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Program Challenges

The Supersonics Project has identified a set of key technical 
challenges that are barriers to success for these vehicles

Performance challenges, including Aero-Propulso-Servo-Elastic 
(APSE) analysis and design 

Efficiency challenges, including supersonic cruise efficiency ….
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• High Fidelity 1D Flow Models – Based on Component 
Performances and Volume Gas dynamics

• Some old FORTRAN computer Codes Exist
-- Develop codes on state-of-the-art platforms due to analysis, 

complexity, commonality, and configuration control issues
-- Research done more effectively by also being involved in simulation 

development.

Modeling Approach/Propulsion

• Mainly Classical Feedback Control
• Control Methodologies extended to relate hardware 

designs and performance requirements to control 
design limitations for stability, time response, and 
disturbance rejection.

Controls Approach/Propulsion
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Aero-Propulso-Servo-Elastic (APSE)

Integrated Modeling  
&Controls Design

Vehicle Stability 

Ride quality

Design and Analysis

Cruise Efficiency

Thrust 
Variations

External Flow 
Disturbances

APSE Flow 
Disturbances
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Propulsion
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Engine Model
Engine Components Modeled Separately (performance & Volume dynamics)
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Engine Modeling Results
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Engine Modeling Results
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Frequency Responses

-- Afterburner Volume dominates Frequency Response
-- Fuel actuation speed ~38 rad/sec (~6 Hz)          Control system, no disturbance 
attenuation above 6 Hz
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Kopasakis, G.; Connolly, J; Ma P.: “Volume Dynamics Propulsion System Modeling and Analysis for 
Supersonics Vehicle Research,” ASME Turbo Expo, 2008 - Pending

Engine Modeling Results

Inlet Response
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Axisymetric Inlet Shock Position Control Exercise
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2D Bifurcated  Inlet Simulations
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• Controls approach involves a methodical Loop 
Shaping Design Methodology.

• Extended classical control design to directly relate 
hardware designs like actuator speeds, and 
performance requirements to control design and it’s 
limitations.

• This is done in order to establish a design vehicle to 
increase performance and enable reduction of design 
margins.

Controls Design Approach
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• Given Control Performance Requirements

• Method to shape the control system Loop Gain to meet 
requirements

• Given plant transfer function then calculate the controller 
transfer function to satisfy the desired Loop Gain

• Methodology also addresses control design limitations based 
on hardware designs and requirements; shows how to achieve 
best control design and facilitates requirements negotiation or 
justifying hardware design changes

Loop Shaping Controls Design

o45≥
Disturbance Attenuation 20 dB at 100 rad/sec
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Feedback Control Diagram

Kopasakis, G.: “Feedback Control Loop Shaping Design with Practical Considerations,” NASA/TM-2007-215007, Oct. 2007.
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Loop Shaping Controls Design
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Potential Collaboration Opportunities

• SUP program has gone through few rounds of NRA’s

• Next round is expected to be in January

• So far no NRA’s have been awarded in APSE
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Conclusion/Future Work
• Work on engine modeling validation and enhancements continues

• Inlet 1D CFD model in SIMULINK will start in FY08

• Engine Feedback controls work and Closed loop thrust variations in 
FY08

• Bounding upstream flow field disturbances: ASE, atmospheric, pitch 
and yaw – FY08-09 

• Integrated APSE model in late FY08 and FY09

• Models and controls validation/testing? 

• Out years possible areas – Parallel  propulsion process modeling
Advanced Controls to optimize performance 


