ON when Victor883 full reverse (default CAL) Out10 = p2_y/216 'LED is ON when Victor883 full forward (default CAL) Out11 = ~(p2_y/56 max 1) 'LED is ON when Victor883 full reverse (default CAL) '---------- Feedback LEDs for Relay1, Relay2 --------------------------------- Out13 = relay1_fwd 'LED is ON when Relay 1 is Forward Out12 = relay1_rev 'LED is ON when Relay 1 is Reverse Out15 = relay2_fwd 'LED is ON when Relay 2 is Forward Out14 = relay2_rev 'LED is ON when Relay 2 is Reverse '---------- PWM outputs Limited by Limit Switches --------------------------- if rc_sw5 = 0 then next1: p3_y = p3_y MAX 127 next1: if rc_sw6 = 0 then next2: p3_y = p3_y MIN 127 next2: if rc_sw7 = 0 then next3: p4_y = p4_y MAX 127 next3: if rc_sw8 = 0 then next4: p4_y = p4_y MIN 127 next4: if rc_sw9 = 0 then next5: p1_wheel = p1_wheel MAX 127 next5: if rc_sw10 = 0 then next6: p1_wheel = p1_wheel MIN 127 next6: if rc_sw11 = 0 then next7: p2_wheel = p2_wheel MAX 127 next7: if rc_sw12 = 0 then next8: p2_wheel = p2_wheel MIN 127 next8: if rc_sw13 = 0 then next9: p3_wheel = p3_wheel MAX 127 next9: if rc_sw14 = 0 then next10: p3_wheel = p3_wheel MIN 127 next10: if rc_sw15 = 0 then next11: p4_wheel = p4_wheel MAX 127 next11: if rc_sw16 = 0 then next12: p4_wheel = p4_wheel MIN 127 next12: Debug "PGM0: Port:1 Y:", dec3 p1_y Run 1 ' Go to next program (PGM 1) ' Note! The Output Data section must be moved to the end of the program (in the last program file).